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Abstract

We exploit historical data on planned highways, railroads, and exploration routes
as sources of exogenous variation, in order to estimate the effect of interstate highways
on regional innovation: a 10% increase in a region?s stock of highways causes a 1.7%
increase in regional patenting over a five-year period. In terms of the mechanism, we
report evidence that roads facilitate local knowledge flows, increasing the likelihood
that innovators access knowledge inputs from local but more distant neighbors. Thus,
transportation infrastructure may spur regional growth above and beyond the more
commonly discussed agglomeration economies predicated on an inflow of new workers.
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1 Introduction

The extant literature linking transportation infrastructure to growth focuses on agglomera-

tion economies as the mechanism. We report evidence that highlights a different mechanism.

In addition to facilitating the flow of human capital into cities (agglomeration), transporta-

tion infrastructure, such as interstate highways, lowers the cost of knowledge flows within

regions between local innovators. This finding is important because it sheds light into the

black box of knowledge spillovers, which lie at the heart of innovation and growth in the

macroeconomic literature (Romer (1986); Aghion and Howitt (1992); Acemoglu and Akcigit

(2012)).

One of the most important features of knowledge spillovers is that they are localized.

Starting with the seminal work of Jaffe et al. (1993), a number of studies document that

spillovers are constrained by geography. This may explain some of the variation in produc-

tivity across regions. Moretti (2011) documents that after adjusting for skill composition,

average wages in the highest- and lowest-paying US metropolitan areas differ by approx-

imately a factor of three. Such dispersion is also evident when one compares innovation

outcomes across regions (Agrawal et al., 2014; Carlino and Kerr, 2014). Silicon Valley and

Boston are popular examples of outlier regions, significantly more productive than others in

terms of innovation. Despite the prominence of such regional disparities, very little is known

about the features of the economic and physical environment or the policy tools that affect

knowledge flows and trigger economic growth through innovation.

One of the main policies that local governments implement to spur regional economic

growth is the provision of infrastructure that reduces local transportation costs. Trans-

portation infrastructure such as roads may impact regional productivity through their effect

on employment, private investment, and the returns to schooling. By increasing the circula-

tion of people in a region, they are also likely to facilitate knowledge diffusion and spillovers.

We illustrate this channel with an example in Figure 1. The five largest knowledge-flow cor-

ridors in Boston (as measured by within-MSA citations from 1988 patents) largely coincide

with the topology of the city’s highway network, suggesting that roads may affect knowledge

1



flow patterns. The effect of roads on knowledge creation and diffusion is the focus of this

project.

Transportation infrastructure represents a large portion of the U.S. economy. The esti-

mated value of the U.S. road capital stock is roughly $5 trillion (US Bureau of Transportation

Statistics, 2010), and about 20% of the income of the median U.S. household is devoted to

road transportation (Duranton and Turner, 2012). Despite the magnitude of these invest-

ments, the impact of transportation infrastructure on knowledge creation and diffusion has

been overlooked by the innovation literature. We aim to address this here. Our research

provides insight for policies aimed at enhancing the flow of knowledge within cities. Further-

more, our findings offer insights for managers who make location and technology strategy

decisions because regional knowledge flows are key determinants of firm survival and com-

petitive advantage.

A major identification challenge in estimating the effect of roads on innovation is the si-

multaneous determination of transportation infrastructure and regional technological devel-

opment. For example, regional economic growth may boost local innovation and at the same

time may induce local governments to invest in infrastructure. To address this problem, we

follow a growing literature in urban economics that focuses on the U.S. interstate highways

system and exploits instrumental variables for transportation infrastructure (Baum-Snow

(2007); Duranton and Turner (2012); Duranton et al. (2013)). While interstate highways af-

fect local circulation of people and goods, they are predominantly built with non-local goals.

Compared to other local transport infrastructure, such as local roads and subways, their

construction is less likely correlated with regional economic shocks that confound empirical

estimation. Building on Duranton and Turner (2012), we consider three instruments for the

presence of highways. The first is based on the 1947 plan of the U.S. interstate highway

system. The second is derived from a map of the U.S. railroad network at the end of the

19th century. The third is based on maps of routes of major exploration expeditions of the

U.S. from 1528 to 1850.

We find that a 10% increase in interstate highways leads to a roughly 1.7% increase in

innovation as measured by patenting activity in the region. This is a large effect, comparable
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to more than a 3% increase in regional corporate R&D investments. We show that the results

are similar using metropolitan statistical area (MSA) or MSA-technology class as the units

of analysis and that estimates are robust to the inclusion of a large set of control variables

that explain persistent productivity differences across regions. We do not find evidence of

negative externalities of the stock of highways in one region on innovation in neighboring

regions. Moreover, the impact of transport infrastructure does not appear to decline with

the diffusion of information and communication technologies.

In principle, there are a number of mechanisms through which transportation infrastruc-

ture may affect the creation and diffusion of knowledge. We highlight one particular channel

through which roads impact innovation: local within-region knowledge flows. Specifically,

we show that in regions where the stock of transportation infrastructure is larger, innovators

build on local knowledge that is geographically more distant. Research in urban economics

has emphasized that transportation infrastructure generates regional growth through ag-

glomeration economies, typically modeled as an inflow of new workers (Duranton and Turner,

2012). An important feature of the channel that we highlight is that it does not require an

influx of new innovators. Our findings are robust to focusing on a sample of non-mover

inventors, whose locations do not change during the period of our study. This reinforces our

view that transportation infrastructure facilitates the circulation of local knowledge even

in the absence of an inflow of new labor, the mechanism typically linked to agglomeration

forces.

Our analysis documents a greater propensity to build on more distant local knowledge

in regressions with regions as the unit of analysis (the standard approach in the urban

economics literature) as well as in patent-level regressions (the standard approach in the

innovation literature). At the disaggregated patent level, we show that, conditioning on

the distance between two inventors located in the same region, the probability of a citation

between two of their patents increases with the stock of highways in the region.

We also provide additional indirect evidence supporting the idea that roads increase local

knowledge flows. First, we show that roads have a greater impact on innovation in fields

where the technology frontier shifts more quickly such that rapid access to new knowledge
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is more valuable. Second, we show that the effect of transportation infrastructure is larger

in regions characterized by the presence of star inventors who generate more significant

spillovers. Third, we show that highways have a larger impact on innovation in regions

characterized by low density where inventors are likely to be more spread out. Finally, we

show that large firms’ innovation is less sensitive to the provision of highways, consistent

with the idea that larger firms are more likely to build upon knowledge produced within

their own boundaries and thus rely less on that produced by their neighbors.

We conclude with an illustrative quantitative estimation. We develop a simple structural

model in which transportation infrastructure affects productivity through two distinct chan-

nels. The first is an agglomeration force: roads increase the local supply of labor, which

increases labor productivity. The second is a non-agglomeration knowledge channel: roads

allow greater patenting because they facilitate knowledge flows even when the supply of labor

is fixed. Calibration of the model suggests that about 20% of the impact of roads on labor

productivity may be due to non-agglomeration channels.

2 Related Literature

Our paper is connected to two literatures: 1) the determinants of regional innovation, and

2) the impact of transportation infrastructure on regional growth.

Building on seminal work by Jaffe et al. (1993) and Feldman (1994), the regional innova-

tion literature identifies a number of factors that may increase innovation in a geographic area

by affecting the localization of knowledge spillovers. For example, Feldman and Audretsch

(1999) show that diversity of economic activities in a region better promotes innovation.

This provides support to Jacobs (1969), who argues that the exchange of complementary

knowledge across industries is central to the creation of new economic knowledge and thus

growth. Agrawal et al. (2008) provide evidence that social/ethnic proximity substitutes for

geographic proximity in terms of its influence on regional knowledge flow patterns, suggest-

ing that the dispersion of socially proximate individuals maximizes regional innovation. Kerr

and Kominers (2015) study how the shape of spatial clusters of firms depends on agglomera-
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tive forces and on interaction costs. Catalini (2013) provides evidence that microgeographic

forces also affect idea recombination and the direction of inventive activity.

In terms of the effect of industrial organization on regional innovation, Agrawal and

Cockburn (2003) report evidence in support of the anchor tenant hypothesis that large,

local, R&D-intensive firms have a positive impact on regional innovation. Agrawal et al.

(2014) extend this work, showing that local innovation is affected by the organization of

R&D manpower in the region and in particular that innovation output is higher in regions

that include not only large R&D-intensive firms but also small ones that thicken the market

for ancillary services, thereby lowering the cost of spin-outs.1

The emerging urban economics literature studies the impact of investments in trans-

portation infrastructure on the evolution of metropolitan areas (Redding and Turner, 2015).

Fernald (1999) is the first paper that tries to identify the causal impact of infrastructure

on regional productivity. Focusing on the differential impact of highways on productivity

growth in industries that have different levels of vehicle intensity, he shows that industries

with a lot of vehicles benefited disproportionately from road-building. He interprets this

finding as suggestive of the positive impact of changes in road stock to regional productivity.

Chandra and Thompson (2000) study the impact of highways on non-metropolitan coun-

ties and regions. They show that highways have a differential impact across industries and

that they affect the spatial allocation of economic activity. Baum-Snow (2007) exploits the

planned proportion of the interstate highway system as a source of exogenous variation to

estimate the impact of transportation infrastructure on suburbanization. He finds that one

new highway passing through a central city reduces its population by about 18%. Baum-

Snow (2013), exploiting the same instrument, shows that the construction of highways causes

a large and significant job displacement in city centers but has only a minor impacts on jobs

in the suburbs.

Duranton and Turner (2012) exploit interstate highway system plans, railroads, and ex-

ploration maps as instruments to study the impact of highways on regional growth. They

1In terms of government policies, Marx et al. (2009) show that regional non-compete regulations affect
inventor mobility and knowledge spillovers. Belenzon and Schankerman (2013) show that local policies can
promote commercial development and diffusion of university innovations. Galasso et al. (2013) show that
state-level taxes strongly impact knowledge diffusion through the decision to trade patent rights.
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find that a 10% increase in highway stock in a city causes about a 1.5% increase in employ-

ment over a 20-year period. Duranton et al. (2013) study the impact of interstate highways

on the level and composition of trade for U.S. cities. They find that highways have no effect

on the total value of exports and that cities with more highways specialize in sectors pro-

ducing heavy goods. Finally, Ghani et al. (2014) show that the Indian highway network had

a strong impact on the growth of manufacturing activity.

3 Data

We follow Agrawal et al. (2014) in constructing our sample and begin with the set of 268

Metropolitan Statistical Areas (MSAs) defined in 1993 by the U.S. Office of Management

and Budget and the set of six one-digit technology classes described in Hall et al. (2001).

We obtain information on U.S. patenting activity and on the affiliation and location

of patenting inventors in a region from the United States Patent and Trademark Office

(USPTO) data. While these data are complete and detailed, two key qualifications should

be kept in mind. First, not all inventions are patented. Although this presents a significant

limitation to these data, the innovation literature has shown that technologies with greater

impact on social welfare and economic growth are more likely to be patented (Pakes and

Griliches (1980)). Second, the coding of inventor location, affiliation, and identity is likely

to generate random measurement error in our constructs.

As in Agrawal et al. (2014), we use inventor address information to assign a patent to an

MSA, exploiting the U.S. National Geospatial-Intelligence Agency dataset to match cities

and townships to counties and ultimately MSAs. If a patent has at least one inventor from

a particular MSA, then we increment the counter for that MSA by one. Thus, a patent with

three inventors located in three different MSAs increments the patent counter for each of

those MSAs by one. However, if all three inventors are located in the same MSA, then the

counter for that MSA is only incremented by one.2

We construct our measures using all patents with at least one inventor with a U.S.

2Agrawal et al. (2014) show that differences in the variables are negligible if they are constructed using
only data from the first inventor.
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address. We exclude patents that cannot be attributed to an MSA (due to incomplete

address information or a location outside an MSA) and patents assigned to universities and

hospitals. While the USPTO is the original source of our patent data, we complement these

data with classification data from the NBER (technology classification, assignee name).

We measure innovative activity, our main dependent variable, using a citation-weighted

count of U.S. patents:

Weighted Patentsm,c,t: the forward citation weighted sum of distinct patents with

primary technology classification c and application year t where at least one inventor is

located in MSA m.

