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Abstract: In this paper, the problem of finding a Nash equilibrium of a multi-player game is
considered. The players are only aware of their own cost functions as well as the action space
of all players. We develop a relatively fast algorithm within the framework of inexact-ADMM.
It requires a communication graph for the information exchange between the players as well as
a few mild assumptions on cost functions. The convergence proof of the algorithm to a Nash
equilibrium of the game is then provided. Moreover, the convergence rate is investigated via
simulations.

Keywords: Nash games, Game theory, Distributed control,

1. INTRODUCTION

There is a close connection between the problem of finding
a Nash equilibrium (NE) of a distributed game and a
distributed optimization problem. In a distributed opti-
mization problem with N agents that communicate over
a connected graph, it is desired to minimize a global
objective as follows:minimize

x
f(x) :=

N∑
i=1

fi(x)

subject to x ∈ Ω.

(1)

In this problem the agents cooperatively solve (1) over a
common optimization variable x. In other words, all the
agents are serving in the public interest in a way that they
reduce the global loss. However, there are many real-world
applications that involve selfishness of the players (agents)
such as congestion control for Ad-hoc wireless networks
and optical signal-to-noise ratio (OSNR) maximization in
an optical network. In these applications, players selfishly
desire to optimize their own performance even though the
global objective may not be minimized, hence play a game.
In this regard, we are interested in studying the (Nash)
equilibrium of this game.

Considering the difference between distributed optimiza-
tion and distributed Nash equilibrium (NE) seeking, we
aim to employ an optimization technique referred to as
the alternating direction method of multipliers (ADMM) to
find an equilibrium point of a multi-player game. ADMM
takes advantage of two different approaches used in solving
optimization problems: 1) Dual Decomposition, and 2)
Augmented Lagrangian Methods.

Dual decomposition is a special case of a dual ascent
method for solving an optimization problem when the ob-
jective function is separable w.r.t. variable x, i.e., f(x) :=∑N
i=1 fi(xi) where x = [x1, . . . , xN ]T . This decomposition

leads to N parallel dual ascent problems whereby each is
to be solved for xi, i ∈ {1, . . . , N}. This parallelism makes
the convergence faster.

The augmented Lagrangian method is more robust and
relaxes the assumptions in the dual ascent method. This
method involves a penalty term added to the normal
Lagrangian.

In this work, we aim to exploit the benefits of ADMM
in the context of finding an NE of a game. Here are the
difficulties that we need to overcome:
• A Nash game can be seen as a set of parallel opti-

mization problems, each of them associated with the
minimization of a player’s own cost function w.r.t.
his variable. However, each optimization problem is
dependent on the solution of the other parallel prob-
lems. This leads to have N Lagrangians whereby each
is dependent on the other players’ variables.

• Each player i updates only his own variable xi,
however, he requires also an estimate of all other
variables (xj)j∈{1,...,N}, j 6=i and updates it in order
to solve his optimization problem. This demands an
extra step in the algorithm based on communications
between players.

• Each optimization problem is not in the proper for-
mat of sum of separable functions to allow direct
application of ADMM.

Related Works. Our work is related to the literature on
distributed Nash games such as Yin et al. (2011); Alpcan
and Başar (2005) and distributed optimization problems
such as Nedic (2011); Johansson (2008). Finding NE in
distributed games has recently drawn attention due to
many real-world applications. To name only a few, Sale-
hisadaghiani and Pavel (2014, 2016a); Frihauf et al. (2012);
Gharesifard and Cortes (2013); Salehisadaghiani and Pavel
(2016b); Pavel (2007); Pan and Pavel (2009). In Koshal
et al. (2012) an algorithm has been designed based on
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gossiping protocol to compute an NE in aggregative games.
Zhu and Frazzoli (2016) study the problem of finding an
NE in more general games by a gradient-based method
over a complete communication graph. This problem is
extended to the case with partially coupled cost functions
(the functions which are not necessarily dependent on all
the players’ actions) in Bramoullé et al. (2014). Recently,
Ye and Hu (2015) investigate distributed seeking of a time-
varying NE with non-model-based costs for players. Com-
putation of a time-varying NE is considered in Lou et al.
(2016) in networked games consisting of two subnetworks
with shared objectives. Parise et al. (2015) propose two
different algorithms to solve for an NE in a large popula-
tion aggregative game which is subject to heterogeneous
convex constraints.

ADMM algorithms, which are in the scope of this paper,
have been developed in 1970s to find an optimal point
of distributed optimization problems. This method has
become widely used after its re-introduction in Boyd et al.
(2011) such as He and Yuan (2012); Goldstein et al. (2014);
Wei and Ozdaglar (2012). Shi et al. (2014) investigate the
linear convergence rate of an ADMM algorithm to solve a
distributed optimization problem. ADMM algorithms are
extended by Makhdoumi and Ozdaglar (2014) to the case
when agents broadcast their outcomes to their neighbors.
The problem of distributed consensus optimization is
considered in Chang et al. (2015) which exploits inexact-
ADMM to reduce the computational costs of a classical
ADMM. Recently, an ADMM-like algorithm is proposed
by Shi and Pavel (submitted) in order to find an NE of
a game. It is shown that the algorithm converges faster
than the gradient-based methods. However, the algorithm
requires individual cocoercivity and is not developed, but
rather postulated by mimicking of ADMM in distributed
optimization according to the NE condition.

