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Abstract— In this paper an asynchronous gossip-based algo-
rithm is proposed for finding a Nash equilibrium of a game in
a distributed multi-player network. The algorithm is designed
in such a way that the players’ actions are updated based on
the estimates of the other players’ actions which are obtained
from the local neighbors. The almost sure convergence proof
of the algorithm to a Nash equilibrium is provided under
a set of standard assumptions on the cost functions and
the communication graph. The effectiveness of the proposed
algorithm is demonstrated via simulation.

I. INTRODUCTION

The problem of finding a Nash equilibrium of a game in
a distributed multi-player network has received increasing
attention in recent years. Many important real-world appli-
cations in wired and wireless networks involve such a setup
[1]. In this problem each player pursues the minimization
of his cost function myopically by taking a proper action in
response to other players’ actions. Thus each player requires
the full information of all other players’ actions in the
network. However, in a distributed network this is a stringent
requirement. Players have to minimize their cost functions
based on the limited local information received from the
neighboring players. Peer-to-peer (P2P) and mobile ad-hoc
networks are two of the best examples of such networks.

Our goal is to design a locally distributed algorithm to
find a Nash equilibrium of a game over a network. All
the players share their information locally and update their
actions in order to minimize their cost functions according to
the limited information. The reason that we are interested in
locally distributed algorithms is the players’ limited memory,
the restricted power source and also the significance of the
communication overhead. This could cause an expensive
start-up cost and network latencies [2].

Literature review. Our work is related to the literature
on Nash games [3], [4], and [5]. Distributed algorithms
for computing Nash equilibria have recently received sig-
nificant attention due to a wide range of applications, to
name only a few [6], [5], [7], [8], and [9]. A distributed
algorithm is proposed in [10] for a class of generalized
games and convergence to the Nash equilibrium is studied
for a complete communication graph under data transmission
delays and dynamical changes of network topologies. For
a two-network zero-sum game, [11] considers a distributed
algorithm for Nash equilibrium seeking. Players of each
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network collaborate with the players of their network but they
can only have access to the partial information of the other
network. Another type of distributed algorithm is designed
in [12], which takes advantage of state definition as an
extra variable in the game. It is shown that the resultant
game is a state-based potential game for which there exist
distributed algorithms that guarantee convergence to an equi-
librium point. In [13], an iterative regularization algorithm is
studied for capturing the equilibria of a monotone game. The
authors in [14] have mainly worked on a distributed modified
fictitious play algorithm which converges to a subset of the
mixed strategy Nash equilibria.

Gossip-based communication has been widely used in
asynchronous algorithms due to simplicity and applicability
[15], and [16]. In [17], a gossip-based algorithm has been
designed for finding a Nash equilibrium in a special class
of games called aggregative games. In an aggregative game
each player’s cost function is coupled through aggregate of
actions of all players. The players share the estimates of
the aggregate to update their actions. Since the algorithm is
designed for aggregative games there is no need to estimate
the other players’ actions. However, the aggregate of the
actions is not enough to update players’ actions in a general
game.

Contributions. Inspired by [17], we propose an asyn-
chronous gossip-based algorithm for a larger class of games.
In this algorithm each player maintains an estimate vector
as his guess about the players’ actions except itself. Then a
communication protocol is designed for sharing the estimates
between the local players to update their estimates and
actions. Particularly, a player randomly wakes up, selects
a neighboring player and exchanges his estimates to update
his action. We prove that the algorithm converges almost
surely toward a Nash equilibrium of the game under a set
of standard assumptions on the cost functions and commu-
nication graph. In contrast to [17], in which the players take
average of the scalar aggregate estimate including the actions
themselves, in our algorithm we exclude their own actions
from the estimates. While this exclusion is appropriate in
a generalized game context, it precludes exploiting doubly
stochastic properties in the gossiping step. However, this is
overcome by using an extra intermediary variable.

