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Abstract: The lunar Three-Body problem is a famously intractable problem of New-
tonian mechanics. The demand for accurate predictions of lunar motion led to practical ap-
proximate solutions of great complexity, constituted by trigonometric series with hundreds
of terms. Such considerations meant there was demand for high speed machine computation
from astronomers during the earliest stages of computer development. One early innovator
in this regard was Wallace J. Eckert, a Columbia University professor of astronomer and
IBM researcher. His work illustrates some interesting features of the interaction between
computers and astronomy.
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Une tâche excédant la technologie : lutilisation de lordinateur dans le problème
lunaire des trois corps

Résumé: Le problème des trois corps appliqué à la lune est un problème classique de la
mécanique newtonienne, connu pour être insoluble avec des mthodes exactes. La demande
pour des prévisions précises du mouvement lunaire menait à des solutions dapproximation
pratiques qui étaient dune complexité considérable, avec des séries trigonométriques con-
tenant des centaines de termes. Cela a très tôt poussé les astronomes à chercher des outils
de calcul et ils ont été parmi les premiers utiliser des calculatrices rapides, dès les dbuts
du dveloppement des ordinateurs modernes. Un innovateur des ces années-là est Wallace J.
Eckert, professeur dastronomie à Columbia University et chercheur pour IBM. Ses travaux
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illustrent des aspects intéressants de linteraction entre ordinateurs et astronomie.

Mots-clés: histoire de lastronomie – problme des trois corps – histoire de lordinateur
– Wallace J. Eckert

Eine Aufgabe, welche die Technologie übersteigt : Frühe Anwendungen des
Computers für das Dreikörperproblems des Mondes

Zusammenfassung: Das Dreikörperproblem auf den Mond angewandt ist bekanntlich
ein unnachvollziehbarer Aspekt der Newtonschen Mechanik. Die Nachfrage nach przisen
Voraussagen über die Bewegung des Mondes führte zu praktischen Näherungsmethoden
grosser Komplexität, die aus trigonometrischen Reihen mit Hunderten von Gliedern beste-
hen. Es nimmt deshalb nicht Wunder, dass schon von den Anfängen des Computers an, die
schnelle Maschinenberechnung von Astronomen besonders gefragt war. Wallace J. Eckert,
Astronomieprofessor an der Columbia University und Forscher für IBM, war einer der ersten
Innovatoren auf diesem Gebiet. Sein Werk zeigt einige interessante Aspekte der Interaktion
zwischen Computern und Astronomie auf.

Schlagworte: Geschichte der Astronomie – Dreikörperproblem – Geschichte des Com-
puters – Wallace J. Eckert
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Since its beginnings in Antiquity, astronomy has had a special relationship with mathe-
matical computing. Astronomy has sometimes acted as a catalyst leading to innovation in
computing practices, think of tables of logarithms or Schickhards calculating machines in the
17th century.1 Conversely, new computing practices have helped to verify existing theories
or have even led to better or improved astronomical models. There are numerous problems
in classical mechanics that are of direct practical interest in astronomy that cannot easily or
directly be derived and calculated, but must laboriously be worked upon and approximated
through many exacting computations. One classical example is the three body problem in
astronomy that consists of finding a general expression for the trajectory of three celestial
bodies in mutual gravitational attraction. Unlike the two body problem that admits of var-
ious ready solutions, such as the famous Kepler ellipses for the sun and the earth, the three
body problem is famously intractable with no definitive solution for the general case and this
has made it the focus of a great deal of intellectual effort. The first manifestation of these
difficulties was Newtons attempts to use his theory of gravity to derive adequate predictions
of the motion of the Moon. The labour of analyzing the Moons motion under gravity was
so difficult that it reputedly gave him headaches, and the explanation of several elements
of the Moons motion eluded Newton.2 In the 18th century, research into lunar theory drew
reputed mathematicians such as Euler, Clairaut and T. Mayer to compute and recompute
lunar tables using observational data and developing and reformulating theories of the moons
motions, while testing new computing procedures to master the imposing calculations.3

In this paper I will show how when computers were employed in the solution of this
problem they changed the scope and goals of efforts. However, the computer alone did not
determine the path of method chosen, I will show how historical practice and human skill
and judgment played their role.