Contributions. In this paper, first, we reformulate the
problem of finding an NE of a convex game as a set
of distributed consensus optimization problems. Then we
take advantage of a dummy variable to make the problem
separable in the optimization variable. This technique can
be used for any convex game which satisfies a set of
relatively mild assumptions.

Second, we design a synchronous inexact-ADMM algo-
rithm by which every player updates his action as well
as his estimates of the other players’ actions. This al-
gorithm takes advantage of the speed and robustness of
the classical ADMM and reduces the computational costs
by using a linear approximation in players’ action update
rule (inexact-ADMM). Compared with gradient-based al-
gorithms such as Koshal et al. (2012); Zhu and Frazzoli
(2016); Li and Marden (2013), our ADMM algorithm has
an extra penalty term (could be seen as an extra state)
which is updated through the iterations and improves the
convergence rate.

Third, we prove the convergence of the proposed algorithm
toward the NE of the game and compare its convergence
rate with a gradient-based method via simulation.

The paper is organized as follows. The problem statement
and assumptions are provided in Section 2. In Section 3, an
inexact-ADMM-like algorithm is proposed. Convergence
of the algorithm to a Nash equilibrium of the game is

discussed in Section 4 while in Section 5 a simplified
representation of the algorithm for implementation is
provided. Simulation results are given in Section 6 and
conclusions in Section 7.

2. PROBLEM STATEMENT

Consider V = {1, . . . , N} as a set of N players in a
networked multi-player game. The game is denoted by G
and defined as follows:
• Ωi ⊂ R: Action set of player i, ∀i ∈ V ,
• Ω =

∏
i∈V Ωi ⊂ RN : Action set of all players,

• Ji : Ω→ R: Cost function of player i, ∀i ∈ V .

The game G(V,Ωi, Ji) is defined over the set of players, V ,
the action set of player i ∈ V , Ωi and the cost function of
player i ∈ V , Ji.

The players’ actions are denoted as follows:
• x = (xi, x−i) ∈ Ω: All players actions,
• xi ∈ Ωi: Player i’s action, ∀i ∈ V ,
• x−i ∈ Ω−i :=

∏
j∈V \{i}Ωj : All players’ actions except

player i’s.

The game is played such that for a given x−i ∈ Ω−i,
each player i ∈ V aims to minimize his own cost function
selfishly w.r.t, xi to find an optimal action,{

minimize
xi

Ji(xi, x−i)

subject to xi ∈ Ωi.
(2)

Each optimization problem is run by a particular player i
at the same time with other players.

An NE of a game is defined as follows:

Definition 1. Consider an N -player game G(V,Ωi, Ji),
each player i minimizing the cost function Ji : Ω → R.
A vector x∗ = (x∗i , x

∗
−i) ∈ Ω is called a Nash equilibrium

of this game if

Ji(x
∗
i , x
∗
−i) ≤ Ji(xi, x∗−i) ∀xi ∈ Ωi, ∀i ∈ V. (3)

An NE lies at the intersection of all solutions of the set
(2). The challenge is that each optimization problem in
(2) is dependent on the solution of the other simultaneous
problems. And since this game is distributed, no player
is aware of the actions (solutions) of the other players
(problems).

We assume that each player i maintains an estimate of
the other players’ actions. In the following, we define a
few notations for players’ estimates.
• xi = (xii, x

i
−i) ∈ Ω: Player i’s estimate of all players

actions,
• xii ∈ Ωi: Player i’s estimate of his own action, ∀i ∈ V ,
• xi−i ∈ Ω−i :=

∏
j∈V \{i} Ωj : Player i’s estimate of all

other players’ actions except his action,

• x = [x1T , . . . , xN
T

]T ∈ ΩN : Augmented vector of
estimates of all players’ actions

Note that player i’s estimate of his action is indeed his
action, i.e., xii = xi for i ∈ V . Note also that all players
actions x = (xi, x−i) can be interchangeably represented
as x = [xii]i∈V .

We assume that the cost function Ji and the action set
Ω are the only information available to player i. Thus,
the players need to exchange some information in order



to update their estimates. An undirected communication
graph GC(V,E) is defined where E ⊆ V × V denotes the
set of communication links between the players. (i, j) ∈ E
if and only if players i and j exchange information. In the
following, we have a few definitions for GC :
• Ni := {j ∈ V |(i, j) ∈ E}: Set of neighbors of player i

in GC ,
• A := [aij ]i,j∈V : Adjacency matrix of GC where aij =

1 if (i, j) ∈ E and aij = 0 otherwise,
• D := diag{|N1|, . . . , |NN |}: Degree matrix of GC .

The following assumption is used.

Assumption 1. GC is a connected graph.

We aim to relate game (2) to the following problem whose
solution can be based on the alternating direction method
of multipliers (Bertsekas and Tsitsiklis (1997), page 255).{

minimize
x∈C1,z∈C2

G1(x) +G2(z)

subject to Ax = z.