Patent citations identify prior knowledge upon which a patent builds, and prior litera-

ture (starting with Pakes and Griliches (1980)) has often employed the number of forward-

citations received by a patent as an indirect measure of patent value. We also consider an

unweighted patent count as an additional innovation metric:

Patentsm,c,t: the number of distinct patents with primary technology classification c and

application year t where at least one inventor is located in MSA m.

Our main explanatory variable is the total number of kilometers of interstate highway in

the region in 1983 constructed from the Highway Performance and Monitoring System data

that are extensively described in Duranton and Turner (2012). All our results are robust to

using an alternative lane-weighted measure of highway stock.

Following Agrawal et al. (2014), we construct variables for the number of inventors in

1983, 1978, and 1973 at the MSA and MSA-class levels. As additional control variables,

following Duranton and Turner (2012), we use the logarithms of MSA historical population

levels. We also exploit a number of variables describing the physical geography of MSAs

as controls. Burchfield et al. (2006) show that the spatial structure of a region is strongly

shaped by the availability of groundwater, so we exploit the share of each MSA’s land that

overlays an aquifer. Following Duranton and Turner (2012), we also use controls for MSA

elevation, ruggedness of MSA terrain, and MSA climate (heating and cooling degree days).

We exploit a variety of socio-demographic variables from the 1980 census for each MSA: the
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share of poor population, the share of college graduates, the share of population employed

in manufacturing, and mean income. We also employ a measure of housing segregation

computed by Cutler and Glaeser (1997). In some regressions, we use indicator variables for

each of the nine census divisions.

Finally, our analysis of local knowledge flows calculates the distances between cities/towns

within an MSA. For each city, we identify its centroid geographic coordinates from the U.S.

Geological Survey and calculate distances between cities using the great circle method as in

Singh and Marx (2013).

4 Empirical Framework

Our main econometric model focuses on the relationship between measures of innovative

activity Ym,c,1988 in MSA-class m, c in 1988, and the level of interstate highway in MSA m

in 1983, Highwaym,1983. Our main specification takes the following form:

log Ym,c,1988 = α + β logHighwaym,1983 + γ log Ym,c,1983 + θXm,c + εm,c (1)

where Ym,c,1983 is the innovation level in 1983 and Xm,c is a vector of additional controls.3

This empirical specification is consistent with a simple model in which the deterministic

innovation level in an MSA, K∗t , is related to the level of highways, Rt, by the following

relationship K∗t = ARa
t . The rate of innovation adjustment depends on how far out of

steady state a region is. If we define the adjustment as Kt+5 = K∗1−γt Kγ
t with 0 < γ < 1,

then patenting in period t + 5 will be equal to Kt+5 = BRβ
tK

γ
t , where β = a(1 − γ) and

B = A1−γ. Taking logs we obtain the estimated regression (1). The parameter of interest

is β, which in this simple model describes the rate at which knowledge creation responds

to highway provision. More specifically, an unbiased estimate of β answers the following

question: Does the level of MSA highway stock in 1983 affect innovation growth during the

period 1983-1988?

3Lagged dependent variable models are common in the innovation literature because knowledge is a
cumulative process and it is natural to consider current knowledge as an input for future knowledge (Aghion
and Howitt, 1992). Our results are robust to dropping the lagged dependent variable from the model.
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Notice that (1) can be re-written as:

log Ym,c,1988 − logYm,c,1983 = α + β logHighwaym,1983 + (γ − 1) log Ym,c,1983 + θXm + εm,c.

Therefore, there is no loss of generality in interpreting β as a coefficient linking the 1983

Highway level with innovation growth for the period 1983-1988.4

The main empirical challenge in estimating equation (1) is the possible correlation be-

tween unobservables, εm,c, and the level of highways in a region. For example, the local

government may react to an economic downturn by building more roads, thus generating

a negative correlation between roads and innovation. In this case, OLS estimates would

underestimate the causal impact of highways on innovation. To address such a concern, we

exploit three instrumental variables that we discuss in detail the following subsection.

4.1 Instrumental Variables

We exploit three instrumental variables (IVs) constructed using archival data on historical

transportation infrastructure. While a number of studies in the urban economics literature

use historical data as a source of exogenous variation (Baum-Snow (2007); Duranton and

Turner (2012); Duranton et al. (2013)), this empirical approach is novel in the entrepreneur-

ship and innovation literature. The only exception we are aware of is Glaeser et al. (2012),

who exploit historical mines as an instrument for entrepreneurship.

To be a valid instrument, an historical variable must not only be a good predictor of

the level of interstate highways in 1983 but also be orthogonal to the structural equation

error term. We now describe the historical data and discuss their validity as instrumental

variables. All three instruments were constructed by Duranton and Turner (2012).

4Model (1) differs from difference-in-differences estimators typically used in the innovation literature.
First, the treatment variable, R, is a continuous variable and not a dummy. Second, because our sample
covers only two periods, we cannot test the assumption of common pre-trends in knowledge creation between
cities with different levels of highways in 1983. Nonetheless, instrumenting Highwayj1983 allows us to remove
the bias generated by non-common trends and identify the causal effect of highways on innovation. Therefore,
the interpretation of our estimates is not substantially different from the typical interpretation in a difference-
in-difference model.
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The 1947 Plan of the Interstate Highway System

Our first instrumental variable is a measure of the total number of kilometers of highway

planned at the national level in 1947. Duranton and Turner (2012) construct this variable

from a digital image of the 1947 highway plan for which they calculate kilometers of interstate

highway in each MSA. Many of the highways planned in 1947 were ultimately built, and the

correlation between log 1983 interstate highway kilometers and log 1947 planned highway

kilometers is 0.62.

The orthogonality of this instrument relies on the fact that the 1947 proposal was a my-

opic plan, based on the defense needs and economic conditions of the mid 1940s that were

likely to be uncorrelated with innovation activity in the 1980s. Specifically, the goal of the

1947 plan was to “connect by routes as direct as practicable the principal metropolitan areas,

cities and industrial centers, to serve the national defense and to connect suitable border

points with routes of continental importance in the Dominion of Canada and the Repub-

lic of Mexico” (United States Federal Works Agency, Public Roads Administration, 1947).

Historical evidence discussed in Duranton et al. (2013) confirms that the 1947 highway plan

was drawn to this mandate. Moreover, Duranton and Turner (2012) show that 1947 planned

highways are uncorrelated with population growth in the 1940s and 1950s, confirming that

planners in 1947 tried to connect population centers, not anticipate future growth.

The instrumental variable estimation of equation (1) requires orthogonality of the de-

pendent variable and the instruments conditional on control variables, not unconditional

orthogonality. As Duranton and Turner (2012) point out, this is an important distinction.

For example, MSAs with more roads in the 1947 plan may be larger and thus have more

inventors than MSAs receiving less. If innovation growth depends on the number of inventors

in the MSA and there is persistence in the R&D labor force, then the 1947 planned highway

system may predict innovation growth directly through its ability to predict the R&D labor

force in 1983. To address this concern and reduce the threat to the validity of the instru-

ment, we follow the urban economics literature and include in the estimation a large set of

appropriate controls (in particular the historical number of inventors and population levels).
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Railroad Routes in 1898

The second instrument is based on the map of major railroad lines from about 1898 (Gray,

1989). Duranton and Turner (2012) calculate the kilometers of 1898 railroad tracks contained

in each MSA by converting this map into a digital image. The correlation between log 1983

interstate highways kilometers and log 1898 railroad kilometers is equal to 0.53. Such high

correlation is driven by the fact that old railroads are a natural location for modern roads

because they do not require leveling and grading a roadbed.

The U.S. rail network was developed in the middle of an industrial revolution and imme-

diately after the Civil War. At that time, the US economy was smaller and more agricultural

than the one of the 1980s, and this substantially reduces the concern of correlation between

railroads in 1898 and technology shocks in the 1980s. As discussed in Duranton and Turner

(2012) and Duranton et al. (2013), railroads were developed mainly to transport grain,

livestock, and lumber, and it is unlikely that such a flow of agricultural commodities was

correlated to innovation activity in the 1980s. Moreover, railroads were typically constructed

by private companies expecting to make profits in the short and medium term.

The validity of the instrument again hinges on its orthogonality conditional on the control

variables. A possible concern is that cities with more kilometers of railroad track in 1898

were more productive, and persistent productivity differences may be correlated with greater

innovation in the 1980s. To address this concern, we will show that our results are robust to

including direct measures of productivity (e.g., historical growth in the number of inventors,

income per capita, the share of adult population with a college degree).

Routes of major exploration expeditions, 1528-1850

The final instrument is an index that measures the number of routes of major exploration

expeditions that crossed each MSA. Duranton and Turner (2012) digitize a number of maps

from the National Atlas of the United States of America (1970) reporting routes of major

expeditions of exploration that occurred during the time period 1528-1850. From each map,

they count one kilometer for each pixel crossed by an exploration route in each MSA and

then construct their measure by summing those counts across all maps.
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The correlation between the exploration route index and 1983 kilometers of interstate

highway is equal to 0.43. Such correlation is driven by the fact that good routes for explorers

moving on foot, horseback, or wagons are likely to be good routes for cars.

Exogeneity of this variable rests on the assumption that explorers’ choice of routes are

not related to anything that affects the innovation activity of regions a few centuries in the

future, save the suitability of a place for roads. As reported in Duranton et al. (2013), the

motivations for these expeditions were very different: searching for gold, the establishment of

fur trading territories, finding emigration routes to Oregon, or expanding the U.S. territory

towards the Pacific Ocean.

There is a concern that exploration routes may be more prominent in the presence of

rivers or lakes that in turn may generate persistent differences in regional productivity. To

address this issue, we include in our regressions a number of direct controls for the geography

of the region (e.g., the share of MSA land that overlays an aquifer, MSA elevation range, an

index of terrain ruggedness, heating and cooling degree days).

4.2 Summary Statistics

We focus on two units of analysis. First, we study cross-region variation and use MSAs

as our unit of analysis (e.g., Rochester, NY). Then, we turn our attention to cross-region

and technology variation and use MSA-class as our unit of analysis (e.g., Rochester, NY

- electronics). Following Duranton and Turner (2012), we drop MSAs with no interstate

highways in 1983. We also drop MSA-classes with no inventors in 1983. This leaves us with

220 observations in the MSA sample and 814 observations in the MSA-class sample.

Table 1 reports summary statistics for the sample employed in the MSA-level analysis.

The average MSA in our sample generates 165 patents in 1983 and 229 patents in 1988. This

represents an average annual growth rate of 6.7% per year. In terms of citation-weighted

patents, the average MSA in our sample generates 2661 cites in 1983 and 4438.5 cites in

1988, reflecting an average annual growth rate of 7.8% per year. The average MSA has

roughly 247 kilometers of interstate highway and approximately 390 inventors in 1983. We

similarly report key descriptive statistics for the MSA-class unit of analysis.
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5 Regional Innovation Growth

We start our analysis by documenting the strong positive impact of regional highway stock on

regional innovation. Our first set of results confirms the positive effect of roads on economic

growth unveiled in Duranton and Turner (2012). The key difference with their analysis is

that we look at economic growth through the lens of innovation outcomes whereas Duranton

and Turner (2012) exploit employment data.

Columns (1) and (2) in Table 2 contain our first set of results, which show a robust positive

association between highways and innovation in MSA-level regressions. We estimate these

models using OLS with robust standard errors. In Column (1), the dependent variable is

the logarithm of the citation-weighted patent count or, equivalently, the logarithm of total

forward citation count for issued patents applied for by all inventors in the MSA in the year

1988. Column (1) shows a positive correlation between interstate highway kilometers in 1983

and the level of innovation in 1988, controlling for the count of citation-weighted patents in

1983, the number of inventors in the MSA in 1983, 1978, and 1973, and a number of MSA

geography variables (the share of land that overlays an aquifer, elevation range, an index

of terrain ruggedness, heating and cooling degree days). The specification in Column (2)

is similar to the one in Column (1), but we measure innovation with un-weighted patent

counts. Overall, these regressions show a strong positive correlation between transportation

infrastructure and regional innovation. The magnitude of the coefficient in Column (1)

shows that a 10% increase in interstate highway stock is associated with a 1.3% increase

in innovative output. In Columns (3) and (4), to account for across-MSA technological

heterogeneity, we move to a more disaggregated level and study the association between

interstate highways and innovation at the MSA-class level. We cluster standard errors at

the MSA level in these regressions since our main independent variable varies at the MSA

level. Overall, the regressions in Columns (3) and (4) confirm at a more disaggregated

level the main finding of the regressions at the MSA level: transportation infrastructure is

positively associated with regional innovation.