1 Literal and Numerical Theories in the 19th Century

In the 18th and 19th centuries various equations for the motion of the Moon were developed
from Newton’s equations via a process of successive approximation to higher terms of a finite
series of trigonometric functions (necessitating harmonic synthesis or the sums of sine and
cosine terms). These equations or theories of the Moon, as they were called, achieved greater
accuracy and had practical significance for nautical navigation as well as for astronomical
purposes.4 However as solutions became more accurate the work of analysis and algebra

1See e.g. Thorvaldsen, 2010.
2Szebehely, 1967, p. v; Brewster, 1860, p. 108; Linton, 2004, p. 279.
3Wepster, 2009; Verdun, 2013.
4Linton, 2004, p. 298-304
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required to derive the equations became ever more onerous.
One way of categorizing these theories used by Brown and other Celestial Mechanics since

at least the 19th century is dividing literal and numerical theories. It will be useful for us to
use that division here. The literal method refers to the use of pure algebraic terms (literal
terms) in an approximate solution, not substituting in empirically measured numerical terms
(such as the radius of a body’s orbit) until the mathematical analysis to derive the solution
has been completed. A numerical theory is one where numerical coefficients were substituted
to aid the derivation. Numerical theories allow some simplifications of the derivation, but
changing those terms (if they were measured more accurately for example) would require the
entire equation to be rederived. On the other hand the latest numerical measure of empirical
terms could be instantly substituted into a literal theory without having to rederive the
underlying equations.

In the later half of the 19th century there were two lunar theories both accurate to about
1 second of arc (1′′, one sixtieth of a minute of arc which is in turn one sixtieth of a degree).
Peter Hansen had developed a lunar theory with the substitution of numerical constants at
an early stage publishing the basic theory in 1838 although full predictions would not be
available from it until 1857. Charles Delauney on the other hand derived his lunar theory in
a completely literal manner working for 20 years and publishing the theory in 1800 pages over
two volumes in 1860 and 1867 describing a theory with 800 trigonometric terms. Delauney’s
theory did not actually take into account complications such as the effects of the planets and
a set of predictions from it would not be available until 1911.5

In the 1880s American George William Hill developed a new approach to Lunar problems
hoping to achieve greater accuracy at less effort, previously approximate solutions began by
assuming a circular or elliptical orbit for the Moon and correcting from there, instead Hill
used another shape the so-called variational orbit (or variation curve) as his starting point.
Hill recognized that m, the ratio of the mean motions of the Sun and Moon, was the slowest
parameter to converge in literal methods and that it would be possible to derive a solution
in terms of the variation orbit where m was substituted at the beginning, while other terms
could be kept literal.6

Hill never finished working out a lunar theory, but his approach and calculations were
taken up in two very different directions. French mathematician Henri Poincaré made use of
Hill’s variation curve as a starting point into his study of the three-body problem. Beginning
in the 1880s Poincaré generalized Hill’s variation curve and so began characterizing the
features of periodic solutions to the three body problem. This work continued for the rest of

5Linton, 2004, p. 409-412; Brown, 1919, p. v-vi
6Wilson, 2010, p.55-68
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Poincaré’s life and he derived various suggestive theorems and conjectures.7 An important
result was that some orbits with very similar initial conditions could diverge widely and such
sensitivity to initial conditions cast doubt on the hopes of predicting celestial motions and
particularly to attempts to make statements about qualitative features of the solar system
such as the stability of the solar system, a question some thought had been settled by Laplace
at the beginning of the 19th century. The exploration of these intricate questions about the
qualitative features of the three body problem became an exciting research program for a
few scholars following Poincaré in the 20th century. One such follower remarked that: “In
my 45 years dedicated to the problem of three bodies I never had a dull moment.”8 Later
mathematical researchers in Chaos Theory would suggest an affinity between their own work
and Poincaré’s work in celestial mechanics.9

British mathematician and astronomer E. W. Brown, eschewed such general qualitative
questions and continued Hill’s project to produce a more accurate lunar theory. The result
of Brown’s work was both a theory of the Moon published in 1908 after 14 years of work
and in 1919 a set of tables that approximated, and simplified that theory and calibrated it
to the world. Brown’s work soon replaced Hansen’s and Delauney’s theory as the source of
lunar positions for national almanacs. The equations of Brown’s theory consisted of more
than 1400 trigonometric terms, and Brown’s tables specified numerical constants for the
equations, but also took various short cuts combining, approximating or neglecting terms in
order to speed calculation and allow the terms to be calculated from 180 tables. The tables
consisted of 180 tables over 3 volumes and 660 pages in all. The publication of these tables
was sponsored by Yale and Brown became a professor at Yale into the bargain.10 These
elaborate preparations are typical of what was necessary to turn the algebraic lunar theories
into a complete method of predicting lunar positions as seen with Hansen’s and Delauney’s
theories.

