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1 Basic algebraic geometry

1.1 Affine varieties over algebraically closed fields

We denote by k̄ an algebraically closed field.

Definition 1.1. For a subset S ⊂ k̄[t1, . . . , tn] we let V (S) = {x ∈ k̄n|F (x) = 0 ∀F ∈ S}.

It is clear that an inclusion S1 ⊂ S2 yields V (S2) ⊂ V (S1). Without loss of generality we can
assume S to be an ideal, as shown by the following lemma.

Lemma 1.2. Let I ⊂ k̄[t1, . . . , tn] be the ideal generated by S ⊂ k̄[t1, . . . , tn]. Then we have
V (S) = V (I).

Proof. If x ∈ k̄n is a common zero of f ∈ S then also for every g ∈ I = (S). This shows
V (S) ⊂ V (I). On the other hand, the inclusion S ⊂ I implies V (I) ⊂ V (S).

Corollary 1.3. Let S ⊂ k̄[t1, . . . , tn] be an arbitrary subset. Then there exists a finite subset
T ⊂ k̄[t1, . . . , tn], such that V (S) = V (T ).

Proof. As above we denote by I = (S) the ideal generated by S. The ring k̄[t1, . . . , tn] is Noetherian,
that is, every ideal is finitely generated (see Hilbert’s basis theorem [Row06, Theorem 7.18]). We
conclude that there exists a finite subset T ⊂ k̄[t1, . . . , tn], such that I = (T ). According to Lemma
1.2 we have V (S) = V (I) = V (T ).

Definition 1.4. A subset X ⊂ k̄n is called an affine variety if there exists an ideal I ⊂ k̄[t1, . . . , tn],
such that X = V (I).

By the corollary above, an affine variety is defined by finitely many equations.

Definition 1.5. The subset k̄n ⊂ k̄n is an affine variety (it corresponds to I = {0}), it will be
referred to as affine n-space and denoted by Ank̄ .

Henceforth, we denote by X ⊂ Ank̄ a fixed affine variety.

Definition 1.6. A function f : X //A1
k̄ is called regular if there exists a polynomial F ∈ k̄[t1, . . . , tn],

such that for all x ∈ X we have f(x) = F (x).

It is clear that the sum and product of two regular functions is again regular. In particular
we see that the set of regular functions on X has a ring structure where the unit is given by the
constant function x 7→ 1.

Definition 1.7. We denote the ring1 of regular functions on X by O(X).

1In these lecture notes the word ring exclusively refers to commutative and unital rings.
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Definition 1.8. For a subset Z ⊂ k̄n we denote by IZ the subset

{f ∈ k̄[t1, . . . , tn|f(x) = 0 ∀x ∈ Z]} ⊂ k̄[t1, . . . , tn].

A direct computation shows that IZ is an ideal.

Lemma 1.9. For an affine variety X ⊂ Ank̄ we have O(X) ' k̄[t1, . . . , tn]/IX .

Proof. We denote by Fun(X) the ring of arbitrary maps X // k̄. There is a ring homomorphism

Φ: k̄[t1, . . . , tn] // Fun(X)

which sends a polynomial F ∈ k̄[t1, . . . , tn] to the map f : x 7→ F (x). By definition, the image of Φ
is the ring of regular functions O(X). We conclude that O(X) is a quotient of k̄[t1, . . . , tn].

The following statement might seem obvious, but is far from being a tautology.

Proposition 1.10. The ring of regular functions on Ank̄ is isomorphic to k̄[t1, . . . , tn].

We’ll give the full proof below, but let’s see first what goes into it. We already know that O(Ank̄ )
is a quotient of k̄[t1, . . . , tn]. Let I be the kernel of the quotient map. We want to show that I is
the zero ideal. This amounts to the assertion that non-zero polynomial induces a non-zero regular
function.

Proposition 1.11 (Weak Nullstellensatz). The assertion V (I) = ∅ is equivalent to I = k̄[t1, . . . , tn].

Proof. We prove the contrapositive: V (I) 6= ∅ is equivalent to 1 /∈ I. It is clear that if ∃x ∈ V (I)
then 1 /∈ I (as 1 corresponds to the constant function with value 1 which is nowhere zero).

Lemma 1.12. Let I be an ideal, such that 1 /∈ I, then there exists a maximal ideal m ⊃ I.

We leave the proof of this lemma as an exercise to the reader. It’s an application of Zorn’s
lemma (and hence the axiom of choice). The quotient ring K = k̄[t1, . . . , tn]/m is a field. We have
a ring homomorphism k̄ // L (which is injective, because k̄ is a field). The field extension L/k̄ is
finitely generated by the images of t1, . . . , tn.

Lemma 1.13 (Proposition 7.9 in [AM94] or Theorem 5.11 in [Row06]). A field extension L/K which
is finitely generated as a ring extension (that is, L is a quotient of a polynomial ring K[t1, . . . , tn])
is finite: the field L is a finite-dimensional K-vector space.

We deduce from this that L/k̄ is a finite field extension. However, by assumption k̄ is alge-
braically closed, and therefore the only finite over-field of k̄ is k̄ itself.

Therefore, we have a morphism φ : k̄[t1, . . . , tn] // k̄[t1, . . . , tn]/I // k̄. Let us denote by xi ∈ k̄
the image φ(ti). By definition, this

Remark 1.14. The weak Nullstellensatz is the reason for us to work with algebraically closed fields.
For k = R the polynomial t2 + 1 generates a proper ideal I satisfying V (t2 + 1) = ∅. We’ll see
below (1.22) that for algebraically closed fields k̄ we get a perfect correspondence between (so-called
reduced ideals) and affine varieties X ⊂ Ank̄ .

We can now turn to the proof of the proposition above.
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Proof of Proposition 1.10. Let F ∈ k̄[t1, . . . , tn] be a polynomial, such that the induced map k̄n //k̄
is the zero map. We consider G = F + 1. By assumption, V (G) = ∅. By virtue of the Weak
Nullstellensatz 1.11 we have (G) = k̄[t1, . . . , tn]. In particular, there exists a polynomial H ∈
k̄[t1, . . . , tn], such that GH = 1. This implies that G is a constant, and hence G = 1. We conclude
F = 0.

A more prominent application of the Weak Nullstellensatz is the Nullstellensatz. For an ideal
J ⊂ R we write

√
J to denote the radical of J , that is the ideal given by the subset {x ∈ R|∃n ∈

N : xn ∈ I}. Recall the ideal IZ for a subset Z ⊂ k̄n introduced in Definition 1.8.

Theorem 1.15 (Nullstellensatz). For an ideal J ⊂ k̄[t1, . . . , tn] one has

IV (J) =
√
J.

Proof. We use the Rabinowitsch trick to reduce the theorem to the weak version 1.11. Let I ⊂
k̄[t1, . . . , tn] an ideal. Since k̄[t1, . . . , tn] is Noetherian there exist finitely many generators I =
(F1, . . . , Fm). Let G ∈ k̄[t1, . . . , tn] be a polynomial, such that G vanishes on V (I).

We introduce an auxiliary variable t0. The (n + 1)-variable polynomials F0 = 1 − t0G, F1,
... Fm have the property that V (F0, . . . , Fn) = ∅. By the weak Nullstellensatz 1.11 we have
1 ∈ (F0, . . . , Fm). In particular there exist polynomials H0, . . . ,Hm, such that

m∑
i=0

HiFi = 1.

We substitute t0 = 1
G and obtain the following identity in k̄(t1, . . . , tn):

m∑
i=1

Hi(
1

G
, t1, . . . , tm)Fi = 1.

There exists a positive integer r, such that GrHi(
1
G , t1, . . . , tm) belongs to k̄[t1, . . . , tm] for all

i = 1, . . . ,m. This yields
m∑
i=1

GrHi(
1

G
, t1, . . . , tm)Fi = Gr,

and we conclude Gr ∈ I and thus G ∈
√
I.

Definition 1.16. If I is an ideal, such that
√
I = I we say that I is reduced.

The Nullstellensatz establishes a 1 : 1-correspondence between affine subvarieties X ⊂ Ank̄ and
reduced ideals.

Corollary 1.17 (The dictionary I). There is a bijection

{X ⊂ Ank̄ |affine variety} 1:1 //oo {I ⊂ k̄[t1, . . . , tn]|reduced ideal},

which is defined as
X 7→ IX ,

respectively
I 7→ V (I).

4



Proof. It suffices to check V (IX) = X and IV (I) = I. We know that X = V (I) for some ideal I.
By definition we have IX ⊃ I, and therefore X ⊂ V (IX) ⊂ V (I) = X. This establishes the first
equality. Vice versa, let I be a reduced ideal. By Theorem 1.15 we have IV (I) =

√
I = I.

Definition 1.18. A map f : Y // X between two varieties X ⊂ Ank̄ and Y ⊂ Amk̄ is called a
morphism (or a regular map), if for every i = 1, . . . , n the composition of f with the projection to
the i-th coordinate Ank̄ // A1

k̄

Y // A1
k̄

is a regular function. We write Mor(Y,X) ⊂ Map(Y,X) to denote the set of morphisms from Y
to X.

Definition 1.19. Let f : Y //X be an injective morphism of affine varieties. We say that Y is a
subvariety of X, if the composition f(Y ) ⊂ X ⊂ k̄n is an affine variety.

Lemma 1.20. Let f : Y //X be a morphism. Then we have for every regular function g ∈ O(X)
that g ◦ f is a regular function on Y . We denote the induced ring homomorphism O(X) // O(Y )
by f∗.

Proof. We know that this is true for the projections ei : Ank̄ // A1
k̄. Let us denote the composition

ei ◦ f by hi. There exists a unique ring homomorphism Φ: k̄[t1, . . . , tn] // O(X) sending ti 7→ hi
(this is just the universal property of polynomial rings).

Let’s turn to the general case. By assumption, there exists a polynomial G ∈ k̄[t0, . . . , tn], such
that g ∈ O(X) is induced by G. We claim that Φ(G) is a regular function, satisfying

Φ(G)(y) = g(f(y))

for all y ∈ Y . This is true as we have g(f(y)) = G(f(y)) = Φ(G)(y).

Definition 1.21. (a) Let R be a ring. An R-algebra consists of a ring S and a ring homomor-
phism R // S. A morphism of R-algebras S1

// S2 corresponds to a commutative diagram

R //

  

S1

��

S2.

(b) We say that an R-algebra S is finitely generated if there exists a surjection of R-algebras
R[t1, . . . , tn] � S.

(c) An ring (respectively an R-algebra) S is called reduced, if there are no nilpotent elements,
that is,

√
0 = (0).

Theorem 1.22 (The dictionary II). (a) The category of affine k̄-varieties and morphisms, Aff k̄
is equivalent of the opposite category of finitely generated reduced k̄-algebras Algred,fg

k̄
: that is,

for every pair of affine varieties X,Y we have isomorphisms

Mor(Y,X) ' Homk̄(O(X),O(Y )),

which respect identities and composition.
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(b) A point x ∈ X corresponds to a maximal ideal m ⊂ O(X).

(c) Subvariety Y ⊂ X correspond to reduced quotients O(X) � O(Y ), and thus to reduced ideals
I ⊂ O(X).

Proof. We have already constructed a map Mor(Y,X) // Hom(O(X),O(Y )), f 7→ f∗ which sends
identities to identities and respects composition (see Lemma 1.20).

Let X ⊂ An, in order to show injectivity of f 7→ f∗, assume that we have f, g ∈ Mor(Y,X),
such that f∗ = g∗. Let ei : Ank̄ // A1

k̄ be the regular function given by projection to the i-th
component. We then have by assumption f∗ei = g∗ei. That is, ei ◦ f = ei ◦ g. That is, f = g as
maps.

Vice versa, we can use a similar trick to show surjectivity. Let ϕ : O(X) // O(Y ) be an
abstract k̄-algebra homomorphism. We denote by f : X // Ank̄ the function corresponding to
(ϕ(e1), . . . , ϕ(en)) : Y // Ank̄ . By construction we have f(Y ) ⊂ X, hence f is a well-defined
morphism from Y to X. It remains to show f∗ = ϕ. By construction we have f∗(ei) = ϕ(ei) for
all i = 1, . . . , n. Since these elements generate the ring O(X) we conclude f∗ = ϕ. This proves (a).

Points x ∈ X correspond to morphisms A0
k̄

// X. By (a), they correspond to k̄-algebra
homomorphisms O(X) // O(A0

k̄) = k̄. Every such homomorphism is surjective, as k̄ ⊂ O(X).
Their kernel is therefore a maximal ideal m ⊂ O(X). Vice versa, given a maximal ideal m, the
quotient ring O(X)/m is a finitely generated field extension of k̄. By Zariski’s lemma 1.13 it is
equal to k̄.

The inclusion of a subvariety Y ⊂ X ⊂ Ank̄ gives rise to a commutative diagram

k̄[t1, . . . , tn] // //

&& &&

O(X)

��

O(Y ).

The ring homomorphisms originating from k̄[t1, . . . , tn] are surjective, hence the downward arrow
O(X) // O(Y ) is a surjection too.

Vice versa, if O(X) // O(Y ) is surjective, the composition k̄[t1, . . . , tn] // O(Y ) is surjective,
which shows that Y // Ank̄ is a subvariety. We conclude that Y //X is a subvariety. This proves
(c).

