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Abstract— This paper investigates the formation control
problem for a team of single-integrator agents subject to
distance measurement error. Collision, obstacle and boundary
avoidance are important features of the proposed strategy.
It is assumed that upper bounds exist on the magnitude of
the measurement error and its derivative w.r.t. the measured
distance. A decentralized navigation function is then proposed
to move the agents toward a desired final configuration which
is defined based on the pairwise distances of the connected
agents and the characteristics of the distance measurement
error. Conditions on the magnitude of the measurement error
and its derivative w.r.t. the measured distance are derived
under which a new formation configuration can be achieved
anywhere in the space due to the measurement error. This
error-dependent formation can be determined exactly if the
error model is available. If such a model is not available, the
maximum discrepancy in the final distances can be obtained
in terms of the maximum measurement error. Moreover, the
control law designed based on the navigation function ensures
collision, obstacle and boundary avoidance in the workspace.
The efficacy of the proposed control strategy is demonstrated
by simulation.

I. INTRODUCTION

Control of multi-agent networks has received increasing

attention in recent years due to its important real-world

applications in mobile sensor networks, air traffic control

and automated highway systems, to name only a few [1],

[2], [3], [4], [5]. In this type of problem, it is desired to

design a distributed control law to achieve a cooperative

objective such as consensus, containment and formation [6],

[7], [8], [9], [10]. For instance, in the consensus problem

the objective is to drive all agents to a single point in the

state space. In the containment problem, it is desired that

the followers converge to the convex hull of the leaders. In

the formation problem, on the other hand, the agents are to

converge to a desired configuration in the workspace, which

is defined in terms of the relative position of the agents.

Navigation functions are known to be effective tools in

the design of cooperative control schemes for multi-agent

systems [11], [12], [13], [14]. A class of triangulated graphs

for algebraic representation of rigid formations is introduced

in [15] to specify a mission cost for a group of vehicles.

In [16] the formation behaviors are integrated with other

navigational behaviors to enable a multi-agent network to
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reach the navigational goals. In [17], a novel decentralized

control scheme is designed and implemented to achieve

dynamic formation control and collision avoidance for

a group of non-holonomic agents. The corresponding

approach is Lyapunov-based, and guarantees the collision

avoidance. In [18], formation control of unmanned aerial

vehicles (UAVs) flying in an obstacle-laden environment

is investigated. When static obstacles pop up during the

operation, the UAVs are required to steer around them and

also avoid collisions between each other. Three types of

collision have been defined in [19] that should be avoided:

1) collision among the agents which are flying within the

communication range of each other; 2) collision of an agent

with a fixed obstacle; 3) collision of an agent and the

boundary of the workspace.

Any cooperative objective such as the ones addressed

in the previous paragraphs relies on some measurements

(e.g. distance, speed, etc.) which are often assumed to

be exact to simplify the analysis. However, it is known

that in practice all measured quantities are subject to

error, which can deteriorate the overall performance of

the network significantly. This paper tackles the formation

control problem in the presence of measurement error. The

objective is to design a controller under which the agents

converge to any desired configuration (or a sufficiently close

neighborhood of it) in the presence of measurement error,

while they maintain a minimum distance from each other

and from any fixed obstacle in the workspace (including

the boundaries). To this end, a navigation-based distributed

control law is designed which uses the information about

the magnitude of the measurement error and its derivative

w.r.t. the measured distance. It is shown that under some

conditions the formation configuration in the presence of

measurement error can be determined.

The remainder of this paper is organized as follows. In

Section II, some notations and definitions are provided and

the problem statement is also given. Distributed navigation

functions are introduced in Section III. In Section IV the con-

struction of the goal function is discussed. Three functions

are proposed in Section V which are subsequently used in

the design of the controller with collision/obstacle/boundary

avoidance property. It is shown in Section VI that the

proposed functions meet the requirements of navigation

functions. Simulation results are presented in Section VII to

demonstrate the effectiveness of the proposed control strat-

egy. Finally, concluding remarks are drawn in Section VIII.
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II. PROBLEM FORMULATION

Notation 1: A symmetric positive semidefinite matrix A is

represented as A � 0. Similarly, A ≻ 0, A � 0 and A ≺ 0 de-

note a matrix A that is positive definite, negative semidefinite

and negative definite, respectively.

