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ABSTRACT
This paper proposes a novel feature type for the recognition
of emotion from speech. The features are derived from a
long-term spectro-temporal representation of speech. They
are compared to short-term spectral features as well as pop-
ular prosodic features. Experimental results with the Berlin
emotional speech database show that the proposed features
outperform both types of compared features. An average
recognition accuracy of 88.6% is achieved by using a com-
bined proposed & prosodic feature set for classifying 7 dis-
crete emotions. Moreover, the proposed features are eval-
uated on the VAM corpus to recognize continuous emotion
primitives. Estimation performance comparable to human
evaluations is furnished.

Index Terms— Emotion recognition, speech processing,
spectro-temporal features, affective computing

1. INTRODUCTION

Automatic recognition of human emotions from speech aims
at recognizing the underlying emotional state of a speaker
from his or her speech signal. It has received rapidly increas-
ing research attention over the past few years, motivated by a
broad range of commercially promising applications. While
classification of discrete emotions (e.g. happy, neutral) from
speech has been a dominant research focus for some time
[1][2][3], recent studies also witness estimation of continu-
ous emotions (e.g. activation, potency) [4][5].
As a machine learning problem, high performance emo-

tion recognition requires good features. Spectral features
play an important role in speech emotion recognition. They
are usually extracted over a 20–30 millisecond frame length.
Even though longer temporal information can be incorporated
in the form of time derivatives, the fundamental character of
the features remains quite similar. On the other hand, limi-
tations of short-term features including their derivatives are
substantial as described in [6]. Psychoacoustical and neuro-
physiological findings also indicate the existence of spectro-
temporal receptive fields in mammalian auditory cortexwhich
can extend up to temporal spans of hundreds of milliseconds

[7], further suggesting the shortcoming of short-term features
as they discard the long-term cues used by human listeners.
In view of this, we propose a novel feature set in this paper,
which is derived from a long-term spectro-temporal (ST)
representation of speech.
The speech signal is blocked into long-term windowed

segments and a critical-band filterbank is first employed for
signal decomposition. Temporal envelopes are then extracted
from the decomposed signals of current frame. Lastly, a
modulation filterbank is applied to the envelopes to obtain
the ST representation of that frame, where modulation fre-
quency is considered jointly with acoustic frequency. In [8],
an auditory-inspired ST representation of speech was used
to generate a set of preliminary features for speech emotion
classification. In this work, we make a more thorough explo-
ration of the ST representation, based on which the proposed
features are derived.
Two databases are employed for testing: the Berlin

emotional speech database and the Vera am Mittag (VAM)
database, which furnish discrete and continuous subjectively
assessed emotion descriptors, respectively. The proposed ST
features are compared to mel-frequency cepstral coefficient
(MFCC) features which are representative short-term spec-
tral features. Popular prosodic features are also extracted
to provide performance benchmark. Experimental evalu-
ation indicates that the proposed features are effective for
both discrete emotion classification and continuous emotion
estimation. They outperform both MFCC and prosodic fea-
tures, and render a substantial improvement in recognition
performance when combined with prosodic features.

2. ST REPRESENTATION OF SPEECH

The auditory spectro-temporal (ST) representation of speech
is obtained via the following steps. The input speech signal
is first resampled to 8kHz and its active speech level is nor-
malized to -26 dBov using the the P.56 speech voltmeter [9].
Speech frames (without overlap) are labeled as active or inac-
tive by the voice activity detection (VAD) algorithm in [10];
only active speech frames are retained. The preprocessed



speech signal S(n) is framed into segments Sk(n) using a
256 ms Hamming window every 64 ms, where k is the frame
index. As described below, the first subband filter in the mod-
ulation filterbank performs frequency analysis at frequency
contents around 4Hz. Thus this relatively long temporal span
is necessary in order to obtain an appropriate frequency res-
olution. Each speech segment is then processed by two fil-
terbanks. First, a critical-band gammatone filterbank, with N

subband filters, is employed to emulate the auditory process-
ing of acoustic signals performed by the human cochlea. The
center frequencies of these filters (namely acoustic frequency
in order to distinguish frommodulation frequency of the mod-
ulation filterbank) are proportional to their bandwidths, which
in turn, are characterized by the equivalent rectangular band-
width [11]. In this work, a filterbank with N=19 filters is
used, where the first and the nineteenth filters are centered
at 125Hz and 3.5kHz, with bandwidths of 38Hz and 400Hz,
respectively.
The Hilbert envelope Hk(i, n) is then computed from

