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Abstract— This paper deals with the connectivity preser-
vation of multi-agent systems with state-dependent error in
distance measurement. It is assumed that upper bounds on
the measurement error and also its rate of change as a
function of distance are available. A general class of distributed
control strategies is then proposed for the distance-dependent
connectivity preservation of the agents in the network. It is
shown that if two neighboring agents are initially located at a
distance closer than the required connectivity range, they are
guaranteed to remain in the connectivity range at all times. The
effectiveness of the proposed control strategies in consensus and
containment problems is demonstrated by simulation.

I. INTRODUCTION

There has been increasing interest in the control of multi-

agent systems in the past decade due to their wide range

of applications in real-world systems. Such applications

include, for example, mobile sensor networks, air traffic

control, and automated highway systems, to name only a few

[1], [2], [3], [4], [5]. In this type of problem, it is desired to

achieve a global objective such as consensus and containment

by developing distributed control laws [6], [7], [8], [9], [10],

[11]. For instance, in the consensus problem it is aimed that

all agents converge to a single point in the state space. In

the containment problem, on the other hand, it is desired that

the followers converge to the convex hull of the leaders.

One of the common goals of any multi-agent control

problem is the connectivity of the network. A pair of agents

is said to be connected (via a communication link) if they are

located in a sufficiently small distance from each other. The

distributed connectivity preservation problem has been thor-

oughly investigated in prior literature [12], [13], [14], [15],

[1], [16], [17], [18], [19], [20], [21]. Unbounded potential

functions are often used in these papers, where an unbounded

potential field is generated between any two agents which

tend to move away from the connectivity range. However,

such approaches may not be as effective in practice because

actuators cannot handle infinite control signal. To remedy

this shortcoming, a general class of bounded distributed

potential functions with the connectivity preserving property

is proposed in [22]. The idea behind this technique is to

design the potential functions in such a way that when

an edge is about to lose connectivity, the gradient of the

potential function lies in the direction of the edge, aiming

The authors are with the Department of Electrical and Com-
puter Engineering, Concordia University, 1455 De Maisonneuve Blvd.
W., Montréal, Québec, H3G 1M8, Canada {fa saleh, a ajor,
aghdam}@ece.concordia.ca

This work has been supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC) under Grant STPGP-
364892-08, and in part by Motion Metrics International Corp.

to reduce its size. The work [22] proposes an effective

alternative to conventional unbounded potential functions.

However, this work and all of the papers cited above assume

that the distance measurement (which is required in any

connectivity control law) has no error. It is known that all

measurements are subject to error in practice, and this can

negatively affect the control performance.

This paper investigates the problem of connectivity preser-

vation for a team of single integrator agents subject to

distance measurement error. It is assumed that upper bounds

exist on the magnitude of the measurement error and its rate

of change. These upper bounds are defined to ensure that

the control signal will not be saturated. A general class of

distributed control strategies is then proposed for the agents

which has the connectivity preservation property. It is shown

that if two neighboring agents are located within a more

conservative distance from each other (compared to the case

of the error-free measurements), they will remain in the

connectivity range at all times. While the results of this work

are presented for a static information flow graph, they can

be easily extended to the more general case of dynamic edge

addition.

The remainder of this paper is organized as follows. In

Section II, some notations and definitions are given and

also the problem statement is provided. The connectivity

preserving control design is elaborated in Section III. Sim-

ulation results are presented in Section IV to demonstrate

the effectiveness of the proposed control strategy. Finally,

concluding remarks are drawn in Section V.

II. PROBLEM FORMULATION

The following definitions are borrowed from [22], and will

prove convenient in presenting the main results.

Definition 1: [22] For a real or vector valued function

f (t), the index of f (t) at time t, denoted by ρ( f (t)), is

defined to be the smallest natural number n for which

f (n)(t) 6= 0, where f (n)(t) is the n-th derivative of f (t) with

respect to time.

Definition 2: The function f is said to be of class Ck if the

derivatives f (1), . . . , f (k) exist and are continuous. A function

of class C∞ is referred to as a smooth function.

Definition 3: [22] Multinomial coefficients are defined as:

(

k

r1,r2, . . . ,rµ

)

:=
k!

r1!r2! . . .rµ !

where r1,r2, . . . ,rµ are nonnegative integers, and k = r1 +
r2 + . . .+ rµ . In the special case when µ = 2, these cof-

ficients are called bionomial coefficients, and are given by
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(

k

r1,r2

)

=
(

k

r1

)

=
(

k

r2

)

.