Even once derived a complete lunar theory required a great deal of labour to produce a
prediction. According to L. J. Comrie who supervised the production of astronomical and
navigational tables for the British government in the 1920s and 30s, two people supplied with
Brown’s tables could perform the necessary calculations just about fast enough to keep up
with the Moon (deriving two values a day, one position at noon and one at midnight). The
heavy labour involved meant there would be a great benefit in automating the process. In
order to produce a table of predicted Lunar positions at Noon and Midnight GMT for navi-
gation, Comrie took steps to automate the calculation of values from the table using punched
card machines from the British Tabulating company. (Figure 1) By extensive punching of

7See Barrow-Green, 1997.
8Szebehely, 1990, p. vi
9Linton, 2004, p. 415-432

10Schlesinger & Brouwer 1941, p. 245-249; Comrie 1932, p. 694; Brouwer 1939, p. 302
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Figure 1: Hollerith Tabulator. (Source: Comrie, 1932).

cards Comrie automated the use of Brown’s tables. The addition of a trigonometric series
and so the position of the Moon could be found by simply selecting top cards from a pile for
each function and piling them into a machine’s hopper. Comrie’s technique took advantage
of the flexibility of the punched card tabulators at his disposal that could accumulate multi-
ple totals at the same time and print totals and subtotals at different times as prompted by
control features of the cards and plugboards used by the machines. This allowed Comrie to
not only produce the numbers he needed but run checks of what cards he was using to verify
his work. He could also use punched card sorting machines to quickly and automatically
prepare cards for use. Comrie’s work represents important work in automating the final
calculation of lunar position and an important early example of machine computation but
others have already discussed it and we want to look at how machine computation led to
whole new ways to calculate lunar position, not merely automate existing methods. 11

Wallace Eckert was Brown’s doctoral student at Yale and a professor at Columbia Uni-
versity in the 1930s. He carried out computational astronomy using IBM punched card

11Comrie, 1932, p. 694; Croarken, 1990, p. 22-24; Bashe et al., 1986, p. 22
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machines in the 1930s. This included work on numerical integration of asteroid orbits. Nu-
merical integration of an orbit involves iterative extrapolation of a body’s position from a
starting point, each extrapolation is over a short period of time and each step is dependent
on the last, unlike an algebraic approximation (such as the various theories of the Moon)
it requires a great deal of arithmetic and does not easily reveal qualitative features of the
motion (such as the periods between repeated motions). Also a numerical integration is
only good for the period of time calculated and extending the period covered requires more
arithmetic. For these reasons numerical integration was eschewed before the 20th century
except for very specialized applications that did not easily yield a solution in the form of a
trigonometric series. An example of such specialized calculation was finding the trajectory
of Halley’s comet on its return to the inner solar system. British astronomers Philip Cowell
and Andrew Cromlin developed what came to be known as Cowell’s method to deal with
cases like Halley’s comet between about 1900-1911.12 Numerical integration also saw par-
allel development to produce ballistic tables by American astronomer Ray Forest Moulton
during the first world war.13 Calculating machines like IBM’s punched card machines offered
the hope of making numerical integration more practical and common. Eckert led in the
automation of what he called Cowell’s method thanks to the support of IBM who provided
the machines free of charge to him.14

IBM’s support of Eckert grew out of their earlier support of Columbia Professor of Ed-
ucation Ben Wood. Ben Wood had become a recipient of IBM largess thanks to his need
to calculate standardized test statistics and ambitious conception of the potential of IBM’s
machines. Eckert was brought to the use of IBM machines both by Wood’s efforts and by
knowledge of Comrie’s achievements via his supervisor Brown. Eckert worked on demon-
strating how IBM machines could be of use in research and succeeded in convincing other
laboratories to adopt the machines for research in the 30s and 40s. Science and academic
research was a very small proportion of the use if punched cards in the 1930s. However
Eckert and Wood’s ambitions for IBM’s machines offered new applications for the machines
and fit well with IBM Chairman Thomas J. Watson’s promotion of education and thinking
through IBM. It also suggested new untapped markets for IBM’s machines. The one-of-a-
kind Difference Tabulator was produced for Ben Wood in 1929 in addition to free rental of
standard IBM machines suggest Watson’s interest. Eckert’s 1935 calculation control switch
which automatically reconfigured a set-up that included an IBM tabulator, summary punch

12The exact formula suggested by Cowell and Crommelin is also called the Gauss-Jackson method. In
addition various other numerical integration techniques such as the Runge-Kutta technique and Enckes
method are also popular.

