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Abstract

This paper presents an asynchronous gossip-based algorithm for finding a Nash equilibrium (NE) of a game in a distributed
multi-player network. The algorithm is designed in such a way that players make decisions based on estimates of the other
players’ actions obtained from local neighbors. Using a set of standard assumptions on the cost functions and communication
graph, the paper proves almost sure convergence to a NE for diminishing step sizes. For constant step sizes an error bound
on expected distance from a NE is established. The effectiveness of the proposed algorithm is demonstrated via simulation for
both diminishing and constant step sizes.
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1 INTRODUCTION

Finding a NE in a distributed multi-player network
game is a problem that has received increasing atten-
tion in recent years. Many important real-world appli-
cations in wired and wireless networks involve such a
setup (Stankovic et al., 2012; Yin et al., 2011; Chen
and Huang, 2012). Peer-to-peer (P2P) and mobile ad-
hoc networks are two examples among many. In this
problem each player pursues minimization of his cost
function selfishly by taking an action in response to
other players’ actions. This requires full information
on all other players’ actions in the network. However,
this is a stringent requirement in a distributed network.
Players have to minimize their cost functions based on
limited local information from the neighboring players.
Our goal is to design a locally distributed algorithm to
find a NE in a networked continuous kernel game. In
such a game, all the players share their information lo-
cally and update their actions in order to minimize their
cost functions according to the limited information.
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Literature review. Our work is related to the literature
on Nash games (Yin et al., 2011; Alpcan and Başar,
2005). Distributed algorithms for computing NE have
recently drawn significant attention due to a wide range
of applications, to name only a few (Frihauf et al.,
2012; Alpcan and Başar, 2005; Pavel, 2007; Pan and
Pavel, 2009). In (Kannan and Shanbhag, 2010), an iter-
ative regularization algorithm is studied for monotone
game. A distributed algorithm for a class of generalized
games is proposed in (Zhu and Frazzoli, 2012) which
studies convergence to a NE for a complete communica-
tion graph. The paper (Gharesifard and Cortes, 2013)
considers a distributed algorithm for NE seeking in a
two-network zero-sum game. A new systematic method-
ology is presented in (Li and Marden, 2013) to find
distributed algorithms for games with local-agent utility
functions (proved to be state-based potential games).
The algorithms are designed to be dependent on in-
formation from only a set of local neighboring agents.
The authors in (Bramoull et al., 2014) generalize the
problem of finding NE (in special games such as those
involving strategic innovation, public goods, and social
interactions) to the case in which players are considered
to be linked if their payoffs are directly affected by the
action of the others. A distributed learning algorithm
is proposed in (Chen and Huang, 2012) for finding NE
in a spatial spectrum access game, albeit for games with
finite action spaces. In (Gharehshiran et al., 2013),
regret-based reinforcement learning algorithms have
been developed for equilibrium seeking over networks in
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finite action games. A fictitious play-based approach has
been proposed in (Swenson et al., 2012), in which an av-
erage empirical distribution is tracked. In (Wang et al.,
2013) a distributed consensus protocol was proposed for
finding a Nash equilibrium of a congestion game.
Gossip-based communication has been widely used in
asynchronous algorithms due to simplicity and appli-
cability particularly for distributed optimization (Ram
et al., 2010; Lee and Nedic, 2016). In (Koshal et al.,
2012), a gossip-based algorithm has been designed for
finding a NE in aggregative games. Since the algorithm
is designed for aggregative games, there is no need to
estimate the other players’ actions. However, in a gen-
eral game the aggregate of the players’ actions is not
enough to update players’ actions.
Contributions. Inspired by (Koshal et al., 2012), we
propose an asynchronous gossip-based algorithm for a
larger class of games. In the proposed algorithm each
player maintains an estimate vector of the other players’
actions. A communication protocol is designed for shar-
ing estimates and actions between the local players so
that they update their estimates and actions. In contrast
to (Koshal et al., 2012), in which the players take aver-
age of the scalar aggregate estimate including their own
action, our algorithm excludes the players’ actions from
their estimates. This exclusion is appropriate in a gen-
eral game, but it precludes exploiting doubly stochastic
properties in the gossiping step. However, we overcome
this drawback by using an extra intermediary variable.
In general, convergence properties of distributed algo-
rithms depend on the selection of step sizes (Nedic and
Ozdaglar, 2009; Kvaternik and Pavel, 2011; Blatt et al.,
2007). Diminishing step sizes typically lead as close as
possible to the optimal point (Nedic, 2011), but can
have slow convergence, while constant step sizes cause
a fluctuation around the optimal point (Zhang et al.,
2008). The choice of step size usually demands a trade
off between convergence speed and accuracy of conver-
gence. A preliminary version of this work treating only
diminishing step sizes has appeared in (Salehisadaghi-
ani and Pavel, 2014). In this paper we consider both
diminishing as well as constant step sizes. Using a set of
standard assumptions on the cost functions and com-
munication graph, for diminishing step sizes we prove
almost sure (a.s.) convergence toward a NE of the game.
For constant step sizes we establish an error bound on
the expected distance from the NE.
The paper is organized as follows. In Section 2, the
problem statement and assumptions are provided. An
asynchronous gossip-based algorithm is proposed in Sec-
tion 3. In Section 4, convergence of the algorithm with
diminishing step sizes is discussed, while in Section 5
constant step sizes are considered. Simulation results
are presented in Section 6 and conclusions in Section 7.
1.1 Notation
The N ×N identity matrix and the N × 1 vector of 1’s
are denoted by IN and 1N , respectively. We use ei to
denote a unit vector in RN whose i-th element is 1 and
the others are 0. The limit superior of a sequence xn is

defined as lim supn→∞ xn := infn≥0 supm≥n xm.