The remainder of the paper is organized as follows. In Sec-
tion II, the problem statement and assumptions are provided.
Asynchronous gossip-based algorithm is then proposed in
Section III. In Section IV, the convergence proof is discussed
in detail. Simulation results are presented in Section V to
demonstrate the effectiveness of the proposed algorithm and
finally, concluding remarks are drawn in Section VI.
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II. PROBLEM STATEMENT

A. Nash Game

Consider a set of N players in a network specified by
a graph G(V,E) where V = {1, . . . , N} denotes the set
of players and E ⊂ V × V denotes the set of possible
interactions between the players. For i ∈ V , Ji : Ω → R
is the cost function of player i where Ω = Ω1 × . . .×Ωi ×
. . .× ΩN ⊂ RN is the action set of all players and Ωi ⊂ R
is the action set of player i. The Nash game denoted by
G(V,Ωi, Ji) is defined based on the set of players, V , the
action set of player i, Ωi and the cost function of player i,
Ji.

Let x = [x1, . . . , xi, . . . , xN ]T ∈ Ω, with xi ∈ Ωi,
denote all players’ actions. For simplicity, one can repre-
sent x = (xi, x−i) and Ω = Ωi × Ω−i where x−i =
[x1, . . . , xi−1, xi+1, . . . , xN ]T and Ω−i = Ω1× . . .×Ωi−1×
Ωi+1 × . . . × ΩN . The cost function Ji depends on all
(xi, x−i). The game is played such that each player i aims
to minimize his own cost function myopically to find an
optimal action,

minimize
yi

Ji(yi, x−i)

subject to (yi, x−i) ∈ Ω.
(1)

We assume that the cost function Ji and the action set Ωi
are only available to player i, for each i ∈ V . So the players
are required to exchange some information to update their
actions.

A pure-strategy Nash equilibrium (or simply a Nash
equilibrium) of a game is defined in the following.

Definition 1. Consider an N-player game where each player
i minimizes the cost function Ji : Ω → R. A vector x∗ =
(x∗i , x

∗
−i) ∈ Ω is called a Nash equilibrium of this game if

for every x∗−i, we have:

Ji(x
∗
i , x
∗
−i) ≤ Ji(xi, x∗−i) ∀xi ∈ Ωi, ∀i ∈ V. (2)

Consider a graph GC(V,EC) as a communication graph
where EC ⊂ E specifies the pairs of players that may
communicate.

Definition 2. The set of neighbors of player i in GC , denoted
by NC(i), is a set consisting of any vertex in GC(V,EC)
which is connected to vertex i by an edge, i.e., NC(i) :=
{j ∈ V |(i, j) ∈ EC}.

Assumption 1. The communication graph GC(V,EC) is
connected and undirected.

The connectivity assumption is critical in order to ensure
that the information of each player is reached by all other
players, frequently.

Our objective is to find an algorithm for computing a Nash
equilibrium of G(V,Ωi, Ji) over the communication graph
GC(V,EC) using only partial or imperfect information. The
convergence needs to be proved under some assumptions on
the cost functions and the communication graph.

B. Variational Inequality Problem Definition

The computation of a Nash equilibrium can be efficiently
done by solving a variational inequality [18].

Definition 3. Given Ω ⊂ RN and a mapping F : Ω →
RN , a variational inequality problem, which is denoted by
V I(Ω, F ), is to determine a vector x ∈ Ω such that

F (x)T (y − x) ≥ 0, ∀y ∈ Ω. (3)

The set of solutions of this problem is represented by
SOL(Ω, F ).

The following proposition from [18], Proposition 1.4.2,
gives a set of necessary and sufficient conditions under which
a Nash equilibrium can be obtained by solving the associated
variational inequality problem.

Proposition 1. Let Ωi be a closed convex subset of R for
i ∈ V . Let also for i ∈ V , function Ji(yi, x−i) be convex
and continuously differentiable in yi for each fixed x−i. Then
a tuple x∗ = [x∗1, . . . , x

∗
i , . . . , x

∗
N ]T is a Nash equilibrium if

and only if x∗ ∈ SOL(Ω, F ), where

Ω = Ω1 × . . .× Ωi × . . .× ΩN , F (x) =


∇x1

J1(x)
...