Notation 1: For any given function h(x,y), the deriva-

tive ∂h
∂y

h(x,y)|y=0 is represented by ∂h
∂y

h(x,0) (and similarly,
∂h
∂x

h(0,y) = ∂h
∂x

h(x,y)|x=0). Notice that while this may be

considered standard notation, it is emphasized here for the

sake of clarity, and to avoid possible confusion.

Consider a set of n single integrator agents in a plane with

the control law of the form:

q̇i(t) = ui =−
∂hi

∂qi

(1)

where qi(t) denotes the position of agent i in the plane at time

t, and hi’s are distributed potential functions. Denote with

G = (V,E) the information flow graph, with V = {1, . . . ,n}
the vertices, and with E ⊂V×V the edges. It is assumed that

the information flow graph G is connected and undirected.

Definition 4: The set of neighbors of agent i, denoted

by Ni(G), is a set consisting of any vertex in G which is

connected to vertex i by an edge, i.e., Ni := { j|(i, j) ∈ E}.
Moreover, the degree of the set of neighbors Ni is denoted

by di(G).

Assume that each agent can only use the relative position of

its neighbors in its local control law. Let the error function

for distance measurement between any two agents i and j be

denoted by εi j(‖qi−q j‖), which is a smooth positive scalar

function of distance (‖ · ‖ denotes the Euclidean norm) and

it occurs when agent i is sensing the position of agent j.

The error function is assumed to be bounded with a known

bound m, as follows:

| εi j(‖qi−q j‖) |≤ m

Furthermore, the rate of change of the error function is

assumed to be bounded by 1, i.e.:
∣

∣

∣

∣

∂εi j

∂‖qi−q j‖

∣

∣

∣

∣

< 1

Assume that L is a real distance between the two agents

i and j, but the distance L− εi j(‖qi − q j‖) is measured

instead. In the error-free connectivity preservation problem

(i.e., perfect measurements) two agents i and j are said

to be in the connectivity range if ‖qi− q j‖ ≤ d, where d

is a pre-specified positive real number referred to as the

critical distance [22]. However, in a practical setting, a more

conservative condition needs to be adopted in order to ensure

that connectivity is preserved in the presence of measurement

error. More precisely, if the distance d is measured by a

sensor, normally implying that the corresponding agent is

in the connectivity range, the real distance can be as great

as d +m, resulting in loss of connectivity. So, the critical

distance in this case is adjusted to d−m+ ε , where m < d

(note that the distance d−m+ε is always less than d). The

objective is to design a class of distributed potential function

which preserve connectivity in this case. More precisely, it is

desired to derive conditions under which if ‖qi(0)−q j(0)‖≤
d −m for all (i, j) ∈ E, then ‖qi(t)− q j(t)‖ ≤ d for all

(i, j) ∈ E and all t ≥ 0.

III. CONNECTIVITY PRESERVING CONTROLLER DESIGN

For every agent i, define:

σi(t) :=
1

2
∑

j∈Ni(G)

(‖qi(t)−q j(t)‖− εi j)
2 (2)

πi(t) :=
1

2
∏

j∈Ni(G)

(d−m)2− (‖qi(t)−q j(t)‖− εi j)
2(3)

πi j(t) := ∏
k∈Ni(G)

k 6= j

(d−m)2− (‖qi(t)−qk(t)‖− εik)
2 (4)

Consider a set of distributed smooth potential functions of

the form hi(σi,πi) with the following properties:

∂hi

∂σi

(σi,0) = 0,
∂hi

∂πi

(σi,0)< 0, for σi ∈ R
+ (5)

These are the same potential function used in [22] for

designing connectivity preserving control laws in the ideal

(error-free) case. The aim of this section is to show that using

this type of potential function and under some conditions, the

control law (1) is connectivity preserving. Using the formula
∂hi

∂qi
= ∂hi

∂σi

∂σi

∂qi
+ ∂hi

∂πi

∂πi

∂qi
, one can rewrite the control law (1)

as:

q̇i = − ∑
j∈Ni(G)

(((qi−q j)+
∂

∂qi

(
ε2

i j

2
)−

∂

∂qi

(εi j‖qi−q j‖))

(
∂hi

∂σi

−
∂hi

∂πi

πi j)) (6)

Let t0 = inf{t|∃(i, j)∈E : ‖qi−q j‖> d−m+εi j}. Clearly,

‖qi(t)− q j(t)‖ ≤ d−m+ εi j, for all (i, j) ∈ E and t ≤ t0.