Corollary 1.23. Let x ∈ X and mx ⊂ O(X) be the corresponding maximal ideal. Then one has

mx = {f ∈ O(X)|f(x) = 0}.

Proof. By the dictionary, the subvariety x : A0
k̄

//X corresponds to an ideal I ⊂ O(X) which is
the kernel of the surjective map

x∗O(X) � k̄.

By definition, the map x∗ sends O(X) to f◦x = f(x). We conclude mx = {f ∈ O(X)|f(x) = 0}.

1.2 Affine varieties over non-algebraically closed fields

When the coefficients of a system of equations belong to a subfield k ⊂ k̄ it makes sense to expect
that the induced k̄-variety is deduced from an object one should refer to as a k-variety. The naive
analogue of our previous approach to define k-varieties as subsets of kn fails, as there are systems
of equations without any k-solutions. Instead we take one’s cue from the dictionary.
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Scholia 1.24. The dictionary allows us to change our viewpoint on affine varieties. Rather than
viewing them as subsets of k̄n we can define the category Aff k̄ as the opposite category of Algred,fg

k̄
.

A k-algebra R is said to be geometrically reduced if the base change R ⊗k k̄ is reduced. We
denote the corresponding category by Algg−red,fg

k .

Definition 1.25. (a) We define the category of k-varieties to be the opposite category of Algg−red,fg
k .

(b) We refer to the set of maximal ideals m of R ∈ Algred,fg
k as MSpecR. We also write MSpecR

to denote the k-variety corresponding to X.

(c) If we have a morphism of k-varieties Y // X, such that the corresponding map or rings
R1 � R2 is surjective, we say that Y is a subvariety of X.

The carefulness of restricting oneself to geometrically reduced k-algebras is only needed when
working with non-perfect fields. Henceforth, we assume that k is perfect.

Inspired by the dictionary we treat a maximal ideal m ∈ MSpecR as a point of X = MSpecR.

Definition 1.26. Let X = MSpecR and I ⊂ R an ideal. We denote by V (I) = {m ∈ MSpecR|I ⊂
m}.

Lemma 1.27. Let Y ⊂ X be a subvariety corresponding to a surjection of rings R1 � R2 with
kernel I. Then the set of points in Y corresponds to V (I).

Proof. This is a direct consequence of the following statement in commutative algebra. Let π : R1 �
R2 be a surjection of rings. Then we have a bijection

{m ∈ MSpecR2}
1:1 //oo {m ∈ MSpecR1|m ⊃ I},

where we send m ∈ MSpecR2 to π−1(m). We leave the proof to the reader.

Despite of the suggestive nature of the terminology “point”, we alert the readers that the points
of a k-variety might be unlike what they have seen before, and in fact, defy geometric intuition.
The following lemma shows that the points of affine k-space do not correspond to kn as one might
naively expect from the case of algebraically closed fields.

Lemma 1.28. We denote by Ank the k-variety given by the maximal spectrum of the ring k[t1, . . . , tn].
Let k̄ be an algebraic closure of k, then there is a bijection

MSpec k[t1, . . . , tn]
1:1 //oo k̄n/Aut(k̄/k).

Proof. For a maximal ideal m ⊂ k[t1, . . . , tn] we write Lm for the field k[t1, . . . , tn]/m. By virtue of
Zariski’s Lemma 1.13 Lm is a finite field extension of k. We choose an embedding Lm ↪→ k̄. The
set of such embeddings is acted on transitively by Aut(k̄/k). By composing with the quotient map
k[t1, . . . , tn] // Lm we obtain a ring homomorphism φmk[t1, . . . , tn] // k̄ which corresponds to a
tuple (x1, . . . , xn) ∈ k̄n. A different choice of an embedding into k̄ yields an n-tuple differing from
this one by an element of Aut(k̄/k). This concludes the proof.
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Definition 1.29. Let x ∈ X = MSpecR be a point of an affine k-variety corresponding to a
maximal ideal m ⊂ R. We define kx = R/m and call it the residue field at x. The degree of the
finite field extension kx/k (Zariski!) will be denoted by

deg(x) = [kx : k].

Let x ∈ Ank be a point, such that kx/k is Galois. Then the degree deg(x) equals the length of
the corresponding Galois orbit in k̄n (see Lemma 1.28).

One way to restore geometric intuition is to define points differently, using the following formal
trick.

Definition 1.30. Let R be a k-algebra and X = MSpecR an affine k-variety. The set of R-points
of X is defined to be the set of ring homomorphisms O(X) //R, and is denoted by X(R).

In the case of affine n-space Ank one has Ank (R) = Hom(k[t1, . . . , tn], R) = Rn. In particular, we
see that the set of k-points Ank (k) is in bijection with kn. If L/k is a finite field extension, then the
set of L-points corresponds to a pair (x, i), where x ∈ X and i : kx ↪→ L.

Later it will prove useful to have a notion of R-points for arbitrary k-algebras R, even for R
non-reduced.

Definition 1.31. We denote MSpec k[t1, . . . , tn] by Ank . A morphism f : X // A1
k is called a

regular function on X. We denote the set of regular functions by O(X).

Exercise 1.32. Show that for X = MSpecR we have a bijection O(X) ' R.

In particular, we conclude that O(X) is a ring.

1.3 The Zariski topology

Consider the affine k-variety corresponding to the k-algebra k[t, t−1]. We denote it by Gm,k =
MSpec k[t, t−1]. Equivalently we may say that this k-variety corresponds to the equation st = 1.
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(1)

Over an algebraically closed field k̄, this variety is given by the subset k̄2 consisting of tuples (x, y),
such that xy = 1. In particular, x 6= 0 and y = x−1. This shows that we have a bijection between
the set of points of Gm,k̄ and k̄× = k̄ \ {0}.

Let us describe the set of points of Gm,k for k a field. A maximal ideal m ⊂ k[t, t−1] gives
rise to a maximal ideal m′ = m ∩ k[t] ⊂ k[t, t−1]. Vice versa, given m′ ∈ MSpec k[t] we can
consider R[t, t−1]m′ ⊂ k[t, t−1]. The latter is a maximal ideal, if and only if t /∈ m′. We see that
MSpec k[t, t−1] = MSpec k[t] \ {(t)}. Geometrically, this corresponds to removing the subvariety
V (t) from A1

k, that is, the origin {0}.
Similarly, for a k-algebra R the set of R-points Gm,k(R) agrees with Hom(k[t, t−1], R) ' R×,

that is, the set of units in R. For R = k we have Gm,k(k) = k× = k \ {0}.

Definition 1.33. Let X be an affine variety. A subset U ⊂ X is said to be Zariski open, if
X \ U ⊂ X is a subvariety.

Exercise 1.34. (a) Show that Zariski open subsets of |X| define a topology on X.

(b) For f ∈ O(X) we denote by U(f) ⊂ X = MSpecO(X) the subset {m ∈ X|f /∈ m}. Show that

{U(f)|f ∈ O(X)}

defines a basis for the Zariski topology.

The Zariski open subsets U(f) are important as they are themselves affine varieties. For a ring
R and an element f ∈ R we denote by Rf the localisation R[f−1] = R[t]/(tf − 1).

Lemma 1.35. Let X = MSpecR be an affine variety, and let i : MSpecRf // MSpecR be the
morphism corresponding to the canonical ring homomorphism from R to the localisation Rf . Then,
i is injective and its image agrees with the Zariski open subset U(f).

9



Proof. We claim that the map m 7→ Rfm gives rise to a bijection

U(f)
1:1 //oo MSpecRf .

First of all let us check that Rfm is a maximal ideal in Rf .

Claim 1.36. The ideal Rfm ⊂ Rf is maximal.

Proof. One has 1 ∈ Rfm if and only if fn ∈ m for some positive integer n. Since maximal ideals
are reduced, this is the case if and only if f ∈ m. We have U(f) = {m ∈ MSpec(R)|f /∈ m}, and
therefore we may conclude 1 /∈ Rfm.

The quotient Rf/Rfm contains R/m = L as a subfield. By definition, one has Rf/Rfm =
L[f−1]. However, the element in L induced by f ∈ R is already invertible (as it is non-zero). This
shows Rf/Rfm = L, and therefore the quotient is a field, and we conclude that Rfm is a maximal
ideal.

This shows that the map U(f) // MSpecRf is well-defined.

Claim 1.37. We denote by m′ an element of MSpecRf . The map m′ 7→ m′ ∩R defines an inverse
to m 7→ Rfm.

Proof. It is clear that for m ∈ U(f) we have (Rfm) ∩ R ⊃ m. Since m is a maximal ideal, and
1 /∈ Rfm, we infer (Rfm) ∩R = m.

Vice versa, given m′ ∈ MSpecRf we certainly have Rf (m′ ∩ R) ⊂ m. Let y ∈ m′, we write
y = x

fr for r > 0. We conclude that fry ∈ R, and therefore that x ∈ Rf (m′ ∩ R). This shows

Rf (m′ ∩R) ⊃ m.

By combining the two assertions above we conclude the proof.

Zariski open subsets of the form U(f) are often referred to as standard (affine) open subsets.
Every open subset is a union of finitely many Zariski open subsets. For a Zariski open subset we
can write U = X \ V (I) where I ⊂ O(X) is an ideal. Since the k-algebra O(X) is Noetherian, we
may write I = (f1, . . . , fn) and therefore U =

⋃n
i=1 U(fi).

Definition 1.38. We refer to the underlying topological space of an affine variety by |X|.

The statement below looks like another property of Noetherian rings, but works for arbitrary
rings actually.

Proposition 1.39. The topological space |X| is quasi-compact. That is, for every open covering
|X| =

⋃
j∈J Uj there exists a finite subset J0 ⊂ J , such that X =

⋃
i∈J0

Uj.

Proof. Let Ij ⊂ O(X) be an ideal, such that Uj = X \ V (Ij) for all j ∈ J . By assumption we
have

⋂
j∈J V (Ij) = ∅. One has

⋂
j∈J V (Ij) = V (I) where I denotes the ideal generated by {Ij}j∈J .

Since V (I) = ∅, we conclude 1 ∈ I. This implies that there exists a finite linear combination

f1g1 + · · ·+ fngn = 1

with fi arbitrary and gi ∈ Iji for i = 1, . . . , n. This shows V (Ij1 + · · ·+ Ijn) = ∅ and therefore that
Uj1 , . . . , Ujn cover X.

10



Using that a Zariski open subset is a finite union of standard affine open subsets (which are
quasi-compact), we deduce the following statement.

Corollary 1.40. We denote by U ⊂ |X| the underlying topological space of a Zariski open subset.
It is quasi-compact.

1.4 Smooth varieties

Let k = C be the field of complex numbers. The standard topology on C refers to the metric
topology defined with respect to the metric d(z, w) = |z − w|. This terminology is necessary since
we could also identify C with A1

C and work with the Zariski topology.
An affine C-variety corresponds to a subset X ⊂ Cn defined by the common set of zeroes of

finitely many polynomials. The subset topology on X produces an interesting topological space
Xan, called the analytification of X. The topological spaces arising by this construction are always
Hausdorff and second-countable (since Cn has this property).

Under some additional assumption on X one can show that Xan has the structure of a complex
manifold. Let us recall what this means: there exists a covering of X by open subsets {Ui}i∈I , such
that there are homeomorphisms

φi : Ui
' // U ′i ⊂ Cni ,

where U ′i is an open subset of Cni , and for every pair i, j ∈ I2 we have that the change-of-coordinates
map

φi(Ui ∩ Uj)
φij

//

φ−1
i &&

φj(Ui ∩ Uj)

Ui ∩ Uj
φj

88

is holomorphic. In particular, we by exchanging i and j we see that the change of coordinates map
is inverse to φji, that is, it is a biholomorphic map.

We refer the reader to Griffiths and Harris’s [GH94, Chapter 2] for an overview of the theory of
complex manifolds and an analytic viewpoint on algebraic geometry.

Theorem 1.41 (Jacobi criterion or Implicit Function Theorem, see p. 18 of [GH94]). Let m ≥ n
and f = (f1, . . . , fm), such that for every x ∈ Cn, such that f(x) = 0 for all i = 1, . . . , n, the matrix(

∂fi
∂tj

(x)

)
i,j

has full rank. Then the topological space f−1(0) can be endowed with the structure of a complex
manifold.

Recall that the matrix above has full rank if the induced linear map of vector spaces is surjective.

Corollary 1.42. Let X = V (I) be a C-variety, such that I = (f1, . . . , fn), such that the polynomials
satisfy the condition of Theorem 1.41 (note: this is still in the realm of algebra, since the fi are
polynomials). Then the analytification Xan can be endowed with the structure of a complex manifold.

We call complex affine varieties with this property smooth. Since the Jacobi criterion makes
sense for arbitrary fields, this motivates the following definition.