To this end, we reformulate game (2) so that the objective
function is separable by employing estimates of the actions
for each player i ∈ V as xi (the estimates are also
interpreted as the local copies of x). Particularly, from
(2), consider that for a given xi−i ∈ Ω−i, each player i ∈ V
minimizes his cost function selfishly w.r.t. his own action
subject to an equality constraint, i.e., for all i ∈ V , minimize

xi
i
,xj

i
|j∈Ni

∈Ωi

Ji(x
i
i, x

i
−i) +

∑
j∈Ni

gj(x
j
i , x

j
−i)

subject to xii = xji ∀j ∈ Ni,
where gj(·) = 0 for j ∈ Ni. Note that, in order to update
all elements in xi−i we need to augment the constraint

space to an N × 1 vector form xi = xj , j ∈ Ni. Moreover,
we replace the constraints with xl = xs ∀l ∈ V,∀s ∈ Nl
which includes xi = xj , j ∈ Ni. Note that augmenting the
constraints in this way does not affect the solutions of the
problem. Then for a given xi−i ∈ Ω−i and for all i ∈ V , we
obtain,minimize

xi
i
∈Ωi

Ji(x
i
i, x

i
−i)

subject to xl = xs ∀l ∈ V,∀s ∈ Nl.
(4)

The equality constraint along with Assumption 1 ensures
that all the local copies of x are identical, i.e., x1 = x2 =
. . . = xN . Hence (4) recovers (2).

By Assumption 1, the set of problems (4) are equivalent
to the following set of optimization problems: for a given
xi−i ∈ Ω−i and for all i ∈ V ,

minimize
xi
i
∈R

Ji(x
i
i, x

i
−i) + IΩi(x

i
i)

subject to xl = tls ∀l ∈ V, ∀s ∈ Nl,
xs = tls ∀l ∈ V, ∀s ∈ Nl,

(5)

where IΩi(x
i
i) :=

{
0 if xii ∈ Ωi
∞ otherwise

is an indicator function

of the feasibility constraint xii ∈ Ωi and tls is an interme-
diary variable to separate the equality constraints.

Note that one can regard the set of problems (5) as being
the same as the set of problems (2) but considering N

estimates (local copies) of the players’ actions for each
player i ∈ V .

A characterization of the NE for game (2) could be ob-
tained by finding KKT conditions on the set of prob-
lems (5). Let {uls, vls}l∈V,s∈Nl

with uls, vls ∈ RN be the
Lagrange multipliers associated with the two constraints
in (5), respectively. The corresponding Lagrange function
for player i, ∀i ∈ V is as follows:

Li

(
xi, {tls}l∈V,s∈Nl

, {uls}l∈V,s∈Nl
, {vls}l∈V,s∈Nl

)
:= Ji(x

i
i, x

i
−i) + IΩi(x

i
i) +

∑
l∈V

∑
s∈Nl

uls
T

(xl − tls)

+
∑
l∈V

∑
s∈Nl

vls
T

(xs − tls), (6)

Let (xi
∗
)i∈V and {uls∗, vls∗}l∈V, s∈Nl

be a pair of optimal
primal and dual solutions to (5). The KKT conditions are
summarized as follows:

∇iJi(xi
∗
) + ∂iIΩi(x

i
i

∗
) +

∑
j∈Ni

uiji
∗

+ vjii
∗

= 0 ∀i ∈ V, (7)

xi
∗

= xj
∗ ∀i ∈ V, ∀j ∈ Ni, (8)

uij
∗

+ vij
∗

= 0N ∀i ∈ V, ∀j ∈ Ni, (9)

where ∇iJi(·) is gradient of Ji w.r.t. xi and ∂iIΩi(·) is

a subgradient of IΩi
at xi. Note that the index of vji

∗

in (7) is inverse of vij
∗

in (9). By (8) and Assumption 1,

x1∗ = . . . = xN
∗

:= x∗. Thus, x∗ := (x∗i , x
∗
−i) is a solution

of (5) if and only if,∇iJi(x
∗) + ∂IΩi

(xi
∗) +

∑
j∈Ni

uiji
∗

+ vjii
∗

= 0 ∀i ∈ V,

uij
∗

+ vij
∗

= 0N ∀i ∈ V, ∀j ∈ Ni.
(10)

We state a few assumptions for the existence and the
uniqueness of an NE.

Assumption 2. For every i ∈ V , the action set Ωi is a
non-empty, compact and convex subset of R. Ji(xi, x−i)
is a continuously differentiable function in xi, jointly
continuous in x and convex in xi for every x−i.

The convexity of Ωi implies that IΩi
is a convex function.

This yields that there exists at least one bounded subgra-
dient ∂IΩi

.

Assumption 3. Let F : ΩN → RN , F (x) := [∇iJi(xi)]i∈V
be the the pseudo-gradient vector (game map) where

x := [x1T , . . . , xN
T

]T ∈ ΩN . F is cocoercive ∀x ∈ ΩN

and y ∈ ΩN , i.e.,

(F (x)− F (y))T (x− y) ≥ σF ‖F (x)− F (y)‖2, (11)

where σF > 0.