Sk(i, n), which is the output of the ith critical-band filter
at frame k (1≤i≤N ). An M -band modulation filterbank is
applied to each Hk(i, n), generating M outputs Hk(i, j, n)
where j denotes the jth modulation filter (1≤j≤M ). The
filters in the modulation filterbank are second-order bandpass
with quality factor set to 2, as suggested in [12]. Here we
use an M=5 filterbank whose filter center frequencies are
equally spaced on logarithm scale from 4Hz to 64Hz, as it
strikes a good balance between performance and model com-
plexity. Lastly, the ST representation of that frameEk(i, j) is
obtained by calculating the energy ofHk(i, j, n):

Ek(i, j) =

L∑
n=1

H2

k(i, j, n), (1)

where 1≤k≤T with L and T representing the number of sam-
ples in one frame and the total number of frames, respectively.
For a fixed j, Ek(i, j) relates to the auditory spectral samples
of that modulation channel after critical-band grouping. The
modulation filterbank allows us to analyze the the modulation
frequency content of acoustic frequency components. An ex-
ample of Ek(i, j) is illustrated in Fig. 1.

Fig. 1. Ek(i, j) for one frame of a “neutral” speech file: low
channel index indicates low frequency.

3. FEATURE EXTRACTION

In this section, we describe the proposed features extracted
from the ST representation. Short-term spectral features and
prosodic features considered in our experiments are also de-
scribed.

3.1. Spectro-Temporal Features

The ST representation Ek(i, j) is formed via calculating the
energy of the Hilbert envelopes. For each frame k, Ek(i, j)
is scaled to make it unit energy before further computation,
i.e.

∑
i,j Ek(i, j) = 1. Then four spectral measures Φ1–Φ4

are calculated for every modulation channel. For frame k,
Φ1,k(j) is simply the mean of the energy samples belonging
to the jth modulation channel (1≤j≤5). Φ1 gives a sense of
the energy distribution in speech along the modulation fre-
quency. The second spectral measure is the spectral flatness
which is conventionally defined as the ratio of the geometric
mean of a power spectrum to the arithmetic mean of it. In our
calculation, Ek(i, j) is treated as the power spectrum and Φ2

is thus defined as:

Φ2,k(j) =

N

√∏N

i=1
Ek(i, j)

Φ1,k(j)
. (2)

A spectral flatness value close to 1 indicates a flat spectrum,
while a value close to 0 suggests a spectrum with widely dif-
ferent spectral amplitudes. The third measure employed is the
spectral centroid which gives a sense of the “center of mass”
of the spectrum and is computed as:

Φ3,k(j) =

∑N

i=1
f(i)Ek(i, j)∑N

i=1
Ek(i, j)

. (3)

Two types of f(i) have been tried: (1) f(i) being the cen-
ter frequency (in Hz) of the ith critical-band filter of the au-
ditory filterbank, and (2) f(i) = i. No remarkable differ-
ence in performance can be observed; the latter is chosen as
it has a simpler form. Moreover, given the observation that
adjacent modulation channels usually have considerable cor-
relation, spectral flatness and centroid of adjacent modula-
tion channels also exhibit high correlation. In order to alle-
viate such information redundancy, Φ2 and Φ3 are computed
for j∈{1, 3, 5} only. Additionally, we group the 19 acousti-
cal bins into four divisions: 1—4, 5—10, 11—15, 16—19,
namely Dl (1≤l≤4). Bins within each division are grouped
together: Ek(l, j) =

∑
i∈Dl

Ek(i, j). Then the modulation
spectral centroid (Φ4) is calculated in a way essentially the
same as Φ3:

Φ4,k(l) =

∑M

j=1
jEk(l, j)

∑M

j=1
Ek(l, j)

. (4)