Consider a set of N single-integrator agents represented

by:

q̇i(t) = ui(t) (1)

where qi(t) and ui(t) denote the position and velocity of

agent i at time t, respectively. Denote with G = (V,E)
the information flow graph, with V = {1, . . . ,N} the nodes

(agents), and with E ⊂ V ×V the edges (communication

links among the agents). It is assumed that the information

flow graph G is connected and undirected. Define a bounded

workspace F with radius RF , and assume the agents are point

masses inside this workspace. Assume also that there are S

fixed point obstacles p1, . . . , pS in the workspace. The set of

neighbors of agent i, denoted by Ni(G), is a set consisting

of any vertex in G which is connected to vertex i by an

edge, i.e. Ni := { j �= i|(i, j)∈E}. Moreover, the degree of the

set of neighbors Ni is denoted by di(G), i.e. di(G) := |Ni|.
Assume that each agent can only communicate with its

neighbors (which implies limited communication among the

agents). Assume also that the agents’ exchange information

through the sensors mounted on them. In a physical system,

measurements are always subject to error. In the design of a

reliable control system, it is important to take measurement

error into consideration in such a way that its effect in the

closed-loop performance is minimized. Three main types of

measurement error are described below.

Bias Error: When the real quantity is identical to zero

but the measured value is not, the sensor is said to have

bias error (also called offset error). The expected value

of a measurement, made by a sensor subject to bias error

can differ significantly from the actual mean value of the

measured quantity. This type of error can be eliminated by

proper calibration.

Drift Error: If the measured value gradually changes even

when the quantity is fixed, the corresponding discrepancy is

called drift error. The drift error is often caused by gradual

changes in the environmental conditions such as temperature.

Random Error: Sometimes the measured quantity consists

of rapidly changing signals of small magnitude. This is

usually caused by sensor noise, whose effect on the system

output can be significantly attenuated by using a proper filter

(such as Kalman filter). Statistical techniques can be used to

analyze the effect of noise in the system.

Let the error function for distance measurement between

any two agents i and j be denoted by εi j(‖qi −q j‖), where

‖ · ‖ denotes the Euclidean norm. Here εi j is assumed to be

a C2 positive scalar function of distance, ‖qi−q j‖ [20]. The

distance measurement error is assumed to be always less than

or equal to the actual distance between the two agents, i.e.:

εi j(‖qi −q j‖)≤ ‖qi −q j‖ (2)

Furthermore, the derivative of the error function is assumed

to be bounded by 1, as follows:

ε
′

i j =
dεi j(‖qi −q j‖)

d‖qi −q j‖
< 1 (3)

For simplicity of notation, the argument of the function εi j(·)
is omitted when no confusion can arise.

Definition 1: The communication region of agent i is a

circle of radius Ri (communication radius) centered at the

agent, and any agent inside this region is considered as a

neighbor of agent i. The set of all neighbors of agent i is

given by:

Ni := { j �= i | ‖qi −q j‖− εi j ≤ Ri} (4)

Definition 2: The watch zone of agent i is defined as a

circle of radius di centered at the agent, where di < Ri. Any

agent, fixed obstacle or workspace boundary inside the watch

zone is considered as an obstacle. The set of obstacles of

agent i are defined as those agents which are critically close

to it, i.e.:

Oi := { j �= i |‖qi −q j‖− εi j ≤ di} (5)

For simplicity, all agents are assumed to have the same

communication radius, Ri = R, and the same watch zone

radius di = d, for all i ∈ {1, . . . ,N}. Suppose that L is the

exact distance between the two agents i and j, and that due

to the sensor error the measured distance is L−εi j(‖qi−q j‖).
Thus, if the distance L− εi j < Ri is measured by the sensor

of agent i, normally implying that the agent j is in the

communication region of the agent i, but probably the real

distance can be as great as L ≥ Ri, resulting in losing the

desired configuration.

III. DECENTRALIZED NAVIGATION FUNCTIONS

Navigation functions (NF) are real-valued maps realized

through cost functions ϕ(q), whose negated gradient field

is attractive towards the desired pairwise destination and

repulsive with respect to the obstacles (fixed point obstacles,

potential agents inside the obstacle region, and also the

boundary of the workspace) [21]. The main objective of a

multi-agent control system is to reach a desired configuration

in the workspace in terms of the relative position of the

connected agents in the presence of distance measurement

error. The control action for agent i is:

ui =−αi∇ϕ(qi) (6)

where αi is a positive scaling factor. The function ϕ(qi) is

defined as:

ϕ(qi) =
γ(qi)

(γ(qi)k +β (qi))1/k
(7)

where γ(qi) is the goal function and β (qi) is the obstacle

function, which will be introduced later, and k is a tuning

parameter (k ≥ 1). It will be shown later that (7) meets all

the requirements of a navigation function.