Remark 1. Assumption 2 is a standard assumption in
the literature of NE seeking. Assumption 3 is relatively
stronger than the (strong) monotonicity of the game map
(pseudo-gradient vector) (see Zhu and Frazzoli (2016);
Koshal et al. (2012)). However, as we will show, this leads
to an algorithm with the benefits of ADMM algorithms
(speed).

Remark 2. Assumption 3 is not usually required in dis-
tributed optimization problems; there instead the (strong)
convexity of the objective function is assumed to be w.r.t.



the full vector x and also the gradient of the objective
function is assumed to be Lipschitz continuous (see Chang
et al. (2015)).

Our objective is to find an ADMM-like 1 algorithm for
computing an NE of G(V,Ωi, Ji) using only imperfect
information over the communication graph GC(V,E).

3. DISTRIBUTED INEXACT ADMM ALGORITHM

We propose a distributed algorithm, using an inexact 2

consensus ADMM. We obtain an NE of G(V,Ωi, Ji) by
solving the set of problems (5) by an ADMM-like ap-
proach.

The mechanism of the algorithm can be briefly explained
as follows: Each player maintains an estimate of the actions
of all players and locally communicates with his neighbors
over GC . Then, he takes average of his neighbors’ infor-
mation and uses it to update his estimates.

The algorithm is elaborated in the following steps:
1- Initialization Step: Each player i ∈ V maintains an
initial estimate for all players, xi(0) ∈ Ω. The initial values
of uij(0) and vij(0) are set to be zero for all i ∈ V , j ∈ Ni.
2- Communication Step: At iteration T (k), each player
i ∈ V exchanges his estimate of the other players’ actions
with his neighbors j, ∀j ∈ Ni. Then, he takes average of
the received information with his estimate and updates his
estimate as follows:

xi−i(k) =
1

2

(
xi−i(k − 1) +

1

|Ni|
∑
j∈Ni

xj−i(k − 1)︸ ︷︷ ︸
RECEIVED INFORMATION

)

− 1

2c|Ni|
∑
j∈Ni

(uij−i(k) + vji−i(k))︸ ︷︷ ︸
PENALTY TERM

, (12)

where c > 0 is a scalar coefficient, and ∀i ∈ V, j ∈ Ni,

uij(k) = uij(k − 1) +
c

2

(
xi(k − 1)− xj(k − 1)

)
, (13)

vij(k) = vij(k − 1) +
c

2

(
xj(k − 1)− xi(k − 1)

)
. (14)

Equations (13), (14) are the dual Lagrange multipli-
ers update rules. Note that in (12), a penalty factor∑
j∈Ni

(uij−i(k) + vji−i(k)) is subtracted, which is associated
with the difference between the estimates of the neighbor-
ing players (Equations (13), (14)).

Remark 3. Unlike distributed optimization algorithms where
the minimization is w.r.t. x, here each player minimizes his
cost function w.r.t. xii. To update xii, each player requires
the estimate of the other players xi−i at each iteration.

Thus, the communication step is inevitable to update xi−i
for the next iteration.

3- Action Update Step

1 ADMM or Alternative Direction Method of Multipliers also known
as Douglas-Rachford splitting is a method of solving an optimization
problem where the objective function is a summation of two convex
(possibly non-smooth) functions. For a detailed explanation see
Parikh et al. (2014).
2 In an inexact consensus ADMM instead of solving an optimization
sub-problem, a method of approximation is employed to reduce the
complexity of the sub-problem.

At this moment all the players update their actions via an
ADMM-like approach developed as follows. For each player
i, ∀i ∈ V let the augmented Lagrange function associated
to problem (5) be as follows:

Lai

(
xi, {tls}l∈V,s∈Nl

, {uls}l∈V,s∈Nl
, {vls}l∈V,s∈Nl

)
:= Ji(x

i
i, x

i
−i) + IΩi

(xii)

+
∑
l∈V

∑
s∈Nl

uls
T

(xl − tls) +
∑
l∈V

∑
s∈Nl

vls
T

(xs − tls)

+
c

2

∑
l∈V

∑
s∈Nl

(‖xl − tls‖2 + ‖xs − tls‖2). (15)

where c > 0 is a scalar coefficient which is also used in (12),
(13) and (14). Consider the ADMM algorithm associated
to problem (5) based on (15):

xii(k)=arg min
xi
i
∈R
Lai

(
(xii, x

i
−i(k − 1)),{tls(k − 1)}l∈V,s∈Nl

,

{uls(k)}l∈V,s∈Nl
, {vls(k)}l∈V,s∈Nl

)
= arg min

xi
i
∈R

{
Ji(x

i
i, x

i
−i(k − 1)) + IΩi

(xii)

+
∑
j∈Ni

(uij(k) + vji(k))T (xii, x
i
−i(k − 1))

+c
∑
j∈Ni

∥∥∥(xii, x
i
−i(k − 1))− tij(k − 1)

∥∥∥2}
∀i ∈ V, (16)