The results in Table 2 are to be interpreted as correlations between road infrastructure
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and innovation, not causal impacts. As we argue above, we expect unobservable factors to

be correlated with both the levels of interstate highway and innovation in a region for a

number of reasons. To address this endogeneity, we now turn to an instrumental variable

estimation.

We examine the correlation between the historical variables and the stock of interstate

highway in 1983, which is the key empirical variation exploited in our first-stage regressions.

We report these correlations in Table B.1 in the Appendix. The table confirms the results

in Baum-Snow (2007) and Duranton and Turner (2012), showing a large positive correlation

between the stock of interstate highway in 1983 and the three instruments: 1947 planned

interstate highway kilometers, 1898 railroad kilometers, and the index of exploration routes

between 1528-1850. The regressions show how each of these variables is strongly corre-

lated with the endogenous variable and confirm the correlation when we include all three

instruments. In unreported regressions, we find that historical infrastructures are a strong

predictor of modern-day highways stocks for multiple subsets of the sample. This suggests

that the treatment effects we estimate below represent averages across a broad set of MSAs

and thus can be interpreted as average treatment effects.5

Table 3 presents the IV regressions. In Column (1), we estimate the causal impact of the

1983 level of interstate highway in the MSA on MSA citations in 1988. The coefficient of 0.244

implies that 10% more interstate highways in 1983 leads to 2.44% more citation-weighted

patents after five years. The regression controls for historical inventor levels and geographic

variables. Column (2) confirms the results with un-weighted patent counts as measures of

innovation. Across all specifications, the first stage F-statistics pass the weak instrument

test, and the over-identification test (Hansen’s J statistic) gives a p-value of roughly 0.20,

which supports the exogeneity of the instruments. Columns (3) and (4) confirm the positive

impact of roads on regional innovation at the more disaggregated MSA-technology-class level.

Across the specifications, IV estimates are larger than the corresponding OLS coefficients,

indicating that endogeneity generates a downward bias. This downward bias is in line with

5Specifically, we find that the instruments are statistically significant at the 1 percent level in split-sample
regressions across: (i) population quartiles, (ii) census division dummies, (iii) mean income quartiles and,
(iv) share of employment in manufacturing quartiles.
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other studies that investigate the impact of infrastructure on the economic growth of a

region. To explain this difference between OLS and IV, Duranton and Turner (2012) show

that MSAs that experienced negative population shocks tend to have larger road-building

sectors. This suggests that the bias is driven by governments reacting to low employment

with road-building plans.

The estimated effect is large. Column (2) indicates that a 10% increase in interstate

highways in 1983 leads to 1.7% more patents after five years. Estimates from the economics

of innovation literature suggest an elasticity of corporate patenting to R&D expenditure close

to 0.5 (see Aghion et al. (2013) and Bloom et al. (2013) for recent estimates). Therefore,

a 1.7% increase in patenting is roughly equivalent to a 3.4% increase in regional corporate

R&D investment.

We exploit these results to perform a few illustrative policy simulations that estimate the

impact of enlarging the highway system in three representative metropolitan areas. We focus

on one MSA with a large highway network (Los Angeles, CA with about 2000 km of highways

in 1983), one with a medium-size network (Seattle, WA with about 500 km), and one with a

small network (Madison, WI with roughly 100 km). We consider an increase in the highway

network of 100 km and 250 km in each of these metropolitan areas. We report the number

of extra-patents predicted by our IV estimates in each of these scenarios (Appendix Table

B.2). Moreover, by exploiting the figures reported in Kortum and Lerner (2000) on the R&D

expenditure per patent in 1988, we transform each effect into an “equivalent R&D subsidy,”

(i.e., the extra R&D investment required to generate an equivalent increase in patenting).

These calculations suggest that the effects of transport infrastructure on innovation are not

trivial. For example, a 100 km increase for the Los Angeles highway system appears roughly

equivalent to a $44 million R&D subsidy. Even in a small metropolitan area such as Madison,

a 100 km increase in highways is roughly equivalent to a $17 million R&D subsidy. These

estimates are only illustrative and should not be over-interpreted.

We perform a variety of tests to confirm robustness of our main finding. In particular,

we show that our baseline estimates are similar in models: (i) without lagged dependent

variable, (ii) with state-fixed effects and, (iii) with state-class fixed effects. We also show
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that results are similar if we remove the five largest patenting MSAs from the sample. Details

for these regressions and additional robustness checks are provided in the online Appendix

Tables B.3 and B.4.

Following previous literature, our analysis focuses on the effect of interstate highways

on the growth of innovation activity in the period 1983-1988, which precedes the large-scale

diffusion of the internet and other information and communication technologies (ICT). In

principle, access to ICT may amplify or reduce the effect of roads depending on whether

face-to-face interactions and ICT are complements or substitutes in knowledge production.

In the online Appendix, we explore this issue with two distinct approaches. First, we

contrast the magnitude of the effect across different time periods: 1983-88, 1988-93, 1993-98,

and 1998-2003. While the magnitude of the effect of transport infrastructures declines over

time, the 1983 highway stock appears to have a long-lasting effect on innovation. For each

of the estimates, we cannot reject at the 5 percent level that they are equal to our baseline

effect. This evidence supports the idea that the impact of transportation infrastructure did

not disappear in more recent time periods because of the diffusion of ICT.

Second, we collect data on the adoption of ICT across the MSAs in our sample. We

obtain ICT data from Forman et al. (2002), who construct measures of internet adoption

from the Harte Hanks Market Intelligence Survey. In the online Appendix, we describe

the data and in Appendix Table B.5 we present regressions which include these internet

measures. Our findings on the positive impact of transport infrastructure on innovation

are robust. Coefficients are statistically and quantitatively similar to those in the baseline

model.

5.1 Displacement Effects

The analysis above focuses on local effects of transport infrastructure and does not consider

the possibility that innovation can be displaced from one location to another. In principle,

the provision of transport infrastructures can generate a zero-sum game among regions, with

no effect on aggregate national innovation.

To explore this possibility, we follow Moretti and Wilson (2014) and extend our baseline
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model to include spatial lags. Specifically, we construct a new variable:

SpatialHighwayj1983 =
I∑
i 6=j

wij log(Highwayj1983), (2)

which is a weighted average of the highway stock in other MSAs. The weights wij are the

elements of a spatial weighting matrix meant to capture the geographical proximity between

pairs of MSAs. They satisfy
I∑
i 6=j

wij = 1 and are constructed using the inverse of the distance

between MSAs’ population centroids.

In Table 4, we add this control to our baseline model instrumenting both the highway

stock in an MSA and its spatial lag exploiting the historical variables. More precisely, we con-

struct spatial weighted averages for the 1947 highway plan, railroad routes, and exploration

expeditions and use them as instruments for the 1983 highway spatial lag. The coefficients of

the direct effect are robust and stable. We find no evidence of statistically significant spatial

spillovers across the various specifications. The MSA-class level regressions in particular

show that the effect is positive and its magnitude very small.6

We interpret these findings as suggesting that highways are unlikely to generate a zero-

sum game for national innovation. Intuitively, this may arise because ideas are non-rival and

lower communication/collaboration costs facilitate enhanced searching and matching among

inventors. In other words, to the extent that a distant idea is more likely to be shared with

an inventor in the focal region due to the presence of a highway does not diminish that

idea’s ability to also be utilized by someone else. This is also consistent with Duranton and

Turner (2012) who show that changes in road infrastructure affect city employment growth

by impacting driving within the city and not through market access, and with Duranton

et al. (2013), who show that a city’s road network does not affect the total value of inter-city

trade.

Nonetheless, we cannot fully account for the possibility that negative displacement effects

as well as positive spillovers, arising from the increased physical availability of highways, may

be present. Conducting such a precise evaluation of the national impact of local policies is

6In unreported results we modify our spatial lag variable to vary at the msa-technology class level as
spillovers may depend on the technological specialization of regions. Results are robust and essentially
identical to those presented in Table 4.
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very challenging and requires the estimation of a dynamic general equilibrium model of the

U.S. economy during our time period with externalities across regions.7

6 Local Knowledge Flows

We document a positive causal effect of interstate highways on regional innovation in Section

5. This finding is in line with the previous literature that has uncovered a positive effect of

the stock of highways on urban growth (Duranton and Turner, 2012). In principle, there are

many mechanisms through which transportation infrastructure affects the creation and dif-

fusion of knowledge. An important economic channel emphasized in previous research is that

transportation infrastructure generates regional growth through agglomeration economies,

typically modeled as an inflow of new workers (Duranton and Turner, 2012). In this section,

we provide evidence of a different mechanism through which roads may affect innovation and

growth: their ability to ease the flow of local knowledge, which may serve as an important

input to local innovation. A key feature of this channel is that it does not require an inflow

of new innovators, and therefore it is conceptually different from traditional agglomeration

forces.

We look at the impact of highways on knowledge flows within an MSA. More specifi-

cally, we study whether an increase in the stock of highways affects the way in which local

innovators rely on each other’s knowledge to spur innovation. To this end, for each patent

in an MSA class, we compute the distance between the location of the inventor and the

location of the inventors of patents cited by the focal patent and located in the same MSA.

For each MSA class, we then compute the average distance between the innovators and their

within-MSA cited technologies. The average distance between a patent and its within-MSA

citations in 1988 is 35.6 kilometers (std. dev. 21.7). For regions above the median level of

highways in 1983, the distance is 46.0 kilometers compared to 23.5 kilometers for regions

below the median.

7The research of Kline and Moretti (2014) is an advance in this respect, with the structural estimation
of the aggregate effects of one regional policy: the Tennessee Valley Authority. Their framework is not
adequate for our data, in which each region is affected by a different policy (i.e., each region has a different
level of road infrastructure).
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We report regression results illustrating the impact of interstate highways on within-MSA

citations distance in Table 5. Each regression controls for the level of patenting in 1983, the

average within-MSA citation distance in 1983, historical inventor levels, geographic variables,

and technology field effects. Column (1) shows a strong positive effect of highways on citation

distance. The estimate indicates that a 10% increase in 1983 highways causes a 2.3% increase

in the average distance between innovators and the local inputs cited in their patents. To

take into account that distance may depend on socioeconomic and geographic characteristics

of the MSA, in Column (2) we add to our control variables a set of additional geographic

variables (in particular non-linear effects of the basic geographic measures and interactions).

Despite the very large number of covariates in this specification, the results are robust. In

Column (3), we show that results are similar if we add controls for historical population

levels.

The regressions in Columns (1) to (3) show that innovators increase the distance traveled

for local inputs in the presence of greater highway stock. This effect may arise mechanically

if highway provision increases the dispersion of innovators. But it also may indicate easier

access to more distant local knowledge, which generates greater diffusion of local knowledge.

To better assess the impact of highways on local knowledge diffusion, in each MSA-class we

identify a set of non-mover MSA inventors. These are inventors active both in 1983 and in

1988 and who did not change their location over this five-year period. Columns (4) to (6)

present results for this sample of non-mover inventors. The estimates are qualitatively and

quantitatively similar to those we report in Columns (1) to (3). Specifically, these findings

show that highway provision induces non-mover inventors to cite more distant non-mover

local inventors. Overall, the fact that the impact of highways on citations among non-mover

inventors is similar to the impact for the overall sample indicates that the highway effect

is not mechanically driven by increasing dispersion of innovators but rather suggests that

transportation infrastructure enables innovators to access more distance local knowledge.