Construct a graph Gd = (Vd ,Ed) as the union of those

edges (i, j) ∈ E for which ‖qi(t0)− q j(t0)‖ = d −m + εi j.

Define si j(t) = (‖qi(t)−q j(t)‖− εi j)
2, for all (i, j) ∈ Ed . To

prove the above claim, it suffices to show that there is a

neighborhood of t0 in which every si j is either decreasing or

fixed.

The following lemmas will be used in the proof of the

main results.

Lemma 1: Consider a real or vector valued function f of

x(t) in Ck. If x(r)(t0) = 0 for all r ∈ {1,2, . . . ,k}, then:

f (r)(x(t0)) = 0,∀r ∈ {1,2, . . . ,k}

Proof . The proof is straightforward and is omitted due to

space limitations. �

Lemma 2: Suppose that q
(r)
i (t) = q

(r)
j (t) = 0, for all

r ∈ {1, . . . ,k−1} and some t. Then:

(ε2
i j−2εi j‖qi−q j‖)

(k) = (2
εi j

‖qi−q j‖

∂εi j

∂‖qi−q j‖

−2
∂εi j

∂‖qi−q j‖
−2

εi j

‖qi−q j‖
)(qi(t)−q j(t))

T

(q
(k)
i (t)−q

(k)
j (t)) (7)

Proof . It is required to take the derivative of the error

terms iteratively, in order to find the k-th derivative. This
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can be carried out as follows:

d

dt
(ε2

i j−2εi j‖qi−q j‖) = ε̇i j(εi j−2‖qi−q j‖)+ εi j

d

dt
(εi j−2‖qi−q j‖) = (2

εi j

‖qi−q j‖

∂εi j

∂‖qi−q j‖
−2

∂εi j

∂‖qi−q j‖
−2

εi j

‖qi−q j‖
)(qi(t)−q j(t))

T (q̇i(t)− q̇ j(t))

Since q
(r)
i (t) = q

(r)
j (t) = 0 for all r ∈ {1, . . . ,k−1}, hence:

(ε2
i j−2εi j‖qi−q j‖)

(k) = (2
εi j

‖qi−q j‖

∂εi j

∂‖qi−q j‖

−2
∂εi j

∂‖qi−q j‖
−2

εi j

‖qi−q j‖
)(qi(t)−q j(t))

T

(q
(k)
i (t)−q

(k)
j (t))

�

Lemma 3: Consider agents i and j in Gd , where j is the

neighbor for which ‖qi − q j‖ = d −m + εi j. Suppose that

q
(r)
i (t) = q

(r)
j (t) = 0 for all r ∈ {1, . . . ,k− 1} and some t.

Then:

s
(k)
i j (t) = A(qi(t)−q j(t))

T (q
(k)
i (t)−q

(k)
j (t)) (8)

where A > 0.

Proof . The proof follows on noting that

∣

∣

∣

∂εi j

∂‖qi−q j‖

∣

∣

∣
< 1 and

| εi j |< m < d, and is omitted here due to space

constraints. �

Lemma 4: Consider agents i and j in Gd , where j is the

neighbor for which ‖qi−q j‖= d−m+ εi j. Then:

‖
∂

∂qi

(
ε2

i j

2
)−

∂

∂qi

(εi j‖qi−q j‖)‖< ‖qi−q j‖ (9)

Proof . The left side of 9 can be expressed as:

‖εi j

∂εi j

∂qi

−
∂εi j

∂qi

‖qi−q j‖− εi j

∂

∂qi

‖qi−q j‖‖=

‖
∂εi j

∂‖qi−q j‖

(qi−q j)
T

‖qi−q j‖
(εi j−‖qi−q j‖)−

εi j

(qi−q j)
T

‖qi−q j‖
‖= ‖

∂εi j

∂‖qi−q j‖
(m−d)− εi j‖

(10)

Now, using the inequality m < d, one arrives at:

‖
∂εi j

∂‖qi−q j‖
(m−d)− εi j‖<

‖
∂εi j

∂‖qi−q j‖
‖(d−m)+ εi j < d−m+ εi j

This completes the proof. �

Lemma 5: Consider agents i and j in Gd , where j is the

neighbor for which ‖qi−q j‖= d−m+ εi j. Then:

(qi−q j)
T ((qi−q j)+

∂

∂qi

(
ε2

i j

2
)−

∂

∂qi

(εi j‖qi−q j‖))> 0

(11)

Proof . The proof follows directly from Lemma 4, and is

omitted due to space limitations. �

Lemma 6: Consider an agent i in Gd , and assume that

η = min j∈Ni(G){ρ(πi j)}. Assume also that di(Gd)≥ 2; then

the following statements hold:

i) π
(r)
i j = 0, for 0≤ r ≤ η−1, and j ∈ Ni(G).

ii) π
(r)
i = 0, for 0≤ r ≤ η−1.

iii) ( ∂hi

∂σi
)(r) = 0, for 0≤ r ≤ η−1.

iv) ρ(qi)≥ η +1.

Proof . The proof is similar to that of Lemma 3 in [22]. �

Remark 1: Since the error function satisfies the conditions

of Lemma 1, therefore ρ(εi j)≥ ρ(qi) and ρ(εi j)≥ ρ(q j).
Remark 2: In the case when di(Gd) = 1, it is straight-

forward to show that q̇i = ((qi−q j)+
∂

∂qi
(

ε2
i j

2
)− ∂

∂qi
(ε‖qi−

q j‖))
∂hi

∂πi
πi j, where agent j is the neighbor for which ‖qi−

q j‖= d−m+ εi j.

Remark 3: If ρ(πi j) is not the same for all j ∈ Ni(Gd),
then part (ii) of Lemma 6 also holds for r =η . Consequently,

part (iii) also holds for r = η .

Lemma 7: For any agent i in Gd , let ν be one of the

(possibly multiple) neighbors of i in Gd for which ρ(qν) =
max j∈Ni(Gd){ρ(q j)}. Then:

ρ(qi)≥ 1+ ∑
j∈Ni(Gd )

j 6=ν

ρ(q j) (12)

Proof . The proof is similar to that of Lemma 4 in [22],

on noting that:

π
(k)
i j = ∑

r1+...+rµ=k

r1,...,rµ≥0

(

k

r1, . . . ,rµ

) µ

∏
s=1

((d−m)2−

(‖qi−qis‖− εi j)
2)(rs) (13)

�

Lemma 8: Let ρl(qi) be the lower bound for ρ(qi) given

in Lemma 7, i.e.:

ρl(qi) = 1+ ∑
j∈Ni(Gd )

j 6=ν

ρ(q j) (14)

where ρ(qν) = max j∈Ni(Gd){ρ(q j)}. If ν is unique, then:

i) π
(ρl(qi)−1)
iν = π̃iν ∏ j∈Ni(Gd )

j 6=ν

(qi−q j)
T q

(ρ(q j))
j , where

π̃iν > 0.

ii) q
(ρl(qi))
i = ∂hi

∂πi
π̃iν((qi−qν)+

∂
∂qi

(
ε2

iν
2
)− ∂

∂qi

(εiν‖qi−qν‖))∏ j∈Ni(Gd )
j 6=ν

(qi−q j)
T q

(ρ(q j))
j .

Proof . The proof is omitted due to the space

restrictions. �

Lemma 9: Consider a real or vector-valued function f for

which f ρ( f (t))(t) < 0, for some t. Then f is monotonically

decreasing in the interval [t, t + ε], for some ε > 0.

Proof . The proof is similar to that of Lemma 1 in [22]. �

Lemma 10: Define the subgraph G̃d of Gd as the union of

those edges e = (i, j) ∈ Ed for which min(ρ(qi),ρ(q j))< ∞,

and denote its set of edges with Ẽd . Then, for any (i, j)∈ Ẽd ,

ρ(si j) = min{ρ(qi),ρ(q j)} and s
(ρ(si j))
i j < 0.