∇xi
Ji(x)
...

∇xN
JN (x)

 .

The mapping F : Ω → RN is called a pseudo-gradient
mapping.

Using Proposition 1, one can find a characterization of a
Nash equilibrium in a variational inequality problem. The
following lemma is from [18], Proposition 1.5.8, page 83.

Lemma 1. x∗ is a Nash equilibrium of the game represented
by (1) if and only if

x∗ = TΩ[x∗ − αF (x∗)] (4)

for any given α > 0 where F is defined in Proposition 1
and TΩ : RN → Ω is an Euclidean projection.

A set of relatively mild conditions is stated in the fol-
lowing under which existence of pure Nash equilibrium is
guaranteed.

Assumption 2. The set Ωi is non-empty, compact and convex
subset of R for every i ∈ V . The cost function of player i,
Ji : Ω→ R is a continuously differentiable function for every
i ∈ V . Also Ji(xi, x−i) is jointly continuous and convex in
xi for every x−i and i ∈ V .

By Assumption 2, one can also conclude that there exists
C > 0 such that for all i ∈ V and for all x ∈ Ω, we have

‖∇xiJi(x)‖ ≤ C. (5)

In the following, some other assumptions are made includ-
ing the monotonicity condition which ensures the uniqueness
of Nash equilibrium.
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Assumption 3. The pseudo-gradient vector F : Ω→ RN is
strictly monotone on Ω, i.e.,

(F (x)− F (y))T (x− y) > 0 ∀x, y ∈ Ω, x 6= y.

Assumption 4. ∇xi
Ji(xi, u) is Lipschitz continuous in u,

for every fixed xi ∈ Ωi and for every i ∈ V , that is, for
some positive constant Li and for every i ∈ V , we have

‖∇xi
Ji(xi, u)−∇xi

Ji(xi, z)‖ ≤ Li‖u− z‖ ∀u, z ∈ Ω−i.

III. ASYNCHRONOUS GOSSIP-BASED ALGORITHM

We undertake the problem to compute a Nash equilib-
rium of G(V,Ωi, Ji) over GC(V,EC) using a distributed
asynchronous gossip-based algorithm. To better explain the
algorithm, we start from the perfect information case in
which each player has access to all players’ actions at
each iteration without any estimation. Given an initial
action vector x(0) = [x1(0), . . . , xN (0)]T , the solution
of V I(Ω, F ) can be found by a projected gradient-based
method with diminishing step size [18]. Since at each
iteration, all the other players’ actions are available to player
i, he can update his action as, xi(k + 1) = TΩi

[xi(k) −
αk,i∇xi

Ji(xi(k), x−i(k))], where TΩi
: R → Ωi is an

Euclidean projection and αk,i is a diminishing step size, for
which the following hold:

∞∑
k=1

α2
k,i <∞,

∞∑
k=1

αk,i =∞ ∀i ∈ V. (6)

The step size is directly related to the number of updates
that a player has made in the asynchronous regime.

Unlike the perfect case, our interest is in the case of
imperfect and partial information. Specifically, we assume
that each player i has only access to his cost function Ji
and his action xi but not the other players’ actions x−i.

Assume that, as in a gossip-based algorithm, each player
has a local clock which ticks with rate 1 according to a
Poisson process. In each time interval only one player is
allowed to wake up and select a neighbor to share his
information with. Thus the ticking times are independent
for each player across G. Similarly, one can assume a
central clock which ticks according to a rate N Poisson
process [19]. At the kth time interval T (k), k ≥ 0, where
{T (k+1)−T (k)} are independent and identically distributed
(iid) random variables, a player picks another player from his
neighbor set NC(.) and exchanges the information. Such a
player, whose clock ticks at T (k) is represented by ik ∈ V
and the neighbor picked by ik at T (k), is denoted by jk ∈ V .