We next investigate the extent to which highways impact the growth of patents that

build upon local knowledge. To do so, we identify all patents that cite at least one patent

in the same MSA-class. In Table 6, we explore the relationship between road infrastructure
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and innovation that builds on local knowledge both in the full sample and in the sample of

non-mover inventors. In addition, we contrast the propensity to build on local knowledge

with the propensity to build on new sources of local knowledge (i.e., to cite a firm not cited

by previous patents of the inventor). In Column (1), we show that a 10% increase in 1983

highways causes a 1.77% increase in patents that draw upon local knowledge. In Column

(2), we show that a 10% increase in 1983 highways causes a 1.46% increase in patents that

cite patents in the same MSA by firms new to the inventors. In Columns (3) and (4), we

replicate the results in (1) and (2) but using our non-mover inventor sample. The estimates

are qualitatively similar but smaller in magnitude.

Overall, the results in Tables 5 and 6 provide direct evidence that highways shape the

propensity of innovators to rely on local knowledge. Local innovators appear more likely

to rely on new and more distant local knowledge in the presence of greater transportation

infrastructure. This suggests that an easier flow of local knowledge may be a significant

mechanism through which road infrastructure affects local growth. Building on this insight,

in Section 7 we present an illustrative estimation of a structural model that aims to quan-

tify the relative importance of highways in terms of traditional agglomeration forces versus

facilitating knowledge flows in generating productivity gains.

Our analysis has focused on the impact of interstate highways on local knowledge flows,

measured by citations among inventors located in the same MSA. It is natural to expect

interstate highways to also affect knowledge exchange between inventors across MSAs. In our

regressions, we only consider local knowledge flows because the analysis of citation patterns

within an MSA requires milder assumptions on the exogeneity of the historical instrumental

variables. To analyze knowledge flows between two MSAs, we need to assume that our IVs

are not correlated with future patent citations between two regions. Railroads, expedition

routes, and interstate highways were built and planned to connect principal metropolitan

areas. In this respect, unobserved heterogeneity affecting the historical flow of people, goods,

and knowledge between two MSAs may be associated with the presence of railroads, routes, or

planned highways connecting them and may have a long-lasting impact correlated with future

knowledge flow between the two MSAs. By focusing on local (i.e., within MSA) knowledge
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flows, our empirical analysis rests on the weaker assumption that the historical instrumental

variables are not correlated with future citation patterns among inventors located in the

same MSA.

6.1 Patent Level Analysis

The regressions presented in the previous sections rely on data aggregation at the MSA or

MSA-class level, a standard approach in the urban economics literature. In this subsection,

following a structure familiar to the economics of innovation literature, we move to patent-

level regressions in order to further study how the provision of transportation infrastructure

affects local knowledge spillovers. This finer unit of analysis allows us to introduce a large

number of additional explanatory variables measuring characteristics of the patent, its inven-

tors, and its citations. These additional controls reduce the level of unobserved heterogeneity

and limit the likelihood of violation of the exclusion restriction.

To perform the patent level analysis, we identify all the local citations made by granted

patents with application year 1988 (excluding self-citations). This leads to a sample of 10,776

citations from 1988 patents to other patents located in the same MSA. Exploiting these data,

we follow two approaches to study local knowledge flows at the patent level. In Table 7,

we explore the effect of highways on the distance of local citations. As in our previous

analysis, we instrument highways with the historical measures and cluster standard errors at

the MSA level. All regressions control for two-digit technology effects of the citing patent,

the cited patent, and grant year effects of the cited patent. Because of the introduction of

these dummy variables, the sample drops to 9,141 observations since some patents cannot be

mapped to two-digit NBER classifications. We include controls for geographic characteristics

of the MSA in Column (2). In Column (3), we control for the number of MSA inventors.

Across all specifications, we find a strong positive effect of transportation infrastructure on

the distance between a patent and its local citations. The marginal effect in Column (3)

indicates that a 10% increase in highway stock increases the distance of local citations by

1.26%.

A possible interpretation is that the presence of a large highway stock disproportionately
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attracts inventors from technology fields that benefit less from close locations. To address

this concern, we exploit our data to run a placebo test. Consider a local citation in our

sample from patent p belonging to technology field c1 to patent q in technology field c2. For

each citation, we identify local citations made by other 1988 patents in field c1 to patents

in technology field c2, which are located in other MSAs, and compute the average citation

distance. In Column (4), we estimate the effect of highways on the distance of citations

by patents in the same technology field but located in different MSAs. The coefficient is

small and statistically insignificant. This exercise shows that the (instrumented) highway

stock variable is uncorrelated with distance at the technology class level and confirms the

exogeneity of the historical transportation infrastructure.

As a second approach, rather than estimating the effect of roads on the distance between

inventors and their local inputs, we hold constant the distance and examine the extent to

which the probability of a citation between inventors rises with increasing transportation

infrastructure. To do this, we use the empirical methodology developed by Jaffe et al.

(1993), which has become a classic approach in the economics of innovation literature. The

idea is to compare the characteristics of local patents cited by 1988 patents and a control

group of non-cited local patents of the same cohort. We construct the control group as

follows. For each local citation, we randomly select another local patent that is not cited

by the focal patent but has the same application year and three-digit patent classification.

Following Jaffe et al. (1993) and Belenzon and Schankerman (2013), we run a series of linear

probability models that relate a dummy variable for whether a patent is cited to a set of

control variables. The specification is:

CitationDummypqj = α + β1 logHighwaym,1983 + β2 logDistancepq + θXpqm + εpqm, (3)

where CitationDummy is an indicator variable that equals one if patent p from MSA m

cites patent q also located in MSA m. The additional controls, X, include dummies for

the technology field of the focal patent, dummies for the tech field, and grant year of the

cited/control patents.
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We report the estimates of these regressions in Table 8. Across all specifications, we find

a strong significant negative association between distance and the citation dummy. This

result confirms the findings in Jaffe et al. (1993) and Belenzon and Schankerman (2013) and

is typically interpreted as evidence that knowledge spillovers are geographically bounded.

In Columns (1) and (2), we also document a positive association between citation and the

local stock of highways. Notice that, by construction, the rough correlation between the

MSA highway stock and the citation dummy is zero in our sample. The positive coefficient

on MSA highway in Column (1) indicates that, conditioning on the distance between two

inventors located in the same MSA, a citation is more likely when the stock of highways

in the region is greater. In Column (2), we show that the correlation between highways

and citations decreases in magnitude when we control for the size of innovative activity in

the region (i.e., the number of inventors in the MSA in 1983-1978-1973) and MSA geogra-

phy characteristics. Nonetheless, the coefficient remains statistically significant at the 0.05

level. In Columns (3) and (4), we exploit our historical instruments to address the poten-

tial endogeneity of the highway stock. Results are robust, confirming the positive effect of

transportation infrastructure on local knowledge flows. The estimates in Column (4) imply

that a 10% increase in highway stock increases the citation probability by 0.12 percentage

points, which is 0.24% of the mean citation probability. 8

We also exploit a different approach that builds on the methodology developed in Duran-

ton and Overman (2005) and Akcigit and Kerr (2010) to examine how the distance between

local citations departs from random counterfactuals. More specifically, we undertake Monte

Carlo simulations, where we construct a series of random citations between the patents in

each MSA-class. For each observed local citation in which patent p from MSA m cites patent

q (also located in MSA m), we draw two local patents p′ and q′ with the same application

years and technology classes of the citing pair. We include the original citation among the

8We confirm the robustness of these findings in a variety of unreported regressions. First, following
Belenzon and Schankerman (2013), we replace the distance measure with a flexible specification that employs
five dummy variables for quintile intervals of distance. The coefficient remains very similar to the one reported
in Column (4) of Table 8. Second, we confirm robustness to introducing socioeconomic controls and census
division dummies. Third, we find that the effect is larger (almost double) if we drop patents from MSAs
without highway stock. Fourth, we show that results are qualitatively and quantitatively similar when we
replace the highway measure with the alternative lane-weighted measure developed by Duranton and Turner
(2012).

23



possible pool of local citations and draw with replacement. We measure from this simulated

counterfactual the average distance between local citations in the MSA-class and repeat this

procedure 1000 times.

Appendix Table B.6 uses these simulations to provide additional evidence in support

of our findings. First, the table shows that the mean distance between local citations in

our data increases with the stock of interstate highway in the MSA. Second, it shows that

the observed distance between a patentee and his local citation is on average below the

distance between simulated citations. This supports the idea that geography constrains

the flow of knowledge and that the observed citation behavior is not randomly determined.

The differences, reported in the third column of the table, are statistically significant at

the 0.01 level. That column also shows that the average difference between observed and

simulated distances decreases with the stock of interstate highways. This finding confirms

the idea that roads facilitate local circulation flows. As the stock of transport infrastructure

increases, local citation patterns appear less constrained by geography and their behavior

becomes more similar to a random diffusion process.9

6.2 Heterogeneous Effects and Interpretation

Overall, the results in Tables 5-8 provide direct evidence that transportation infrastructure

affects the flow of local knowledge and facilitates citations among local inventors. In this

subsection, we present further indirect evidence that local roads increase local knowledge

flows by reducing the cost of interaction among innovators.

The reduction in travel time generated by transportation infrastructure is likely to be

more valuable for technologies where the frontier shifts quickly. In such cases, direct access

to the source of new knowledge is especially beneficial. Therefore, we expect roads to have a

greater impact on innovation in fields characterized by fast technological turnover. Caballero

and Jaffe (1993), Hall et al. (2001), and Mehta et al. (2010) exploit the citation age-profile

9We also use the 1000 simulated counterfactual citations generated through the Monte Carlo simulation
to construct 95% confidence bands for the distance between cited and citing local patent. We can reject
random behavior for more than 50% of local citations in MSAs in the first tercile for highway stock. The
fraction decreases to 40% in the second tercile and to 22% in the third tercile. This confirms the idea that
transport infrastructure render local knowledge flow less constrained by distance.
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of patents to measure the speed of technology obsolescence. These studies show that, in all

industries, old knowledge eventually is made obsolete by the emergence of newer, superior

knowledge, but in two industries technological turnover is much faster than the rest: 1) the

communication and computer industry, and 2) the electrical and electronics industry. We

label these technology classes as “high velocity” technologies and contrast them with the

other “low velocity” technologies in split sample regressions presented in Columns (1) and

(2) of Table 9. The estimates show that the impact of highways is concentrated on high

velocity technologies. Our findings imply that a 10% increase in 1983 interstate highways

has no effect on innovation in “low velocity” fields but generates a 5.1% increase in citation-

weighted patents in the “high velocity” fields of computers and electronics.10

A well-known feature of science is that the distribution of output is highly skewed across

scientists and inventors in the right tail of the output distribution. Stars have disproportion-

ately large knowledge spillover effects (Agrawal et al., 2014). This suggests that highways

should have a larger impact on innovation in the presence of star inventors. To explore such

heterogeneity, we construct a measure of the number of star inventors in each MSA-class.

We define a star inventor as an inventor above the 90th percentile in the patenting distribu-

tion of the technology class in year 1983. On average, an MSA class has roughly seven star

inventors, but about 38% of the MSA-classes do not have any star inventors. In Columns (3)

and (4) of Table 9, we show that the impact of highways on innovation differs dramatically

depending on the presence of star inventors in the MSA-class. The regressions indicate a

larger effect of transportation infrastructure on patent productivity for inventors located in

regions where at least one star is active in the technology class.