13Gluchoff, 2011 and Bullynck in this issue.
14Tropp, 1978, p. 128-129; Eckert, 1935; Olley, 2011, p. 30-31, p. 63-68; Grier. 2005, p. 119-121,

p. 138-142; Gluchoff, 2011
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(a device that allowed the tabulator to punch results) and multiplier to different stages of
a numerical integration process likewise demonstrated IBM’s interest in the scientist. In
1937 Eckert worked with the American Astronomical Society, Columbia University and IBM
to establish his punched card bureau at Columbia as the Thomas J. Watson astronomical
computing bureau suggesting his close ties with IBM. These developments set the stage for
later collaboration between Eckert and IBM and also suggest Eckert’s drive and ingenuity
in working towards machine computation. Eckert’s work with punched card machines in the
1930s has been well documented by historians and rather than rehearse it here we want to
push on to how Eckert used machines for the three body problem but one key development
in this period needs to be discussed. 15

2 Eckert Brings in the Computer I: Airy’s Method and

the SSEC

In the mid 1930s Eckert also undertook an attempt with Brown to improve upon Brown’s
Lunar theory. The basis of the project to improve Brown’s theory was the work of Sir
George Bidel Airy, a 19th century Astronomer Royal of England. Airy proposed deriving
an improved Lunar theory by substituting an existing approximate theory for the motion
of the Moon into the differential equations that govern the Moon’s motion. In so far as
the approximation was correct it would obey the equalities of the differential equations, but
deviations would remain as residuals. The residuals could then be used both as a measure
of the mathematical accuracy of the approximate solution and as the basis to derive an
improved solution. The improved solution would be derived via treating the residuals as
parameters against which to fit a new set of expressions that would negate the residuals
when used to modify the original solution, an exercise in linear algebra comparable to curve
fitting.16

Airy did not have the resources to carry out the massive work required by this solution
and gave up after discovering an error in his calculations. Brown had carried out a survey
of all the methods of Lunar theory in preparation for his own solution. He published his
survey of the history of lunar theory in 1896. Through this work Brown was aware of Airy’s
attempt and thus proposed that he and Eckert carry out the calculations to test his work and
achieve some slight improvement in Lunar theory.17 They hoped that with IBM’s calculating
machines they could succeed where Airy failed.

15Olley, 2011, p. 76-78, p. 111-112; Bashe et al., 1986, p. 20-24; Campbell-Kelly, 1990, p. 144-149
16Airy, 1886, p. vi-viii
17Airy, 1888, p. 2; Brown, 1960; Brown, 1938, p. 785-788
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The thing to note in these actions is that it was not merely Eckert’s use of IBM machines
that was at work but Brown’s knowledge of Lunar theory and possible techniques. This
interaction between machine potential and human knowledge and judgement is a recurrent
feature of the attempts to solve the three body problem I will discuss. While machine
computation made for new opportunities to find lunar positions the form of these calculations
was often guided by or set by existing practice.

The first part of Airy’s method involves taking derivatives of hundreds of trigonometric
terms (ie sine functions) and carrying out various multiplications and gathering together the
like terms to give the residuals. Brown and Eckert recognized that the huge task of book
keeping the thousands of terms could be done by punched card machines. Eckert completed
this part of the work and was able to confirm to Brown the basic conformity of his theory with
Newton’s laws before Brown’s death in 1938. However no new solution was ever derived from
these calculations as Eckert became busy with other work. Eckert left Columbia University
in 1940 to become director of the U.S. Naval Observatory’s Nautical Almanac Office in
Washington, where he oversaw automation of key astronomical and navigational calculations.
Eckert returned to New York in 1945 as the first director of the IBM office of pure research
and director of IBM’s Thomas J. Watson Scientific Computing Laboratory associated with
Columbia University. Whereas his association before had been less formal now he was an
IBM employee and charged with developing IBM’s scientific expertise, while continuing his
own researches. All his subsequent work was carried out as an employee or fellow of IBM.18

Eckert would continue to take the automation of lunar calculations to new heights. In
a more theoretical vein by the 1930s empirical accuracy of Brown’s Lunar theory had been
well established and helped confirm the conclusion that the Earth’s rotation is not constant
but varies. This meant solar time had inaccuracies detectable due to discrepancies in the
timing of events such as eclipses. This led to an initiative by the International Astronomical
Union to establish ephemeris time as the new standard of astronomical timekeeping, using
the motion of the Moon as the reference point. In aid of this Wallace J. Eckert carried out
a set of calculations at the Thomas J. Watson High-speed Computing laboratory on IBM’s
brand new Selective Sequence Electronic Calculator (SSEC) in 1948, finding the position
of the Moon directly from Brown’s theory without approximation (Figure 2). This large
scale electronic calculator could derive a position in 8 minutes instead of hours at far greater
accuracy and was one of the first machines to combine electronic calculation speed with
the ability to automatically carry out long chains of instructions. Conceptually the SSEC
did little more than automate calculations that could already done by hand, but the new
level of accuracy found by using Brown’s theory rather than the tables was significant and
suggests how computation constraints had limited the accuracy and detail of astronomical