2 Problem Statement
Consider a set of N players in a network specified by a
communication graph GC(V,EC) where V = {1, . . . , N}
denotes the set of players and EC ⊂ V × V specifies
the pairs of players that may communicate. The set of
neighbors of player i in GC , denoted by NC(i), is the
set of vertices which are connected to vertex i by an
edge, i.e., NC(i) := {j ∈ V |(i, j) ∈ EC}. For i ∈ V ,
Ji : Ω → R is the cost function of player i where Ω =
Ωi×Ω−i ⊂ RN is the action set of all players and Ωi ⊂ R
is the action set of player i. The Nash game denoted by
G(V,Ωi, Ji) is defined based on the set of players V , the
action set Ωi, ∀i ∈ V and the cost function Ji, ∀i ∈ V .
Let x = (xi, x−i) ∈ Ω, with xi ∈ Ωi, denote all players’
actions. The cost function Ji depends on all (xi, x−i).
The game is played such that for given x−i ∈ Ω−i, each
player i aims to minimize his own cost function selfishly
to find an optimal action,

minimize
yi

Ji(yi, x−i)

subject to yi ∈ Ωi.
(1)

Note that the solution set of player i in (1), depends on
the actions of the other players x−i. We assume that the
cost function Ji and the action set Ω are only available
to player i, i ∈ V . Thus players are required to exchange
some information to update their actions.
Assumption 1. The communication graph GC(V,EC)
is connected and undirected.
The connectivity assumption is critical in order to ensure
that the information on each player is reached by all
other players, infinitely often.
The NE of the game is defined as follows.
Definition 1. Consider an N-player game G(V,Ωi, Ji).
A vector x∗ = (x∗i , x

∗
−i) ∈ Ω is called a NE of this game

if and only if,

Ji(x
∗
i , x
∗
−i) ≤ Ji(xi, x∗−i) ∀xi ∈ Ωi, ∀i ∈ V. (2)

We review next some basic results. A NE can be effi-
ciently computed by solving the associated Variational
Inequality (V I) problem.
Proposition 1 (Proposition 1.4.2, (Facchinei and
Pang, 2003)). Let Ωi be a closed convex subset of R
for i ∈ V . Let also for i ∈ V , function Ji(yi, x−i)
be convex and continuously differentiable in yi for
each fixed x−i. Then a tuple x∗ = (x∗i , x

∗
−i) is a NE

if and only if x∗ ∈ SOL(Ω, F ), where SOL(Ω, F )
is the solution set of V I(Ω, F ), Ω = Ωi × Ω−i and
F (x)T = [∇Tx1

J1(x), . . . ,∇Txi
Ji(x), . . . ,∇TxN

JN (x)].

(F : Ω→ RN is called a pseudo-gradient mapping.)
Using Proposition 1, one can characterize a NE in terms
of a V I problem as in the following lemma (Proposi-
tion 1.5.8, page 83 in (Facchinei and Pang, 2003)).
Lemma 1. x∗ is a NE of the game represented by (1)
if and only if x∗ = TΩ[x∗ − αF (x∗)] for α > 0, where
TΩ : RN → Ω is a Euclidean projection.
In the following, we state a few assumptions including
the existence and uniqueness conditions of a NE.

2



Assumption 2. The set Ωi is non-empty, compact and
convex subset of R for every i ∈ V . The cost function
of player i, Ji(xi, x−i) is a continuously differentiable
function in xi for every i ∈ V . Also Ji(xi, x−i) is jointly
continuous in x and convex in xi for every x−i and i ∈ V .

By Assumption 2, it follows that there exists C > 0 such
that for all i ∈ V and for all x ∈ Ω,

‖∇xi
Ji(x)‖ ≤ C. (3)

Assumption 3. F : Ω → RN is strictly monotone on
Ω, i.e., (F (x)− F (y))T (x− y) > 0 ∀x, y ∈ Ω, x 6= y.
Assumption 4. ∇xi

Ji(xi, u) is Lipschitz continuous in
xi (u), for every fixed u ∈ Ω−i (xi ∈ Ωi) and for ev-
ery i ∈ V , that is, for some positive constant σi (Li),
‖∇xi

Ji(xi, u)−∇xi
Ji(yi, u)‖ ≤ σi‖xi − yi‖ ∀xi, yi ∈ Ωi

(‖∇xi
Ji(xi, u)−∇xi

Ji(xi, z)‖ ≤ Li‖u−z‖∀u, z ∈ Ω−i).