By calculating Φ4, we extract the information about how fast
the selected acoustic frequency region varies, in other words,



the temporal dynamic cues. In total, 15 features are obtained
from the ST representation per frame by means of the four
spectral measures.
Furthermore, linear predication (LP) analysis is applied to

selected modulation channels where j∈{1, 3, 5}, to extracted
another set of ST features from Ek(i, j). The autocorrela-
tion method is used. In order to suppress local details while
preserving the broad structure beneficial to recognition, a
5th-order all-pole model is empirically used to approximate
the spectral samples. The computational cost of this autore-
gressive modeling is negligible due to the low LP order and
the limited number of spectral samples per modulation chan-
nel (19 here). The LP coefficients are further transformed
into cepstral coefficients (LPCC) and denoted as Ck(n, j)
(0≤n≤5). The LPCCs have shown to be a generally more ro-
bust, reliable feature set for speech recognition than the direct
LP coefficients. Together with the 15 aforementioned fea-
tures, in total 33 ST features are calculated frame-by-frame.
While raw speech features are extracted on frame-level

(FL), the most common practice among current works in
emotion recognition is to apply functions (usually statistical)
to the time trajectories/contours of the FL features, to de-
rive utterance-level (UL) features [2–5, 13–17]. In [16], the
UL method is shown to ourperform FL dynamic modeling
for emotion recognition. The superiority of the UL method
mainly comes from the fact that it avoids spoken-content
over-modeling [17]. Consequently, mean and standard devi-
ation (std. dev.) of the FL ST features are calculated, giving
66 UL ST features. They are denoted as S66.

3.2. Short-Term Spectral Features

The mel-frequency cepstral coefficients (MFCCs) are exten-
sively used short-term spectral features in speech recogni-
tion. They are extracted in this work to compare to the pro-
posed long-term features. The preprocessed speech signal is
first filtered by a high-pass filter with pre-emphasis coeffi-
cient 0.97, and the first 13MFCCs (including the zeroth order
coefficient) are extracted from 25 ms Hamming-windowed
speech frames every 10ms. The most commonly used MFCC
features amongst current works are mean and std. dev. (or
variance) of the first 13 MFCCs and their deltas [4][5][13]
[14][17]. In this work, we compute mean, std. dev., and the
3rd up to the 5th central moments of the 13 MFCCs and their
deltas and double-deltas, resulting in 195 MFCC features.
This set is akin to the one used for comparison in [13], ex-
cept that it further considers the delta coefficients. Denote it
asM195.

3.3. Prosodic Features

Prosodic features have been, among numerous acoustic fea-
tures used for speech emotion recognition, a standard feature
type in previous works. However, the “best” set of prosodic

features has yet to be found and may in reality depend on spe-
cific application. Consequently, the prosodic features used
by recent works differ considerably [14][15]. Nevertheless,
the state-of-art way of deriving prosodic features relies on ap-
plying functions to trajectories/contours of pitch, energy, and
sometimes also their deltas, etc. In this vein, the trajectories
of pitch and intensity (in dB), and their deltas are extracted in
this work. Then the following statistics are computed for each
trajectory: mean, std. dev., skewness, kurtosis, maximum,
minimum, quartiles, range, and differences between quartiles.
The linear and quadratic regression coefficients of the trajec-
tories plus the root mean squared error, are further calculated
as features. Moreover, mean and std. dev. of syllables’ du-
rations, and ratio between voiced and unvoiced segments are
also measured. In total, 71 prosodic features are extracted.
Denote them as P71.

4. DATA

4.1. Berlin Emotional Speech Database

The Berlin emotional speech database [18] is used for experi-
ments classifying discrete emotions. Ten actors (5m/5f) each
uttered ten sentences (5 short and 5 longer, typically between
1.5 and 4 seconds) in German to simulate 7 different emo-
tions. Utterances scoring higher than 80% emotion recog-
nition rate in a subjective listening test are included in the
database. We classify all the 7 emotions in this work. The
numbers of speech files for these emotion categories in the
presented Berlin database are: anger (127), boredom (81),
disgust (46), fear (69), joy (71), neutral (79) and sadness (62).
How the specific language (or database) affects the recog-

nition performance remains an open issue in emotion recog-
nition, and is beyond the scope of this paper. The Berlin
database is employed here because it is one of the most
popular databases used by researchers on emotion recogni-
tion, thereby facilitating the comparison with other works.
However, as suggested by the preliminary results in [3],
the trained emotion classifiers are usually highly language-
dependent, therefore, appropriate language adaptation has to
be performed if the application involves multiple languages.