11



Definition 1.43. Let X be an affine k-variety, we say that X is smoooth, if there exists a covering
by Zariski open subsets Xα ⊂ X with O(Xα) ' k[t1, . . . , tn]/(f1, . . . , fm), such that for x ∈ X the
matrix (

∂fi
∂tj

(x)

)
i,j

has full rank.2

1.5 Smooth and étale morphisms

For a complex manifold X and a point x ∈ X one defines a complex vector space, called the
tangent space TxX. We recall its definition for the convenience of the reader: let Uε denote the
ε-neighbourhood of 0 in C. We consider the set of holomorphic maps

γ : Uεγ
//X,

such that γ(0) = x. We say that γ1 ∼ γ2 if there exists a chart (U, φ) containing x ∈ X, such that
for 0 < ε < min(εγ1

, εγ2
) we have that the maps g1 = φ ◦ γ1 and g2 = φ ◦ γ2 satisfy g′1(0) = g′2(0).3

The set of equivalence classes is denoted by TxX. It carries a unique structure of a vector space:
we define addition as follows: γ1 + γ2 ∼ γ3 if and only if for an appropriate chart (U, φ) as above
we have (φ ◦ γ1)′(0) + (φ ◦ γ2)′(0) = (φ ◦ γ3)′(0). Multiplication with complex scalars is defined
similarly.

In the theory of complex manifolds one defines two types of holomorphic maps f : Y //X which
deserve particular attention.

Definition 1.44. We say that ...

(a) ... f is a submersion, if for every y ∈ Y the differential dyf is surjective.

(b) ... f is a local equivalence, if for every y ∈ Y the differential dyf is an isomorphism.

These maps deserve particular praise, since the structure of their fibres is well-behaved. The
Jacobi-criterion 1.41 implies the following corollary:

Corollary 1.45. Let f : Y //X be a submersion of complex manifolds, then for every x ∈ X the
preimage f−1(x) is a complex manifold.

Example 1.46. Consider the map f : C2 // C which sends (x, y) to xy. The fibre over c ∈ C \{0}
can be identified with {(x, y)|xy = c} ' C×. For c = 0 we see that

f−1(0) = {(x, y)|xy = 0} = {(x, 0)|x ∈ C} ∪ {(0, y)|y ∈ C}.
2We think of x ∈ Xα as a map O(Xα) // kx where kx = O(Xα)/m. The matrix above is defined over the field

kx.
3The map gi is a holomorphic map from an open subset of C to an open subset of Cn. Therefore, the derivative

is well-defined.
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This space no longer admits the structure of a complex manifold, as removing the origin (0, 0)
produces a disconnected topological space. The intersection with R2 reveals a singularity:

(2)

The Jacobi matrix of the map is given by (y x), consistently to the picture above, it vanishes at the
origin (0, 0).

Inspired by our discussion of complex manifolds we first define the analogue of the tangent space
TxX of a k-variety, and then introduce the analogues of submersions (= smooth morphisms) and
local equivalences (=étale morphisms). For our definition of tangent spaces we make use of the
concept of R-points for a non-reduced ring.

Definition 1.47. (a) For a ring R we denote by R[ε] the ring R[t]/(t2). There is a surjection
π : R[ε] //R given by ε 7→ 0.

(b) A k-algebra homomorphism R1
φ
// R2 gives rise to a map X(R1) // X(R2) (we send

O(X) //R1 to the composition O(X) //R2).

(c) Let X be an affine k-variety L/k a field extension and x ∈ X(L) an L-point. We denote by
TxX the set of L[ε]-points of X, such that the induced L-point is x, that is, TxX is the fibre
of the map X(L[ε]) //X(L) over x. We call TxX the tangent space at x.

The ring L[ε] consists of finite Taylor series over L of first order. The relation ε2 = 0 ensures
that higher order phenomena (which don’t play a role for tangent spaces) are ignored.

Example 1.48. For an arbitrary k-algebra we have an isomorphism Ank (R) = Rn. For a field
L ⊃ k we can understand the map Ank (L[ε]) // Ank (L) as follows:

Ank (L[ε])
' //

��

L[ε]n

π

��

Ank (L)
' // Ln.

For x ∈ Ank (L) ' Ln, the tangent space is therefore given by the fibre π−1(x) = (ε)n ' Ln. We
conclude that for every point of affine n-space, the tangent space is an n-dimensional vector space.

In order to gain intuition for the general case we fix a presentation for the k-algebra of regular
functions

O(X) = k[t1, . . . , tn]/(f1, . . . , fm)

13



of an affine k-variety. Let L/k be a field extension, and consider a k-algebra homomorphism

φ : O(X) // L[ε].

A k-algebra homomorphism φ : O(X) // L[ε] is specified by the images γi = φ(ti). These images
correspond to n-tuples of elements (γ1, . . . , γn) ∈ L[ε]n, satisfying the condition

fi(γ1, . . . , γn) = 0

for all i = 1, . . . ,m. We write γj = xj + ε · v with xj and vj in L. Let v be the column vector with
entries vj . A direct computation shows

(f1, . . . , fm)(γ1, . . . , γn) = (f1, . . . , fm)(x1, . . . , xn) + ε ·
(
∂fi
∂tj

(x)

)
v.

This expression vanishes if and only if the constant term and the coefficient of ε vanishes. That is,

if one has (f1, . . . , fm)(x1, . . . , xn) = 0 and
(
∂fi
∂tj

(x)
)
v = 0. We conclude the following:

Corollary 1.49. The tangent space TxX is isomorphic to the kernel of(
∂fi
∂tj

(x)

)
: Lm // Ln.

In particular it carries a natural structure of an L-vector space.

We keep going and produce another corollary.

Corollary 1.50. A k-variety X is smooth, if and only if the function x 7→ dimTxX is Zariski
locally constant.

Proof. By definition, X is smooth if and only if the rank of
(
∂fi
∂tj

(x)
)

is a locally-constant function

on X. This is equivalent to the dimensions of the kernels, that is, TxX to be locally constant.

The vector space structure on TxX can also be defined intrinsically, that is, without fixing
a presentation O(X) = k[t1, . . . , tn]/(f1, . . . , fm). At first we recall the following definition from
commutative algebra

Definition 1.51. Let R be a k-algebra and M an R-module. A k-linear derivation δ : R //M is
a k-linear map, such that for every f, g ∈ R we have

δ(fg) = δ(f)g + fδ(g).

Derivations arise naturally when studying tangent spaces. In the theory of manifolds one can
define tangent spaces at x as vector spaces of derivations of the ring of germs of functions. The
same construction also applies to affine k-varieties.

Construction 1.52. Let φ : O(X) // L[ε] be a ring homomorphism corresponding to an element
of TxX. As above we write φ = x + vε, where v : O(X) // L is a map. The sum x + v is a ring
homomorphism if and only if v(f + g) = v(f) + v(g) and v(fg) = fv(g) + v(f)g. We call such a
map an L-valued derivation. This allows us to identify TxX with the L-vector space of derivations
O(X) // L, where we view L as an O(X)-module via the surjection O(X) � L.

14



We can now define the algebraic analogue of submersions. Unfortunately this goes hand in hand
with an often confusing change in terminology.

Definition 1.53. (a) A morphism of smooth affine k-varieties f : Y //X is smooth if for every
y ∈ Y the induced map of tangent spaces df : TyY // TX is a surjection.

(b) It is said to be étale if dyf is an isomorphism for all y ∈ Y .

Despite of the similarity between the definition of smooth and étale morphisms with their
counterparts in the theory of manifolds, their behaviour is fundamentally different in the realm of
algebraic geometry.

Exercise 1.54. The inverse function theorem fails for algebraic varieties and the Zariski topology.

(a) Let Gm,k = MSpec k[t, t−1] and let f : Gm,k // Gm,k be the morphism corresponding to the
k-algebra homomorphism

k[t, t−1] // k[t, t−1], t 7→ tn.

Show that f is étale if n is coprime to the characteristic of k (or k has characteristic 0).

(b) Prove that there do not exist non-empty Zariski open subsets U, V ⊂ Gm, such that f(U) = V
and f |U : U // V is an isomorphism.

1.6 Projective varieties

So far we have worked only with local aspects of algebraic geometry. This is comparable with
studying analysis only open subsets of Euclidean spaces rather than manifolds. Just like a manifold
is a patchwork of local pieces, each of which looks like an open set in Rn, an abstract variety is
assembled from affine varieties by glueing them along Zariski open subsets.

We will not define abstract k-varieties here, for the sake of keeping this introduction short.
However we will discuss the most important class of examples: projective k-varieties. As in the
case of affine varieties, we begin by introducing this new concept over algebraically closed fields
first.

Definition 1.55. Let k̄ be an algebraically closed field. We define Pnk̄ to be the set (k̄n+1 \ 0)/k̄×.
The equivalence class of the point (z0, . . . , zn) will be denoted by [z0 : · · · : zn] (homogeneous
coordinates).

The set Pnk̄ admits an interesting stratification. For 0 ≤ i ≤ n we define

Vi = (Pnk̄ )i = {[z0 : · · · : zn]|z0 = · · · = zi−1 = 0}.

We have V0 = Pnk̄ , while V1 is in bijection with Pn−1
k̄

, and more generally Vi is in bijection with

Pn−i
k̄

. Furthermore, we observe that

Pnk̄ \V1 = {[z0 : · · · : zn|z0 6= 0]} ' {(x1, . . . , xn) ∈ k̄n} = Ank̄ ,

where we send [z0 : · · · : zn] to ( z1z0 , . . . ,
zn
z0

). A similar computation shows

Vi \ Vi−1 = An−i .
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We conclude that the set Pnk̄ is in bijection with the disjoint union

Ank̄ t · · · t A0
k̄ .

In the case of P1
k̄ one recovers P1

k̄ = A1
k̄ t{∞}, a space reminiscent of the Riemann sphere.

In order to arrive at a more geometric object, than just a plain set, we observe that Pnk̄ can be
covered by “affine charts”, similar to the theory of manifolds.

Definition 1.56. For i = 0, . . . , n we let Ui ⊂ Pnk̄ be the subset

Ui = {[z0 : · · · : zn]|zi 6= 0}.

We denote by φi : Ui // Ank̄ the bijection [z0 : · · · : zn] 7→ ( z0zi , . . . ,
zi−1

zi
, zi+1

zi
, . . . , znzi ).

For k = C this construction would be the starting point to show that the analytification of PnC
has the structure of a complex manifold. More generally, one can use these “charts” to construct
the structure of an abstract k̄-variety on Pnk̄ . We will not follow this approach for now, but still
keep referring to the pair (Ui, φi) in order to introduce notions like morphisms between projective
varieties, tangent spaces, and smoothness. A good example of this is the following definition of
regular maps from affine k̄-varieties to Pnk̄ .

Definition 1.57. Let X be an affine k̄-variety. A map (of sets) f : X // Pnk̄ is called regular or
a morphism, if there exists a Zariski-open covering X =

⋃
i∈JWj, such that for every j ∈ J

(a) there exists an i(j) ∈ {0, . . . , n} with f(Wj) ⊂ Ui(j),

(b) the map f |Wj
: Wj

// Ui(j) = Ank̄ is a regular map of affine k̄-varieties.

Definition 1.58. A polynomial F ∈ k̄[t0, . . . , tn] is said to be homogeneous of degree d, if for every
λ ∈ k̄ we have

F (λt0, . . . , λtn) = λdF (t0, . . . , tn).

Equivalently, F is homogeneous of degree d, if it is a k̄-linear combination of degree d monomials.

Example 1.59. The polynomial t20 + 2t0t1 is homogenous of degree 2. The polynomial t30 + t2 is
not homogeneous.

A homogeneous polynomial F (t0, . . . , tn) has a well-defined zero set in Pnk̄ . Indeed, for (x0, . . . , xn) ∈
k̄n we have F (x0, . . . , xn) = 0 if and only if F (λx0, . . . , λxn) = 0.

Definition 1.60. Let F0, . . . , Fm ∈ k̄[t0, . . . , tn] be homogeneous polynomials with degFi = di. We
define V (F1, . . . , Fm) ⊂ Pnk̄ to be the subset

{[x0 : · · · : xn] ∈ Pnk̄ |Fi(x0, . . . , xn) = 0 ∀i}.

A subset X ⊂ Pnk̄ of this form is called a projective variety.

For a polynomial F ∈ k̄[t0, . . . , tn] in n + 1 variables we denote by di(F ) the polynomial in n
variables obtained by substituting ti = 1. Let X ⊂ Pnk̄ be a projective variety, defined by a system
of homogenous equations F1, . . . , Fm. For every i = 0, . . . , n we denote by Xi = X ∩ Ui. Recall
that we have a bijection Ui ' Ank̄ = k̄n. With respect to this identification, Xi ⊂ k̄n is the affine
k̄-variety defined by the system of equations

Xi = V (di(F1), . . . , di(Fm)) ⊂ Ank̄ .

By definition, we have X =
⋃n
i=1Xi; the projective variety X is obtained by “glueing” the affine

pieces Xi. In analogy with Definition 1.57 we define morphisms between projective varieties.
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Definition 1.61. Let y be an affine k̄-variety and X ⊂ Pnk̄ a projective k̄-variety. A map (of sets)
f : Y //X is called regular or a morphism, if there exists a Zariski-open covering X =

⋃
i∈JWj,

such that for every j ∈ J
(a) there exists an i(j) ∈ {0, . . . , n} with f(Wj) ⊂ Xi(j),

(b) the map f |Wj
: Wj

//Xi(j) ⊂ Ank̄ is a regular map of affine k̄-varieties.

We don’t have to stop here. Building on the construction above we can define morphisms from
projective varieties to projective and even affine varieties.

Definition 1.62. Let f : Y //X be a map of sets where Y ⊂ Pnk̄ is a projective k̄-variety and X
is either an affine k̄-variety or a projective k̄-variety. We say that f is regular (or a morphism), if
for every i = 0, . . . , n the restriction f |Yi : Yi //X is regular.