3 Asynchronous Gossip-based Algorithm

We propose an asynchronous gossip-based algorithm to
compute a NE of G(V,Ωi, Ji) over GC(V,EC) using only
partial information. As in Proposition 1, we obtain a
NE by solving the associated V I problem using a pro-
jected gradient-based method. In the algorithm players
can build and maintain estimates of the other players’
actions and locally communicate with the neighbors to
exchange their estimates and update their actions.
1- Initialization Step
Each player i sets an initial temporary estimate vec-
tor x̃i(0) = [x̃i1(0), . . . , x̃iN (0)]T ∈ Ω, where x̃i(0) =
[x̃i1(0), . . . , x̃ij(0), . . . , x̃iN (0)]T ∈ Ω with x̃ij(0) ∈ Ωj is
player i’s initial temporary estimate of player j’s action.
2- Gossiping Step
At the gossiping step, player ik wakes up at the k-th
time interval T (k) and finds a neighbor jk with probabil-
ity pikjk . Then they exchange their temporary estimate
vectors and construct their estimate vectors x̂i(k) =
[x̂i1(k), . . . , x̂iN (k)]T ∈ Ω, i ∈ {ik, jk} as follows:{
x̂ikik(k) = x̃ikik(k)

x̂ik−ik(k) =
x̃
ik
−ik

(k)+x̃
jk
−ik

(k)

2 ,
(4)

and similarly for player jk. Note that x̃ii(k) = xi(k) for
all i ∈ V in every iteration T (k). For all other players
i /∈ {ik, jk}, the temporary estimate is maintained, i.e.,

x̂i(k) = x̃i(k), ∀i /∈ {ik, jk}. (5)

3- Local Step
Player i uses x̂i(k) as his estimate of all other players’
actions (due to imperfect information) and updates his
action as follows: if i ∈ {ik, jk},

xi(k + 1) = TΩi
[xi(k)− αk,i∇xi

Ji(xi(k), x̂i−i(k))], (6)

otherwise, xi(k + 1) = xi(k). In (6), TΩi
: R → Ωi is a

Euclidean projection and αk,i is a diminishing step size
such that,

∞∑
k=1

α2
k,i <∞,

∞∑
k=1

αk,i =∞ ∀i ∈ V. (7)

Note that αk,i is inversely related to the number of up-
dates that player i has made until time k which is de-
noted by νk(i) (i.e., αk,i = 1

νk(i) ).

Let pi denote the probability with which player i up-
dates his action, then pi = 1

N + 1
N

∑
j∈Nc(i) pij ∀i ∈ V ,

where pij > 0 is the probability that players i and j con-
tact each other.
Lemma 2. (Nedic, 2011) Let Assumption 1 hold and
αk,i = 1

νk(i) for all k, i and let q ∈ (0, 1/2). Let also

pmin = mini∈V pi. Then ∃k̃ = k̃(q,N) such that for all

k ≥ k̃ and i ∈ V a.s., |αk,i − 1
kpi
| ≤ 2

k3/2−qp2min

.

After updating his action, player i updates his tempo-
rary estimate vector as,

x̃i(k+1) = x̂i(k)+
(
xi(k+1)−xi(k)

)
ei, ∀i ∈ V. (8)

In (8), for the case when i /∈ {ik, jk}, we have x̃i(k+1) =
x̂i(k), that is, the estimate vector of player i remains
unchanged at the next iteration.

4 Convergence For Diminishing Step Sizes

In this section we prove convergence of the algorithm
for diminishing step size as in (7). Consider a memory
in which the history of the decision making is recorded.
LetMk denote the sigma-field generated by the history
up to time k − 1 withM0 =M1 = {x̃i(0), i ∈ V } and
Mk = M0 ∪ {(il, jl); 1 ≤ l ≤ k − 1}, ∀k ≥ 2. In the
following we use a well-known result on supermartingale
convergence, (Lemma 11, Chapter 2.2, (Polyak, 1987)).
Lemma 3. Let Vk, uk, βk and ζk be non-negative random
variables adapted to σ-algebra Mk. If

∑∞
k=0 uk < ∞,∑∞

k=0 βk <∞, and E[Vk+1|Mk] ≤ (1 + uk)Vk − ζk + βk
for all k ≥ 0, then Vk converges a.s. and

∑∞
k=0 ζk <∞.