The update rule for the auxiliary variable tij ∀i ∈ V, j ∈ Ni
is based on (15),

tij(k) = arg min
tij

Lai

(
(xii(k), xi−i(k − 1)), {tls}l∈V,s∈Nl

,

{uls(k)}l∈V,s∈Nl
, {vls(k)}l∈V,s∈Nl

)
= arg min

tij

{
− (uij(k) + vij(k))T tij

+
c

2
(‖(xii(k), xi−i(k − 1))− tij‖2

+‖(xji (k), xj−i(k − 1))− tij‖2)
}

=
1

2c
(uij(k) + vij(k))

+
1

2
((xii(k), xi−i(k − 1)) + (xji (k), xj−i(k − 1))). (17)

The initial conditions uij(0) = vij(0) = 0N ∀i ∈ V, j ∈ Ni
along with (13) and (14) suggest that uij(k)+vij(k) = 0N
∀i ∈ V, j ∈ Ni, k > 0. Then,

tij(k) =
(xii(k), xi−i(k − 1)) + (xji (k), xj−i(k − 1))

2
. (18)

Using (18) in (16), one can derive the local estimate update
for all i ∈ V as follows:

xii(k) = arg min
xi
i
∈R

{
Ji(x

i
i, x

i
−i(k − 1)) + IΩi(x

i
i)

+
∑
j∈Ni

(uij(k) + vji(k))T (xii, x
i
−i(k − 1))

+c
∑
j∈Ni

∥∥∥(xii, x
i
−i(k − 1)) (19)

−
(xii(k − 1), xi−i(k − 2)) + (xji (k − 1), xj−i(k − 2))

2

∥∥∥2}



We simplify (19) by using a proximal first-order approxi-
mation for Ji(x

i
i, x

i
−i(k − 1)) around xi(k − 1); thus using

inexact ADMM it follows:

xii(k) = arg min
xi
i
∈R

{
∇iJi(xi(k − 1))T (xii − xii(k − 1))

+
βi
2
‖xii − xii(k − 1)‖2 + IΩi

(xii) +
∑
j∈Ni

(uiji (k) + vjii (k))xii

+c
∑
j∈Ni

∥∥∥xii − xii(k − 1) + xji (k − 1)

2

∥∥∥2}
∀i ∈ V, (20)

where βi > 0 is a penalty factor for the proximal first-order
approximation of each player i’s cost function.

At this point, the players are ready to begin a new iteration
from step 2. To sum up, the algorithm consists of (12),
(13), (14) and (20) which are the update rule for the
players’ estimates except their own actions, the update
rules for the Lagrange multipliers and the update rule for
player’s action, respectively.

4. CONVERGENCE PROOF

Theorem 1. Let βmin := mini∈V βi > 0 3 be the minimum
penalty factor of the approximation in the inexact ADMM
algorithm which satisfies

σF >
1

2(βmin + cλmin(D +A))
, (21)

where σF is a positive constant for the cocoercive property
of F , and D and A are the degree and adjacency matrices
of GC , respectively. Under Assumptions 1-3, the sequence
{xi(k)} ∀i ∈ V , generated by the algorithm (12), (13), (14)
and (20), converges to x∗ NE of game (2).

Proof . The optimality condition of (20) yields:

∇iJi(xi(k − 1)) + βi(x
i
i(k)− xii(k − 1))

+∂iIΩi
(xii(k)) +

∑
j∈Ni

(uiji (k) + vjii (k))

+2c
∑
j∈Ni

(
xii(k)− xii(k − 1) + xji (k − 1)

2

)
= 0. (22)

We combine (22) with (10) which represents the equations
associated with the solutions of the set of problems (5)
(NE of game (2)). Then we obtain,

∇iJi(xi(k − 1))−∇iJi(x∗) + βi(x
i
i(k)− xii(k − 1))

+∂IΩi
(xii(k))− ∂IΩi

(x∗i )

+
∑
j∈Ni

(uiji (k) + vjii (k)− uiji
∗
− vjii

∗
)

+2c
∑
j∈Ni

(
xii(k)− xii(k − 1) + xji (k − 1)

2

)
= 0. (23)

We multiply both sides by (xii(k)− x∗i ) and then add and
subtract xii(k − 1) as follows:(
∇iJi(xi(k − 1))−∇iJi(x∗)

)T
(xii(k − 1)− x∗i )

3 In order to have a fully distributed algorithm, one can consider a

network-wide known lower bound β̃min, β̃min ≤ βi ∀i ∈ V and use it
instead of βmin.

+
(
∇iJi(xi(k − 1))−∇iJi(x∗)

)T
(xii(k)− xii(k − 1))

+βi(x
i
i(k)− xii(k − 1))T (xii(k)− x∗i )

+(∂IΩi
(xii(k))− ∂IΩi

(x∗i ))
T (xii(k)− x∗i )

+
∑
j∈Ni

(uiji (k) + vjii (k)− uiji
∗
− vjii

∗
)T (xii(k)− x∗i ) (24)

+2c
∑
j∈Ni

(
xii(k)− x

i
i(k − 1)+xji (k − 1)

2

)T
(xii(k)−x∗i )=0.

As discussed in Remark 3, in addition to updating their
own actions, the players need to update their estimates
as well. In the following, we explain how to bring in the
update rule of xi−i into (24).

Note that by (12), one can obtain,∑
j∈Ni

(uij−i(k) + vji−i(k)) (25)

+2c
∑
j∈Ni

(
xi−i(k)−

xi−i(k − 1) + xj−i(k − 1)

2

)
= 0N−1.