This definition allows us to define a category whose objects are either affine or projective k̄-
varieties. There are several classical examples of morphisms of projective varieties. At first we
observe that there are hardly any interesting morphisms from a projective variety to affine spaces.
We refer to a morphism X // A1

k̄ as a regular function.

Lemma 1.63. Let f : P1
k̄

// A1
k̄ be a regular function. Then f is constant.

Proof. We denote by fi ∈ k̄[t] the restriction f |Ui : A1
k̄ (i = 0, 1). With respect to the bijection

φi : Ui ' A1
k̄ one has

φi(U0 ∩ U1) = Gm .
The diagram

U0 ∩ U1
φ0 //

��

Gm

t7→t−1

��

U0 ∩ U1
φ1 // Gm

commutes. We obtain the relation f0(t−1) = f1(t). Since f1 is a polynomial, we obtain deg f0 = 0.
Hence, f is a constant.

We leave it to the reader to generalise this result to regular functions on Pnk̄ (using a similar
argument). More generally one can show that regular functions on a projective variety are locally
constant. Taking this for granted we deduce that a morphism f : Y //X from a projective variety
Y to an affine variety X factors through finitely many points. In order to arrive at interesting
examples we need to study morphisms with a projective target.

Example 1.64 (Veronese embedding I). Let f : P1
k̄

// P3
k̄ be the map sending [z0 : z1] 7→ [z2

0 :
z0z1 : z2

1 ].

This is the first non-trivial case of a family of maps form projective spaces to (higher-dimensional)
projective spaces.

Example 1.65 (Veronese embedding II). Let Vn,d be the k̄-vector space of homogenous degree d

polynomials in the variables t0, . . . , tn. This is a vector space of dimension
(
n+d
n

)
. We choose a

basis h0, . . . , h(n+d
n ) and define a map

vn,d : Pn // P(n+d
n )−1, [z0 : · · · : zn] 7→ [h0(z0, . . . , zn), . . . , h(n+d

d )(z0, . . . , zn)].

.
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We can also define tangent spaces of points of projective varieties, and hence introduce the
notion of smooth and étale morphisms.

Definition 1.66. Let X be a projective variety and x ∈ X a point. We define TxX to be the
k̄-vector space TxXi, where Xi ⊂ X is chosen to be one of the affine charts containing x ∈ X.

Note that x might be contained in Xi and Xj for i 6= j. In this case one observes that Xi ∩Xj

is a standard affine open inside Xi and insider Xj , and therefore we get a canonical isomorphism
TxXi = TxXj .

Definition 1.67. A projective k̄-variety X is smooth if for all i = 0, . . . , n the affine varieties Xi

are smooth.

Henceforth, we shall say k̄-variety when we mean either an affine or projective k̄-variety. We
remark that many sources consider more general classes of varieties (including quasi-affine and
non-projective examples).

Definition 1.68. (a) A morphism of smooth k̄-varieties f : Y //X is smooth if for every y ∈ Y
the induced map of tangent spaces df : TyY // TX is a surjection.

(b) It is said to be étale if dyf is an isomorphism for all y ∈ Y .

We conclude this subsection by giving a quick overview of the theory of projective k-varieties
for non-algebraically closed fields k.

Definition 1.69. (a) Let X̄ ⊂ Pnk̄ be a projective k-variety. We say that X̄ is defined over k ⊂ k̄
if there exists a system of homogenous polynomials F0, . . . , Fm ∈ k[t0, . . . , tn], such that X
agrees with

{[z0 : · · · : zn] ∈ Pnk̄ |Fi(z0, . . . , zn) = 0 ∀i = 0, . . . , n}.

(b) For every i = 0, . . . , n we obtain an affine k-variety

Xi = MSpec k[t1, . . . , tn]/(di(F0), . . . , di(Fm)).

We also have affine k-varieties Xij, such that

Xi

Xij

==

!!

Xj ,

and the induced k̄-variety X̄ij is isomorphic to X̄i ∩ X̄j.

(c) We define a topological space |X| as the union
⋃n
i=0 |Xi| where |Xi| ∩ |Xj | = |Xij |.4

4Formally, one defines |X| as a pushout in the category of topological spaces.
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(d) For x ∈ X there exists i = 0, . . . , n, such that x ∈ Xi. We write deg(x) for the degree of
x ∈ Xi (see Definition 1.29).

(e) For a field extension L/k we define X(L) to be the intersection X̄ ∩ (kn+1 \ 0)/k×. In other
words, X(k) is the set of points in X̄ whose homogenous coordinates belong to k.

Recall that our base field k is always assumed to be perfect. Let X̄ ⊂ Pnk̄ be a projective variety.
There is a criterion for X to be defined over k in terms of Galois actions.

Proposition 1.70 (11.28 in [Spr26]). The subvariety X̄ ⊂ Pnk̄ is defined over k ⊂ k̄ if and only if
γ(X̄) = X̄ for all γ ∈ Gal(k̄/k).

The proof of this proposition is based on the technique of Galois descent. In fact, loc. cit. proves
a more general assertion which also applies to subvarieties of affine space, and more generally to
k̄-subvarieties of k̄-varieties which are defined over k.

We can use the definition above of projective varieties defined over k as the objects in a category
of k-varieties. In order to define morphisms in this category one could proceed as follows.

To a map f : Y //X of projective k̄-varieties we associate its graph

Γf = {(y, f(y)|y ∈ Y )} ⊂ Y ×X ⊂ Pn×Pm .

The product Pn×Pm is embedded into Pnm+n+m by means of the so-called Segree embedding.

Example 1.71 (Segre embedding). There is a map from Pn×Pm // Pnm+n+m given by

([z0 : · · · : zn], [w0 : · · · : wm]) 7→ [z0w0 : · · · : z0wm : z1w0 : · · · : z1wm : · · · znw0 : · · · znwm].

One then says that f : Y // X is defined over k, if the subset Γf ⊂ Pnm+n+m is a projective
k̄-variety defined over k.

2 Weil cohomology theories

The goal of this section is to state the Weil conjectures and to discuss the main ingredient of their
proof: étale cohomology. Henceforth we denote by k = Fq a finite field with q elements, and let k̄
be its algebraic closure.

2.1 Zeta functions

Let X be a k-variety. According to our conventions this refers to either an affine k-variety, or a
projective k̄-variety defined over k. Readers familiar with more general notions of k-varieties (or
the theory of k-schemes) won’t have any troubles generalising the contents of this subsection to the
notion they have in mind.

For a finite field k, and an affine k-variety X ⊂ Ank it is clear that X(k) ⊂ kn is a finite set.
Since every projective variety is a union of finitely many affine varieties, this finiteness property
also holds for projective k-varieties.

Definition 2.1. We let Nr(X) = #X(Fqr ) be the number of Fqr -points of X.

This sequence of numbers is an important invariant of a k-variety. If two k-varieties are isomor-
phic, then they must have the same “point-counts”.
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Example 2.2. We have Nr(Ank ) = qrn, Nr(Gm,k) = qr − 1 and Nr(Pnk ) = qnr+r−1
qr−1 .

Whenever one has an infinite series describing the solutions to an enumerative problem, it is a
wise idea to capture this information in form of a generating series. This is precisely the purpose
of the zeta function of X.

Definition 2.3. We define a formal power series in a variable T , called the zeta function of X:

Z(X,T ) = exp

( ∞∑
r=1

Nr
r
T r

)
.

In order to get a feeling for this definition we take a look at the simplest example: a point, or
0-dimensional projective space P0

k. In this case, we have Nr = 1 for all r ≥ 1. The zeta function
therefore agrees with

Z(P0
k, T ) = exp

( ∞∑
r=1

1

r
T r

)
= exp (− log(1− T )) = (1− T )−1.

This computation is the starting point of a generalisation to higher-dimensional projective spaces.
It is based on the following lemma.

Lemma 2.4. Let X be a k-variety, and Y ⊂ X a closed k-subvariety with open compliment U .
Then we have

Z(X,T ) = Z(Y, T ) · Z(U, T ).

Proof. It is clear that Nr(X) = Nr(Y ) +Nr(U). We therefore have

Z(X,T ) = exp

( ∞∑
r=1

Nr(X)

r
T r

)
= exp

( ∞∑
r=1

Nr(Y )

r
T r

)
· exp

( ∞∑
r=1

Nr(U)

r
T r

)
,

and the right hand side agrees with Z(Y, T ) · Z(U, T ).

Corollary 2.5. We have Z(Ank , T ) = (1− qnT )−1 and Z(Pnk , T ) =
∏n
i=0(1− qiT )−1.

Proof. We have Nr(Ank ) = qrn, and therefore

Z(Ank , T ) = exp

( ∞∑
r=1

1

r
(qnT )r

)
= exp (− log(1− qnT )) = (1− qnT )−1.

We deduce the assertion about the zeta function of Pnk by using inductively that Pnk contains Pn−1
k

as a closed subvariety, with compliment Ank :

Pn−1
k (k) = {[z0 : · · · : zn]|zi ∈ k and z0 = 0} ⊂ Pnk (k) ⊃ {[z0 : · · · : zn]|zi ∈ k and z0 6= 0} ' Ank (k).

This concludes the proof.

Proposition 2.6 (Product formula). We have an identity of formal power series

Z(X,T ) =
∏
x∈|X|

1

1− T deg(x)
.
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Proof. The infinite product on the right hand side is a well-defined element of Z[[T ]], since its a
product of formal series with constant coefficient 1. Let us denote the resulting element of Z[[T ]]
by W (X,T ) for the duration of the proof. Since the constant coefficient of Z(X,T ) and W (X,T )
are equal to 1, it suffices to show

Td logZ(X,T ) = Td logW (X,T ).

By virtue of the the definition the left hand side equals

Td logZ(X,T ) =
∑
r≥1

NrT
r.

For the right hand side we obtain

Td logW (X,T ) =
∑
x∈|X|

Td log(1−T deg(x))−1 =
∑
x∈|X|

T
d

dT

∑
m≥0

Tm· deg(x)

m
=
∑
x∈|X|

∑
m≥0

deg(x)Tm· deg(x).

We have seen for affine n-space that the set of point |X| can be identified with the quotient of
X(k̄)/Gal(k̄/k). Furthermore, the fibre of X(k̄) // |X| over x ∈ X has deg(x)-many points. The
same reasoning applies to arbitrary affine and projective k-varieties. This allows us to deduce the
equality

Nr(X) =
∑
d|r

∑
deg(x)=d

d,

and we conclude Td logZ(X,T ) = Td logW (X,T ).

In the special case of A1
Fq we obtain an equality resembling another famous product formula.

Corollary 2.7. We have an identity of infinite power series

1

1− qT
=
∏
f

1

1− T deg(x)
,

where f runs over the set of monic irreducible polynomials in Fq[T ].

The right left hand side of this equation is the zeta function of A1
Fq . Recall that the ring Fq[T ]

has many qualitative similarities to the ring Z of integers. It is a Euclidean domain which implies
that every ideal is principal and that prime ideals are in bijection with irreducible elements. For
the Riemann zeta function we have the product formula

ζ(s) =
∏
p

1

1− p−s
.

This time the product ranges over all primes p. The right hand side is a convergent infinite product
if Re s > 1.

Remark 2.8. For a ring R which is finitely generated over the integers, and a maximal ideal m ⊂ R
we denote by qm the cardinality of the field R/m. One can use an infinite product

ζR(s) =
∏

m∈MSpecR

1

1− q−sm
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as an ansatz to define the zeta function ζR(s). If R = Z we obtain the Riemann zeta function. For
R = OK the ring of integers inside a number field K, the ansatz yields the Dedkind zeta function
ζR(s) = ζK(s).

These classical examples are wonderfully complemented by geometry. For an affine k-variety X
and R = O(X) its ring of regular functions, we obtain

ζR(s) = Z(X, q−s).

Indeed, one has qm = qdeg(m). More generally, the theory of schemes allows one to associate to any
finite type scheme X over SpecZ a zeta function ζX(s).

2.2 The Frobenius morphism and Lefschetz’s fixed point formula

In the last subsection we defined the zeta function Z(X,T ) ∈ Q[[T ]] of a variety X defined over a
finite field k = Fq. Since the definition uses the fact that a variety has only a finite number Nr of
rational points defined over Fqr , this looks like a concept which only makes sense over finite fields.
The goal of this subsection is to describe analogues of zeta functions for pairs (X,α), where X is a
variety defined over an algebraically closed field, and α is an endomorphism of X. The link with
zeta functions as we know them is provided by the Frobenius morphism.

Recall that we fix a finite field k = Fq with algebraic closure k̄. Furthermore, we specify an
inclusion of Fqr ⊂ k̄ for all r ≥ 1. Let X be a k-variety, we denote by X̄ the corresponding k̄-variety.

Lemma 2.9 (Frobenius morphisms). There exists a morphism Frq : X̄ // X̄ of k̄-varieties, such
that for a positive integer r ≥ 1 the fixed points of Frrq : X(k̄) //X(k̄) agree precisely with the subset
X(Fqr ).

Proof. Let us construct such a morphism for Ank̄ first. Here it is clear what we have to do. We
choose Frq : Ank̄ // Ank̄ to be the regular map

(x1, . . . , xn) 7→ (xq1, . . . , x
q
n).