4.2. Vera amMittag Database

The VAM database [19] is a speech corpus of spontaneous
emotions. It was recorded from a German TV talk-show. The
recordings are manually segmented at the utterance level. The
presented VAM database contains two parts: VAM I of 478
utterances from 19 speakers (4m/15f) with 17 human evalua-
tors, and VAM II of 469 utterances from 28 speakers (7m/21f)
with 6 evaluators. Three emotion primitives: valence, activa-
tion and dominance, are assessed by the evaluators. Primitive
values are normalized to the range of [−1, +1]. Correlation
between the evaluators and estimation error are calculated for
each primitive as described in [4].



Fig. 2. Comparison between ST and MFCC features.

5. RESULTS

In this section, results of experimental evaluation are pre-
sented. The proposed ST features are first compared toMFCC
features. Then their contribution as supplementary features
to prosodic features is studied. The support vector machines
with radial basis function (RBF) kernels are used for discrete
emotion classification as well as continuous emotion primi-
tive estimation. The implementation in [20] is adopted. The
features from training data are linearly scaled to [−1, 1] be-
fore applying SVM, with features from test data scaled using
the trained linear mapping function.

5.1. Comparison with MFCC Features

All results achieved on the Berlin database are produced us-
ing 10-fold cross-validation. The proposed ST features are
first compared to MFCC features (S66 vs. M195). The effect
of taking a speaker normalization (SN) step before recogni-
tion is also investigated. For SN, the features are processed
by the mean and variance normalization (MVN) within the
scope of each speaker [17] to compensate speaker variations
prior to applying SVM. The well-known sequential forward
feature selection (SFS) [21] is used to select the most salient
features. It finds subsets of the original features. Classifica-
tion results are shown in Figure 2 where a varying number of
features (up to 50) are selected by SFS1. It is clear from the
figure that without SN, the proposed features consistently out-
perform MFCC features by a wide margin. But MFCC fea-
tures benefit more from SN, especially when a small number
of features are selected. Nevertheless, the proposed features
still prevail as more features are included and offer the best
result (84.1% for S66 vs. 78.7% forM195, both with SN).

1The accuracy trajectories are downsampled by a factor of 2 for visual
purpose, i.e. only values at odd feature number are shown.

Fig. 3. Comparison between prosodic and combined features.

5.2. Comparison with Prosodic Features

As aforementioned, prosodic features are probably the most
widely used features in current works on speech emotion
recognition, and thus offer a baseline performance. There-
fore, it is also of our interest to study the contribution of the
proposed features in addition to prosodic features. We con-
duct tests using: (1) only prosodic features, and (2) combined
prosodic & ST features. MFCC features are still considered
for comparison purpose. Classification results are shown in
Figure 3. As indicated by Figures 2 and 3, when each feature
type is tested individually, prosodic features generally give
better results than MFCC features, and the proposed features
outperform prosodic features. Adding spectral features to
prosodic features is shown to be useful as better performance
is achieved. The ST features still outperform MFCC features
after feature combination, regardless of SN. But MFCC fea-
tures may be more complementary to prosodic features than
the proposed features, as we can see that the advantage of the
ST features over MFCC features decreases after feature com-
bination (cf. Fig. 2). The combined prosodic & ST features
with SN offer the best performance, and up to 88.6% recogni-
tion accuracy can be achieved. A list of top features selected
from P71+S66 (SN) by SFS is available in the Appendix.
Tables 1 and 2 show the confusionmatrices (left-most col-

umn being the true emotions) for the best recognition perfor-
mance achieved by prosodic features only (45 features, SN,
80.8%) and combined prosodic & ST features (50 features,
SN, 88.6%), respectively. We can see from the tables that
adding ST features contributes to the recognition of all emo-
tion types. Most emotions can be recognized well except joy.
The most notable confusion pair is shown to be joy and anger,
although they are of opposite valence. This might be due to
the fact that activation is more easily recognized by machine
than valence, as indicated by the regression results for the
emotion primitives on the VAM database in the next section.
In [13]2, multi-stage classification technique is exper-
2Unless otherwise specified, all following cited results are achieved on



Table 1. Recognition rates with prosodic features.
Emotion Anger Boredom Disgust Fear Joy Neutral Sadness Rate
Anger 109 0 5 0 12 1 0 85.8%
Boredom 1 68 2 0 0 3 7 84.0%
Disgust 4 1 37 1 1 2 0 80.4%
Fear 8 0 1 53 5 2 0 76.8%
Joy 26 0 2 4 37 2 0 52.1%