Convergence is shown in two parts. First, we prove con-
vergence of x̃i to an average consensus, shown to be the
average of temporary estimate vectors. Then we prove
a.s. convergence of x(k) toward a NE. For convenience,
we rewrite the algorithm via an intermediary variable
x̄(k) = (x̄i(k), x̄−i(k)) ∈ ΩN with x̄i(k) ∈ Ω,

x̄(k) = (W (k)⊗ IN )x̃(k). (9)

In (9), x̃(k) = (x̃i(k), x̃−i(k)) ∈ ΩN is the overall tem-
porary estimate at T (k) and W (k) := [wij(k)]i,j∈V is a
doubly stochastic weight matrix (WT1N = W1N = 1N )
defined as W (k) = IN − (eik − ejk)(eik − ejk)T /2. One
can write (9) component-wise as follows:{
x̄ik(k) = x̄jk(k) = x̃ik (k)+x̃jk (k)

2

x̄i(k) = x̃i(k), i /∈ {ik, jk}.
(10)

Using the intermediary variable x̄ we rewrite the algo-
rithm as the following:

(1) Each player i chooses an initial temporary estimate
vector x̃i(0) = [x̃i1(0), . . . , x̃iN (0)]T .

(2) The gossiping rule is as follows:

x̄(k) = (W (k)⊗ IN )x̃(k). (11)
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(3) Each player i executes the following updating:

xi(k + 1) = TΩi
[xi(k)− αk,i∇xi

Ji(xi(k), x̄i−i(k))],(12)

if i ∈ {ik, jk}, otherwise, xi(k + 1) = xi(k). Moreover,

x̃i(k + 1) = x̄i(k) +
(
xi(k + 1)− x̄ii(k)

)
ei, ∀i ∈ V.(13)

It can be seen that steps 2 and 3 have been slightly
changed since x̄ii(k) 6= x̂ii(k) for i ∈ {ik, jk}.

4.1 Convergence of Temporary Estimates

We show next that under Assumptions 1-2, x̃i(k) con-
verges a.s. toward the average of all temporary estimates,

Z(k) =
1

N
(1TN ⊗ IN )x̃(k). (14)

Theorem 1. Let x̃(k) be the overall temporary esti-
mate vector and Z(k) be its average as in (14). Let also
αk,max = maxi∈V αk,i. Then under Assumptions 1-2,

i)
∑∞
k=0 αk,max‖x̃(k)− (1N ⊗ IN )Z(k)‖ <∞,

ii)
∑∞
k=0 ‖x̃(k)− (1N ⊗ IN )Z(k)‖2 <∞.

Proof . See Appendix A.
Using x(k) = [x̃1

1(k), . . . , x̃NN (k)]T yields the following.
Corollary 1. For the players’ actions x(k), the following
hold using Assumptions 1-2,

i)
∑∞
k=0 αk,max‖x(k)− Z(k)‖ <∞,

ii)
∑∞
k=0 ‖x(k)− Z(k)‖2 <∞.

The next result shows convergence of x̄i(k). This will be
used to prove the convergence of the algorithm to the NE.
Lemma 4. Let x̃(k) and Z(k) be as in Theorem 1. Then
for x̄(k) (11) the following holds under Assumptions 1-2,

∞∑
k=0

E
[
‖x̄(k)− (1N ⊗ IN )Z(k)‖2

∣∣∣Mk

]
<∞. (15)

Proof . The proof follows from Theorem 1 part ii, the
doubly stochastic property ofW (k) and ‖W (k)⊗IN‖=1.

4.2 Convergence of Players Actions to NE

Next we prove convergence of actions to the NE.
Theorem 2. Let x(k) and x∗ be the players’ actions
and the NE of G. Using Assumptions 1-4, the sequence
{x(k)} generated by the algorithm converges a.s. to x∗.

Proof . We will show that ‖xi(k) − x∗i ‖ → 0 as k → ∞.
By (12), Lemma 1 and the projection’s non-expansive
property, for i ∈ {ik, jk} we obtain,

‖xi(k + 1)− x∗i ‖2 ≤∥∥∥xi(k)−x∗i−αk,i
(
∇xiJi(xi(k), x̄i−i(k))−∇xiJi(x

∗
i ,x
∗
−i)
)∥∥∥2

.

One can expand the RHS of the foregoing inequal-
ity, and add and subtract ∇xi

Ji(xi(k), Z−i(k)) and

∇xi
Ji(xi(k), x−i(k)) from the inner product term. Then

use (3) and ±2aT b ≤ ‖a‖2 +‖b‖2. Recall that, this holds
only for i ∈ {ik, jk}. When i /∈ {ik, jk}, xi(k+1) = xi(k).
One can combine these two cases together with a given
pi (player i’s update probability). For i ∈ V ,

E
[
‖xi(k + 1)− x∗i ‖2

∣∣∣Mk

]
≤ (1 + 2piα

2
k,i)‖xi(k)− x∗i ‖2

+4C2piα
2
k,i

+piE
[∥∥∥∇xiJi(xi(k), x̄i−i(k))−∇xiJi(xi(k),Z−i(k))

∥∥∥2∣∣∣Mk

]
+pi

∥∥∥∇xiJi(xi(k), Z−i(k))−∇xiJi(xi(k), x−i(k))
∥∥∥2

(16)

−2piαk,i

(
∇xi

Ji(xi(k),x−i(k))−∇xi
Ji(x

∗
i,x
∗
−i)
)
T(xi(k)−x∗i).