Multiplying (25) by (xi−i(k)− x∗−i), one can arrive at,∑
j∈Ni

(uij−i(k) + vji−i(k))T (xi−i(k)− x∗−i)

+2c
∑
j∈Ni

(
xi−i(k)−

xi−i(k − 1) + xj−i(k − 1)

2

)T
.(xi−i(k)− x∗−i) = 0. (26)

Adding (26) to (24) and using (13), (14), yilds ∀i ∈ V ,(
∇iJi(xi(k − 1))−∇iJi(x∗)

)T
(xii(k − 1)− x∗i )

+
(
∇iJi(xi(k − 1))−∇iJi(x∗)

)T
(xii(k)− xii(k − 1))

+βi(x
i
i(k)− xii(k − 1))T (xii(k)− x∗i )

+(∂IΩi
(xii(k))− ∂IΩi

(x∗i ))
T (xii(k)− x∗i )

+
∑
j∈Ni

(uiji (k + 1)+vjii (k + 1)−uiji
∗
−vjii

∗
)T(xii(k)−x∗i )

+
∑
j∈Ni

(uij−i(k + 1) + vji−i(k + 1))T (xi−i(k)− x∗−i)

+2c
∑
j∈Ni

(xi(k) + xj(k)

2
− xi(k − 1) + xj(k − 1)

2

)T
.(xi(k)− x∗) = 0. (27)

The second and the third terms are bounded as follows:(
∇iJi(xi(k − 1))−∇iJi(x∗)

)T
(xii(k)− xii(k − 1)) ≥ (28)

−1

2ρ
‖∇iJi(xi(k − 1))−∇iJi(x∗)‖2−

ρ

2
‖xii(k)−xii(k − 1)‖2,

for any ρ > 0 ∀i ∈ V . By the convexity of IΩi (Assump-
tion 2), we have for the fourth term,

(∂IΩi
(xii(k))− ∂IΩi

(x∗i ))
T (xii(k)− x∗i ) ≥ 0. (29)

Using (28) and (29) in (27) and summing over i ∈ V , we
obtain,



(
F (x(k − 1))− F (x∗)

)T
(x(k − 1)− x∗)

− 1

2ρ
‖F (x(k − 1))− F (x∗)‖2 − 1

2
‖x(k)− x(k − 1)‖2M1

+(x(k)− x(k − 1))Tdiag((βieie
T
i )i∈V )(x(k)− x∗)

+
∑
i∈V

∑
j∈Ni

(uiji (k + 1)+vjii (k + 1)−uiji
∗
−vjii

∗
)T(xii(k)−x∗i)

+
∑
i∈V

∑
j∈Ni

(uij−i(k + 1) + vji−i(k + 1))T (xi−i(k)− x∗−i)

+c(x(k)− x(k − 1))T ((D +A)⊗ IN )(x(k)− x∗) ≤ 0, (30)

whereM1 := diag((ρeie
T
i )i∈V ) and x∗ = [x1∗T , . . . , xN

∗T
]T .

We bound the first term using Assumption 3,(
F (x(k − 1))− F (x∗)

)T
(x(k − 1)− x∗)

≥ σF ‖F (x(k − 1))− F (x∗)‖2. (31)

We also simplify the fifth and the sixth terms in
(30). Since GC is an undirected graph, for any {aij},∑
i∈V

∑
j∈Ni

aij =
∑
i∈V

∑
j∈Ni

aji. Then,∑
i∈V

∑
j∈Ni

(uiji (k + 1)+vjii (k + 1)−uiji
∗
−vjii

∗
)T(xii(k)−x∗i )

+
∑
i∈V

∑
j∈Ni

(uij−i(k + 1) + vji−i(k + 1))T (xi−i(k)− x∗−i)

=
∑
i∈V

∑
j∈Ni

(uiji (k + 1)− uiji
∗
)T (xii(k)− x∗i )

+
∑
i∈V

∑
j∈Ni

(viji (k + 1)− viji
∗
)T (xji (k)− x∗i )

+
∑
i∈V

∑
j∈Ni

uij−i(k + 1)T (xi−i(k)− x∗−i)

+
∑
i∈V

∑
j∈Ni

vij−i(k + 1)T (xj−i(k)− x∗−i). (32)

Note that by (13) and (14) as well as the initial conditions
for Lagrange multipliers uij(0) = vij(0) = 0N ∀i ∈ V, j ∈
Ni, we obtain,

uij(k) + vij(k) = 0N ∀i ∈ V, j ∈ Ni, k > 0. (33)

Substituting (33) into (32) and using (8), we obtain,∑
i∈V

∑
j∈Ni

(uiji (k + 1)− uiji
∗
)T (xii(k)− xji (k))

+
∑
i∈V

∑
j∈Ni

uij−i(k + 1)T (xi−i(k)− xj−i(k))

=
∑
i∈V

∑
j∈Ni

(uij(k + 1)− uiji
∗
ei)

T (xi(k)− xj(k))

=
2

c

∑
i∈V

∑
j∈Ni

(uij(k + 1)− uiji
∗
ei)

T (uij(k + 1)− uij(k))

:=
2

c
(u(k + 1)− u∗)T (u(k + 1)− u(k)), (34)

where u = (ui)i∈V ∈ RN
∑

i∈V
|Ni| and ui = (uij)j∈Ni ∈

RN |Ni| and also u∗ = (ui
∗
)i∈V ∈ RN

∑
i∈V
|Ni| and ui

∗
=

(uiji
∗
)j∈Ni

⊗ ei ∈ RN |Ni|.