The algorithm is elaborated in the following steps:
1- Initialization Step

At this step each player i considers an initial temporary
estimate vector x̃i(0) = [x̃i1(0), . . . , x̃ij(0), . . . , x̃iN (0)]T ∈ Ω
where x̃ij(0) ∈ Ωj is player i’s initial temporary estimate of
player j’s action.
2- Gossiping Step

At the gossiping step, player ik wakes up at T (k) and finds
a neighbor indexed by jk. They exchange their temporary es-
timate vector together. Then players ik and jk construct their

estimate vectors x̂i(k) = [x̂i1(k), . . . , x̂iN (k)]T ∈ Ω, i ∈
{ik, jk} by updating their temporary estimate vectors. It is
worth mentioning that x̃ii(k) = xi(k) for all i ∈ V in every
iteration k since the action of player i is known to himself
and there is no need to estimate. The estimate vectors are
computed through the following terms:x̂

ik
ik

(k) = x̃ikik(k)

x̂ik−ik(k) =
x̃
ik
−ik

(k)+x̃
jk
−ik

(k)

2

x̂
jk
jk

(k) = x̃jkjk(k)

x̂jk−jk(k) =
x̃
jk
−jk

(k)+x̃
ik
−jk

(k)

2

(7)

and
x̂i(k) = x̃i(k), ∀i /∈ {ik, jk}. (8)

3- Local Step
All the players are ready to update their actions, after

obtaining their estimate vectors. Due to the imperfect infor-
mation available to player i, he uses x̂i(k) as his estimate of
all other players’ actions, and updates his action as follows:

xi(k + 1)

=

{
TΩi

[xi(k)−αk,i∇xi
Ji(xi(k), x̂i−i(k))], if i∈{ik, jk}

xi(k), otherwise.
(9)

Note that a player i, i /∈ {ik, jk}, who is not involved in the
communication at T (k), keeps his action unchanged for the
next iteration. By running (9), player i computes his action
for the next iteration and uses this information to update his
temporary estimate vector by the following equation.

x̃i(k+1) = x̂i(k)+
(
xi(k+1)−xi(k)

)
ei, ∀i ∈ V, (10)

where ei is a unit vector in RN whose i-th element is one
and the others are zero.

At this point, every player updates his temporary estimate
vector and ready to begin the new iteration by running step 2
again.

IV. CONVERGENCE PROOF

In this section we prove convergence of the algorithm
under Assumptions 1-4. Consider a memory in which the
history of the decision making is recorded. We define Mk

to denote the sigma-field generated by the history up to time
k with M0 = {x̃i(0), i ∈ V }.

Mk =M0 ∪
{

(il, jl) : 1 ≤ l ≤ k
}
∀k ≥ 1.

In the proof we take advantage of a well-known result
on supermartingale convergence which is provided in the
following lemma from [20] (Chapter 2.2 Lemma 11).

Lemma 2. Let Vk, uk, βk and ζk be non-negative ran-
dom variables adapted to σ-algebra Mk. If almost surely∑∞
k=0 uk < ∞,

∑∞
k=0 βk < ∞, and E[Vk+1|Mk] ≤

(1 + uk)Vk − ζk + βk for all k ≥ 0, then almost surely
Vk converges and

∑∞
k=0 ζk <∞.

The convergence proof is developed in two parts. First,
we prove almost sure convergence of the temporary estimate
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vector x̃i, ∀i ∈ V to an average consensus which is shown to
be the average of the temporary estimate vectors. Then, we
prove convergence of the players’ actions toward the Nash
equilibrium, almost surely.

For convenience, we rewrite the algorithm by defining an
intermediary variable x̄ = [x̄1, . . . , x̄i, . . . , x̄N ]T ∈ ΩN with
x̄i ∈ Ω, where

x̄(k) = (W (k)⊗ IN )x̃(k). (11)

In (11), x̃(k) = [x̃1(k), . . . , x̃N (k)]T ∈ ΩN is the overall
temporary estimate at T (k) and W (k) = IN − 1

2 (eik −
ejk)(eik − ejk)T is a doubly stochastic weight matrix.