18Eckert, 1940, p. 97-98; Brouwer, 1939, p. 305; Brennan, 1971, p. 11-13
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Figure 2: The SSEC, overview with schematic plan. (Source: Eckert 1948)

calculations to this point.19

The SSEC was of limited historical significance because of limits of design and hybrid
electronic and electromechanical nature but it marked a significant commitment by IBM to
electronics. It was also built in part to overshadow machine computation at Harvard where
IBM had facilitated the construction of the Harvard Mark I (or IBM Automatic Sequence
Control Calculator) after IBM and the Harvard professor Howard Aiken had a falling out over
portioning credit for the machine. Eckert’s abstract scientific problem served as the initial
dedication problem for the SSEC and so helped signal IBM’s new dedication to science also.
In the years that followed IBM researchers would become known for their abstract scientific
work at various Watson labs. While the lunar problem’s novelty and the machine’s novel
features are limited one notable innovation was that a sine table of 100 terms was stored in
rewritable relay memory and accessed by indirect addressing. This achieved a new level of

19Sadler & Clemence, 1954, p. vii-viii; Eckert et al., 1954, p. 347-350; Dick, 2002, p. 519-522
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Figure 3: The IBM 650. (Source: Weik, 1961 (BRL Eeport), p. 1115)

flexibility in machine calculation in this new machine.20

3 Eckert Brings in the Computer ii: Matrices, Relax-

ation Methods and the IBM computers

Not satisfied with such modest gains in accuracy, Eckert revived the idea of using Airy’s
method in about 1957, at this point he was aided by his long time assistant at the Watson
Laboratory, astronomer Rebecca Jones. The initial work was performed on the IBM 650 a
relatively modest computer by the standards of the day. (Figure 3) Finding the solution to
this large system of equations proved more difficult than Eckert had anticipated. Jones soon
left the laboratory and Eckert recruited Harry F. Smith Jr. a graduate student at Columbia
in mathematics and Watson laboratory staff member. Smith was an expert on computation,
but not astronomy. Through his career Eckert several times employed assistants who lacked
specialized astronomy training and training them in the necessary elements in order to carry
out calculations and machine work. Eckert and Smith continued working with the IBM 650
deriving residuals and one improved solution with some work done on the more powerful IBM
704. The IBM 650 had a high speed table feature that they found useful in the evaluation of
the differential equations, able to hold at one time 1500 of the 30 000 terms produced during
multiplication. The first improved solution involved 3000 residuals making for a system of
over 3 000 equations with 3000 unknowns to be solved or a matrix (grid of values) of 3000
columns by 3000 rows.21

The essential method of solution involved the standard linear algebra technique of treating

20Bashe, 1982; Bashe et al., 1986, p. 47-59
21Eckert, 1958, p. 416-417; Eckert & Smith, 1961; Eckert & Smith, 1976, p. 235-236.
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the system of equations as a matrix. A system of linear equations can be solved directly by
manipulating such a matrix. Computers were well suited to carrying out matrix operations
in their fast indexed memory. However a 3 500 by 3 500 matrix contains about twelve million
terms far more than could fit into the working memory of a computer in the 1960s.

Eckert and Smith could divide the terms involved into those which could generate small
divisors and therefore large effects on the solution and other terms whose contribution was
smaller. They devised a plan to solve the small divisor terms via the direct method of matrix
inversion, the others would be solved by Southwell Relaxation technique.22

Relaxation techniques achieve a solution by trial and error, substituting a potential solu-
tion into one of the equations, deriving the effects and then plugging another trial solution
into the next equation. The Southwell method modified this by seeking out the largest
terms for trial solution first. The Southwell method was original designed as a way to speed
hand computation of this sort of problem.23 Originally it seemed inappropriate for com-
puter methods because of the long time searching for large values would take versus simple
repeated arithmetic processes.

Smith and Eckert found that they needed to include a third process of elimination because
of interactions between the terms solved by the two techniques. The large matrix had to be
subdivided based on method of solution and then subdivided again more arbitrarily in order
to yield matrices of between 300-500 terms that can could be fit in the working memory of
the computer for relatively quick solution.24

The initial work on the IBM 650 and 704 had been done to 11 digits of precision. Eckert
and Smith began working on the transistorized IBM 7090 in 1961 and sought to increase the
precision and check the dependence of the solution on the precision. The solution done on
the IBM 650 became a baseline and independent test on later calculations which were done
with different coding schemes. Once again inserting Brown’s expressions into the equations
of motion this time with a precision of between 12 and 17 digits yielded over 6 000 residual
terms. This improved theory was itself fed back into the equations to yield new residuals and
derive an even more precise theory with some elements calculated to 18 digits of precision.
After various trials a final solution was derived from a set of over 9 000 residuals. The final
solution was carried out in the late 1960s by Smith on various IBM 7094, including ones at
the IBM research center, Columbia University, Imperial College London, and at Lyngby in
Denmark.25