Let pmax = maxi∈V pi and αk,min = mini∈V αk,i. We
add and subtract 1

kpi
from αk,i in the last term of the

RHS of (16) and use Lemma 2 for q ∈ (0, 1/2). Then
summing over i ∈ V and using Assumption 4 yields,

E
[
‖x(k + 1)− x∗‖2

∣∣∣Mk

]
≤ 4NC2pmaxα

2
k,max

+(1 + 2pmaxα
2
k,max +

2pmax

k3/2−qp2
min

)‖x(k)− x∗‖2

+pmaxL
2
∑
i∈V

E
[
‖x̄i−i(k)− Z−i(k)‖2

∣∣∣Mk

]
+pmaxL

2.
∑
i∈V
‖Z−i(k)− x−i(k)‖2

+
2pmax

k3/2−qp2
min

‖F (x(k))−F (x∗)‖2

−2

k
(F (x(k))−F (x∗))T (x(k)−x∗), (17)

where L = maxi∈V Li. By Assumption 4 it follows for F ,

‖F (x)− F (y)‖ ≤ ρ‖x− y‖ ∀x, y ∈ Ω, (18)

where ρ =
√

2
∑
i∈V (L2

i + σ2
i ). Using (18) for the 5th

term in the RHS of (17), we obtain,

E
[
‖x(k + 1)− x∗‖2

∣∣∣Mk

]
≤

(1+2pmaxα
2
k,max+

2pmax

k3/2−qp2
min

+
2pmaxρ

2

k3/2−qp2
min

)‖x(k)−x∗‖2

+4NC2pmaxα
2
k,max+pmaxL

2
∑
i∈V

E
[
‖x̄i−i(k)−Z−i(k)‖2

∣∣∣Mk

]
+pmaxL

2.
∑
i∈V
‖Z−i(k)− x−i(k)‖2

−2

k
(F (x(k))−F (x∗))T (x(k)−x∗).

We then apply Lemma 3 for

Vk := ‖x(k)− x∗‖2,

uk := 2pmaxα
2
k,max +

2pmax

k3/2−qp2
min

+
2pmaxρ

2

k3/2−qp2
min

,
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βk := pmaxL
2
(∑
i∈V

E
[∥∥∥x̄i−i(k)− Z−i(k)

∥∥∥2∣∣∣Mk

]
+
∑
i∈V

∥∥∥Z−i(k)− x−i(k)
∥∥∥2)

+ 4NC2pmaxα
2
k,max,

ζk :=
2

k

(
F (x(k))− F (x∗)

)T
(x(k)− x∗).

By (7),
∑∞
k=0 uk < ∞. Also by Lemma 4 and Corol-

lary 1,
∑∞
k=0 βk <∞. Then by Lemma 3,

(1) ‖x(k)− x∗‖2 converges a.s.,

(2)
∑∞
k=0

2
k

(
F (x(k))− F (x∗)

)T
(x(k)− x∗) <∞.

To complete the proof it remains to be shown that

‖x(k) − x∗‖ a.s.−−→ 0. This follows from Assumption 2
(the compactness of Ω) and Assumption 3. �

5 Error Bound for Constant Step Sizes

In Sections 3 and 4, diminishing step sizes were em-
ployed. In order to prevent scenarios in which the step
size becomes too small, we consider constant step sizes.
Constant step sizes typically cause the iterates oscillate
in the neighborhood of the NE. The magnitude of oscil-
lation is proportional to the step size.
In the following, we use a constant step size αk,i = αi ∈
[αmin, αmax] for all k ≥ 0 and i ∈ V . We find a bound
on the expected distance between x̃i(k) and Z(k). We
use this bound to obtain an error bound on the expected
distance between x(k) and x∗. For constant step sizes,
instead of Assumption 3, we consider the following as-
sumption.
Assumption 5. F : Ω → RN is strongly monotone on
Ω with a constant µ > 0, i.e., (F (x)− F (y))T (x− y) ≥
µ‖x− y‖2,∀x, y ∈ Ω.
Theorem 3. Let x̃(k) be the overall temporary estimate
vector and Z(k) be as in (14). Then under Assump-
tions 1-2,

lim sup
k→∞

E
[
‖x̃(k)− (1N ⊗ IN )Z(k)‖2

]
≤

8 + (16
√

2 + 16)
√
γ

(1− γ)(1−√γ)
α2
maxC

2, (19)

where C is as in (3), γ = E
[
‖Q(k)‖2

∣∣∣Mk

]
and Q(k) =

[(W (k)− 1
N 1N1TNW (k))⊗ IN ].

Proof . See Appendix B.
Corollary 2. Let C and γ be as in Theorem 3. For the
players’ actions x(k), and Z(k), the following inequality
holds under Assumptions 1-2,

lim sup
k→∞

E
[
‖x(k)−Z(k)‖2

]
≤

8+(16
√

2 + 16)
√
γ

(1− γ)(1−√γ)
α2
maxC

2.