IV. CONSTRUCTION OF THE GOAL FUNCTION

The goal function γ(qi) : F → R≥0 has a unique minimum,

which occurs when agent i is at the desired position w.r.t. its
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neighbors. It is defined as the summation of pairwise goal

functions γi j, for all agents distinct from i:

γ(qi) =
N

∑
j=1, j �=i

γi j(qi,q j). (8)

The special structure of the goal function given above

guarantees that the objective is satisfied if and only if the

distances of agent i from all other agents approach the desired

final distances. Note that the function γi j(qi,q j) depends on

the measured distances and the desired final distances wi j’s

for the error-free case as follows:

γi j =











1

w2
i j

(‖qi −q j‖− εi j −wi j)
2 ‖qi −q j‖− εi j ≤ wi j

1

1+e
a(‖qi−q j‖−εi j−(

R+wi j
2

))
‖qi −q j‖− εi j > wi j

(9)

where wi j is assumed to be greater than d for all i, j ∈
{1, . . . ,N}. Note also that γi j is chosen as a convex function

at a sufficiently small vicinity of the the point ‖qi − q j‖ =
εi j +wi j, because ϕ(qi) is to be minimum if agent i is posi-

tioned desirably w.r.t. its neighbors. To this end, a quadratic

function is chosen for the first interval ‖qi −q j‖− εi j ≤ wi j.

Moreover, γi j takes its maximum value 1 at ‖qi−q j‖−εi j =
0, i.e., when collision occurs. For the second interval, a

sigmoid function is considered with the tuning parameter

a. This coefficient is chosen in such a way that γi j equals

zero as ‖qi − q j‖− εi j approaches wi j, and equals one for

‖qi − q j‖− εi j > R. It is important to note that γi j needs

to be twice differentiable, so that the smooth functions are

used in the construction of γ(qi). Note also that wi j is the

desired mutual distance between agents i and j in the absence

of measurement error. However, in spite of the distance

measurement error, agents will not arrive at the previous

desired distances and in fact the desired configuration is

being changed. To find the desired formation, the following

equation needs to be solved for ‖qi −q j‖:

‖qi −q j‖− εi j(‖qi −q j‖)−wi j = 0 (10)

If it is assumed that εi j is bounded by a known constant

ε̄ , i.e. εi j < ε̄ . Thus, the new desired distance w̃i j between

agents i and j in the presence of measurement error would

be bounded by wi j + ε̄ , i.e. ‖qi − q j‖ = w̃i j, w̃i j < wi j + ε̄ ,

for i, j ∈ {1, . . . ,N}.

V. CONSTRUCTION OF THE WATCH ZONE FUNCTION

As noted earlier, the main objective of this work is

to design a formation control scheme with the collision

avoidance feature. Three types of collision are considered:

• Collision between two agents, represented by collision

avoidance function β1(qi,q j) for agents i and j.

• Collision between an agent and a fixed obstacle, rep-

resented by obstacle avoidance function β2(qi, pk) for

agent i and obstacle k.

• Collision of an agent and the boundary of the

workspace, represented by boundary avoidance function

β3(qi) for agent i.

The watch zone of agent i is chosen as the product of the

functions defined above, for all agents j ∈ Oi and obstacles

k ∈ {1, . . . ,S}, i.e.:

β (qi) = β3(qi) ∏
j∈Oi

β1(qi,q j) ∏
k∈{1,...,S}

β2(qi, pk) (11)

With this choice of watch zone, it is guaranteed that if

any type of collision (introduced above) occurs, the objective

is not satisfied. The obstacle functions design procedure is

described in the sequel.

Ideally, the obstacle function β1(qi,q j) associated with

agents i and j should be equal to zero if agent i collides with

agent j, and should be equal to one if the relative distance

between the two agents is greater than d:

β1(qi,q j) =
1

1+ eb(‖qi−q j‖−εi j−
d
2 )

(12)

where b is a tuning factor which is chosen in such a way

that β1 approaches to the specific values. More precisely, β1

reaches its unique minimum when the two agents collide, and

its maximum when the two agents are outside of each other’s

watch zone. It is also important to note that β1 belongs to

C2.