Proof . One can prove this lemma by induction on

min(ρ(qi),ρ(q j)). Start with min(ρ(qi),ρ(q j)) = 1, and
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without loss of generality assume that ρ(qi)= 1. If ρ(q j)> 1,

then q̇ j = 0, and hence from Lemma 3 and Remark 2:

ṡi j = A(qi−q j)
T (q̇i− q̇ j)

= A(qi−q j)
T ∂hi

∂πi

πi j((qi−q j)+
∂

∂qi

(
ε2

i j

2
)−

∂

∂qi

(εi j‖qi−q j‖)) (15)

According to Lemma 5 and on noting that A > 0, one can

conclude that ṡi j < 0. Also, if ρ(q j) = ρ(qi) = 1, then:

ṡi j = A(qi−q j)
T (((qi−q j)+

∂

∂qi

(
ε2

i j

2
)−

∂

∂qi

(εi j‖qi−q j‖))
∂hi

∂πi

πi j− ((q j−qi)+
∂

∂q j

(
ε2

ji

2
)−

∂

∂q j

(ε ji‖q j−qi‖))
∂h j

∂π j

π ji)

= A(qi−q j)
T ∂hi

∂πi

πi j((qi−q j)+
∂

∂qi

(
ε2

i j

2
)−

∂

∂qi

(εi j‖qi−q j‖))+A(q j−qi)
T ∂h j

∂π j

π ji((q j−qi)+

∂

∂q j

(
ε2

ji

2
)−

∂

∂q j

(ε ji‖q j−qi‖)) (16)

which yields ṡi j < 0. Now, suppose that the lemma

holds for min(ρ(qi),ρ(q j)) < k. To prove the lemma for

min(ρ(qi),ρ(q j)) = k, assume without loss of generality that

ρ(qi) = k. Since ρ(qi) ≤ ρ(q j), using Lemma 7 one can

easily show that maxω∈Ni(Gd){ρ(qω)} is unique, and in fact

equals to q j. As another consequence of Lemma 7, ρ(qω)<
ρ(qi) for ω ∈Ni(Gd), ω 6= j. Therefore, min(ρ(qi),ρ(qω))=

ρ(qω)< k, and hence ρ(siω) = ρ(qω) and s
(ρ(siω ))
iω < 0. This

along with Lemmas 3 and 8 results in:

q
(ρl(qi))
i =

∂hi

∂πi

π̃i j((qi−q j)+
∂

∂qi

(
ε2

i j

2
)−

∂

∂qi

(εi j‖qi−q j‖)) ∏
ω∈Ni(Gd )

ω 6= j

(qi−qω)
T q

(ρ(qω ))
ω

=
∂hi

∂πi

π̃i j((qi−q j)+
∂

∂qi

(
ε2

i j

2
)−

∂

∂qi

(εi j‖qi−q j‖)) ∏
ω∈Ni(Gd )

ω 6= j

−
1

A
s
(ρ(siω ))
iω (17)

Thus:

(qi−q j)
T q

(ρl(qi))
i = (qi−q j)

T ∂hi

∂πi

π̃i j((qi−q j)+

∂

∂qi

(
ε2

i j

2
)−

∂

∂qi

(εi j‖qi−q j‖))

∏
ω∈Ni(Gd )

ω 6= j

−
1

A
s
(ρ(siω ))
iω < 0 (18)

from which one can conclude that ρ(qi) = ρl(qi). On the

other hand:

s
(ρ(qi))
i j = A(qi−q j)

T (q
(ρ(qi))
i −q

(ρ(qi))
j )

= A(qi−q j)
T q

(ρ(qi))
i +A(q j−qi)

T q
(ρ(qi))
j (19)

If ρ(q j) > ρ(qi), then the second term in the right side of

19 vanishes, and it follows from (18) that s
(ρ(qi))
i j < 0. If

ρ(q j) = ρ(qi), the same inequality as (18) holds for ρ(q j).
Therefore, both terms in (19) are less than zero, and hence

s
(ρ(qi))
i j < 0. �

Lemma 11: Consider the partition Ed = E∞ ∪ Ẽd . Then,

for every i ∈V∞,

i) di(G∞)≥ 2.

ii) q̇i(t) = 0, for t ≥ t0.

Proof . The proof is similar to that of Lemma 7 in [22]. �

Theorem 1: Under the conditions given by (5), the control

law (1) is connectivity preserving.

Proof . To prove the theorem, it suffices to show that there

is a neighborhood of t0 in which for every (i, j) ∈ Ed , si j

is either decreasing or fixed. It follows from Lemmas 9 and

10 that si j is decreasing in a neighborhood of t0 for any

(i, j) ∈ Ẽd . Also, from Lemma 11, si j is fixed for any t ≥ t0
and (i, j) ∈ E∞. The proof is completed on noting that Ed =
E∞∪ Ẽd . �

Corollary 1: For the case where the information flow

graph G is a tree, the connectivity preservation is strict,

meaning that if ‖qi(0)− q j(0)‖ ≤ d−m for all (i, j) ∈ E,

then ‖qi(t)−q j(t)‖< d, for all (i, j) ∈ E and all t > 0.