If X̄ ⊂ Ank̄ is equal to V (f1, . . . , fm) where fi ∈ k[t0, . . . , tn], the morphism above sends X̄ to itself,
since we have

Fr∗q(fi)(t1, . . . , tn) = fi(t
q
1, . . . , t

q
n) = fi(t1, . . . , tn)q.

In the last step we have used that Fq ⊂ k̄ is the subfield fixed by the Frobenius automorphism
ϕq : λ 7→ λq.5

Similarly, if X̄ ⊂ Pnk̄ is a projective variety defined over k, we can define Frq : Pnk̄ // Pnk̄ by the
formula

[z0 : · · · : zn] 7→ [zq0 : · · · : zqn],

and observe that it restricts to a regular self-map of X̄.

A priori our proof of existence of a so-called Frobenius morphism X̄ // X̄ depends on a chosen
embedding onto affine or projective space. However, one can show that the resulting self-map of
X̄ is well-defined. We content ourselves with a proof of this statement for affine varieties. The
projective case follows from this one by using that every projective variety is a union of affine
varieties.

5This field automorphism goes by the name arithmetic Frobenius.
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Lemma 2.10. Let X be an affine k-variety with ring of regular functions O(X). Let Fq : O(X) //O(X)
be the map sending f 7→ fq. This is a k-algebra homomorphism. The base change

ϕq : ⊗ idk̄ : O(X̄) = O(X)⊗k k̄ // O(X̄) = O(X)⊗k k̄

agrees with Fr∗q : O(X̄) // O(X̄) constructed in Lemma 2.9.

Proof. The map ϕq : O(X) // O(X) is a ring homomorphism, since k is of characteristic p and
O(X) is a k-algebra. This implies (f + g)q = fq + fq. Furthermore, for f ∈ k = Fq we have fq = f
which implies ϕ(fg) = ϕ(f)ϕ(g) = fϕ(g), and therefore that ϕ is a k-algebra homomorphism.

A k-algebra homomorphism of affine k-algebras α : R1
//R2 yields a commutative diagram

R1

ϕq
//

α

��

R1

α

��

R2

ϕq
// // R2.

The Dictionary 1.22 implies that we have a well-defined map Fq : X̄ // X̄, and furthermore, for
every morphism g : Y //X of affine k-varieties, we obtain a commutative diagram

Ȳ
Fq
//

g

��

Ȳ

g

��

X̄
F q // X̄

Since an affine k-variety can be embedded into an affine n-space, it suffices to show for Ank̄ the
equality Fq = Frq. In this case, O(Ank ) = k[t1, . . . , tn] and ϕq equals the map ti 7→ tqi . This
concludes the proof.

The existence Frobenius morphism changes our viewpoint of zeta funtions as being a purely
characteristic p phenomenon. The following definition makes sense in greater generality.

Definition 2.11. Let K be an algebraically closed field (of arbitrary characteristic), and X a K-
variety together with a morphism

α : X //X,

such that for every integer r ≥ 1 there is only a finite number of fixed points Nr = Nr(X,α) of αr.
We define Z(X,α;T ) = exp(

∑
r≥1

Nr
r T

r) ∈ Q[[T ]] and refer to it as the zeta function of (X,α).

In particular we can now work with the field of complex numbers K = C. This allows one to use
geometric methods to study examples. Let’s take a look at endomorphisms of the Riemann sphere
P1
C. We denote by n a positive integer and φn : P1

C
// P1

C the morphism given by [z : w] 7→ [zn : wn].

Example 2.12. The morphism φn always fixes 0 = [0 : 1] and ∞ = [0 : 1]. For the subset
C× = P1

C \{0,∞} we have φn(z) = z if and only if zn−1 = 1. That is, if and only if z is a root of
unity of order n− 1. The total number of fixed points Nn of φn is therefore n+ 1. This shows that
we have

Z(P1
C, φn;T ) = exp

∑
r≥1

nr + 1

r
T r

 = exp

∑
r≥1

1

r
T r

 · exp

∑
r≥1

nr

r
T r

 =
1

(1− T )(1− nT )
.
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We observe that we have an equality of zeta functions Z(P1
C, αq;T ) = Z(P1

Fq , T ). The zeta
functions associated to complex varieties with endomorphisms therefore stand a chance of being a
good model for zeta functions of varieties over finite fields. The upshot is that over the complex
numbers we have topology at our disposal which allows one to prove interesting facts about the
zeta functions Z(X,α;T ). An important tool is given by singular cohomology.

Let us denote by Top the category of topological spaces. In cohomology theory one constructs
a sequence of functors

(Hi)i≥0 : Topop // VectQ,

from the (opposite of the) category of topological spaces to the category of Q-vector spaces. In
particular, one associates to a space X a rational vector space Hi(X,Q) and to every continuous
map f : Y //X a linear map f∗ : Hi(X,Q) //Hi(Y,Q). We refer the reader to Hatcher’s [Hat,
Chapter 3] for a detailed account of singular cohomology theory.

Example 2.13. For a d-dimensional sphere Sd one has Hi(Sd,Q) = 0, if i 6= 0, d and Hi(Sd,Q) '
Q for i = 0, d. For a self-map f : Sd // Sd one obtains an endomorphism f∗ of Hd(Sd,Q). This
corresponds to a number deg(f) which is called the degree of f .6

The importance of cohomology in the study of zeta functions is due to the following theorem
by Lefschetz:

Theorem 2.14 (Lefschetz’s fixed point formula). Let X be a compact manifold with a continuous
self-map f : X //X. If f has only a finite number N(f) of fixed points, then

N(f) =
∑
i≥0

(−1)i Tr
(
f∗ : Hi(X,Q) //Hi(X,Q)

)
.

Exercise 2.15. Prove the Lefschetz fixed point formula for a self-map f : S // S of a finite set S.
That is, denoting by

f∗ : QS //QS

the induced linear map, show that one has

#Fix(f) = Tr f∗.

Let’s take a look at our maps φn : P1
C

// P1
C. Since P1

C is homeomorphic to S2 we obtain
precisely two non-trivial maps

Hi(φn) : Q // Q

for i = 0, 2.

Lemma 2.16. We have H0(φn) = idH0(S2,Q).

First proof. Let P be a topological space consisting of a single point. We denote by i : P // S2

the map sending this point to ∞ ∈ S2 ' (P1
C)an. One has that H0(i) : H0(S2) // H0(P ) is an

isomorphism. This follows for example from the cellular cohomology complex of the CW-complex
S2 with P being the unique 0-cell, and S2 \ {∞} the unique 2-cell (see [Hat, p. 203] and [Hat, p.

6A priori this is a rational number, however since cohomology also exists over Z it can be shown to be an integer.
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137] for a more detailed account of cellular homology). The commutative diagram of topological
spaces

P

��   

S2 φn // S2

commutes. We therefore obtain a commutative diagram of abelian groups

H0(P )

H0(S2)

H0(i)

OO

H0(S2).
H0(φn)
oo

H0(i)
ee

Since H0(i) is an isomorphism, we deduce H0(φn) = idH0(S2,Q).

Second proof. We give another prove of the first assertion which is more elementary as it uses the
definition of singular cohomology. It will follow from the following claim and the fact that S2

has a unique connected component. For a topological space X we denote by π0(X) the set of
path-connected components. It is clear that we have a functor

π0 : Top // Set,

which sends X to π0(X) and a continuous map f : Y //X to π0(f) : π0(Y ) //π0(X) (well-defined
since images of path-connected spaces are path connected). We also have a functor

Map(−,Q) : Setop // AbGrp

sending a set S to the set of maps S // Q which we denote by QS .

Claim 2.17. We have a natural isomorphism of functors

H0 ' Map(π0,Q) : Top // AbGrp .

That is, for a topological space X we have a linear isomorphism βX : H0(X)
' // QS, such that

for a continuous map f : Y //X the diagram

H0(X)
H0(f)

//

βX
��

H0(Y )

βY
��

Qπ0(X) // Qπ0(Y )

(3)

commutes.

Proof. By definition, H0(X,Q) is the kernel of a linear map of vector spaces

C0(X,Q)
δ // C1(X,Q).
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Their definition is as follows: C0(X,Q) is the rational vector space of set-theoretic maps c : X // Q.
We denote by PX the set of continuous maps σ : [0, 1] //X and let C1(X,Q) be the rational vector
space of set-theoretic maps c1 : PX // Q. The so-called coboundary map δ : C0(X,Q) // C1 is
given by

δ(c) : σ 7→ c(σ(1))− c(σ(0)).

We therefore see that c ∈ ker δ if and only if c : X // Q is constant on pathconnected components.
In other words, if and only if we have a factorisation

X

c

##��

π0(X) // Q .

This shows H0(X,Q) = ker δ ' Qπ0(X). For the second assertion we remark that

H0(f) : H0(X,Q) //H0(Y,Q)

is given by the map kerδX
// ker δY sending c : X // Q to the composition c◦f . The commutative

diagram

Y
f

//

��

X

c

""��

π0(Y )
π0(f)

// π0(X) // Q

yields that the diagram (3) commutes.

The proof now simply follows from the fact that #π0(S2) = 1. Therefore, we have that the map
π0(φn) : π0(S2) // π0(S2) is the identity morphism.

Lemma 2.18. We have H2(φn) = n · idH2(S2,Q) and thus Tr(H2(φn)) = n.

Proof. We will deduce this from the Mayer–Vietoris sequence [Hat, p. 149 & p. 203] associated to
the covering

(P1
C)an = C∪(P1

C)an \ {0}.
This long exact sequences relates the cohomology groups of (P1

C)an, C and C×. We have the following
excerpt for every i ≥ 0:

Hi−1(C,Q)⊕Hi−1(C,Q) //Hi−1(C×,Q) //Hi((P1
C)an,Q) //Hi(C,Q)⊕Hi(C,Q) //Hi(C×,Q).

The topological space C is contractible, that is, homotopy equivalent to a point. We deduce
Hi(C,Q) = 0 for i > 0 and H0(C,Q) = Q. The Mayer–Vietoris sequence therefore implies
Hi((P1

C)an,Q) ' Hi−1(C×,Q) for i ≥ 1.
We leave it to the reader as an exercise to check that one has a commutative diagram

Hi((P1
C)an,Q)

φn //

��

Hi((P1
C)an,Q)

��

Hi−1(C×,Q)
φn // Hi−1(C×,Q).
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It suffices therefore to understand the maps H1(φn) : H1(C×,Q) // H1(C×,Q). We observe
that the topological space C× is homeomorphic to S1 ×R×, and therefore homotopy equivalent to
S1. This shows that we have a commutative diagram

H1(C×,Q)
H1(φn)

//

'
��

H1(C×,Q)

'
��

H1(S1,Q)
H1(φn)

// H1(S1,Q),

which allows us to trade C× for the easier space S1 ⊂ C×. In order to compute the induced map
in cohomology of the self-map φn : S1 // S1, we use cellular cohomology (see [Hat, p. 203]).

On the left hand copy of S1 we consider the cell decomposition with the set of 0-cells being
the set of n-th roots of unity µn ⊂ S1. On the right hand side we can put S1 with the standard
CW decomposition where we have a single 0-cell at 1 ∈ S1. It is clear that with respect to these
cell decompositions, the map φn : (S1)left

// (S1)right is a map of CW-complexes. In terms of the
cellular cohomology complexes, we obtain

Qn δ //

φ∗n
�� ��

Qn

φ∗n
��

Q δ // Q .

The vertical morphisms are given by the linear map corresponding to the row vector φ∗n = (1 · · · 1).
By definition, we have H1(S1,Q) = coker δ = Qn / im(δ) (respectively Q / im(δ)). The cokernel of
δ can be identified with Q by virtue of the map Qn // Q given by the column matrix1

...
1

 : Qn // Q .

The induced map of φn on H1(S1,Q) = coker δ is therefore
∑n
i=1 1 = n.

In summary, all we have done so far is verifying the Lefschetz fixed point formula for φn : (P1
C)an.

Indeed, we have
Tr(H0(φn)) + Tr(H2(φn)) = n+ 1 = # Fix(φn).

We now turn to a more serious application of the Lefschetz fixed point formula. We will study
zeta functions of pairs (M,α) where M is a compact manifold and α a continuous self-map M //M ,
such that every power αr has a finite number of fixpoints Nr. As before, we denote by

Z(M,α;T ) = exp(
∑
r≥1

Nr
r
T r) ∈ Q[[T ]]

the zeta function of (M,α). The case we care most about is where the pair (M,α) arises by
analytification of a smooth projective variety X and a regular endomorphism α.
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Proposition 2.19. We have an identity of formal power series

Z(X,T ) =

∏
i≥0 det(1− T ·H2i+1(α))∏
i≥0 det(1− T ·H2i(α))

.

In particular, the zeta function Z(M,α;T ) equals the Taylor series expansion of the rational func-
tion in T (with integral coefficients).

Proof. We apply the Lefschetz fixed point formula 2.14. We have

Nr =
∑
i≥0

(−1)i Tr(Hi(αn)) =
∑
i≥0

(−1)i Tr(Hi(α)r),

and thus

Z(M,α;T ) = exp

∑
r≥1

∑
i≥0(−1)i Tr(Hi(αr))

r
T r

 =
∏
i≥0

exp

(−1)i
∑
r≥1

Tr(Hi(α)r)

r
T r

 .