Assume that there are S fixed obstacles {p1, . . . , pS} in the

workspace. For any agent qi and fixed obstacle pk define the

following function:

β2(qi, pk) =
1

1+ ec(‖qi−pk‖−εik−
d
2 )

(13)

If agent i is sufficiently far from the obstacles, then β2

approaches one, which implies that it will not play any role

in the product of the obstacle functions. If, on the other

hand, a collision occurs, then the corresponding obstacle

function becomes zero, which in turn makes the product of

the obstacle functions zero.

As for the boundary of the workspace, the controller which

is proposed later, treats it as infinitely many obstacles at

radius RF , which is the radius of the workspace. Now, similar

to the obstacle function defined for the agent, consider a

circle of radius RF − d > wi j for the boundary. The region

between this circle and the workspace boundary is defined

as the boundary avoidance margin.

β3(qi) =
1

1+ eu(‖qi‖−εi−(RF−
d
2 ))

(14)

The function β3(·) has the property that it is equal to 1

as long as the corresponding agent is outside the boundary

avoidance margin, and converges to 0 as the agent approaches

the above region.

VI. NAVIGATION FUNCTION ANALYSIS

In this section, it is desired to show that ϕ(qi) is a naviga-

tion function. Navigation functions are used as control tools

to direct the agents to their desired locations in the formation,

where they are positioned properly w.r.t. their neighbors, in

the presence of distance measurement error. However, the

connectivity preservation of an agent and its neighbors is not
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guaranteed under such a navigation-function-based control

strategy. As a remedy to this problem, it is assumed that a

certain level of connection will always be held in the global

system (this is in fact, a realistic assumption in practice,

and simulations also verify that). The objective now is to

investigate how the navigation function drives each agent to

its desired location under the above assumption. To this end,

let the navigation function be formally defined first.

Definition 3: Let F ⊂ R2N be a compact connected an-

alytic manifold and denote its boundary with ϑF . A map

ϕ : F → [0,1] is a navigation function if [21]:

1) It is analytic on F .

2) It has a unique minimum at qd ∈ int(F) (i.e. it is Polar

on F).

3) Its Hessian at all critical points (zero gradient vector

field) is full-rank (i.e., it is Morse on F).

4) limq→ϑF ϕ(q) = 1 (i.e., it is admissible on F).

Given ξ > 0, define β nc
i,l (ξ ) = {qi : 0 < βl(qi, ·) < ξ , l ∈

{1,2,3}}. Partition the workspace to four regions of interest

as follows, similar to the one in [21]:

1) The desired destination Fd(qi) = {qi : ‖qi −q j‖−εi j =
wi j,∀ j ∈ Ni};

2) the workspace boundary ϑF ;

3) the set representing near collision regions F0(ξ ) =
⋃

l∈{1,2,3} β nc
i,l (ξ )−Fd(qi), and

4) the set representing the region sufficiently far from the

watch zone F1(ξ ) = F − (Fd(qi)∪ϑF ∪F0(ξ )).

To verify that ϕ(·) is a navigation function, it suffices to show

that when the agents are located at the desired distances w.r.t.

their neighbors, it constitutes an equilibrium point which is

a non-degenerate local minimum. Furthermore, ϕ(q) has no

other critical points of the above form in the other subsets.

Lemma 1: The function ϕ(·) has a non-degenerate mini-

mum at the desired formation.

Proof . To find the critical points of ϕ(qi), one can write

the gradient as the following:

∇ϕ(qi) =
kβ∇γ − γ∇β

k(γk +β )
1
k
+1

. (15)

The critical points of ϕ(qi) are derived from the relation

below:

∇ϕ(qi) = 0 ⇔ kβ (qi)∇γ(qi) = γ(qi)∇β (qi). (16)

To show that this equilibrium is non-degenerate, it is

required to prove that the Hessian is positive definite. One

can use (16) to come up with the Hessian as the following:

∇2ϕ =
1

k(γk +β )
1
k
+1

[(1−
1

k
)[

γ

β
∇β∇β T ]

+kβ∇2γ − γ∇2β ] (17)

Since k ≥ 1,
γ
β > 0 and ∇β∇β T � 0, hence (1 −

1
k
)[ γ

β ∇β∇β T ]� 0. It is now required to show that the only

remaining term, i.e. kβ∇2γ−γ∇2β , is positive definite at the

desired formation. To this end, it is important to note that

∇2β = 0 at the desired equilibrium. This results from the fact

that, β = 1 as long as wi j > d and wi j < RF −d. Thus, the

gradient and the Hessian are both equal to zero. Therefore,

it suffices to show that ∇2γ ≻ 0. This is straightforward and

omitted due to space restrictions. �

Lemma 2: All the critical points of ϕ(·) are the interior

points of the workspace.