We expect the impact of transportation infrastructure to depend on how densely popu-

lated a region is. Controlling for the number of inventors in a region, we expect highways to

have a larger impact on innovation in regions where inventors are more spread out (“low den-

sity”) because in such regions interaction requires traveling a longer distance. In Columns (1)

and (2) of Table 10, we present split sample regressions distinguishing between technology

10This is consistent with the simple model described in Section 4 in which high velocity can be interpreted
as a low value of the parameter γ. When γ is small, past patenting outcome has a low impact on current
patenting levels, and reversion to steady state knowledge production is fast. The simple model suggests that
the impact of highways on innovation will be larger for high velocity technology fields because β = a(1− γ).
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classes in high- and low-density MSAs. We classify an MSA as “high density” if its inven-

tors per square mile ratio is above the sample mean. The estimates show that the impact of

highways is concentrated in low-density MSAs, suggesting that transportation infrastructure

provides greater benefit to knowledge flows when local interaction among innovators requires

substantial traveling.11

Finally, the impact of transport infrastructure may also differ across firms of different

size. In particular, large firms may be less sensitive to highway provision because they

generate more inventions internally and are thus more likely to circulate knowledge within

their boundaries and less likely to rely on knowledge flows from their neighbors. To assess

such heterogeneity, in Columns (3) and (4) of Table 10, we distinguish between the patenting

activity of large and small labs. We construct lab size following Agrawal et al. (2014), who

exploit the distribution of lab sizes in each technology class. In a 20-year sample, they

show that across the various class-years, the median size is about five inventors, the 75th

percentile is about nine inventors, and the 97th percentile is roughly 54 inventors. We use

this distribution to define large and small labs. A large lab is a lab where the number of

inventors is above the 97th percentile in the technology class-year distribution. We define a

lab as small if the number of inventors is below the 75th percentile. The regressions show a

positive highway effect on small firm innovation and no effect on large lab innovation. This

suggests that large firms may have an advantage in accessing local knowledge and that the

impact of roads on knowledge flows is largely through between-firm rather than within-firm

flows.12

Overall, these findings indicate that certain regional characteristics are important de-

terminants of the relationship between transportation infrastructure and innovation. The

heterogeneity that we examine suggests that an important mechanism driving innovation

and growth is the greater circulation of local knowledge caused by the presence of roads.

Of course, other factors can also affect the impact of roads on innovation. One is a growth

11From a theoretical perspective, the relationship between density and highways is non-linear. In a simple
model of productive interaction with transportation costs, the marginal impact of extra roads is larger in
regions that are more densely populated when the stock of roads is low. Nonetheless, the model predicts a
larger impact of roads in low-density regions when the stock of roads is large enough.

12We also run a number of split sample regressions that explore heterogeneity across MSAs of different
size. We find very little difference in the impact of roads across cities of different sizes.

26



in employment generated by an influx of new workers. A second is a change in the trade

pattern across metropolitan areas. Duranton and Turner (2012) and Duranton et al. (2013)

provide evidence in support of these two effects of transportation infrastructure.13

Our findings are relevant to current policy debates on the role of transportation infras-

tructure. Our estimates are consistent with the assertion that highways have a meaningful

positive effect on economic growth. However, our results also show that the effect can be

very different across regions and that the impact of highway provision crucially depends on

characteristics of the local environment such as technology specialization, inventor quality,

and the manner in which regional R&D manpower is organized.

7 Employment Growth versus Innovation

Duranton and Turner (2012) show that highways increase regional employment. Perhaps

this channel explains a large fraction of the effect we document in our paper? Our goal

in this section is to disentangle the two effects of roads (employment growth, also referred

to as agglomeration economies, versus patenting, a proxy for innovation) through a simple

calibration of a theoretical model. A calibration exercise is a natural approach in our setting

because the impacts of roads on innovation and employment growth are jointly determined,

and to distinguish the two effects empirically is challenging.

Before developing the theoretical model, we run a number of regressions to provide sup-

port for the idea that the effect we estimate cannot be entirely explained by the increase

in employment documented in Duranton and Turner (2012). Estimates are presented in

Appendix Table B.7. We show that the effect of highways is only marginally reduced once

we control for the growth rate of employment, population and inventors in the 1980s. These

estimates should be interpreted with caution because of the obvious endogeneity of these

variables. Nevertheless, they suggest that the effect of interstate highways on innovation is

13We also explore whether the effect of highways is driven by better matches between inventors and firms
through job-hopping. We measure within-MSA inventor moves following Agrawal et al. (2014) and find
evidence that highways cause an increase in job-hopping. We also show that our baseline results are robust
to controlling for this measure of job-hopping. We leave for future research the study of the impact of
transport infrastructure on R&D labor re-allocation.
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unlikely to be entirely driven by an increase in MSA-level employment.

7.1 Calibration of an Urban Economy Model

We follow Kline and Moretti (2014) and model an MSA as a small, open economy where

firms take as given the prices of capital K, labor L, and output Y . The utility of workers is

a function of wages w and amenities M that takes the following specification:

U(w,M) = lnw + lnM. (4)

Output is produced with a Cobb-Douglas technology:

Y = AKαF βL1−α−β,

where F is a fixed factor and A is total factor productivity. We assume capital to be

perfectly mobile. If we normalize the price of Y to 1 (sold on global market) and denote

with r the (nationwide) cost of capital and with w the wage, the model implies the following

inverse labor demand curve:

lnw = Θ − β

1 − α
lnL+

1

1 − α
lnA, (5)

where Θ = ln (1 − β − α)+(α lnα+β lnF −α ln r)/(1−α). We assume that the total factor

productivity depends on two variables: patents, P , and labor, L, according to the following

specification:

lnA = ζ lnP + σ lnL. (6)

The parameter σ captures the strength of agglomeration economies, a concept studied and

documented in the urban economics literature (Rosenthal and Strange (2004); Duranton and

Turner (2012); Kline and Moretti (2014)). The parameter ζ describes the impact of patenting

on productivity, a concept studied and documented by innovation economists (Bloom and

Van Reenen (2002); Furman et al. (2002)).

Our reduced form analysis, together with the findings of Duranton and Turner (2012),
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indicate that both P and L are affected by the provision of roads R. We incorporate this

effect by assuming a simple (reduced-form) specification for patenting and labor supply with

roads as the only input:

L = bRµ (7)

P = aRθ. (8)

These simple functional forms are sufficient to highlight the differential impact of roads

on productivity through agglomeration and innovation channels. Moreover, by assuming

that labor supply only depends on roads, the impact of roads on wages can be interpreted as

a welfare effect without having to specify a worker migration model. Duranton and Turner

(2012) explain that typically migration models with sticky labor adjustments lead to reduced

form equations similar to (7). In the Appendix, we extend the model by incorporating

additional inputs in the patent production function (8) as well as by relaxing the inelastic

labor supply function (7) by introducing more structure in the workers’ migration process.

Combining the above formulas, we obtain:

d lnw

d lnR
= − βµ

1 − α
+

ζθ

1 − α
+

µσ

1 − α
,

which decomposes the impact of roads on wages into: (i) a competitive effect (negative term)

and (ii) productivity effect (positive term) that arises from the impact of roads on patenting

and an additional agglomeration effect. Specifically, roads have three distinct effects on

wages. First, they attract labor, which reduces wages. Second, they facilitate knowledge

flows, which lead to greater patenting and higher productivity that increases wages. Third,

they increase productivity through agglomeration, which increases wages.14

Our regression estimates, together with those of Duranton and Turner (2012), provide

natural structural estimations for µ = 0.15 and θ = 0.24. Following Kline and Moretti (2014),

we set β = 0.47 and α = 0.68. We obtain the elasticity of TFP with respect to patents, ζ,

14In this simple model, the combination of these three effects is also equal to the impact of roads on welfare
if road construction is not costly. This equivalence does not hold in the extensions where more structure is
imposed on the migration process.
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from Furman et al. (2002) that estimate ζ = 0.11. Exploiting these parameters, we can

rewrite:

d lnw

d lnR
= −0.22 + 0.08 + 0.47σ.

This shows that the impact of roads on wages crucially depends on the strength of

agglomeration forces. For example, in the absence of agglomeration economies (σ = 0), the

model would predict a road elasticity of wages equal to -0.14. Estimates in the literature

range from σ = 0.03 (Henderson, 2003)) to σ = 1.25 (Greenstone et al., 2010), which imply

elasticities of -0.13 and 0.45, respectively.

Duranton and Turner (2012) estimate a labor elasticity of wages equal to 0.03 that

combined with their estimate of µ = 0.15 implies a road elasticity of wages equal to 0.2 and

a corresponding σ = 0.72 that is roughly in the middle of the estimates in the literature. As

illustrated in Table 11, with this parametrization for σ, we find that the total productivity

effect is 0.42 and that the patenting channel accounts for 19% of this effect.

In Table 11, we also illustrate the decomposition in three extensions of the baseline model.

We discuss the details of each model in the Appendix. In the first extension, we relax the

inelastic labor supply function (7) microfounding the workers’ migration process. Following

Duranton and Turner (2012), we assume a pool of people in the rural area receives utility

U and that cities draw their new workers from this rural pool. Duranton and Turner (2012)

explain how this assumption is consistent with U.S. data showing that most immigration

to cities is drawn from rural areas and from abroad. We also extend (4) to allow roads to

increase the attractiveness of a city by reducing travel costs:

U(w,M,R) = lnw + lnM + t lnR.

In this model, migration occurs until utility between residents and non-residents is equalized.

The positive impact that roads have on the utility of residents is compensated by a reduction

in wages triggered by migration. Calibration of this model leads to a lower estimate for the

productivity effect with patenting explaining 50% of it.

The second extension considers an alternative patent production function (8), allowing
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labor, L, to affect patenting. Specifically, we assume:

lnP = θ lnR + λ lnL.

Combining this formula with (7), (6), and (5), we obtain a slightly stronger patenting effect

that now explains 21% of the productivity effect.

The final extension combines the migration process with the alternative patent production

function. The role of patenting is even more pronounced in this setting because of the lower

impact of agglomeration economies in the migration model. The estimates imply that 56%

of the productivity effect is due to patenting.

These calculations are only illustrative and should not be over-interpreted. Our model

does not consider a number of additional channels through which highways can affect urban

growth such as their impact on the matching process between firms and workers or on the

within-city movement of goods and services. Nonetheless, the estimates show that roads may

affect productivity through multiple channels and that non-agglomeration forces may explain

an important fraction of the productivity gains generated by transportation infrastructure.

8 Concluding Remarks

We estimate the causal effect of within-MSA interstate highways on regional innovation.

The identification strategy exploits variation in historical data on planned portions of the

interstate highway system, railroads, and exploration routes. There are two key findings.

First, in terms of the magnitude of the main effect, a 10% increase in a region’s stock

of highways causes a 1.7% increase in regional innovation growth over a five-year period.

Second, in terms of the mechanism, transportation infrastructure facilitates the flow of local

knowledge by lowering the cost and thus increasing the returns to accessing local knowledge

inputs from neighbors located further away. This finding suggests that roads may spur

regional growth even in the absence of agglomeration economies that arise from the inflow

of new workers, the mechanism typically considered in the literature.

Our findings have implications for policy makers. They suggest that the set of tools
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available to spur regional innovation are much broader than targeted R&D subsidies and tax

credits and may include the provision of infrastructure that facilitates the flow of knowledge.

Our analysis also suggests that the returns to particular regional innovation policies (e.g.,

new venture incubators, science parks, technology clusters) may vary across regions and

depend on the availability of transportation infrastructure.
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Figure 1: Main Knowledge-Flow Corridors of Boston

Notes: This figure graphically represents five of the largest within-region knowledge corridors in Boston in 1988. We identify
these corridors by collecting all patents issued in 1988 where the first inventor is in the Boston MSA and finding all citations
that were made to patents where the first inventor was also in the Boston MSA (there are 178 cities/towns within the Boston
MSA). We did not examine within-city citations (e.g., Lexington-Lexington). To identify the largest corridors, we aggregate
citations to the city-city dyad level (e.g., Worcester-Framingham).
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Table 1: Summary Statistics

Unit of Analysis Variables mean Std. Dev.