Lemma 2.20. Let φ : V //V be a K-linear endomorphism of a finite-dimensional K-linear vector
space V . Then, we have an identity of formal power series

exp

∑
r≥1

Tr(φr)

r
T r

 =
1

det(1− T · φ)
∈ K[[T ]].

Proof. Without loss of generality we may replace K by a field extension to verify this equality. In
particular we may assume that K is algebraically closed. We may then assume that V = Km and
φ is represented by a triangular matrix

λ1 · · ·
0 λ2 · · ·

0 0
. . .

0 · · · 0 λm

 .

We conclude the identity

Tr(φr) =

m∑
i=1

λri

and therefore

exp

∑
r≥1

∑m
i=1 λ

r
i

r
T r

 =

m∏
i=1

(1− λi · T )−1 =
1

det(1− T · φ)
.

Using this lemma we finish the computation above:

Z(M,α;T ) =
∏
i≥0

exp

(−1)i
∑
r≥1

Tr(Hi(α)r)

r
T r

 ,

28



and the right hand side agrees with∏
i≥0 det(1− T ·H2i+1(α))∏
i≥0 det(1− T ·H2i(α))

.

This concludes the proof.

We don’t stop here. Cohomology has more in store in for us. But at first we need to recall the
cup product and Poincaré duality. For a topological space M we have a bilinear map

Hi(M,Q)×Hj(M,Q) //Hi+j(M,Q), (α, β) 7→ α ∪ β.

This bilinear map is compatible with the functoriality of cohomology. That is, for a continuous
map f : M //N we have

Hi+j(f)(α ∪ β) = Hi(f)(α) ∪Hj(f)(β).

We refer the reader to [Hat, Sect. 3.2] for an overview of the cup product.

Theorem 2.21 (Poincaré duality). Let M be a compact orientable manifold of dimension d. Then
we have Hd(M,Q) ' Q and a perfect pairing

Hi(M,Q)×Hd−i(M,Q) //Hd(M,Q), (α, β) 7→ α ∪ β.

Corollary 2.22 (Functional equation). Let M be a compact orientable manifold of even dimension
d, together with a continuous endomorphism α, such that every power αr has a finite number of
fixed points. Then we have

Z(M,α;T ) = c · Tχ(M) · Z(M,α,
1

ndT
),

where χ(M) =
∑
i≥0(−1)i rkHi(M,Q) denotes the Euler characteristic of M and c ∈ Q is a

constant, and n = Tr(Hd(α)).

Proof. Let Pi(T ) be the polynomial det(1− T ·Hi(α)). We then have

Pi(
1

nT
) = ciT

rkHi(X,Q)Pd−i(1− T ·Hd−i(α)). (4)

Taking the product of these identities we obtain the functional equation.
Equation (4) follows from the fact that we have a perfect pairing

Hi(M,Q)×Hd−i(M,Q) //Hd(M,Q), (x, y) 7→ x ∪ y,

and equation Hi(α)(x) ∪Hd−i(α)(y) = Hd(α)(x ∪ y) = n(x ∪ y).

Lemma 2.23. Let V,W be finite-dimensional K-vector spaces (where K has characteristic 0), and
b : V ×W // K a perfect pairing. Assume that we have endomorphisms f ∈ End(V ), g ∈ End(W ),
and n ∈ K×, such that we have

b (f(x), g(y)) = nb(x, y)

for all x ∈ V and y ∈W . Then

det(1− T · g) =
(−1)dimV ndimV T dimV

det(f)
· det

(
1− f

nT

)
.
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Proof. Without loss of generality we assume that K is algebraically closed (or at least contains all
eigenvalues of f and g). We prove the formula above by induction on dimV . In the base case
dimV = 1 we can identity f and g with their eigenvalues in K, and compute

1− T · g = −nT
f
·
(

1− f

nT

)
,

using the identity fg = n.
We assume by induction that the equation has verified for vector spaces of rank r. For the

induction step we consider V and W to be of rank r + 1, and observe that f and g can’t be the
zero maps (since n 6= 0). Let v be an eigenvector of f corresponding to a non-zero eigenvalue λ.
The annihilator v⊥ ⊂W is then of rank r. It is preserved by g, since for y ∈ V ′ = v⊥ we have

0 = nb(v, y) = b(fv, gy) = λb(v, gy).

We conclude that there exists w ∈ W \ V ′, such that b(v, w) = 1 and w is an eigenvector for g for
an eigenvalue µ (automatically non-zero). As before we see that W ′ = w⊥ ⊂ V is a subspace of
rank r, preserved by f . The pairing b restricts to a perfect pairing V ×W ′ // K; f ′ = f |V ′ and
g′ = g|W ′ still satisfy the assumptions of the lemma. Using the induction hypothesis and the rank
1 case we obtain

det(1−T ·g) = det(1−T ·g′)(1−µT ) =
(−1)dimV ′ndimV ′T dimV ′

det(f ′)
· det

(
1− f ′

nT

)
· −nT
λ
·
(

1− λ

nT

)
.

We conclude the proof by observing that the right hand side equals (−1)dimV ndimV TdimV

det(f) ·det
(

1− f
nT

)
.

Applying the lemma above to Hi(α) and Hd−i(α) and the cup product pairing, we obtain the
requested functional equation.

Remark 2.24. Compare the functional equation above to the one satisfied by the Riemann zeta
function

ξ(s) = ξ(1− s)
where ξ(s) = 1

2π
− s2 s(s− 1)Γ( s2 )ζ(s).

Exercise 2.25. Let T = S1 × S1 be the manifold given by a 2-torus. Let m,n ∈ N be positive
integers, and let

α : T // T, (z, w) 7→ (zm, wn).

Compute the zeta function Z(T, α;T ) (as an element of Q(T )).

2.3 The Weil conjectures

Inspired by the computations of Z(M,α;T ) using the Lefschetz trace formula we engage in the
following phantasy:

Phantansy 2.26. A cohomology theory for smooth varieties over k̄ = F̄p, that is, a sequence of
functors (

Hi
)
i∈N : (Varsm,proj

k̄
)op // VectQ,

such that we have
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(a) cup products: Hi(X̄)×Hj(X̄) //Hi+j(X̄), compatible with pullback of cohomology classes,

(b) Poincaré duality: let d be the dimension of X̄ and assume X̄ is connected, then Hi(X̄) = 0
for i > 2d, there exists an isomorphism H2d(X̄) ' Q, and Hi(X̄)×H2d−i(X̄) //H2d(X̄) is
a perfect pairing.

(c) Lefschetz fixed point formula: let X be a k-model for X̄ and FrX : X̄ // X̄ the induced
Frobenius morphism. Then we have

#X(Fq) =
∑
i≥0

(−1)i Tr(Hi(FrX)).

(d) we have H2d(FrX) = qd · id and H0(FrX) = id.

The same computations lead us to the first two statements in Weil’s conjectures:

Weil Conjectures 2.27. Let X be a smooth and projective variety over Fq of dimension d.

(a) The zeta function Z(X,T ) ∈ Q[[T ]] is the Taylor series expansion of a rational function, that
is, an element of Q(T ).

(b) It satisfies the functional equation

Z(X,
1

qdT
) = ±q

dχ
2 TχZ(X,T ),

where χ =
∑2d
i=0(−1)i rkHi(X).

(c) We have the “Riemann hypothesis”:

Z(X,T ) =

∏2d
i=0, odd Pi(T )∏2d
j=0, even Pj(T )

,

where Pi(T ) ∈ Q[T ] is a polynomial satisfying

Pi(α) = 0⇒ |α| = q
i
2 .

In the following subsections we will study our first non-trivial example of zeta functions of
varieties over finite fields: elliptic curves. This example brings good and bad news for our phantasy:
we will show that the Weil conjectures hold for elliptic curves; but will be forced to acknowledge
that Phantasy 2.26 is too optimistic.

2.4 A crash course on elliptic curves

A curve X over an algebraically closed field K is a smooth projective K-variety of dimension 1 (that
is, all tangent spaces have dimension 1). If K = C have the analytification functor from 1.4 which
assigns to X a compact complex manifold Xan of dimension 1.

Complex manifolds of dimension 1 are also referred to as Riemann surfaces. The topological
space underlying Xan is a compact orientable surface, and therefore up to homeomorphism classified
by its genus g. We hurry to add that there’s a whole family of different complex structures on any
given orientable topological surface, unless the genus is 0.
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Definition 2.28. A K-curve of genus 1 is said to be an elliptic curve.

So far we have only given a definition of the genus of a curve for K = C. We will make good for
this in Definition ?? below, and first study elliptic curves over the field of complex numbers.

Proposition 2.29. Let E/C be an elliptic curve, then there exists a biholomorphic map Ean '
C /Γ, where Γ = Z⊕τ Z with Im τ > 0.

In particular, we see that Ean is a group object in the category of complex manifolds. The group
structure in induced by +: C×C // C.

Definition 2.30. Let K be an arbitrary field. A group object in the category of smooth projective
K-curves, is said to be an elliptic curve.

Since E is a group object, there exists a neutral element 0, presented by a morphism 0: P0
K

//E.
In particular, 0 ∈ E(K) is a K-rational point. We denote the group structure by +: E × E // E.

Definition 2.31. We let End(E) be the set of endomorphisms of f : E //E, satisfying f(0) = 0.7

One defines a structure of an abelian group on this set by defining

f1 + f2 = add ◦ (f1, f2),

where add : E ×E //E denotes the group structure. Furthermore, composition of endomorphisms
gives rise to a multiplication

f1 · f2 = f1 ◦ f2

which distributes over +. Therefore, we have a non-commutative ring structure on End(E).

The non-commutative ring End(E) has additional properties which play an important role in
the proof of the Weil conjectures for elliptic curves:

Lemma 2.32. There exists a function deg : End(E) // End(E), such that

(a) deg([n]) = n2, where [n] denotes the endomorphism [n] : x 7→ n · x,

(b) deg is a positive-definite quadratic form, in particular we have deg f = 0 if and only if f = 0.

Proof. See [Sil86, Corollary III.6.3]

Corollary 2.33. The natural map Z // End(E), sending an integer n to the endomorphism
[n] : x 7→ n · x, is injective.

Lemma 2.34. Let E be an elliptic curve over an algebraically closed field K, and f ∈ End(E), such
that f : E // E is étale. Then

deg f = #f−1(0).

Proof. See [Sil86, Theorem III.4.10(c)].

Lemma 2.35. There exists an involution f 7→ f̂ , such that

(a) f̂1 + f̂2 = f̂1 + f2,

7One can show that this assumption implies that f respects the group structure on E.
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(b) f̂1f̂2 = f̂2f1,

(c) [̂n] = [n] for n ∈ Z,

(d) ff̂ = [deg f ] = f̂f .

Proof. See [Sil86, Theorems III.6.1, III.6.2].

Proof. We have deg[n] = n2 ≥ 0, whenever n 6= 0. This shows [n] 6= 0 in this case.

If Ē is an elliptic curve over k̄ with a model over the finite field k, there is an important element
in End(Ē) often called the Lang isogeny.

Lemma 2.36. The isogeny idX −FrX is étale.

Proof. See [Sil86, Corollary III.5.5].

2.5 The Weil conjectures for elliptic curves

We fix a finite field k = Fq with algebraic closure k̄, and an elliptic curve E defined over k. For
r ≥ 1 we denote by Nr the number of Fqr -rational points of E. As always, we define the zeta
function

Z(E, T ) = exp

∑
r≥1

Nr
r
T r

 .

Theorem 2.37 (Hasse). The zeta function Z(E, T ) equals the Taylor series expansion of a rational
function

P (T )

(1− T )(1− qT )
,

where P (T ) ∈ Q[T ] is a polynomial of degree 2, such that P (T ) = (1 − αT )(1 − ᾱ)T in C[T ] with
|α| = √q.

The Riemann hypothesis for elliptic curves implies the following non-trivial estimate.

Corollary 2.38 (Hasse, conjectured by E. Artin). One has the inequality

|#E(Fq)− (q + 1)| ≤ 2
√
q.

Proof. The formula for the zeta function

Z(E, T ) =
(1− αT )(1− ᾱT )

(1− T )(1− qT )

yields
Nr = qr + 1− (αr + ᾱr).

This shows
|qr + 1−Nr| ≤ 2|α| = 2

√
qr.

For r = 1 this implies the claim.
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Let us take a look at the meaning of the Hasse bound, for p > 2. The affine elliptic curve E \ 0
is the zero set of the so-called Weierstrass embedding:

y2 = f(x),

where f is a cubic polynomial of degree 3. We therefore see that the number Nr−1
2 roughly speaking

counts the number of x ∈ Fqr , such that f(x) is a square in Fq (for f(x) 6= 0 there will be precisely
two possible values of y, for f(x) = 0 only one). Half the elements of F×q are squares. If one assumes
that (f(x))x∈Fqr is a random sequence, then we expect the expectation value of Nr to be q+1. The
Hasse bound now confirms this heuristic model, by describing the variance of this random sequence
(f(x))x∈Fqr .

Proof of Theorem 2.37. Let Ē be the induced elliptic curve over k̄. We consider the rationalisation

End(Ē)Q = End(Ē)⊗Q

of the non-commutative ring End(Ē). We denote by f = FrX ∈ End(Ē) be the Frobenius endo-
morphism (since 0 ∈ E is a k-rational point, one has FrX(0) = 0, and therefore Fr is indeed an
endomorphism of the elliptic curve). One has deg f = q (see [Sil86, Proposition II.2.11(c)]), and

therefore ff̂ = q = f̂f .
We define a subring

K = Q[f, f̂ ] ⊂ End(Ē)Q,

since it is generated by f and f̂ , the equation

ff̂ = deg f = q = f̂f

implies that K is commutative and f−1 = f̂
q ∈ K.