We rewrite the algorithm as the following:
1) Each player i chooses an initial temporary estimate

vector x̃i(0) = [x̃i1(0), . . . , x̃iN (0)]T .
2) The gossiping rule is x̄(k) = (W (k)⊗ IN )x̃(k).
3) Each player i executes the following updating protocol.

xi(k + 1)

=

{
TΩi

[xi(k)−αk,i∇xi
Ji(xi(k), x̄i−i(k))], if i∈{ik, jk}

xi(k), otherwise,
(12)

x̃i(k + 1)= x̄i(k)+
(
xi(k + 1)−x̄ii(k)

)
ei, ∀i ∈ V. (13)

A. Convergence of Temporary Estimates to An Average Con-
sensus

In this section we prove that the temporary estimate vector
of each player i converges almost surely toward a consensus
under Assumptions 1-2. The consensus point is shown to
be the average of all temporary estimates. Let Z(k) be the
average of all temporary estimates at T (k), i.e.,

Z(k) =
1

N
(1TN ⊗ IN )x̃(k). (14)

The following theorem is the main result of this section,
on the convergence of x̃i(k) to Z(k) ∈ Ω, for all i ∈ V .

Theorem 1. Let x̃(k) be the overall temporary estimate
vector and Z(k) be its average at T (k) as in (14). Let also
αk,max = maxi∈V αk,i. Then under Assumptions 1-2, almost
surely

i)
∑∞
k=0 αk,max‖x̃(k)− (1N ⊗ IN )Z(k)‖ <∞,

ii)
∑∞
k=0 ‖x̃(k)− (1N ⊗ IN )Z(k)‖2 <∞.

Proof of Part i). In the convergence proof, we repeatedly
use Lemma 2 to show that a term is absolutely summable.

The proof follows by deriving an upper bound for
E
[
‖x̃(k + 1) − (1N ⊗ IN )Z(k + 1)‖

∣∣∣Mk−1

]
and applying

Lemma 2 to the expression.
From (13), (11), (14), the doubly stochastic property of

W (k) and
[
(W (k)− 1

N 1N1TNW (k))⊗IN
]
(1N⊗IN )Z(k) =

0, it follows:

E
[
‖x̃(k + 1)− (1N ⊗ IN )Z(k + 1)‖

∣∣∣Mk−1

]
≤ E

[
‖Q(k)(x̃(k)− (1N ⊗ IN )Z(k))‖

∣∣∣Mk−1

]
︸ ︷︷ ︸

Term 1

+E
[
‖Rµ(k + 1)‖

∣∣∣Mk−1

]
︸ ︷︷ ︸

Term 2

, (15)

where µ(k+1) = [(x1(k+1)− x̄1
1(k))e1, . . . , (xN (k+1)−

x̄NN (k))eN ]T , Q(k) = (W (k) − 1
N 1N1TNW (k)) ⊗ IN and

R = (IN − 1
N 1N1TN ) ⊗ IN . Let γ = E

[
‖Q(k)‖2

∣∣∣Mk−1

]
.

Lemma 2 in [21] yields that

Term 1 ≤ √γ‖x̃(k)− (1N ⊗ IN )Z(k)‖. (16)

To bound Term 2, we use (12), the non-expansive property
of projection, ‖R‖ = 1 and xi(k + 1) = xi(k) = x̄ii(k) for
i /∈ {ik, jk}.