Proof . Assume that agent i (which is one of the critical

points of ϕ(qi)) is located on the boundary and that collision

occurs between agents i, j. Then β (qi) = 0, and thus from

(15):

∇ϕ(qi) =−
∇β

kγk
(18)

Since agent i is on the boundary and at least one collision

has occurred, it is concluded that:

∇β (qi) �= 0 ⇒ ∇ϕ(qi) �= 0 (19)

which contradicts the initial assumption in which qi is a

critical point. This completes the proof. �

Lemma 3: For every ξ > 0, there exists a positive integer

N(ξ ) such that if k > N(ξ ), then none of the critical points

of ϕ(qi) are in F1(ξ ).

Proof . Let q ∈ F1(ξ ) be a critical point. Then:

kβ‖∇γ‖= γ‖∇β‖ (20)

Hence, a sufficient condition for q not to be a critical point

is:
γ‖∇β‖

β‖∇γ‖
< k, for all q ∈ F1(ξ ) (21)

Note that we are analyzing the critical points which are away

of the obstacles, βl(qi, ·)> ξ for all l ∈ {1,2,3}. The proof

follows immediately by choosing:

N(ξ ) =
1

ξ

max(γ)

min(‖∇γ‖)
( ∑

j∈Oi

max(‖∇β1(qi,q j)‖)

+ ∑
k∈{1,...,S}

max(‖∇β2(qi, pk)‖)+max(‖∇β3(qi)‖).

�

Lemma 4: There exists ξ0 > 0 such that ϕ(qi) has no local

minimum in F0(ξ ), as long as ξ < ξ0.

Proof . If q∈F0(ξ ) is a critical point of ϕi, then q∈ β nc
i,l (ξ )

for some i. This implies that q is very close to some

obstacles. It is desired now to show that ∇2ϕ(qi) has at least

one negative eigenvalue. Define β = βλ β̄λ where βλ is one of

the collision functions appears in β (qi) and β̄λ is product of

all the collision functions except βλ . One can choose a proper

sigmoid function for βλ . For instance, by using a function

of the form β1(qi,q j) (the collision avoidance function), one

can come up with the Hessian at the critical point as follows:

∇2ϕ(q) =
1

k(γk +β )
1
k
+1

(kβ∇2γ +(1−
1

k
)

γ

β

[β 2
λ ∇β̄λ ∇β̄ T

λ +2βλ β̄λ (∇β̄λ ∇β T
λ )+

β̄ 2
λ ∇βλ ∇β T

λ ]− γ[βλ ∇2β̄λ +2

(∇β̄ T
λ ∇βλ )+ β̄λ ∇2βλ ])

(22)
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Choose a test vector of unit magnitude similar to the one in

[21] which is orthogonal to ∇βλ at a critical point qc, i.e.:

ν̂ =
∇βλ (qc)

⊥

‖∇βλ (qc)⊥‖

It is straightforward to verify that the following quadratic

equation holds:

k(γk +β )1+ 1
k ν̂T ∇ϕ2ν̂ = kβ ν̂T ∇2γν̂ − γβ̄λ ν̂T ∇β 2

λ ν̂ +

(1−
1

k
)

γ

β
β 2

λ ν̂T ∇β̄λ ∇β̄ T
λ ν̂ − γβλ ν̂T ∇2β̄λ ν̂ (23)

Now, take the inner-product of ∇γ and both sides of the

equation kβ∇γ = γ∇β to obtain:

4kβ
(1− ε

′

i j)
2

w2
i j

= β̄λ ∇βλ .∇γ +βλ ∇β̄λ .∇γ (24)

Grouping the terms which are proportional to βλ yields

that two terms will appear in the RHS of the resultant

equation. The first term is proportional to βλ and can be

made arbitrarily small by a proper choice of ξ . However,

since this term can be positive, the second term which is

proportional to β̄λ should be strictly negative. Let the latter

term be denoted by Prβ̄λ
, and rewritten as:

Prβ̄λ
=G3∇βλ .∇γ −B3γ (25)

where G3 :=
w2

i j

4(1−ε
′
i j)