Lemma 5. Let x̃(k), Z(k), C and γ be as in Theorem 3.
Then for x̄(k), as in (11), the following holds under As-
sumptions 1-2,

lim sup
k→∞

E
[
‖x̄(k)− (1N ⊗ IN )Z(k)‖2

]
≤

8 + (16
√

2 + 16)
√
γ

(1− γ)(1−√γ)
α2
maxC

2.

The proof is based on (19) and the properties of W (k).
Now, we are ready to state the main theorem of this
section, which provides an error bound on the expected
distance between x(k) and x∗.
Theorem 4. Let x(k) and x∗ be the players’ actions and
the NE of G, respectively. Let also Assumptions 1, 2, 4 and
5 hold. Moreover, let αi satisfy the following condition:

0<(1+ρ2 +2µ)pminαmin−(1+ρ2 +2αmax)pmaxαmax < 1,
(20)

where ρ is the Lipschitz constant of F and µ is the positive
constant for the strong monotonicity property of F . The
sequence {x(k)} generated by the algorithm with constant
step-size αi satisfies the following:

lim sup
k→∞

E
[
‖x(k)− x∗‖2

]
≤ (21)

η C2pmaxα
2
max

(1 + ρ2 + 2µ)pminαmin − (1 + ρ2 + 2αmax)pmaxαmax
,

where η = 4N + 2L2 8+(16
√

2+16)
√
γ

(1−γ)(1−√γ) , L = maxi∈V Li.

Proof . The proof follows by finding an upper bound for
E[‖xi(k+ 1)− x∗i ‖2|Mk] and then using Lemma 6 (Ap-
pendix B). Employing the same technique as in (16) with
Assumption 4, the following inequality is obtained,

E
[
‖xi(k + 1)− x∗i ‖2

∣∣∣Mk

]
≤(1+2piα

2
max)‖xi(k)− x∗i ‖2

+4C2piα
2
max + L2piE

[∥∥∥x̄i−i(k)−Z−i(k)
∥∥∥2∣∣∣Mk

]
+L2pi

∥∥∥Z−i(k)−x−i(k)
∥∥∥2

(22)

−2piαi

(
∇xiJi(xi(k),x−i(k))−∇xiJi(x

∗
i , x
∗
−i)
)
T(xi(k)−x∗i).

Adding and subtracting αminpmin from αipi in the last
term of (22) yields,

E
[
‖x(k + 1)− x∗‖2

∣∣∣Mk

]
≤

(1 + pmaxαmax − pminαmin + 2pmaxα
2
max)‖x(k)− x∗‖2

+4NC2pmaxα
2
max+L2pmax

∑
i∈V

E
[∥∥∥x̄i−i(k)−Z−i(k)

∥∥∥2∣∣∣Mk

]
+L2pmax

∑
i∈V

∥∥∥Z−i(k)− x−i(k)
∥∥∥2

+(pmaxαmax − pminαmin)‖F (x(k))− F (x∗)‖2

−2pminαmin

(
F (x(k))− F (x∗)

)T
(x(k)− x∗).

Using (18) in the 5th term and Assumption 5 in the last
term of the RHS and taking the expected value yields,

E
[
E
[
‖x(k + 1)− x∗‖2

∣∣∣Mk

]]
= E

[
‖x(k + 1)− x∗‖2

]

5
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Fig. 1. (a) Optical WDM fiber link. (b) GC .

≤
(

1 + (1 + ρ2 + 2αmax)pmaxαmax −

(1 + ρ2 + 2µ)pminαmin

)
E
[
‖x(k)− x∗‖2

]
+4NC2pmaxα

2
max + L2pmax

∑
i∈V

E
[∥∥∥x̄i−i(k)− Z−i(k)

∥∥∥2]
+L2pmax

∑
i∈V

E
[∥∥∥Z−i(k)− x−i(k)

∥∥∥2]
.

Using (20), applying Lemma 6, Corollary 2 and
Lemma 5, it can be shown that (21) holds. �
The error bound (21) depends on the step sizes, the
number of players, the parameters associated with the
cost functions, as well as the communication graph and
the players’ update probability. It can be seen that the
bound grows as αi’s become larger, γ gets closer to 1 and
N increases. As a special case, we consider αi = α, pi = p
∀i ∈ V . Then (20) is simplified into 0 < α(µ−α) < 1/2p

and (21) becomes lim supk→∞ E[‖x(k)− x∗‖2]≤ ηC2α
2(µ−α) ,

where η is as in (21).