MSA MSA Weighted Patents1988 4438.53 12774.52

N = 220 MSA Patents1988 228.69 609.99

MSA Weighted Patents1983 2660.96 8154.20

MSA Patents1983 165.00 482.13

MSA Inventors1983 390.05 1175.62

MSA Highway1983 (km) 247.30 300.36

1947 Planned Highways (km) 118.46 129.47

1898 Railroads (km) 290.19 301.66

1528-1850 Exploration route index 2990.63 4277.54

MSA-Class MSA-Class Weighted Patents1988 993.04 2386.91

N = 814 MSA-Class Patents1988 50.93 116.41

MSA-Class Weighted Patents1983 587.63 1479.83

MSA-Class Patents1983 36.44 92.85

MSA-Class Inventors1983 105.42 281.59

36



Table 2: Roads are associated with more citations and patents - OLS Regressions

(1) (2) (3) (4)

Unit of Analysis MSA MSA-Class

Dependent Variable logCitesm,1988 logPatentsm,1988 logCitesm,c,1988 logPatentsm,c,1988

logHighwaym,1983 0.130∗∗ 0.097∗∗ 0.250∗∗∗ 0.149∗∗∗

(0.064) (0.038) (0.082) (0.043)

logCitesm,1983 0.571∗∗∗

(0.114)

logPatentsm,1983 0.762∗∗∗

(0.073)

logCitesm,c,1983 0.323∗∗∗

(0.052)

logPatentsm,c,1983 0.517∗∗∗

(0.048)

Inventor Controls X X X X
Geography Controls X X X X
Class Fixed Effects X X

Observations 220 220 814 814
R2 0.878 0.940 0.715 0.861
Notes: All specifications are estimated by ordinary least squares. logCitesm,t refers to the citation-weighted count of patents
applied for (and subsequently granted) in period t in MSA m. logPatentsm,t refers to the count of patents applied for (and
subsequently granted) in period t in MSA m. logCitesm, c, t refers to the citation-weighted count of patents applied for (and
subsequently granted) in period t in class c of MSA m. logPatentsm, c, t refers to the count of patents applied for (and
subsequently granted) in period t in class c of MSA m. logHighwaym,1983 refers to the 1983 level of interstate highway
kilometers in MSA m. For MSA-level regressions, Inventor controls include the log of the inventors in the MSA in years 1973,
1978, and 1983. For MSA-class regressions, Inventor controls include the log of the inventors in the MSA-class in years 1973,
1978, and 1983 and the total number of inventors in the MSA in 1983. Geography controls include the share of each MSA’s
land that overlays an aquifer, MSA’s elevation, index of MSA terrain ruggedness, and number of MSA heating and cooling
degree days. We add a 1 to all patent, citation, and inventor count variables before taking the log to include observations with
values of 0. Robust standard errors clustered at the MSA-level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 3: Roads cause an increase in citations and patents - IV Regressions

(1) (2) (3) (4)

Unit of Analysis MSA MSA-Class

Dependent Variable logCitesm,1988 logPatentsm,1988 logCitesm,c,1988 logPatentsm,c,1988

logHighwaym,1983 0.244∗∗ 0.170∗∗ 0.347∗∗∗ 0.239∗∗∗

(0.106) (0.080) (0.105) (0.046)

Inventor Controls X X X X
Geography Controls X X X X
Class Fixed Effects X X

Observations 220 220 814 814
F-statistic 23.22 19.20 22.92 21.79
R2 0.876 0.939 0.714 0.859
Notes: All specifications are estimated by two-stage least squares and control for the lagged dependent variables evaluated in
1983. logCitesm,t refers to the citation-weighted count of patents applied for (and subsequently granted) in period t in MSA
m. logPatentsm,t refers to the count of patents applied for (and subsequently granted) in period t in MSA m. logCitesm, c, t
refers to the citation-weighted count of patents applied for (and subsequently granted) in period t in class c of MSA m.
logPatentsm, c, t refers to the count of patents applied for (and subsequently granted) in period t in class c of MSA m.
logHighwaym,1983 refers to the 1983 level of interstate highway kilometers in MSA m. The endogenous variable
logHighwaym,1983 is instrumented with logHighwayPlanm,1947, logRailm,1898, and logExplorationIndexm. For MSA
regressions, Inventor controls include the log of the number of inventors in the MSA in years 1973, 1978 and 1983. For
MSA-class regressions, Inventor controls include the log of the number of inventors in the MSA-class in years 1973, 1978, and
1983 and the total number of inventors in the MSA in 1983. Geography controls include the share of each MSA’s land that
overlays an aquifer, MSA elevation, index of MSA terrain ruggedness, and the number of MSA heating and cooling degree
days. We add a 1 to all patent, citation, and inventor count variables before taking the log to include observations with values
of 0. Robust standard errors clustered at the MSA-level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4: Roads cause an increase in local citations and patents net of displacement effects

(1) (2) (3) (4)

Unit of Analysis MSA MSA-Class

Dependent Variable logCitesm,1988 logPatentsm,1988 logCitesm,c,1988 logPatentsm,c,1988

logHighwaym,1983 0.258∗∗ 0.172∗∗ 0.340∗∗∗ 0.237∗∗∗

(0.102) (0.076) (0.104) (0.047)

SpatialHighwaysm,1983 −0.326 −0.251 0.080 0.020
(0.449) (0.281) (0.603) (0.331)

Inventor Controls X X X X
Geography Controls X X X X
Class Fixed Effects X X

Observations 220 220 814 814
F-statistic 17.33 13.12 16.75 16.35
R2 0.876 0.939 0.714 0.859
Notes: All specifications are estimated by two-stage least squares and control for the lagged dependent variables evaluated in
1983. logCitesm,t refers to the citation-weighted count of patents applied for (and subsequently granted) in period t in MSA
m. logPatentsm,t refers to the count of patents applied for (and subsequently granted) in period t in MSA m. logCitesm, c, t
refers to the citation-weighted count of patents applied for (and subsequently granted) in period t in class c of MSA m.
logPatentsm, c, t refers to the count of patents applied for (and subsequently granted) in period t in class c of MSA m.
logHighwaym,1983 refers to the 1983 level of interstate highway kilometers in MSA m. SpatialHighwaysm,1983 refers to the

spatially-weighted Highways measure defined as SpatialHighwaym,1983 =
I∑

i6=m
wim log(Highwaym,1983) which is a weighted

average of the highway stock in other MSAs. The weights wim are the elements of a spatial weighting matrix meant to

capture the geographical proximity between pairs of MSAs. They satisfy
I∑

i6=m
wim = 1 and are constructed using the inverse of

the distance between MSAs’ population centroids. The two endogenous variables logHighwaym,1983 and
SpatialHighwaysm,1983 are instrumented with logHighwayPlanm,1947, logRailm,1898, and logExplorationIndexm and these
three instruments with their own spatial weights for a total of six instruments. For MSA regressions, Inventor controls include
the log of the number of inventors in the MSA in years 1973, 1978 and 1983. For MSA-class regressions, Inventor controls
include the log of the number of inventors in the MSA-class in years 1973, 1978, and 1983 and the total number of inventors in
the MSA in 1983. Geography controls include the share of each MSA’s land that overlays an aquifer, MSA elevation, index of
MSA terrain ruggedness, and the number of MSA heating and cooling degree days. We add a 1 to all patent, citation, and
inventor count variables before taking the log to include observations with values of 0. Robust standard errors clustered at the
MSA-level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 6: Roads increase the number of patents that build upon local knowledge inputs

(1) (2) (3) (4)

Sample All Inventors Non-Moving Inventors
Subsample All Assignees New Assignees All Assignees New Assignees

Dependent Variable logSameMSApatentsm,c,1988

logHighway1983 0.177∗∗∗ 0.146∗∗∗ 0.059∗∗∗ 0.022∗∗

(0.042) (0.036) (0.023) (0.011)

Inventor Controls X X X X
Geography Controls X X X X
Class Fixed Effects X X

Observations 814 814 814 814
F-statistic 22.81 22.30 22.84 22.69
R2 0.826 0.821 0.693 0.437
Notes: The unit of analysis for all specifications is the MSA-class. All specifications are estimated by two-stage least squares
and control for the lagged dependent variables evaluated in 1983. Columns 1-2 consist of the full sample, while Columns 3-4
only include patents of inventors who did not move between 1983 and 1988. The odd columns include patents assigned to all
assignees, while the even columns only include assignees who are new to (have never been cited by) the citing inventors.
logSameMSApatentsm, c, t refers to the number of patents in MSA-class m, c that cite at least one patent in the same MSA m.
logHighwaym,1983 refers to the 1983 level of interstate highway kilometers in the MSA m. The endogenous variable
logHighwaym,1983 is instrumented with logHighwayPlanm,1947, logRailm,1898, and logExplorationIndexm. Inventor controls
include the log of the number of inventors in the MSA-class in years 1973, 1978, and 1983 and the total number of inventors in
the MSA in 1983. Geography controls include the share of each MSA’s land that overlays an aquifer, MSA elevation, index of
MSA terrain ruggedness, and number of MSA heating and cooling degree days. We add a 1 to all patent, citation, and
inventor count variables before taking the log to include observations with values of 0. Robust standard errors clustered at the
MSA-level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 7: Roads increase the geographic distance of local knowledge inputs – Patent-level
analysis

(1) (2) (3) (4)
Dependent Variable logDistancepq logDistancepq logDistancepq logDistancepq

other MSAs

logHighwaym,1983 0.407∗∗∗ 0.447∗∗∗ 0.126∗∗∗ −0.006
(0.061) (0.060) (0.049) (0.030)

Citing Patent Class Fixed Effects X X X X
Cited Patent Class Fixed Effects X X X X
Cited Patent Year Fixed Effects X X X X
Geography Controls X X X
Inventor Controls X X

Observations 9141 9141 9141 7593
R2 0.129 0.142 0.176 0.155
F-stat 48.99 65.98 10.55 14.01
Notes: The unit of analysis for all specifications is the citing patent p - cited patent q dyad. All specifications are estimated
by two-stage least squares. The sample consists of all citations made to patents in the same MSA by patents applied for (and
subsequently granted) in 1988. logDistancepq refers to the distance in kilometers between the first inventors of the citing
patent p and cited patent q. The dependent variable in Column 4 consists of the mean distance of within-MSA citations for
all patents applied for in 1988 (and subsequently granted) that are in the same technology class but in different MSAs from
the focal MSA. logHighwaym,1983 refers to the 1983 level of interstate highway kilometers in the MSA. The endogenous
variable logHighwaym,1983 is instrumented with logHighwayPlanm,1947, logRailm,1898, and logExplorationIndexm. Inventor
controls include the log of the number of inventors in the MSA-class in years 1973, 1978, and 1983 and the total number of
inventors in the MSA in 1983. Geography controls include the share of each MSA’s land that overlays an aquifer, MSA
elevation, index of MSA terrain ruggedness, and number of MSA heating and cooling degree days. We add a 1 to all inventor
count variables before taking the log to include observations with values of 0. We cluster robust standard errors at the
MSA-level and present them in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 8: Roads increase the probability of building upon local knowledge – Patent-level
analysis

(1) (2) (3) (4)
Estimation OLS IV

Dependent Variable 1(Citationpq)

logHighwaym,1983 0.030∗∗∗ 0.007∗∗ 0.035∗∗∗ 0.012∗∗∗

(0.009) (0.004) (0.009) (0.004)

logDistance −0.077∗∗∗ −0.083∗∗∗ −0.078∗∗∗ −0.083∗∗∗

(0.012) (0.013) (0.012) (0.013)

Citing Patent Class Effects X X X X
Cited Patent Class Effects X X X X
Cited Patent Year Effects X X X X
Inventor Controls X X
Geography Controls X X

Observations 18282 18282 18282 18282
R2 0.038 0.041 0.038 0.041
F-stat 45.63 10.53
Notes: The unit of analysis for all specifications is the citing patent p - cited patent q dyad. Columns 1-2 and 3-4 are
estimated by ordinary and two-stage least squares, respectively. The sample consists of all citations made to patents in the
same MSA by patents applied for (and subsequently granted) in 1988. For each realized citing-cited patent dyad, we also
identify a control cited patent that has the same application year and three-digit USPTO technology classification as the
realized cited patent but was not cited by the focal citing patent. The dependent variable is a dummy set to 1 if the citing
patent - cited patent dyad is a realized citation and 0 if the citing patent - cited patent dyad is a control dyad. By
construction the mean of Citation is 0.5. logHighway1983 refers to the 1983 level of interstate highway kilometers in the MSA.
The endogenous variable logHighwaym,1983 is instrumented with logHighwayPlanm,1947, logRailm,1898, and
logExplorationIndexm. logDistance refers to the distance in kilometers between the first inventors of the citing and cited
patents. Inventor controls include the log of the number of inventors in the MSA-class in years 1973, 1978, and 1983 and the
total number of inventors in the MSA in 1983. Geography controls include the share of each MSA’s land that overlays an
aquifer, MSA elevation, index of MSA terrain ruggedness, and the number of MSA heating and cooling degree days. We add a
1 to all inventor count variables before taking the log to include observations with values of 0. We cluster robust standard
errors at the MSA-level and present them in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