Term 2 ≤
√

2
∑

i∈{ik,jk}

‖xi(k)−x̄ii(k)‖+ 2αk,maxC. (17)

Next we show that the first term in the RHS of (17) is
absolutely summable. By (11), ‖xi(k)−x̄ii(k)‖ = 1

2‖x̃
i
i(k)−

x̃ji (k)‖ for i, j ∈ {ik, jk}, i 6= j. Using (12), (13), αk+1,i <
αk,i and the non-expansive property of projection, for i, j ∈
{ik, jk}, i 6= j we obtain

αk+1,iE
[
‖x̃ii(k + 1)− x̃ji (k + 1)‖

∣∣∣Mk−1

]
≤ αk,i‖x̃ii(k)− x̃ji (k)‖ − αk,i

2
‖x̃ii(k)− x̃ji (k)‖

+α2
k,i‖∇xi

Ji(xi(k), x̄i−i(k))‖, (18)

To apply Lemma 2, we denote Vk = αk,i‖x̃ii(k) −
x̃ji (k)‖, uk = 0, βk = α2

k,i‖∇xi
Ji(xi(k), x̄i−i(k))‖, ζk =

αk,i

2 ‖x̃
i
i(k)− x̃ji (k)‖. According to Lemma 2 and taking (6)

and (5) into account, one can conclude{∑∞
k=0 αk,i‖x̃ii(k)− x̃ji (k)‖ <∞,∑∞
k=0 αk,i‖xi(k)− x̄ii(k)‖ <∞.

(19)

Substituting (16) and (17) in (15), and then multiplying the
LHS and RHS of the resulting inequality by αk+1,max and
αk,max, respectively and using the same idea as in (18),
Lemma 2 completes the proof.

Proof of Part ii. The proof follows by finding an upper
bound for E

[
‖x̃(k + 1) − (1N ⊗ IN )Z(k + 1)‖2

∣∣∣Mk−1

]
.

Using (15), (16), (17) and E[‖x‖]2 ≤ E[‖x‖2], we obtain

E
[
‖x̃(k + 1)− (1N ⊗ IN )Z(k + 1)‖2

∣∣∣Mk−1

]
≤ γ‖x̃(k)− (1N ⊗ IN )Z(k)‖2

+2
∑

i∈{ik,jk}

‖xi(k)− x̄ii(k)‖2 + 4α2
k,maxC

2

+2
√
γ‖x̃(k)− (1N ⊗ IN )Z(k)‖

.
(√

2
∑

i∈{ik,jk}

‖xi(k)− x̄ii(k)‖+ 2αk,maxC
)
. (20)

We need first to find an upper bound for some terms in (20).
From (18) we can write

E
[
‖x̃ii(k + 1)− x̃ji (k + 1)‖2

∣∣∣Mk−1

]
≤ ‖x̃ii(k)− x̃ji (k)‖2 − 3

4
‖x̃ii(k)− x̃ji (k)‖2

+α2
k,iC

2 + αk,iC‖x̃ii(k)− x̃ji (k)‖, (21)
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where (5) was again used. By Lemma 2, (19) and (6), it
follows that
∞∑
k=0

‖x̃ii(k)−x̃ji (k)‖2<∞→
∞∑
k=0

‖xi(k)−x̄ii(k)‖2<∞. (22)

By (18), (15) and (5), and after some manipulation we obtain
the following:

E
[( ∑

i∈{ik,jk}

‖xi(k + 1)− x̄ii(k + 1)‖
)

.
(
‖x̃(k + 1)− (1N ⊗ IN )Z(k + 1)‖

)∣∣∣Mk−1

]
≤
√
γ

2

( ∑
i∈{ik,jk}

‖xi(k)−x̄ii(k)‖
)
‖x̃(k)−(1N ⊗ IN )Z(k)‖

+

√
2

2

( ∑
i∈{ik,jk}

‖xi(k)− x̄ii(k)‖
)2

+
(

1 +
√

2
)
αk,maxC

∑
i∈{ik,jk}

‖xi(k)− x̄ii(k)‖

+
√
γαk,maxC‖x̃(k)−(1N ⊗ IN )Z(k)‖+2α2

k,maxC
2. (23)

As in (18), we can split the coefficient of the first term in the
RHS of (23) as

√
γ

2 = 1− (1−
√
γ

2 ). According to Lemma 2,
(22), (19), Part i of Theorem 1 and (6), we have
∞∑
k=0

( ∑
i∈{ik,jk}

‖xi(k)−x̄ii(k)‖
)(
‖x̃(k)−(1N⊗IN )Z(k)‖

)
<∞.