Using (31) and (34), for ρ = 1
2σF

(30) becomes,

−1

2
‖x(k)− x(k − 1)‖2M1

+(x(k)− x(k − 1))TM2(x(k)− x∗)

+
2

c
(u(k + 1)− u∗)T (u(k + 1)− u(k)) ≤ 0, (35)

where M2 := diag((βieie
T
i )i∈V ) + c((D + A) ⊗ IN ). Note

that diag((βieie
T
i )i∈V ) � 0. Note also that,

c((D +A)⊗ IN )=c((2D − L)⊗ IN )

=c((D
1
2 (2I −D− 1

2LD−
1
2 )D

1
2 )⊗ IN )

=c((D
1
2 (2I − LN )D

1
2 )⊗ IN ), (36)

where L := D − A, D
1
2 , D−

1
2 and LN := D−

1
2LD−

1
2

are the Laplacian of GC , the square root and reciprocal
square root of D and the normalized Laplacian of GC ,
respectively. Since D � 0, D−

1
2 exist, it is shown in

Chung (1997) that λmax(LN ) ≤ 2. Then (36) yields that
c((D +A)⊗ IN ) � 0. This concludes M2 � 0.

We use the following inequality in (35) for every {a(k)}
and M � 0:

(a(k)− a(k − 1))TM(a(k)− a∗) =
1

2
‖a(k)− a∗‖2M

+
1

2
‖a(k)− a(k − 1)‖2M −

1

2
‖a(k − 1)− a∗‖2M . (37)

Then, (35) becomes,

1

2
‖x(k)− x∗‖2M2

+
1

c
‖u(k + 1)− u∗‖2 ≤

1

2
‖x(k − 1)− x∗‖2M2

+
1

c
‖u(k)− u∗‖2 (38)

−1

2
‖x(k)− x(k − 1)‖2M2−M1

− 1

c
‖u(k + 1)− u(k)‖2.

By the condition (21), M2 −M1 � 0. Then (38) implies
the following two results:

(1) 1
2‖x(k) − x∗‖2M2

+ 1
c‖u(k + 1) − u∗‖2 → θ, for some

θ ≥ 0,

(2)

{
x(k)− x(k − 1)→ 0N2

u(k + 1)− u(k)→ 0N
∑

i∈V
|Ni|

.

Result 1 implies that the sequences {xi(k)} and {uij(k)}
(similarly {vij(k)}) are bounded and have limit points
denoted by x̃i and ũij (ṽij), respectively. Then, we obtain,

θ =
1

2
‖x̃− x∗‖2M2

+
1

c
‖ũ− u∗‖2 (39)

Result 2 yields that x̃i = x̃j := x̃ for all i ∈ V, j ∈ Ni
since by (13) we have,

c

2

(
xi(k)− xj(k)

)
= uij(k + 1)− uij(k)→ 0N

⇒ x̃i = x̃j ∀i ∈ V, j ∈ Ni. (40)

Moreover, by (33) we arrive at,

ũij + ṽij = 0N ∀i ∈ V, j ∈ Ni. (41)

Result 2 also implies that by (22) and (40),

∇iJi(x̃) + ∂IΩi
(x̃i) +

∑
j∈Ni

(ũiji + ṽjii ) = 0. (42)

Comparing (41), (42) with (10), it follows ∀i ∈ V, j ∈ Ni,



x̃i = x∗ (x̃ = x∗), (43)

ũij = uij
∗

(ũ = u∗). (44)

Using (43) and (44) in (39), it follows that θ = 0. Thus,
one can conclude from Result 1 that, 1

2‖x(k) − x∗‖2M2
+

1
c‖u(k + 1)− u∗‖2 → 0 which completes the proof. �

Remark 4. Assumption 3 is only used in equation (31). It
is straightforward to verify that (31) can be satisfied by
Assumption 3 for y = x∗ (similar to Assumption 4.4 in
Frihauf et al. (2012)).

5. IMPLEMENTATION OF ALGORITHM

For the purpose of implementation, we simplify the algo-
rithm to a more compact representation. One may begin
with (12) and (20) as follows:

(1) Let wi :=
∑
j∈Ni

uij + vji. Then by (13) and (14),

wi(k) = wi(k−1)+c
∑
j∈Ni

(xi(k−1)−xj(k−1)). (45)

(2) By replacing
∑
j∈Ni

(uij−i(k) + vji−i(k)) with wi−i(k)

and using (45) in (12), after a few manipulations we
obtain,

xi−i(k) =
1

|Ni|
∑
j∈Ni

xj−i(k − 1))− 1

2c|Ni|
wi−i(k − 1).