The evaluation of these large matrices required a great deal of work and ingenuity, few
standard algorithms were available. Smith carried out the coding on the 7090 and 7094

22Smith, 1965, p. 30-41
23Hoffman, 2001, p. 64-66
24Smith, 1965, p. 42-44, p. 72-77
25Eckert & Smith 1976, p. 235-238, p. 248; Smith, 2007

12



using the Share Operating System (SOS), 7090 SORT, and the SHARE-Compiler-Assembler-
Translator (SCAT) programming system. He derived over 20 programs consisting of over 50
000 words of instructions. Many of the programs had to be run multiple times with minor
variation and Smith found this easier to achieve with the features of the SCAT system that
allowed modification of existing programs by the addition of more programming cards at the
end. SOS and SCAT were less popular than the language FORTRAN for scientific work and
so Smith’s use of them here is an interesting example of using these systems in demanding
technical work. These programming systems were viewed as demanding more skill from the
end user and suggest Smith’s connection to IBM and technical focus.26

Since the problem involved large amounts of data stored on magnetic tape, this made
the problem slow taking 50 hours to find the residuals and solve the matrix on a 7094 and
Smith estimated the total run time of the various solutions at several hundred hours. Also,
some terms were never satisfactorily eliminated limiting the precision of the final theory.27

Eckert had hoped to improve upon the accuracy of Brown’s theory by two orders of
magnitude, since Brown’s theory was understood to be accurate to about 0′′.01 this would
be 0′′.0001. The Eckert-Smith solution fell slightly short of this goal. On the other hand it
far exceeded the modest goals of the original project devised by Brown and Eckert in the
1930s. Also, while the bulk of the work had been done by 1965 the publication of the final
analysis of results, a large monograph, stretched into the 1970s after Eckert’s death. Still
the major correction to Brown’s theory implied by this work had already been drawn out,
tested against observation and published by 1965.28

Smith and Eckert argued that the solution tested both the convergence of series used to
approximate the Moon’s motion and the linear algebra methods used, neither of which had
been proven with full mathematical rigor. Along with the various innovations in the project
to use Airy’s method were some significant conservative elements, including the way in which
the integer values of the arguments of sine functions were encoded into machine readable
form, a scheme first described by Eckert for his work in the 1930s. The herculean nature
of this task was recognized by Eckert’s contemporaries. Eckert’s obituary in the journal
Celestial Mechanics noted of this project “the task evidently exceeded... the state of the
technology, yet it was carried to completion.”29

A thing to note about Smith and Eckert’s efforts in implementing Airy’s method is
again the interaction between machine power on the one hand and human knowledge and

26Smith, 1965, p. 114-115; Akera, 2007, p. 270
27Smith, 1965, p. 114-115, p. 132; Eckert & Smith, 1976, p. 189
28Eckert & Smith, 1976, p. 196-197, p. 262; Eckert & Smith, 1966, p. 243; Eckert & Smith,

1976, p. 189; Klock & Scott, 1965, p. 335
29Smith, 1965, p. 44; Eckert & Smith, 1976, p. 195-196, p. 235; Eckert, 1940, p. 66-67, p. 100; In

Memoriam, 1972, p. 3
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judgement on the other. Rather than waiting for more powerful machines to deal with the
large matrixes the method produced Smith and Eckert devised ways to break the problem
into manageable chunks. As seen with the use of Southwell’s method they drew on their
knowledge of existing techniques and used this knowledge in unconventional ways. The work
here suggests again how although computers shaped the goals of researchers those researchers
judgement and skill was equally important.

4 Epilogue: Lunar Theory in the 1970s

By the late 1950s the use of computers for science had become routine. IBM continued to
employ and support Eckert but his research no longer commanded the latest or most powerful
machines. Rather much work was carried out on the humble and relatively small IBM 650
and while the 7094 was a powerful top-of-the-line machine Eckert and Smith did not have
priority or special access to such machines. Scientists were very important IBM clients by
the 1960s but for that reason Eckert was no longer exemplary and no longer received the
same perks.

As the calculations of Airy’s method wound down Eckert continued to work on Lunar
theory. First he and several assistants reconverted Brown’s solution from the rectangular
coordinates it was devised in into the polar coordinates an Earth bound observer uses.30

Brown had done this at reduced precision and Eckert sought to wring from Brown’s work
every last bit of precision. This involved careful mathematical work but no real originality.