2
(G1 +G2ν̂T (qi − q j)(qi − q j)

T ν̂) and

B3 := (B1 +B2ν̂T (qi −q j)(qi −q j)
T ν̂), and G1, G2, B1 and

B2 are the functions of ‖qi−q j‖. Note that G3, B3 and γ are

strictly positive for any q∈F0(ξ ) (which implies no collision

has occurred). Thus, to complete the proof, it is straightfor-

ward to show that ∇βλ .∇γ < 0. Some algebraic calculations

imply that for the following inequality max(Prβ̄λ
) is strictly

negative:

ξ <
1

1+ e
b(

B3
G3

γ
A−

d
2 )

(26)

The proof follows now by choosing ξ0 =
1

1+e
b(

B3
G3

γ
A
− d

2
)
. �

Proposition 1: At any point in time, ϕ(qi) is a navigation

function if the parameter k has a value greater than a finite

lower bound, and the distance measurement error (ε) satisfies

the following conditions:

i) εi j(‖qi −q j‖)≤ ‖qi −q j‖,

ii) ε
′

i j =
dεi j(‖qi −q j‖)

d‖qi −q j‖
< 1.

Proof . The proof follows from Lemmas 1-4 so that ϕ(qi)
satisfies all the conditions stated in Definition 3. �

VII. SIMULATION RESULTS

Example 1: Consider 3 single-integrator agents moving

in a two-dimensional plane under the control law (6) and

a point obstacle fixed in the origin of the workspace. The

radius RF of the workspace is assumed to be 60m. Let
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Fig. 1. Planar motion of the agents for the Example 1.

0 1000 2000 3000 4000 5000
10

15

20

25

30

35

40

45

X: 3155
Y: 15.82

t (s)

d
ij (

m
)

d
12

d
13

d
23

Fig. 2. Mutual distances among the agents for the Example 1.

the obstacle avoidance region and communication be circles

of radius d = 5m and R = 40m, respectively. Let also the

control action parameters be αi = 1 for i ∈ {1, . . . ,N} and

k = 1. Assume that the desired configuration is an equilateral

triangle with edges of length wi j = 15m. Assume also that

the measurement error function has the following form:

εi j = µ(1− e−
‖qi−q j‖

h ) (27)

It is straightforward to verify that the above function satisfies

the conditions of proposition 1 for any µ < h. Let h and µ
be equal to 30m and 2m, respectively.

For the error function (27) and the given values for the

parameters, ‖qi − q j‖ = 15.82m. Let the initial positions of

the agents be marked by asterisks and the final positions

by diamonds. Let also the obstacle avoidance region and

the boundary avoidance margin be represented by dashed

lines. Fig. 1 depicts the planar motion of the agents in this

case. The agents are initially connected, with the pairwise

distances chosen close to R (in order to test the goal function

near the boundary of the communication region). As shown

in Fig. 2, the pairwise distances approach the desired values

(15.82m) as time increases.

Fig. 3 shows the planar motion of the agents for the case

when agent 2 starts from inside the obstacle avoidance region

2519



í60 í40 í20 0 20 40 60

í50

í40

í30

í20

í10

0

10

20

30

40

50

1
2

3

x (m)

y
 (

m
)

Fig. 3. Planar motion of the agents in Example 2.
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Fig. 4. Pairwise distances of the agents in Example 2.

(but no collision initially). As shown in Fig. 3, there is no

collision in the trajectory of the agents (and in particular

agent 2) as they move to their desired configuration. Fig. 4

demonstrates the final pairwise distances which are in accor-

dance with the desired configuration.

VIII. CONCLUSIONS

A distributed navigation function-based controller is pro-

posed to drive a group of single-integrator agents to a desired

configuration. It is assumed that the distance measurements

are subject to error, and that the agents should avoid collision

and obstacles in the workspace as well as the boundaries of

the workspace. The final formation is expressed in terms of

the desired distances among the connected agents and the

distance measurement error. The formation can be reached

anywhere in the space and with any orientation, provided

some sufficient conditions on the magnitude of the distance

measurement error and its derivative w.r.t. the measured

distance, hold. The navigation functions used to design the

controller ensure collision avoidance between the agents as

well as the obstacle and the workspace-boundary avoidance.

As a suggestion for future work, the proposed approach can

be used analogously to develop a formation control strategy

for a team of double-integrator agents.
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