According to Lemma 2.34 and Lemma 2.36

N1 = deg(1− f) = (1− f)(1− f̂) = (1− f)(1− qf−1),

which can be rearranged to the quadratic equation

N1f = (1− f)(f − q).

This shows that K = Q[f ] = Q(f) is a field extension of Q of degree 2.
More generally, Lemma 2.34 and 2.36 imply the formula

Nr = deg(1− fr) = (1− fr)(1− f̂r).

We can further simplify this, by using again ff̂ = q. This shows

Nr = q + 1− (fr + f̂r).

This yields the identity

Z(E, T ) =
(1− fT )(1− f̂T )

(1− T )(1− qT )
.

in K[[T ]]. Let P (T ) = (1 − fT )(1 − f̂T ) ∈ K[T ]. Since P (T ) = Z(X,T )(1 − T )(1 − qT ) ∈ Q[[T ]],
we deduce P (T ) ∈ Q[T ].

In order to conclude the proof we choose an embedding σ : K ↪→ C, and denote σ(f) by α ∈ C.

We claim that ᾱ = σ(f̂), that is, we claim that P (T ) has two complex-conjugate zeroes. This
follows from the inequality:
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Claim 2.39. P (x) ≥ 0, ∀x ∈ R .

Proof. It suffices to show P (mn ) ≥ 0 for every rational number m
n ∈ Q. We have

P (
m

n
) = (1− m

n
f)(1− m

n
f̂) = deg(1− m

n
f) =

deg(n−mf)

n2
≥ 0,

where we used positivity of the quadratic form given by the degree (see Lemma 2.32).

The equality |α|2 = αᾱ = q implies |α| = √q, and thus concludes the proof of the theorem.

Exercise 2.40. (a) Prove the functional equation for Z(E, T ), where E/k is an elliptic curve
over a finite field k.

(b) Prove the formula

resT=1Z(E, T ) =
#E(k)

q − 1
.

(c) Recall that Nr = #E(Fqr ). We define N ′r = Nr − (qr + 1). Show that there exists a recursive
relation

N ′r+2 + x ·N ′r+1 + y ·N ′r = z.

Conclude that the values of N1 and N2 completely determine the zeta function Z(E, T ).

2.6 Serre’s counterexample

Now that we have seen the Weil conjectures confirmed for a non-trivial class of varieties, it is time
to come back to the phantasmagoric idea 2.26 which led us there.

Definition 2.41. An elliptic curve E over a finite field k is said to be supersingular, if End(E)⊗R
is isomorphic to the quaternion algebra H.

The terminology “supersingular” is misleading: a supersingular elliptic curve is still a smooth
variety, and therefore certainly not singular at all. However, these elliptic curves are very special,
due to their large ring of endomorphisms. Using the degree map deg and the involution f 7→ f̂ one
can show that for an elliptic curve E/k the possibly non-commutative ring End(E) ⊗ R is either
isomorphic to R, C or H (see [Sil86, III.9]).

Remark 2.42 (Serre). There cannot exist a functor

H1 : (Vark̄)op // VectQ,

such that rkH1(E) = 2 for all elliptic curves. Otherwise, for E supersingular, we obtain a H-vector
space H1(E)⊗R of real dimension 2. This is impossible, since the dimension of every quaternionic
vector space is divisible by 4.

Despite of this observation, it would be a mistake to abandon Phantasy 2.26 completely. As long
as we drop the assumption that the cohomology Hi(X̄) of a k̄-variety is a rational vector space,
there is still some wiggle room. The following modification of Phantasy 2.26 is sufficient.
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Definition 2.43. Let K field of characteristic 0. A Weil cohomology theory8 for smooth varieties
over k̄ = F̄p is a sequence of functors(

Hi
)
i∈N : (Varsm,proj

k̄
)op // VectK,

such that we have

(a) cup products: Hi(X̄)×Hj(X̄) //Hi+j(X̄), compatible with pullback of cohomology classes,

(b) Poincaré duality: let d be the dimension of X̄ and assume X̄ is connected, then Hi(X̄) = 0
for i > 2d, there exists an isomorphism H2d(X̄) ' K, and Hi(X̄)×H2d−i(X̄) //H2d(X̄) is
a perfect pairing.

(c) Lefschetz fixed point formula: let X be a k-model for X̄ and FrX : X̄ // X̄ the induced
Frobenius morphism. Then we have

#X(Fq) =
∑
i≥0

(−1)i Tr(Hi(FrX)).

(d) we have H2d(FrX) = qd · id and H0(FrX) = id.

Serre’s counterexample proves that there cannot be a Weil cohomology theory over Q. However,
we may replace Q by a sufficiently big field extension K, such that the additional endomorphisms
of supersingular elliptic curves no longer cause any problems.

In order to get an idea for which fields K a Weil cohomology theory exists we take a closer look
at the endomorphism ring of a supersingular elliptic curve.

Definition 2.44. A quaternion algebra over Q is a non-commutative unital Q-algebra H, such that
there exist elements α, β ∈ H, satisfying the assumptions

(a) the quadruple (1, α, β, αβ) is a basis of H,

(b) we have α2, β2 ∈ Q<0,

(c) and αβ = −βα.

The following assertion follows from [Sil86, Corollary III.9.4]:

Proposition 2.45. Let k̄ the algebraic closure of a finite field k. For a supersingular elliptic curve
Ē/k̄ we have that End(Ē)Q is a quaternionic algebra over Q.

One has that End(Ē) ↪→ End(Ē) ⊗ Q, since End(Ē) doesn’t have zero divisors (this follows
from properties of the degree map deg : End(Ē) // Z). A subalgebra H′ ⊂ H with the property
H′ ⊗Q = H is called an order in a quaternionic Q-algebra.

Definition 2.46. Let H be a quaternionic algebra over Q and K /Q a field of characteristic 0. We
say that H is K-split, if there exists a 2-dimensional K-vector space V with an H-module structure.

8The literature contains several variants of this definition. Some authors ask for additional axioms.
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Equivalently, H is K-split, if H ⊗Q K is isomorphic to M2×2(K) = End(K2). It is clear that
fields K, such that for all supersingular elliptic curves Ē/k̄ the quaternionic algebra End(Ē)Q is
K-split, are precisely the fields which circumvent Serre’s counterexample. For all practical intents
and purposes, the fields Q` of `-adic numbers are the easiest example of such a field, for which a
Weil cohomology theory can be constructed. Here we denote by ` a prime which is different from
p. This notation is convenient, as it turns out that End(Ē)Q is not Qp-split.

Definition 2.47. Let ` be a prime number.

(a) We denote by v` : Q // Z the function, such that we have for all x ∈ Q

x = `v`(x) a

b
,

which a, b ∈ Z coprime to `.

(b) One defines | − |` : Q // R to be the norm |x|` = `−v`(x).

(c) The completion of Q with respect to | − |` is a normed field denoted by Q`.

(d) The closure of Z with respect to | − |` is denoted by Z`.

Theorem 2.48 (Grothendieck et al). For ` 6= p there exists a Weil cohomology theory taking values
in Q`-vector spaces.

Grothendieck’s construction of étale cohomology was truly spectacular. The next subsections
are devoted to a description of the main ideas underlying the construction of `-adic cohomology.
But first we mention modern response to Serre’s objection.

Conjecture 2.49 (Scholze). There exists a Weil cohomology theory (Hi)i≥0 taking values in com-
plex vector spaces with the following extra structure: Hi(X) is endowed with an antilinear involution
j, such that j2 = (−1)i · id.

It is not difficult to produce Weil cohomology theories taking values in complex vector spaces.9

The interesting feature of Scholze’s conjecture is the presence of the involution j. In the case of an
elliptic curve Ē, its degree 1 cohomology H1(Ē) would be a 2-dimensional complex vector space
with an antilinear operator j satisfying j2 = −1. That is, H1(Ē) is a 4-dimensional real vector
space, endowed with operators i, j, satisfying the relations ij = −ji, i2 = −1 and j2 = −1. We
conclude that H1(Ē) has the structure of a quaternionic vector space. In the case of a supersingular
elliptic curve, the action of H on this space would be simply given by right multiplication.

The conjecture above can be found as Conjecture 9.5 in Scholze’s ICM address [Sch]. In fact,
there Scholze proposes the existence of an even more general Weil cohomology theory, taking values
in a Q-linear category constructed by Kottwitz.

2.7 The fundamental group revisited

Subsequently we discuss the definition of étale cohomology. As a warm-up we start with a discussion
of fundamental groups. The reason is the following lemma.

9For instance we can use `-adic cohomology and tensor along an embedding of fields Q` ↪→ C.
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Lemma 2.50. Let X be a path-connected topological space, x ∈ X a point. For every abelian group
A there is an equivalence

H1
sing(X,A) = Hom(π1(X,x), A).

This suggests that in order to produce an algebraic analogue of H1, it is sufficient to define an
algebraic analogue of the fundamental group.10

We define the category Cov(X) whose objects are connected covering spaces π : Y // X.
Morphisms Y // Y ′ are given by a commutative diagram of coverings

Y //

  

Y ′

��

X,

and denote by
Fibx : Cov(X) // Set

the functor sending Y to the set π−1(x) and refer to it as the fibre functor at x. The group of
natural self-transformations of the fibre functor Aut(Fibx) is given by the collection of compatible
automorphisms of π−1(Y ); i.e., for every Y ∈ Cov(X) a permutation σY of the set Fibx(Y ) =
π−1(x), s.t. for every morphism of coverings φ : Y // Y ′ we have a commutative diagram

Fibx(Y )
φ
//

σY

��

Fibx(Y ′)

σY ′

��

Fibx(Y )
φ
// Fibx(Y ′).

Theorem 2.51. There is a natural automorphism π1(X,x) ' Aut(Fibx).

Proof. Every element of π1(X,x) can be pictured as a closed path in X based at x. Every such
path can be lifted to a non-necessarily closed path in a covering space Y , depending only on the
choice of a starting point given an element in π−1(x) = Fibx(Y ). This construction obiously
yields a compatible system of permutations of the set π−1(x). We have therefore obtained a
natural morphism π1(X,x) //Aut(Fibx) and to conclude the proof we have to verify that it is an
isomorphism.

Let X̃ denote a universal covering space of X. We recall that up to the choice of a base point x̃ ∈
π−1(x) there exists an identification of Fibx(X̃) with π1(X), by means of the above construction.

Moreover there exists an identification of π1(X) with the group of deck transformations Aut(X̃/X).

Let now σ be the permutation of Fibx(X̃) otained by restricting an arbitrary element of

Aut(Fibx) to X̃. By the discussion in the paragraph above, we have to show that σ(x̃) determines

σ uniquely. Every other element in Fibx(X̃) can be uniquely written as x̃γ, where γ ∈ π1(X,x).11

Moreover, γ can be also viewed as a deck transformation of the universal covering space X̃. By
naturality of the permutation σ (definition of natural self-transformation of a functor), we obtain

σ(x̃γ) = σ((x̃)γ) = σ(x̃)γ,

which allows us to conclude the proof.

10The following two subsections are based on the notes of a talk the author gave in Lausanne in 2013.
11It is helpful to write the action of π1(X,x) as a right action.
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If the topological spaces X and Y can be endowed with the structure of differentiable manifold,
the notion of covering can be expressed in terms of these extra structure.

Recall that a C∞-map f : Y //X between C∞-manifolds is called a local diffeomorphism if for
every x ∈ X and every y ∈ f−1(x), the differential dfy : TyY // TxX is an isomorphism.

The proof of the proposition below is left to the reader. It will turn out to be the key ingredient
in algebraising the topological invariant π1.

Proposition 2.52. Let π : Y // X be a local diffeomorphism between C∞-manifolds, which is
additionally proper (i.e. preimages of compact subsets are compact), then π is a covering morphism
with finite fibres. Moreover, all finite coverings of a differentiable manifold X arise in this way:
i.e. every covering Y inherits the structure of a differentiable manifold, rendering the map π to be
étale, and a covering map between manifolds has finite fibres if and only if it is proper.

Proposition 2.52 gives a geometric characterisation of finite covering maps, it is therefore an
interesting question how far we can go by only using finite covering spaces. A more precise question
being: let Covfin(X) ⊂ Cov(X) be the full subcategory of finite connected covering spaces, and

Fibfinx : Covfin(X) // Setfin

the restriction of the fibre functor. How does

πfin1 (X,x) := Aut(Fibfinx )

relate to the fundamental group π1(X,x) = Aut(Fibx)? The next definition contains a construction
from abstract group theory, which allows us to formulate the answer.

Definition 2.53. Let G be an abstract group, we denote by F (G) the set of normal, finite-index
subgroups N of G, i.e. G/N being a finite group. The set F (G) is inductively ordered and the
inverse limit of the finite quotients G/N , i.e.

Ĝ := {([gN ]N )N∈F (G)|[gN ]N ∈ G/N, and [gN ′ ]N = [gN ]N for N ′ ⊂ N},

is called the pro-finite completion of G.