At about the same time Eckert conceived his most ambitious project, to carry out a
new derivation of Lunar theory in the method of Brown, but taking it to new levels of
accuracy. Unlike with Airy’s method it was not possible to build on past success, because
when Brown carried out his derivation various physical parameters were inserted, terms
were rounded off or only taken to a few terms and so on. Indeed the proper parameters of
Brown’s equation and the origin of numerical factors could be unclear in places.31 Therefore
to achieve new accuracy required starting from scratch with the Hill variation curve. It was
for this reason that no one had attempted to check the calculations or improve on Brown’s
theory by reproducing it.

In 1940 Eckert had commented on the attempt to use Airy’s method: “when used in
connection with a good literal theory it [Airy’s method] gives result which could be obtained
by the literal method alone only at the cost of tremendous effort.”32 Twenty-five years on
and Eckert proposed to undertake just such a “tremendous effort”.

30Eckert et al, 1966, p. 314
31Eckert & Eckert 1967, 1304-1307; Woolard, 1959
32Eckert, 1940, p. 98
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Eckert’s proposal had several novel elements beyond simply pursuing higher precision in
the Hill-Brown method. In the earlier method several elements of the forces, were solved
separately from the rest of the three body problem and added as separate perturbations.
Eckert felt that: “Aesthetically, it is desirable to solve the entire “main problem” by a single
unified method.”33 Another aesthetic goal was to consider all terms up to the seventh order
rather than truncating or continuing on the more ad hoc basis that had traditionally been
used.34

For the purposes of comparison, he proposed solving the equations for multiple values of
some parameters. Eckert argued this would allow interpolation of the solution to different
values of these parameters with high precision without having to recalculate the whole so-
lution. Among other comparisons Eckert hoped to compare the results to the Eckert-Smith
solution and thus mutually confirm the accuracy and mathematical soundness of the two
solutions.35

The work on the new solution was undertaken by various assistants including Eckert’s
wife Dorothy (herself a trained astronomer), M. Judith Walker and staff member Sarah
Bellesheim. Bellesheim was Eckert’s chief assistant and wrote the computer code for the
project. Like Smith before her, she had no training in astronomy before beginning this
project, but learned the necessary techniques on the job. Machines used included the humble
IBM 1620, and the IBM 360/ 91. The code was written chiefly in FORTRAN, but some of
the IBM 1620 work was done in the Symbolic Programming System (SPS). Work had to be
carried out to 24 digits of precision requiring Bellesheim to code triple precision routines in
assembly language, suggesting an extraordinary level of precision being demanded.36

The work continued for five years after Eckert’s death in 1971. During this period Martin
Gutzwiller of the IBM Laboratory in Yorktown Heights supervised Bellesheim as she worked
part-time completing it. During the 1970s various other literal series had been developed
by various astronomers using various computer methods, often using high-speed computers.
One of the most accurate of these was the Éphéméride Lunaire Parisienne (ELP). The ELP
was the work of Michelle Chapront-Touzé based on some initial work by her husband Jean
Chapront and L. Mangeney in 1969. The approach combined a more traditional derivation of
an approximate solution with a series of successive approximation not unlike Airy’s method.
Chapront-Touzé developed and refined the method over the course of the 1970s achieving
a final form in 1980. Gutzwiller compared the Eckert-Bellesheim effort with some newer
solutions. In the comparison he found that Eckert’s plan of calculating all terms up to the

33Eckert, 1973, p. 66. Note the “main problem” here is the three body problem of Earth-Moon-Sun.
34Eckert & Bellesheim, 1976, p. 42
35Eckert & Eckert, 1967, p. 1299; Eckert, 1973, p. 66
36Eckert & Eckert, 1967, p. 1305, p. 1307; Eckert & Bellesheim, 1976, p. 43-55
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seventh order and no more had left certain significant terms uncalculated.37

Given these new developments Gutzwiller decided not to work out the final details of
Eckert’s theory or publish the work. Instead after publishing his 1979 comparisons, he
teamed with astronomer Dieter Schmidt to produce a new theory along the lines of the Hill-
Brown method, which was published in full in 1986. However for practical reasons Gutzwiller
and Schmidt returned to ad hoc criterion to decide what terms to include and exclude and
they did not attempt to calculate solutions for different values of the parameters. Also they
were free to take advantage of standardized linear algebra software.38 Again the researchers
judgement and skill are on display not just the raw power of the computer. Yet it is the
power of the computer that offered the possibility of a more principled solution.