(24)
Now we are ready to find an upper bound for E[‖x̃(k +
1) − (1N ⊗ IN )Z(k + 1)‖2|Mk−1] in (20). According to
Lemma 2 and also by (22),(6) and (24), one can conclude∑∞
k=0 ‖x̃(k)− (1N ⊗ IN )Z(k)‖2 <∞. �

Corollary 1. For the players’ actions x(k), the following
terms hold almost surely under Assumptions 1-2.

i)
∑∞
k=0 αk,max‖x(k)− Z(k)‖ <∞,

ii)
∑∞
k=0 ‖x(k)− Z(k)‖2 <∞.

Proof . The proof follows directly from Theorem 1. �
The following Lemma is crucial to prove the convergence

of the algorithm to the Nash equilibrium.

Lemma 3. Let x̃(k) and Z(k) be as in Theorem 1. Then for
x̄(k) = (W (k)⊗ IN )x̃(k), (11), the following holds almost
surely under Assumptions 1-2.

∞∑
k=0

E
[
‖x̄(k)− (1N ⊗ IN )Z(k)‖2

∣∣∣Mk−1

]
<∞. (25)

Proof . The proof follows from Theorem 1. �
B. Convergence of Players Actions to the Nash Equilibrium

In this section we present the convergence proof of the
players’ actions x(k) to x∗. We prove that once the tem-
porary estimate vectors reach the consensus subspace, they
move toward the Nash equilibrium.

Theorem 2. Let x(k) and x∗ be the players’ actions and the
Nash equilibrium of G, respectively. Under Assumptions 1-4,
the sequence {x(k)} generated by the algorithm converges
to x∗, almost surely.

Proof . We aim to show that ‖xi(k)−x∗i ‖ approaches zero
as the number of iterations goes to infinity. By (12), Lemma 1
and the non-expansive property of projection, we arrive at the
following inequality for i ∈ {ik, jk}.
‖xi(k + 1)− x∗i ‖2 ≤ ‖xi(k)− x∗i ‖2

+α2
k,i

∥∥∥∇xiJi(xi(k), x̄i−i(k))−∇xiJi(x
∗
i , x
∗
−i)
∥∥∥2

− 2αk,i

.
(
∇xi

Ji(xi(k), x̄i−i(k))−∇xi
Ji(x

∗
i , x
∗
−i)
)T

(xi(k)−x∗i ).(26)

We try to bring in the temporary estimate average Z(k) by
adding and subtracting ∇xiJi(xi(k), Z−i(k)) from the inner
product term of (26). Moreover, we need to add and subtract
∇xi

Ji(xi(k), x−i(k)) from the inner product term of (26)
and use strict monotonicity property (Assumption 3). Then
(26) becomes
‖xi(k + 1)− x∗i ‖2 ≤ ‖xi(k)− x∗i ‖2

+α2
k,i

∥∥∥∇xi
Ji(xi(k), x̄i−i(k))−∇xi

Ji(x
∗
i , x
∗
−i)
∥∥∥2

− 2αk,i

.
[(
∇xiJi(xi(k), x̄i−i(k))−∇xiJi(xi(k), Z−i(k))

)T
+
(
∇xiJi(xi(k), Z−i(k))−∇xiJi(xi(k), x−i(k))

)T
+
(
∇xiJi(xi(k), x−i(k))−∇xiJi(x

∗
i , x
∗
−i)
)
T
]
(xi(k)−x∗i ).(27)

Using (5) and ±2aT b ≤ ‖a‖2 + ‖b‖2, one can find an upper
bound for the second, third and the fourth term in the RHS
of (27). The resulting inequality holds only for i ∈ {ik, jk}.
When i /∈ {ik, jk}, xi(k + 1) = xi(k) and ‖xi(k + 1) −
x∗i ‖2 = ‖xi(k) − x∗i ‖2. One can combine these two cases
together assuming that for all i ∈ V player i updates his
action with a given probability pi. Let pmax = maxi∈V pi
and pmin = mini∈V pi. Let also αk,min = mini∈V αk,i. By
summing the resulting inequality over all i ∈ V and using
Assumption 4, we arrive at