Proof . The proof is similar to that of Corollary 1 in

[22]. �

IV. SIMULATION RESULTS

Example 1: Consider 4 single-integrator agents moving in

a two-dimensional space with the control law given by (1)

and the information flow graph G1 depicted in Fig. 1. Let

the potential function hi (i = 1,2, . . . ,4) be chosen as:

hi(σi,πi) =
σi

σi +πi +πi
2

(20)

It can be shown that the above function satisfies the con-

ditions in (5), and hence the control law obtained by using

this function is connectivity-preserving. Assume also that the

error function has the following form:

εi j = m(1− e−‖qi−q j‖) (21)

One can verify that the maximum value of the above function

is m, and that function has the maximum rate of change of

this function with respect to the relative distance is less than

1. Hence, this function satisfies all of the required conditions

discussed earlier.

The control law (6) along with (5) implies that the velocity

of each agent is directed towards a point inside the convex

hull of its neighbors. This results in the contraction of the

convex hull of the entire team, which in turn leads to the

convergence of the agents to a single point.

Let d and m be equal to 1 and 0.1, respectively. The

planar motion of the agents for the initial positions marked
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G1

Fig. 1. The information flow graph for the multi-agent system of
Example 1.
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Fig. 2. The agents’ planar motion in Example 1.

by the indices of the agents is shown in Fig. 2. Denote the

relative distance between agent i and its neighbor j with di j,

i.e., di j = ‖qi−q j‖. The relative distances d12, d13, and d34

are depicted in Fig. 3, which confirms the convergence to

consensus. Furthermore, the norm of the control inputs u1,

u2 and u3 are drawn in Fig. 4, which shows they are bounded

at all times, as expected.

Example 2: Consider now a team of 3 static leaders and

3 followers with the information flow graph G2 depicted

in Fig. 5. The followers are desired to converge to the

triangle of the leaders while preserving the connectivity of

the information flow graph. Consider the following potential

function:

hi(σi,πi) =−πi (22)
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Fig. 3. The relative distances d12, d13 and d34 in Example 1.
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Fig. 4. The norm of the control inputs u1, u2 and u3 in Example 1.
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Fig. 5. The information flow graph for the multi-agent system of
Example 2.

It can be easily verified that the function given above satisfies

the conditions in (5), which means that the corresponding

control law is connectivity preserving. Again assume that

the error function has the same form as Example 1.

Assume that the error function has the same form as

in Example 1. Let also d and m be equal to 1 and 0.1,

respectively, and the initial position of each agent be marked

by its label, as shown in Fig. 6. This figure shows the motion

of the agents in the two dimensional plane. The resultant

relative distances are sketched in Fig. 7, which confirm

that the connectivity is preserved in the presence of the

measurement error given above. The corresponding control

inputs ‖u4‖, ‖u5‖ and ‖u6‖ are depicted in Fig. 8. This figure

shows that the control inputs are bounded, although some of

the agents are initially about to lose connectivity.

V. CONCLUSIONS

This work extends the connectivity preserving bounded

control design technique for single integrator agents to the

case when the distance measurements are subject to error.

Sufficient conditions are presented for a class of distributed

potential functions, which guarantee the connectivity preser-

vation of the resultant control laws. It is assumed that the

measurement error and its rate of change are bounded,

with known bounds. Unlike existing methods, the potential

function given in this work can be designed in such a way

that the resultant bounded control inputs are connectivity

preserving, even in the presence of the measurement error.

The efficacy of the proposed control strategy is demonstrated
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Fig. 6. The agents’ planar motion in Example 2.
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Fig. 7. The relative distances d15, d16, d24, d34, d36, d45 and d56 in
Example 2.

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 t (sec)

N
o
rm

 o
f 

th
e
 c

o
n
tr

o
l 
in

p
u
ts

|| u
4
||

|| u
5
||

|| u
6
||

Fig. 8. The norm of the control inputs u4, u5 and u6 in Example 2.

by simulation for two different choices of connectivity pre-

serving potential functions.
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