Eckert’s final work was in many ways his most ambitious. Thirty years earlier, the
project had seemed too onerous to undertake. He clearly had a confidence in the potential
for computer aided algebra in lunar theory. However, the methods remained a work in
progress, and so he and his assistants were forced to innovate with the materials available.
It is interesting that in this work he had taken a more principled approach of including terms
on the basis of the character of the solution (the order of the terms) rather than a more ad
hoc basis (the size of the coefficients) that had traditionally been used by Brown. It suggests
a conviction in the power of the later computer technology to allow new possibilities. Despite
these efforts, his successors would still find themselves led back to a need for a more ad hoc
rules by the requirements of computation.

It is significant that one method in Lunar theory Eckert did not explore in any detail
was the use of numerical integration. He had worked on numerical integration of asteroids
in the 1930s and the outer planets in 1950 and was familiar with the method. The Jet
Propulsion Laboratory (JPL), who calculated celestial motions for the US Space program
as part of NASA, would develop numerical integration when in the late 60s they found the
accuracy of traditional lunar theory, Brown’s work refined by Eckert, to be insufficiently
accurate for their purposes such as guiding spacecraft to the Moon. Still much of the work
effort of landing men on the Moon depended on refinements of the traditional methods.
Numerical integration allowed a better inclusion of the effects of the planets among other
things, although it had some drawbacks.39 Eckert was actually insensitive to these subsidiary
issues since he focused his attention and verification on the traditional three body problem of
Lunar theory, which had so long fascinated astronomers. As noted the three body problem
was its own area of research separate from other issues of the position of celestial bodies.

37Gutzwiller, 1976, p. [iii]; Chapront-Touzé & Chapront, 2000, p. 38-40; Gutzwiller, 1979,
p. 891-899

38Gutzwiller & Schmidt, 1986, p. 11-12, p. 31, p. 37
39Eckert, 1935; Clemence et al., 1960; Butrica, 2014, p. 118-122; Mullholand, 1969; see Dallas,

1970 for an example of celestial mechanics research at the JPL at the time.
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This focus by Eckert suggests how his training and judgement again directed the course of
computer work. The JPL had consulted with Eckert in developing their lunar ephemerides
and their researchers included people working on a wide variety of approaches in celestial
mechanics.

Aside from its use in space exploration, the JPL numerical integrations became the basis
for the American and British Nautical Alamancs in 1984, finally replacing the Hill-Brown
theory as the method of calculation, but Connaissance des Temps continued to use more
analytical solutions (ie ones in terms of algebraic equations good for all time as opposed
to numerical integration), Michelle Chapront-Touzé’s ELP, to produce a complete Lunar
ephemeris. The accuracy of numerical integration for work on current celestial positions
is generally recognized, but researchers like Chapront-Touzé argue analytical methods have
the potential for insight into dynamics based on the forms of equations and also that the
equations can produce better positions for long time periods required to estimate the ancient
observations of celestial objects.40

IBM was quick to tout the role of Eckert’s work at IBM in the space program, and
they continued to support his work on Lunar theory. However the research was hardly a
significant priority for the corporation and not much resources were required to support or
continue Eckert projects. Eckert and retired as director of the Watson lab at Columbia in
1967 and had long ceased to be a central figure of scientific research at IBM. One notable
feature of Eckert was his hands off approach to researchers preferring they pursue subjects
based on their own interests. Likewise the lunar work Eckert undertook seems to have been
motivated by his own interest and judgement and not by any directive or even suggestion of
IBM. By the time of his death in 1971 Eckert was not the leader in machine computation
he had been in the 1930s and 40s. 41

5 Conclusion

In Eckert’s attempts to solve the lunar three body problem on computer, we see how his
choices and plans of attack depended not only on his available computer power. Rather his
choices made use of the repertoire of different techniques developed by previous astronomers
and guided by aesthetics and judgement steeped in this tradition. Also, rather than seeking
the latest technology to speed work at times Eckert and his assistants made do with much
more basic machines and worked within those limitations. Still, the use of computers meant
that whereas one successful lunar theory might be the work of a life time now a researcher
might hope to adopt several approaches to the problem and carry them through.

40Chapront-Touzé & Chapront, 2000, p. 34, p. 56
41Brennan, 1971, p. 23; Olley, 2011, p. 143-150
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Precisely these historical legacies and contingencies, along with the flourishing of literal
methods in the 1970s would put the lie to Shlomo Sternberg’s 1969 lament that thanks to
radar astronomy and brute numerical integration:

In a certain sense, the work of the classical astronomers in perturbation theory
is no longer relevant for predicting the motion of the planets. [...]In a very real
sense, one of the most exalted of human endeavors, going back to the priests of
Babylon and before, has been taken over by machine.42

People not computers decide how equations will be solved and in doing so they must make
full use of the mathematical and intellectual heritage they possess.
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