43



Table 9: Roads have the biggest impact on citations with high velocity technologies and
when stars live in the MSA

(1) (2) (3) (4)
Sample Low Velocity High Velocity MSAs MSAs

Classes Classes without Stars with Stars

Dependent Variable logCitesm,c,1988

logHighwaym,1983 0.107 0.725∗∗∗ 0.293 0.352∗∗

(0.173) (0.263) (0.250) (0.166)

Class Fixed Effects X X X X
Inventor Controls X X X X
Geography Controls X X X X
Population Controls X X X X

Observations 572 242 307 507
R2 0.741 0.683 0.425 0.758
F-stat 12.92 10.29 10.71 11.33
Notes: All specifications are estimated by two-stage least squares and control for the lagged dependent variables evaluated in
1983. logCitesm,c,t refers to the citation-weighted count of patents applied for (and subsequently granted) in period t for MSA
m in class c. Using the Hall et al. (2001) NBER technology categories, we classify the Chemicals, Drugs & Medical,
Mechanical, and Other categories as low velocity and the Computer & Communications and Electrical & Electronic categories
as high velocity. In addition, we identify all inventors above the 90th percentile in the citation-weighted patenting distribution
of the focal technology class in 1983. Columns (3) and (4) include all MSA-classes that do not have any stars and those that
do, respectively. logHighwaym,1983 refers to the 1983 level of interstate highway kilometers in the MSA. The endogenous
variable logHighwaym,1983 is instrumented with logHighwayPlanm,1947, logRailm,1898, and logExplorationIndexm. For MSA
regressions, Inventors controls include log of the inventors in the MSA in years 1973, 1978 and 1983. For MSA-class
regressions, Inventor controls include the log of the number of inventors in the MSA-class in years 1973, 1978, and 1983 and
the total number of inventors in the MSA in 1983. Geography controls include the share of each MSA’s land that overlays an
aquifer, MSA elevation, index of MSA terrain ruggedness, and number of MSA heating and cooling degree days. Population
controls include the log of the MSA’s population in 1920, 1930, 1940, 1950, 1960, and 1970. We add a 1 to all patent, citation,
and inventor count variables before taking the log to include observations with values of 0. We cluster robust standard errors
at the MSA-level and present them in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 10: Roads have the biggest impact on citations in low-density MSAs and on the
activity of small firms

(1) (2) (3) (4)
Sample Low Density High Density Small Large

MSAs MSAs Firms Firms

Dependent Variable logCitesm,c,1988

logHighwaym,1983 0.506∗∗∗ 0.188 0.399∗∗∗ 0.169
(0.121) (0.136) (0.098) (0.104)

Class Fixed Effects X X X X
Inventor Controls X X X X
Geography Controls X X X X
Socio-economic Controls X X X X

Observations 370 444 814 814
R2 0.586 0.808 0.699 0.704
F-stat 42.42 15.61 23.14 22.03
Notes: All specifications are estimated by two-stage least squares and control for the lagged dependent variables evaluated in
1983. logCitesm,c,t refers to the citation-weighted count of patents applied for (and subsequently granted) in period t for each

MSA-class. Columns (1) and (2) include MSAs that are below and above the mean inventor density (
inventorsm,1983

miles2m
),

respectively. Column (3) only includes patents produced by small firms (below the 75th percentile of the firm-size
distribution; approximately five or fewer inventors). Column (4) includes patents produced by large firms (above the 97th
percentile of the firm-size distribution; approximately 54 or more inventors). Both firm-size constructions follow Agrawal et al.
(2014). logHighwaym,1983 refers to the 1983 level of interstate highway kilometers in the MSA. The endogenous variable
logHighwaym,1983 is instrumented with logHighwayPlanm,1947, logRailm,1898, and logExplorationIndexm. For MSA
regressions, Inventor controls include the log of the number of inventors in the MSA in years 1973, 1978 and 1983. For
MSA-class regressions, Inventor controls include the log of the number of inventors in the MSA-class in years 1973, 1978, and
1983 and the total number of inventors in the MSA in 1983. Geography controls include the share of each MSA’s land that
overlays an aquifer, MSA elevation, index of MSA terrain ruggedness, and number of MSA heating and cooling degree days.
Socio-economic controls (from the 1980 census) include the share of the poor population in the MSA, the share of college
graduates, the share of population employed in manufacturing, mean income in the MSA, and a measure of housing
segregation computed by Cutler and Glaeser (1997). We add a 1 to all patent, citation, and inventor count variables before
taking the log to include observations with values of 0. Robust standard errors clustered at the MSA-level are in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 11: Structural decomposition of the impact of roads on labor productivity

Model Road Elasticity Competitive Productivity Productivity Effect
of Wages Effect Effect Explained by Innovation

(percent)

Baseline 0.20 −0.22 0.42 19

Migration −0.06 −0.22 0.16 50

Inventors 0.20 −0.22 0.42 21

Migration + Inventors −0.06 −0.22 0.16 56
Notes: The table presents the estimates from three alternative structural models decomposing the impact of roads on wages
through their interaction with labor competition and labor productivity. The last column of the table indicates the percentage
of the productivity effect explained by greater innovation (as opposed to labor agglomeration).
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A Model Extensions

A.1 Microfounding Migration Decisions

Our first extension will relax the inelastic labor supply function (7) microfounding the work-

ers’ migration process. Following Duranton and Turner (2012), we assume that there is a

pool of people in the rural area that receive utility U and that cities draw their new workers

from this rural pool. Duranton and Turner (2012) explain how this assumption is consistent

with US data showing that most immigration into cities is drawn from rural areas and from

abroad.

We also extend (4) to allow roads to increase the attractiveness of a city by reducing

travel costs:

U(w,M,R) = lnw + lnM + t lnR.

This assumption, together with the effect of roads on productivity, triggers immigration to

the city. In the baseline model, this mechanism is implicitly assumed in the reduced form

equation (7).

Equalization of utility between residents and non-residents implies the following labor

supply equation:

lnw = U −M − t lnR. (A.1)

Differentiating the labor demand, together with (6) and (8), gives:

d lnw

d lnR
=

σ

1 − α

d lnL

d lnR
+

ζθ

1 − α
− β

1 − α

d lnL

d lnR
,

which includes the three effects derived in the baseline model. Formula (A.1) implies that

d lnw/d lnR = −t, which Duranton and Turner (2012) estimate to be equal to -0.06. Our

estimates, together with those in Duranton and Turner (2012), imply an innovation effect

equal to 0.08 and a competitive effect equal to -0.22. This implies that the positive ag-

glomeration effect is 0.08 (and the implied agglomeration parameter is σ = 0.17).With this

parametrization for σ, we estimate that, excluding the competitive effect, the combined (ag-
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glomeration and patenting) positive impact of roads on wages is 0.16 and that knowledge

flows account for 50% of this effect. The overall impact of roads on wages is negative, but

in this model it cannot be interpreted as an impact on welfare. In fact, by construction, in

this model the effect on welfare of an increase in roads is zero.

A.2 Agglomeration affects Patenting

Our second extension considers a different patent production function (8), allowing agglom-

eration forces to affect patenting. Specifically, we assume:

lnP = θ lnR + λ lnL.

Combining this formula with (7), (6), and (5), we obtain:

d lnw

d lnR
=

ζθ

1 − α
+

ζλµ

1 − α
− βµ

1 − α
+

µσ

1 − α
.

We set λ = 0.17, which is the coefficient we estimate when we regress patenting on

roads and the number of inventors in 1983.1 Following Duranton and Turner (2012), we set

d lnw/d lnR = 0.2 and obtain σ = 0.7 and a total patenting effect of (first and second term)

equal to 0.09 (split between a direct effect of roads 0.08 and a labor effect of 0.01) and an

additional agglomeration effect of 0.33. This implies that roads have a total positive effect

on wages of 0.42 and that the knowledge channel accounts for 21% of this effect.

A.3 Combining the two extensions

Combining the two previous extensions, we obtain the following model:

1Interestingly, we obtain a very similar coefficient if we replace MSA inventors in 1983 with the total
MSA employment in 1983.
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U = lnw +M + t lnR

lnw = Θ − β

1 − α
lnL+

1

1 − α
lnA

lnA = ζ lnP + σ lnL

lnP = θ lnR + λ lnL

Setting t = 0.06, λ = 0.17, and calibrating the other parameters as in our baseline model,

we obtain σ = 0.15. The total patenting effect is equal to 0.09 (split between a direct effect

of roads 0.08 and an agglomeration effect of 0.01), and the additional agglomeration effect

is 0.07. This implies that roads have a total positive effect on wages of 0.16 and that the

knowledge channel accounts for 56% of this effect.
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B Additional Empirical Results

B.1 Robustness Checks

We perform a variety of tests to confirm the robustness of our main finding. Our baseline

model includes the lagged dependent variable. Wooldridge (2002) argues that such controls

can be a useful proxy variable to address omitted variable bias. Nonetheless, correlation

between lagged innovation and unobserved heterogeneity may also impact our estimates. To

address this issue, in Column (1) of Appendix Table B.3, we show that results are similar

in magnitude if we remove the lagged dependent variable. Consequently, we see that a 10%

increase in highway stock caused a 4.1% increase in the level of citation-weighted patents

at the MSA-class.2 To further address the issue of unobserved heterogeneity, Columns (2)

and (3) present results where the effect of highways on the growth of citation-weighted

patents are robust to both the inclusion of state and state-class fixed effects, respectively.

Column (4) presents results where we remove the five largest patenting MSAs (San Francisco,

Boston, New York City, Chicago, and Los Angeles). The results are robust to their exclusion,

suggesting that our findings are not driven by patenting activity in a few large MSAs.3

We also conduct a series of additional robustness checks that we report in Appendix

Table B.4. First, in moving to the disaggregated MSA-class level, we drop observations with

no inventors. In Column (1), we show that results are similar using a balanced sample that

includes all the technology classes for each MSA. In Column (2), we show that results are

robust to controlling for detailed MSA socio-economic variables from the 1980 census to

control for MSA heterogeneity in human capital and productivity: the share of poor popu-

lation, the share of college graduates, the share of population employed in manufacturing,

and mean income. We also control for a segregation index that is based on the measure of

housing segregation computed by Cutler and Glaeser (1997) and add nine census division

dummies to our set of socioeconomic variables. In Column (3), we control for historical levels

2Results are also similar if we keep the lagged dependent variable but use the historical variables in a
2SLS model to instrument for both the highway measure and the lagged dependent variable.

3We confirm the results in citation-weighted regressions that exclude self-citations by the assignee and lo-
cal citations. Results are robust to dropping the MSA-classes with zero-value observations and to controlling
for the number of towns within an MSA.
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in the total number of inventors in the MSA on top of the historical levels for the MSA-class

and controls for the MSA population for each decade from 1920 to 1950. In Column (4) we

collect data from the US Geological Survey of 2015 and include a control for the number of

canals present in 1983. The estimated highway effect is robust with stable coefficients across

all of these different specifications.4

Building on Glaeser et al. (2012), we also construct a Bartik-style measure of projected

citations in 1988 interacting the 1973 ratio between citations in the focal MSA and 1973

citations in other MSAs with the citation growth nationally outside of the focal MSA. We

use this Bartik measure to conduct a number of (unreported) experiments. First, we show

that results are robust to including this additional control. Second, we use the projected

cites as dependent variable for a placebo test. We find no effect of the exogenous change

in highway on the projected citations growth constructed from national trends of patent-

ing. This provides additional evidence that the impact of transport infrastructure is not

confounded by technology trends at the national level.

B.2 Roads and ICT

Following previous literature, our analysis focuses on the effect of interstate highways on

the growth of innovation activity in the period 1983-1988, which precedes the large-scale

diffusion of the internet and other information and communication technologies (ICT). In

principle, access to ICT may amplify or reduce the effect of roads depending on whether

face-to-face interactions and ICT are complements or substitutes in knowledge production.