(3) By differentiating of (20) w.r.t. xii and equating it to
0, one can verify that xii can be obtained as:

xii(k)= argmin
xi
i
∈R

{
IΩi(x

i
i)+

αi
2

∥∥∥xii−α−1
i

(
βix

i
i(k − 1)−wii(k)

−∇iJi(xi(k − 1)) + c
∑
j∈Ni

(
xii(k − 1) + xji (k − 1)

))∥∥∥2}
,

where αi = βi+2c|Ni|. Let proxag [s] := arg minx{g(x)+
a
2‖x − s‖2} be the proximal operator for the non-
smooth function g. Note that proxαi

IΩi
[s] = TΩi

[s]

where TΩi
: R→ Ωi is an Euclidean projection. Then

for each player i, ∀i ∈ V we obtain,

xii(k) = TΩi

[
α−1
i (βi + c|Ni|)xii(k − 1)

−α−1
i

(
wii(k) +∇iJi(xi(k − 1))− c

∑
j∈Ni

xji (k − 1)
)]
.

Then the ADMM algorithm is as follows:

Algorithm 1 ADMM Algorithm for Implementation

1: initialization xi(0) ∈ Ω, wi(0) = 0N ∀i ∈ V
2: for k = 1, 2, . . . do
3: for each player i ∈ V do
4: players exchange estimates with the neighbors
5: wi(k) = wi(k−1)+c

∑
j∈Ni

(xi(k−1)−xj(k−1))

6: xi−i(k) =

∑
j∈Ni

xj
−i

(k−1))

|Ni| − wi
−i(k−1)

2c|Ni|

7: xii(k) = TΩi

[
βi+c|Ni|

αi
xii(k − 1)− α−1

i

(
wii(k)

+∇iJi(xi(k−1))−c
∑
j∈Ni

xji (k−1)
)]

8: end for
9: end for
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Fig. 1. (a) Wireless Ad-Hoc Network (left). (b) Communi-
cation graph GC (right).

6. SIMULATION RESULTS

In this section, we compare our algorithm with the
gradient-based one proposed in Salehisadaghiani and Pavel
(2016a).
We consider a wireless ad-hoc network (WANET) with 16
nodes and 16 multi-hop communication links as in Sale-
hisadaghiani and Pavel (2016b). There are 15 users who
aim to transfer data from a source node to a destination
node via this WANET. Fig. 1 (a) shows the topology of
the WANET in which solid lines represent links and dashed
lines display paths that assigned to users to transfer data.
Each link has a positive capacity that restricts the users’
data flow . Here is the list of WANET notations:

(1) Lj : Link j, j ∈ {1, . . . , 16},
(2) Ri: The path assigned to user i, i ∈ {1, . . . , 15},
(3) Cj > 0: The capacity assigned to each link j, j ∈
{1, . . . , 16},

(4) 0 ≤ xi ≤ 10: The data flow of user i, i ∈ {1, . . . , 15}.
Note that each path consists of a set of links, e.g., R1 =
{L2, L3}.
For each user i, a cost function Ji is defined as in Sale-
hisadaghiani and Pavel (2016b):

Ji(xi, x−i) :=
∑

j:Lj∈Ri

κ

Cj −
∑
w:Lj∈Rw

xw
− χi log(xi + 1),

where κ > 0 and χi > 0 are network-wide known and
user-specific parameters, respectively.

The problem is to find an NE of the game which is played
over a communication graph GC (depicted in Fig. 1 (b)).
It is straightforward to check the Assumptions 1,2 and 3 4

on GC and the cost functions. We aim to compare the
convergence rate of our algorithm with the one proposed
in Salehisadaghiani and Pavel (2016a). The results of
Algorithm 1 and the algorithm in Salehisadaghiani and
Pavel (2016a) are shown in Fig. 2, for χi = 10 ∀i ∈
{1, . . . , 15} and Cj = 10 ∀j ∈ {1, . . . , 16} (Fig. 2). The
simulation results verify that the proposed algorithm is 70
times faster than the one in Salehisadaghiani and Pavel
(2016a). The factors that lead to this improvement are as
follows:
• We used the difference between the estimates of the

users as a penalty term to update each user’s action
and estimates.

4 It is sufficient for the cost functions that only satisfy equation (31)
(see Remark 4).
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Fig. 2. Flow rates of users 1, 3, 5, 8, 13 using our algorithm
(solid lines) vs. proposed algorithm in Salehisadaghi-
ani and Pavel (2016a) (dashed lines). NE points are
represented by black stars.

• We used a synchronous algorithm by which every user
updates his action and estimates at the same time
with the other users.
• Unlike gossiping protocol, which is used in Sale-

hisadaghiani and Pavel (2016a), every user commu-
nicates with all of the neighboring users (not only
one of them) at each iteration.

7. CONCLUSIONS

A distributed NE seeking algorithm is designed using
inexact-ADMM to achieve more speed and robustness. The
game is reformulated within the framework of inexact-
ADMM. The communications between the players are
defined to exchange the estimates. An inexact-ADMM-like
approach is then designed and its convergence to an NE of
the game is analyzed. Eventually, the convergence rate of
the algorithm is compared with an existing gossip-based
NE seeking algorithm.
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