E
[
‖x(k + 1)− x∗‖2

∣∣∣Mk−1

]
≤ (1 + 2pmaxα

2
k,max)‖xi(k)− x∗i ‖2 + 4C2pmaxα

2
k,max

+pmaxL
2
∑
i∈V

E
[∥∥∥x̄i−i(k)− Z−i(k)

∥∥∥2∣∣∣Mk−1

]
+pmaxL

2
∑
i∈V

∥∥∥Z−i(k)− x−i(k)
∥∥∥2

−2pminαk,min

(
F (x(k))− F (x∗)

)T
(x(k)− x∗), (28)

where L = maxi∈V Li (Assumption 4) and F is the pseudo-
gradient mapping defined in Proposition 1. By applying
Lemma 2 to (28) and using (6), Lemma 3 and Corollary 1,
we verify that ‖x(k) − x∗‖2 converges to some positive
finite random variable and also

∑∞
k=0 2pminαk,min(F (x(k))−

F (x∗))T (x(k) − x∗) < ∞. Then we achieve the following
results:

1) ‖x(k)− x∗‖2 converges almost surely,
2) 2pmin

∑∞
k=0αk,min

(
F (x(k))−F (x∗)

)
T(x(k)−x∗)<∞.

To complete the proof it only remains to show that ‖x(k)−
x∗‖ → 0. Since the action set of all players Ω is compact
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Fig. 2. Quantities converge to the Nash equilibrium.

by Assumption 2, the sequence x(k) has limit points in Ω.
Furthermore, since

∑∞
k=0 αk,min = ∞, by the second result

(F (x(k))− F (x∗))T (x(k)− x∗) → 0 along a subsequence
of x(k), say x(kl). On the other hand, by Assumption 3,
strict monotonicity of F implies that x(kl)→ x∗. Moreover
since ‖x(k) − x∗‖2 converges to a positive finite random
variable almost surely, one can conclude that x(k) → x∗,
almost surely. �

V. SIMULATION RESULTS

For the simulation purpose we consider a quadratic model
from classical economic. This economic pattern models N
producers involved in the production of a homogeneous
commodity. The quantity produced by firm i is denoted by
xi for i = 1, . . . , N . Let ui denote the cost function of
producing the commodity by firm i which is a function of
xi, and let f denote the demand price which is a function of∑N
i=1 x

2
i . The total cost function of firm i, can be expressed

as Ji(xi, x−i) = ui(xi)− xif(
∑N
i=1 x

2
i ).

In the following we investigate our gossip based algorithm
via a numerical example. Consider a model consists of five
firms (N = 5), each with a production cost function of
the form ui(xi) = cixi where ci = 100 + 50(i − 1)
for i = 1, . . . , N . The demand price function is given by
f(
∑5
i=1 x

2
i ) = 600 −

∑5
i=1 x

2
i . Let the communication

graph GC is defined as Fig. 1. We verify the effectiveness
of our gossip-based algorithm through this example over
Xi = [0, 100] for all i ∈ V . Fig. 2 represents the convergence
of the quantities produced by firms to the Nash equilibrium
(x∗ = [10.35, 9.06, 7.56, 5.67, 2.67]T ). The maximum er-
ror of the convergence after 350 iterations is errormax =
maxi∈V ‖xi − x∗i ‖ = 0.016.

VI. CONCLUSIONS

An asynchronous gossip-based algorithm is proposed over
a distributed multi-player network. A connected and undi-

rected communication graph is considered for the interac-
tions between the players. At each iteration, players maintain
estimate vectors of the other players’ actions and share them
with the local players to update their estimates and actions.
We proved that the algorithm converges almost surely to a
Nash equilibrium of the game under a set of assumptions on
the cost functions and communication graph.
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