We explore this issue with two distinct approaches. First, we contrast the magnitude

of the effect across different time periods. Figure B.1 depicts the effects of the 1983 high-

way stock on the growth of citation weighted patent counts for four different time periods:

1983-88, 1988-93, 1993-98, and 1998-2003. While the magnitude of the effect of transport

4In a number of unreported regressions, we also examine robustness of our baseline specification in the
smaller sample with MSA-level observations. Results are similar when we add socioeconomic variables and
census division dummies. Despite the large number of controls in these regressions, the magnitude of the
highway effect is similar and the coefficient is statistically significant at the 0.05 level. Our baseline results
are also unaffected if we include a dummy for MSAs belonging to multiple states or additional controls for
the presence of water in the region.
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infrastructures declines over time, the 1983 highway stock appears to have a long-lasting

effect on innovation. For each of the estimates, we cannot reject at the 5 percent level that

they are equal to our baseline effect. This evidence supports the idea that the impact of

transportation infrastructure did not disappear in more recent time periods because of the

diffusion of ICT.5

Second, we collect data on the adoption of ICT across the MSAs in our sample. We

obtain ICT data from Forman et al. (2002), who construct measures of internet adoption

from the Harte Hanks Market Intelligence Survey covering 86,879 U.S. commercial estab-

lishments with 100 or more employees at the end of 2000. These data provide two measures

of internet adoption at the MSA level. The first measure, basic, captures the fraction of

establishments in the MSA that have invested in basic internet communication tools such as

email use, browsing, and passive document sharing. The second measure, enhanced, captures

the fraction of MSA establishments adopting more advanced internet technology enhancing

business processes. These are internet technologies required to change existing internal op-

erations or to implement new services. The survey data cover the year 2000. To this end, we

re-estimate our baseline model on the decade 1993-2003. More specifically, we look at the

impact of the 1993 interstate highway stock on the growth in citation-weighted patents for

the decade 1993-2003. The estimated coefficient in this regression is 0.189 (p < 0.02), which

is in line with our baseline estimates. In Column (1) of Table B.5, we extend the model to

include the aforementioned internet measures. Our findings on the positive impact of trans-

port infrastructure on innovation is robust. Coefficients are statistically and quantitatively

similar to those in the baseline model.

We also run a number of additional regressions to assess whether the effect of highways

differs with the level of ICT usage in the MSA. In most of the regressions we run, we find

no significant effect for the interaction of highway stock with the level of adoption of basic

internet technologies or enhanced adoption. One possible explanation for this result is that

the interaction effect may be highly non-linear, where only very intense ICT adoption affects

5We also compare the impact of the 1993 highway stock with the 1983 stock. We find a positive and
statistically significant effect for 1993 highways and cannot reject that it is equal to the effect of the 1983
stock.
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the role of transport infrastructures. To explore this idea, we generate a dummy variable

high which equals 1 if the share establishments adopting enhanced ICT is above the 95th

percentile of the sample. Column (2) of Table B.5 shows a positive interaction between

high and the highway measure. This result is consistent with the findings of Agrawal and

Goldfarb (2008) documenting the existence of complementarities in knowledge production

between face-to-face interactions and ICT. Of course, ICT adoption is endogenous, so we do

not claim that this effect is causal. Nonetheless, these regressions provide additional support

for the idea that transportation infrastructures continue having an impact on innovation

even with the diffusion of ICT.

Figure B.1: Effect of 1983 Highway Stock Across Different Time Periods

-.4
-.2

0
.2

.4
.6

83-88 88-93 93-98 98-03
Growth in Citations

Notes: This figure graphically displays the point estimates of the effect of 1983 highways on the growth in citation-weighted
patents counts over four different time periods: 1983-1988, 1988-1993, 1993-1998, and 1998-2003. We estimate the following
specification: logCitesm,c,t+5 − logCitesm,c,t = α+ β logHighwaysm,1983 + (γ − 1) logCitesm,c,t + φXm + δc + εm,c where
t ∈ {1983, 1988, 1993, 1998}. The bars correspond to 95% confidence intervals. To avoid truncation issues, we only look at
citations to patents in the focal year that were made within the first five years.
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Table B.3: Results are robust to the inclusion of state and state-class dummies and the
exclusion of the lagged DV and large cities

(1) (2) (3) (4)
Dependent Variable logCitesm,c,1988

logHighwaym,1983 0.415∗∗∗ 0.358∗∗∗ 0.321∗∗∗ 0.344∗∗∗

(0.102) (0.109) (0.110) (0.106)

logCitesm,c,1983 0.284∗∗∗ 0.279∗∗∗ 0.307∗∗∗

(0.052) (0.062) (0.051)

Class Fixed Effects X X X X
Inventor Controls X X X X
Geography Controls X X X X
State Fixed Effects X
State-Class Fixed Effects X
Drop SF, BOS, NYC, CHI, LA X

Observations 814 814 814 784
R2 0.685 0.747 0.800 0.667
F-stat 22.52 18.81 15.04 22.82
Notes: The unit of analysis for all specifications is the MSA-class. All specifications are estimated by two-stage least squares
and control for the lagged dependent variables evaluated in 1983. logCitest refers to the citation-weighted count of patents
applied for (and subsequently granted) in period t for each MSA-class. logHighway1983 refers to the 1983 level of interstate
highway kilometers in the MSA. The endogenous variable logHighway1983 is instrumented with logHighwayPlan1947,
logRail1898, and logExplorationIndex. Inventor controls include the log of the number of inventors in the MSA-class in years
1973, 1978, and 1983 and the total number of inventors in the MSA in 1983. Geography controls include the share of each
MSA’s land that overlays an aquifer, MSA elevation, index of MSA terrain ruggedness, and the number of MSA heating and
cooling degree days. We add a 1 to all patent, citation, and inventor count variables before taking the log to include
observations with values of 0. Robust standard errors clustered at the MSA-level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table B.4: Results are robust to socio-economic, census division, MSA inventor, and popu-
lation controls

(1) (2) (3) (4)
Dependent Variable logCitesm,c,1988

logHighwaym,1983 0.313∗∗∗ 0.377∗∗∗ 0.331∗∗ 0.346∗∗∗

(0.105) (0.111) (0.165) (0.103)

logCanalsm,1983 0.087
(0.068)

Class Fixed Effects X X X X
Inventor Controls X X X X
Geography Controls X X X X
Socio-economic Controls X
Census Division Controls X
MSA Inventor Controls X
Population Controls X

Observations 1320 814 814 814
R2 0.722 0.732 0.715 0.715
F-stat 22.02 21.73 12.13 22.73
Notes: The unit of analysis for all specifications is the MSA-class. All specifications are estimated by two-stage least squares
and control for the lagged dependent variables evaluated in 1983. logCitest refers to the citation-weighted count of patents
applied for (and subsequently granted) in period t for each MSA-class. logPatentst refers to the count of patents applied for
(and subsequently granted) in period t for each MSA-class. logHighway1983 refers to the 1983 level of interstate highway
kilometers in the MSA. logCanalsm,1983 is the count of the number of canals in MSA m in 1983. The endogenous variable
logHighway1983 is instrumented with logHighwayPlan1947, logRail1898, and logExplorationIndex. Inventor controls include the
log of the number of inventors in the MSA-class in years 1973, 1978, and 1983 and the total number of inventors in the MSA
in 1983. Geography controls include the share of each MSA’s land that overlays an aquifer, MSA elevation, index of MSA
terrain ruggedness, and the number of MSA heating and cooling degree days. Socio-economic controls (from the 1980 census)
include the share of the poor population in the MSA, the share of college graduates, the share of population employed in
manufacturing, mean income in the MSA, and a measure of housing segregation computed by Cutler and Glaeser (1997).
Census division controls include dummy variables for each of the nine census division. MSA Inventor controls include the log
of the number of inventors in the MSA in years 1973, 1978, and 1983. Population controls include the log of the MSA’s
population in 1920, 1930, 1940, and 1950. We add a 1 to all patent, citation, and inventor count variables before taking the
log to include observations with values of 0. Robust standard errors clustered at the MSA-level are in parentheses. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B.5: Results are robust to controlling for MSA-level ICT adoption

(1) (2)
Dependent Variable logCitesm,c,2003 logCitesm,c,2003

logHighwaym,1993 0.190∗∗ 0.145∗∗

(0.086) (0.071)

logCitesm,c,1993 0.488∗∗∗ 0.485∗∗∗

(0.048) (0.048)

basicm −0.251 −0.155
(0.849) (0.852)

enhancedm 0.877 2.090
(1.819) (1.816)

highm −2.867
(1.750)

logHighwaym,1993 × highm 0.483∗

(0.285)

Class Fixed Effects X X
Inventor Controls X X
Geography Controls X X

Observations 814 814
R2 0.789 0.790
F-stat 25.82 16.21
Notes: The unit of analysis for all specifications is the MSA-class. All specifications are estimated by two-stage least squares
and control for the lagged dependent variables evaluated in 1993. logCitest refers to the citation-weighted count of patents
applied for (and subsequently granted) in period t for each MSA-class logHighway1993 refers to the 1993 level of interstate
highway kilometers in the MSA. basic is the percentage of establishments in the MSA that have invested in basic internet
communication tools. enhanced is the percentage of establishments in the MSA that have adopted more advanced internet
technology enhancing business processes. Both of these measures come from survey data in 2000. high is set to 1 for MSAs
above the 95th percentile of enhance. The endogenous variable logHighway1993 is instrumented with logHighwayPlan1947,
logRail1898, and logExplorationIndex. Inventor controls include the log of the number of inventors in the MSA-class in years
1973, 1978, and 1983 and the total number of inventors in the MSA in 1983. Geography controls include the share of each
MSA’s land that overlays an aquifer, MSA elevation, index of MSA terrain ruggedness, and the number of MSA heating and
cooling degree days. We add a 1 to all patent, citation, and inventor count variables before taking the log to include
observations with values of 0. Robust standard errors clustered at the MSA-level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.

Table B.6: Mean Distances for Observed and Simulated Citations by Highway Tercile

Interstate Highways Stock Mean Observed Mean Simulated
logDistance of logDistance of Difference
local citations local citations

MSA-classes in 1st tercile 1.37 2.00 0.63

MSA-classes in 2nd tercile 1.95 2.49 0.54

MSA-classes in 3rd tercile 2.69 3.07 0.39
Notes: The table presents results from the comparison of mean logDistance of observed citations by highway stock tercile with
simulated distances. See Section 6.1 for addition details.
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Table B.7: Growth in Employment and Population Does Not Explain Highway Effect

(1) (2) (3) (4)

Dependent Variable logCitesm,1993 - logCitesm,1983

logHighwaym,1983 0.246∗∗ 0.219∗∗ 0.218∗∗ 0.193∗∗

(0.103) (0.095) (0.096) (0.088)

logEmploymentm,1993 - 1.628∗∗∗ 1.089∗∗∗ 0.022
logEmploymentm,1983 (0.354) (0.423) (0.284)

logPopulationm,1990 - 1.215∗∗∗ 0.972∗∗∗

logPopulationm,1980 (0.446) (0.328)

logInventorsm,1993 - 0.983∗∗∗

logInventorsm,1983 (0.086)

Inventor Controls X X X X
Geography Controls X X X X

Observations 220 220 220 220
R2 0.171 0.264 0.284 0.624
F-stat 23.22 23.53 23.82 24.14
Notes: All specifications are estimated by two-stage least squares. logCitesm,t refers to the citation-weighted count of patents
applied for (and subsequently granted) in period t for each MSA. logHighwaym,1983 refers to the 1983 level of interstate
highway kilometers in the MSA. logEmploymentm,t is the employment count in year t in MSA m. logPopulationm,t is the
population of MSA m in year t and logInventorsm,t is the number if patenting inventors in MSA m in year t. The endogenous
variable logHighwaym,1983 is instrumented with logHighwayPlanm,1947, logRailm,1898, and logExplorationIndexm. For MSA
regressions, Inventor controls include the log of the number of inventors in the MSA in years 1973, 1978 and 1983. For
MSA-class regressions, Inventor controls include the log of the number of inventors in the MSA-class in years 1973, 1978, and
1983 and the total number of inventors in the MSA in 1983. Geography controls include the share of each MSA’s land that
overlays an aquifer, MSA elevation, index of MSA terrain ruggedness, and number of MSA heating and cooling degree days.
We add a 1 to all patent, citation, and inventor count variables before taking the log to include observations with values of 0.
Robust standard errors clustered at the MSA-level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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