6 Simulation Results

We consider an optical signal-to-noise ratio (OSNR)
model on a wavelength-division multiplexing (WDM)
optical link (Pavel, 2012). In this optical model, a set
V = {1, . . . , 10} of N = 10 channels are transmitted
over an optically amplified link, (Fig. 1 (a)). We denote
by xi (yi) and n0

i (ni) the signal power and the noise
power of channel i ∈ V at the transmitter Tx (the re-
ceiver Rx), respectively. Every xi is typically limited,
i.e., Ωi = [0, umax]. We consider an ONSR Nash game
where each channel is a player that aims to maximize its
individual channel OSNR by adjusting the transmission
power. Each player communicates with the neighbors
through the communication graph GC that is repre-
sented in Fig. 1 (b). We consider a total cost function
of channel i as in (Pan and Pavel, 2007),

Ji(xi, x−i) = Pi(xi, x−i)− Ui(xi, x−i), (23)

where Pi : Ω → R is a pricing function and Ui : Ω →
R denotes a utility function, monotonic in OSNR. The
pricing function Pi is given as

Pi(xi, x−i) = aixi +
1

P 0 −
∑
j∈V xj

,∀i ∈ V,
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Fig. 2. Convergence of channel powers to NE over GC : (a)
diminishing (b) constant step sizes.

where ai > 0 is a pricing parameter and P 0 is the total
power target of the link. The utilityUi(xi, x−i) is given as

Ui(xi, x−i) = bi ln
(

1 + ci
xi

n0
i +

∑
j∈V,j 6=i Γijxj

)
,∀i ∈ V,

where bi is a positive parameter and Γ = [Γij ] is the link
system matrix.
We investigate the effectiveness of our algorithm with
both diminishing and constant step sizes over GC . We
consider umax = 2mW , P 0 = 2.5mW , Γ and the other
channel parameters be as in (Pan and Pavel, 2007),
a = 0.001×110, c = 110 and b = [1, 3, 2, 1, 3, 3, 2, 2, 1, 1].
Fig. 2 (a) shows convergence of our algorithm with di-
minishing step sizes over GC . The dashed lines repre-
sent the NE obtained by the gradient algorithm (GA)
in (Pan and Pavel, 2007), which runs over a central-
ized (complete) communication graph. The normalized
error compared to the NE obtained in (Pan and Pavel,

2007) (‖x−x
∗‖

‖x∗‖ ×100%) is 1.51%.Now, consider randomly

generated constant αi with uniform distribution over
[0.01, 0.02]. Fig. 2 (b) shows the transmission power of
the channels; the normalized error is 0.49%. Comparing
the diminishing and constant step size algorithms, yields
that the convergence is faster for a constant step size.

7 Conclusions

An asynchronous gossip algorithm is proposed to find
a NE over a distributed multi-player network. At each
iteration, players maintain estimates of the other play-
ers’ actions and share them with the local neighbors
to update their estimates and actions. Using standard
assumptions on the cost functions and communication
graph we proved that, for diminishing step sizes, the al-

6



gorithm converges a.s. to a NE of the game. For constant
step sizes an error bound is derived. Future work will
consider the case in which cost functions are not affected
by some players’ actions. This could improve the algo-
rithm by avoiding unnecessary information exchange.

Appendix A

Proof of Theorem 1, Part i). We repeatedly use
Lemma 3 to show that a term is absolutely summable.
Using (13) and (11) yields,

x̃(k + 1) = (W (k)⊗ IN )x̃(k) + µ(k + 1), (24)

with µ(k+ 1) = [(xi(k+ 1)− x̄ii(k))ei]
T
i∈V . By (14), (24)

and the double stochasticity of W (k), we obtain,

x̃(k + 1)− (1N ⊗ IN )Z(k + 1) = (25)

Q(k)
(
x̃(k)− (1N ⊗ IN )Z(k)

)
+Rµ(k + 1),

where Q(k) = [(W (k) − 1
N 1N1TNW (k)) ⊗ IN ] and R =

[(IN − 1
N 1N1TN )⊗ IN ]. Then,

E
[
‖x̃(k + 1)− (1N ⊗ IN )Z(k + 1)‖

∣∣∣Mk

]
≤

E
[
‖Q(k)(x̃(k)− (1N ⊗ IN )Z(k))‖

∣∣∣Mk

]
︸ ︷︷ ︸

Term 1

+E
[
‖Rµ(k + 1)‖

∣∣∣Mk

]
︸ ︷︷ ︸

Term 2

. (26)

Let γ = E
[
‖Q(k)‖2

∣∣∣Mk

]
. By Lemma 2 in (Nedic, 2011),

γ < 1. Then for Term 1 we obtain,

Term 1 ≤√γ‖x̃(k)−(1N ⊗ IN )Z(k)‖. (27)

To find an upper bound for Term 2, we use ‖R‖ = 1 and
E[‖x‖]2 ≤ E[‖x‖2]. From (24) and xi(k + 1) = xi(k) =
x̄ii(k), ∀i /∈ {ik, jk}, ‖µ(k+1)‖2 =

∑
i∈{ik,jk} ‖xi(k+1)−

x̄ii(k)‖2. Using (12), (3), the projection’s non-expansive
property and (a+ b)2 ≤ 2a2 + 2b2 yields,

Term 2 ≤
√

2
∑

i∈{ik,jk}

‖xi(k)−x̄ii(k)‖+ 2αk,maxC. (28)

Next we show that the 1st term in the RHS is absolutely
summable. Using (10), it follows that,

‖xi(k)− x̄ii(k)‖ =
1

2
‖x̃ii(k)− x̃ji (k)‖, (29)

for i, j ∈ {ik, jk}, i 6= j. Then we upper bound ‖x̃ii(k)−
x̃ji (k)‖ rather than ‖xi(k) − x̄ii(k)‖. Using (12), (13),
(10) and projection’s non-expansive property yields for
i, j ∈ {ik, jk}, i 6= j,

‖x̃ii(k + 1)− x̃ji (k + 1)‖ (30)

≤ 1

2
‖x̃ii(k)− x̃ji (k)‖+ αk,i

∥∥∥∇xi
Ji(xi(k), x̄i−i(k))

∥∥∥.