Neutral 1 1 3 0 0 70 4 88.6%
Sadness 0 2 0 0 0 2 58 93.6%
Precision 73.2% 94.4% 74.0% 91.4% 67.3% 85.4% 84.1%

Table 2. Recognition rates with combined features.
Emotion Anger Boredom Disgust Fear Joy Neutral Sadness Rate
Anger 120 0 1 1 5 0 0 94.5%
Boredom 0 73 0 0 1 4 3 90.1%
Disgust 0 2 39 1 1 3 0 84.8%
Fear 2 0 0 61 6 0 0 88.4%
Joy 19 0 2 2 47 1 0 66.2%

Neutral 1 2 1 1 0 73 1 92.4%
Sadness 0 1 0 0 0 0 61 98.4%
Precision 84.5% 93.6% 90.7% 92.4% 78.3% 90.1% 93.9%

imented and shown to be useful, as one-stage, two-stage
and three-stage classification schemes give 75%, 83.5%,
and 88.8% accuracy for classifying 6 emotions (no disgust),
respectively. In [17], 83.2% recognition rate is reported us-
ing roughly 1.4k UL candidate features, however, under a
speaker-independent condition which is more stringent, and
by further integrating frame-level information, the accuracy
is improved to 89.9%. In [22], a novel type of long-termmod-
ulation features has also been experimented, which achieves
roughly 70% recognition rate when combined with other two
feature types.

5.3. Results on VAM Database

The proposed ST features are further examined on the VAM
database to estimate continuous emotion primitives. Leave-
one-out (LOO) cross-validation is used to facilitate compari-
son with the results in [4]. Regression results using prosodic,
proposed and combined features (without SN) are shown in
Table 3, where r and e stand for correlation and mean abso-
lute error, respectively. The features selected on the Berlin
database are used here3. The machine recognition and human
subjective evaluation results reported in [4] are also included
for comparison4.
As shown in Table 3, the proposed features give higher

correlations for estimating activation and dominance than
prosodic features. But both features give poor estimation
of valence. Adding ST features is still useful as combined
features give the highest correlations on all the three datasets.

the Berlin database for classifying 7 emotions.
3Since training data differs from trial to trial for cross-validation, features

ranked within top 50 by SFS more than twice during the 10 trails are used.
4In [4], only standard deviation of subjective evaluation is presented. The

error values listed here are inferred values.

The proposed algorithm yields a smaller estimation error
compared to the machine estimation results in [4]. The per-
formance is even somewhat better than human assessment.
Amongst the three primitives, activation is shown to be most
easily estimated with up to 0.86 correlation achieved on VAM
I, followed by dominance, and valence shows significantly
inferior correlation even though its estimation error is small.
This verifies our previous assumption that activation can be
more easily recognized by machine than valence, and also
is in accordance with human evaluation results. In [5], good
estimation results are also achieved for activation and dom-
inance on VAM I+II, but valence is still poorly estimated
(0.46 correlation).

6. CONCLUSION

In this paper we propose a novel feature set for speech emo-
tion recognition. The features are derived from a long-term
ST representation of speech. They are shown to outperform
bothMFCC and conventional prosodic features, and can serve
as useful additions to prosodic features.
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8. APPENDIX: LIST OF FEATURES

Denote the feature set as F . The average feature rank (AFR)
of feature fi ∈ F given R trails is calculated as:

AFR(fi) =
1

R

R∑
r=1

rank of fi in the rth trial. (5)

If fi is not selected, its rank is replaced by a penalty value P .
The top 10 features from the combined ST & prosodic feature
set are listed in Table 4 as ranked by AFR, with P set to 11.

Table 4. Top 10 combined features ranked by AFR.
Rank Feature AFR Rank Feature AFR
1 mean of Φ3,k(1) 1.0 6 mean syllable duration 8.3
2 mean of Φ1,k(3) 2.0 7 slope of intensity 8.7
3 mean of pitch 3.8 8 mean of Φ4,k(2) 9.6
4 std. dev. of pitch 6.9 9 mean of Ck(3, 1) 9.7
5 mean of Φ4,k(3) 7.0 10 range of intensity 9.8
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