We take expected value of (30) and multiply the LHS and
the RHS of the resultant by αk+1,i and αk,i, respectively
(αk+1,i < αk,i). Then using (3), we obtain,

αk+1,iE
[
‖x̃ii(k + 1)− x̃ji (k + 1)‖

∣∣∣Mk

]
≤ (31)

αk,i‖x̃ii(k)− x̃ji (k)‖ − αk,i
2
‖x̃ii(k)− x̃ji (k)‖+ α2

k,iC,

where we split
αk,i

2 into αk,i and −αk,i

2 . Applying
Lemma 3 and using (7) and (3) yields,

∞∑
k=0

αk,i‖x̃ii(k)− x̃ji (k)‖ <∞, (32)

which, by (29), implies that
∑∞
k=0αk,i‖xi(k)−x̄ii(k)‖<∞.

From (26), (27), (28) and (29),

E
[
‖x̃(k + 1)− (1N ⊗ IN )Z(k + 1)‖

∣∣∣Mk

]
≤

√
γ‖x̃(k)− (1N ⊗ IN )Z(k)‖

+

√
2

2

∑
i∈{ik,jk}

‖x̃ii(k)− x̃ji (k)‖+2αk,maxC. (33)

We multiply the LHS and RHS of (33) by αk+1,max and
αk,max, use (7) and Lemma 3 to complete Part i.

Proof of Part ii). Taking conditional expected value
in (25), using E[‖x‖]2 ≤ E[‖x‖2], (27)-(29), yields,

E
[
‖x̃(k + 1)− (1N ⊗ IN )Z(k + 1)‖2

∣∣∣Mk

]
≤

γ‖x̃(k)− (1N ⊗ IN )Z(k)‖2

+
1

2

∑
i∈{ik,jk}

‖x̃ii(k)− x̃ji (k)‖2 + 4α2
k,maxC

2

+2
√
γ‖x̃(k)− (1N ⊗ IN )Z(k)‖(√2

2

∑
i∈{ik,jk}

‖x̃ii(k)− x̃ji (k)‖+ 2αk,maxC
)
. (34)

We bound the terms in (34) as in the following steps:

• Step 1: Prove that
∑∞
k=0 ‖x̃ii(k) − x̃ji (k)‖2 < ∞ by

using (30) and (3) and then Lemma 3, (32) and (7).

• Step 2: Prove that
∑∞
k=0

[(∑
i∈{ik,jk} ‖x̃

i
i(k) −

x̃ji (k)‖
)

.
(
‖x̃(k) − (1N ⊗ IN )Z(k)‖

)]
< ∞ by using

Part i, Step 1, and applying Lemma 3 and (7).

Part ii is completed by applying Lemma 3, (7) to (34)
and using Step 1 and Step 2. �

Appendix B

We use the following lemma on scalar sequences.
Lemma 6. (Nedic, 2011) Let vk and uk be scalar se-
quences such that vk+1 ≤ cvk +uk ∀k ≥ 0 and c ∈ (0, 1).
Then lim supk→∞ vk ≤ (1/(1− c)) lim supk→∞ uk.

Proof of Theorem 3. Taking expected value in (33)
and using E[E[X|Y ]] = E[X] yields,

7



E
[
E
[
‖x̃(k + 1)− (1N ⊗ IN )Z(k + 1)‖

∣∣∣Mk

]]
=

E
[
‖x̃(k + 1)− (1N ⊗ IN )Z(k + 1)‖

]
≤ √γE

[
‖x̃(k)− (1N ⊗ IN )Z(k)‖

]
+

√
2

2

∑
i∈{ik,jk}

E
[
‖x̃ii(k)−x̃ji (k)‖

]
+2αmaxC. (35)

We find an upper bound for the 2nd term by taking
expected value of (30) and using Lemma 6,

lim sup
k→∞

E
[
‖x̃ii(k)− x̃ji (k)‖

]
≤ 2αmaxC. (36)

Applying Lemma 6 to (35) and using (36) and γ < 1,

we obtain lim supk→∞ E
[
‖x̃(k) − (1N ⊗ IN )Z(k)‖

]
≤

2
√

2+2
1−√γ αmaxC. Using (34), Lemma 6 and (36) yields

lim supk→∞ E
[
‖x̃ii(k) − x̃ji (k)‖2

]
≤ 4α2

maxC
2. After a

few manipulations (19) is obtained. �
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