It is important to know that pro-finite groups are more than just groups. The inverse limit con-
struction endows them naturally with a topology (the subset topology of the product topology).12

Moreover, by Tychonov’s theorem, pro-finite groups are actually compact.

Example 2.54. One has Ẑ =
∏
p prime Zp.

The relevance of this abstract notion to the determination of πfin1 is due to a simple observation
in the theory of covering spaces. Every finite-index subgroup N of π1(X,x) corresponds to a finite
covering space Y //X by virtue of the fundamental theorem of covering theory. If N is moreover
assumed to be a normal subgroup, it corresponds to finite regular covering spaces.13 We hope that
these remarks are already convincing enough to believe the statement of the following theorem, for
the sake of clarity we have included a proof below.

12Finite groups are viewed as topological groups with the trivial topology.
13Regularity is equivalent to the natural action of π1(X,x) on π−1(x) being transitive.
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Theorem 2.55. The canonical morphism π1(X,x) // πfin1 (X,x), obtained by restricting an ele-
ment of Aut(Fibx) to the subcategory Covfin(X), induces an isomorphism

̂π1(X,x) ' πfin1 (X,x).

Proof. Let YN //X be the regular finite covering corresponding to a normal, finite-index subgroup
N ⊂ π1(X,x), a compatible choice of these a collection (YN )N∈F (π1(X,x)) can be constructed by

quotienting a universal covering space X̃ by N . The group of deck transformations of YN is
canonically given by π1(X,x)/N . The choice of x̃ ∈ Fibx(X̃) gives rise to a base point xN in every
YN , which allows us to identify Fibx(YN ) with π1(X,x)/N . Similarly to the proof of Theorem 2.51
we let (σN ) be a compatible system of permuations of Fibx(YN ). For y ∈ Fibx(YN ) there exists
a γ ∈ π1(X,x), whose class [γ]N is welldefined, s.t. y = γ(yN ). As before we see by naturality
of (σN ) that σN is given by right multiplication with σN (yN ) ∈ π1(X,x)/N . This construction
associates to (σN ) the compatible system (σN (yN ))N ∈ π1(X,x)/N , which can be seen to give an

inverse ̂π1(X,x) // πfin1 (X,x).

2.8 The étale fundamental group

Proposition 2.52 contained a characterisation of finite covering maps of manifolds as proper local
diffeomorphisms. The analogue of a local diffeomorphism in the category of varieties is an étale
morphism (see Definition 1.53).

Also the notion of properness of a morphism is wonderfully captured by Grothendieck’s approach
to algebraic geometry (see chapter II.4 in [Har77]). Nonetheless it can be shown that for étale maps,
properness is equivalent to the simpler notion of being finite (this is essentially exercise III.11.2 in
[Har77]).

Definition 2.56. A map between two affine varieties f : SpecB // SpecA is called finite, if the
induced map of rings A //B endows B with the structure of a finitely generated A-module. A map
between two varieties f : Y //X is called finite, if there exists a covering X =

⋃
i∈I Ui, s.t. each

f−1(Ui) is affine, and the restriction f : f−1(Ui) // Ui is finite.

Motivated by Theorem 2.55 we define the category Covét(X) to be the category of (connected)
finite étale covering spaces π : Y //X with morphisms being given by a finite étale map Y // Y ′

sitting in a commutative diagram

Y //

  

Y ′

��

X.

For every geometric point x of X, i.e. for every map SpecF sep // X, where F sep is a separably
closed field, there is a fibre functor

Fibét
x : Covét(X) // Set,

sending Y to the fibre HomX(Spec F̄ , Y ).

Definition 2.57. The étale fundamental group of a variety X at a geometric point x, is defined to
be the group of natural self-transformations of the fibre functor Fibét

x , i.e.

πét
1 (X,x) := Aut(Fibét

x ).
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For later use we record the following lemma, which will be useful in constructing representations
of the étale fundamental group.

Lemma 2.58. Let X be a variety and π : Y // X a finite étale covering. We say that π is
regular (or Galois), if the action of πét

1 (X,x) on Fibét
x (Y ) is transitive. Under these circumstances,

the group of deck transformations Aut(Y/X), i.e. the automorphism group of Y in the category
Covét(X), is a surjective image of πét

1 (X,x).

In case that X is a complex variety, and x ∈ X(C) we would like to state a comparison theo-

rem relating πét
1 (X,x) with πfin1 (X,x). In order to achieve this it suffices to construct a natural

equivalence of categories
Covfin(Xan) ' Covét(X),

respecting fibre functors. This follows from the following theorem, see [SGA71, Exp. XII Thm.
5.1].

Theorem 2.59 (Riemann Existence Theorem). Let X be a complex variety, then there exists a
canonical equivalence of finite étale coverings of X and finite coverings of Xan.

Corollary 2.60 (Comparison theorem for πét
1 ). Let X be a complex variety and x ∈ X(C) a

C-point, then there is a canonical equivalence

πét
1 (X,x) ' ̂π1(Xan, x).

Proof. The Riemann Existence Theorem 2.59 shows that there is an equivalence of categories
Covét(X,x) ' Covfin(Xan, x), respecting fibre functors. In particular we obtain an equivalence of
the groups of natural self-transformations

πét
1 (X,x) = Aut(Fibét

x ) ' Aut(Fibfinx ) = πfin1 (Xan, x).

Since we have seen in Theorem 2.55 that πfin1 (Xan, x) ' ̂π1(Xan, x), finishing the proof of the
theorem.

As an example, we compute the étale fundamental group of an elliptic curve E = C /Γ over C
without referring to the universal covering space. Recall that Γ ⊂ C is a lattice, that is, a subgroup
of C, such that the natural map

Γ⊗ R // C

is an isomorphism.

Proposition 2.61. Let E = C /Γ be a complex elliptic curve. There is an isomorphism

πét
1 (E, 0) ' Γ̂.

Proof. It follows from part (a) and (b) of the exercise below that a finite covering space E′ // E
is equivalent to

C /Γ′ // C /Γ

where Γ′ ⊂ Γ is a lattice in C contained in Γ. Furthermore, every subgroup Γ′ ⊂ Γ of finite index,
is a lattice. Indeed, the natural map

Γ′ ⊗ R = Γ⊗ R // C
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is an isomorphism. This establishes a bijection between finite covering spaces E′ of E up to
isomorphism and finite index subgroups Γ′ ⊂ Γ. We deduce that the deck transformation group of
E′/E is given by Γ/Γ′. As before, one infers the existence of an isomorphism Aut(Fix0) = Γ̂.

Exercise 2.62. We consider a complex elliptic curve E/C. Let π : E′ // E be a finite covering
space. Show that E′ has a natural structure of a complex manifold (to be precise, a Riemann
surface), such that:

(a) the map π is a holomorphic map between complex manifolds,

(b) the complex manifold E′ is an elliptic curve,

(c) there exists a positive integer n, such that we have a holomorphic map E //E′, such that the
diagram

E //

[n]
  

E′

��

E

commutes. Here, we denote by [n] : E // E the map sending x ∈ E to nx.

This exercise shows, that the inverse system(
E

[n]
// E

)
n≥1

,

where we order integers by divisibility, behaves like a universal profinite space of E. This inverse
system is defined in purely algebraic terms. Using it, and the analogue of exercise (c) above, one
can show the following:

Theorem 2.63. Let K be an algebraically closed field of characteristic 0, and E/K an elliptic

curve. Then, one has πét
1 (E, 0) ' ̂(Z×Z).

There is a variant of the same result over characteristic p fields. It is necessary to avoid coverings

of degree divisible to p. This corresponds to considering the coprime-to-p part of πét
1 and ̂(Z×Z).

Theorem 2.64 (SGA). Let k̄ be an algebraically closed field of characteristic p > 0, and Ē/k̄ an

elliptic curve. Then, one has πét
1 (Ē, 0)′ ' ̂(Z×Z)

′
.14

An elementary account of the proof of these theorems is given in [Kun].

2.9 Torsors and H1
ét

Let A be a finite abelian group. In this subsection we define H1
ét(X,A) for X a k-variety. We will

see that the field of complex numbers, and A finite, our definition agrees with singular cohomology
H1

sing(Xan, A). However, using the same definition for A = Z,Q, one obtains a meaningless (and
often trivial) answer without any connection to singular cohomology.

Before delving into the construction of H1(X,A) let us remark how we can use it as the starting
point of the construction of a Weil cohomology theory (`-adic cohomology).

14The ′ indicates that we only consider normal subgroups of index coprime to p.
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Construction 2.65. Assume that we already know how to define Hi
ét(X,A) for A a finite abelian

group. For a prime number ` we define a Z`-module

Hi
ét(X,Z`) = lim←−n≥0

Hi(X,Z /`n Z),

and a Q`-vector space
Hi

ét(X,Q`) = Hi(X,Z`)⊗Q .

This definition is justified by the following comparison result over the complex numbers.

Proposition 2.66. Let X/C be a smooth projective variety. Assume that for a finite abelian
group A we already have constructed isomorphisms Hi

ét(X,A) ' Hi
sing(Xan, A). Then, we have an

isomorphism Hi
ét(X,Q`) ' Hi

sing(Xan,Q`).

Proof. The analytification Xan is a compact complex manifold. In particular, its singular homology
group Hsing

i (X,A) are finitely generated abelian groups. These groups govern the other cohomology
group Hi(X,A) for all abelian groups A:

Theorem 2.67 (Universal coefficient theorem, Theorem 3.2 in [Hat]). Let Z be a topological space.

Then, we have Hi
sing(Z,A) ' Hom(Hsing

i (Z,Z), A)⊕ Ext(Hsing
i−1 (X,Z), A).

The abelian group Ext(Hsing
i−1 (X,Z), A) is finite, if A is finite. For A = F a field, one can show

that Ext(Hsing
i−1 (X,Z), F ) = 0 (see [Hat, p. 207]). Furthermore, one has the relation

Ext(Z /`n Z,Z /`m Z) = Z /`min(m,n) Z .

This implies that the inverse limit lim←−Ext(Hsing
i−1 (X,Z),Z /`n Z) equals the `-primary part ofHsing

i−1 (X,Z)
(that is, the set of elements annihilated by a power of `). We conclude

lim←−H
i
sing(Z,Z`) ' Hom(Hsing

i (Z,Z),Z`)⊕Hsing
i−1 (X,Z)[`∞].

Since the factor on the right hand side is a fixed torsion group, it disappears when tensoring with
Q. We infer an isomorphism

Hi
ét(X,Q`) ' Hi

sing(Xan,Q`),

which concludes the proof.

We now turn to the algebraic construction of Hi(X,A) for A a finite abelian group. At first
we need to specify what it means for A to act on a variety Y . An A-action on Y is a group
homomorphism α : A // Aut(Y ). A morphism Y //X is said to be A-invariant, if for all a ∈ A
we have

π ◦ α(a) = π,

that is, the diagram

Y

π
  

α(a)
// Y

π

��

X

commutes.
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Definition 2.68. Let X be a smooth k-variety. An étale A-torsor is a triple (Y, π, α), where

(a) Y is a smooth k-variety endowed with an A-action α,

(b) π : Y //X a finite étale morphism of degree #A which is A-invariant,

(c) the natural map φ : A // AutA(Ȳ /X̄) an isomorphism between A and the group of deck trans-
formations commuting with A (where Ȳ // X̄ denotes the induced morphism of k̄-varieties).

Even the simplest example can be helpful in order to understand the definition of torsors.

Example 2.69. Let k̄ be an algebraically closed field and X = A0
k̄ a point. An A-torsor over X

corresponds to a set S ⊔
s∈S

A0
k̄

// A0
k̄

with an A-action α : A× S // S, such that we have an isomorphism

A ' AutA(S) = {f : S // S|f(as) = af(s).}

Claim 2.70. For s ∈ S one has S = A · s.

Proof. Let fa : S // S be the map given by t 7→ a · t for t ∈ A · s, and t 7→ t otherwise. This
is a bijection satisfying fa(bt) = bfa(t) for all b ∈ A, that is, fa ∈ AutA(S). By assumption,
A = AutA(S), and therefore fa(t) = a · t for all t ∈ S. This implies A · s = S.

We conclude that an A-torsor on the point A0
k̄ corresponds to a set S with an A-action α which

is transitive and faithful. In particular, S is non-canonically equivalent to A, as a set with A-action.

For non-algebraically closed fields k (as always we assume perfect), this example gets more
interesting.

Example 2.71. Let k′/k be a Galois extension with finite abelian Galois group A. Then,

MSpec k′ // MSpec k

is an A-torsor. Indeed, the map above is étale (the tangent spaces are 0-dimensional15), and by defi-
nition, A acts on k′ through field automorphisms. Therefore, A acts on the k-variety MSpec k′. We
have Aut(MSpec k′/MSpec k) = Aut(k′/k) = A. In particular, all deck transformations commute
with the A-action, and thus MSpec k′/MSpec k is an A-torsor.

The third example finally has some geometric relevance.

Exercise 2.72. Let k̄ be an algebraically closed field, and n a positive integer which is invertible
in k̄.16 In Exercise 1.54 we verified that the map

φn : Gm,k̄ // Gm,k̄

given by the ring homomorphism k̄[t, t−1] // k̄[t, t−1] sending t to tn, is étale. Let us denote by µn
the group of n-th roots of unity, that is, λ ∈ k̄ satisfying

λn = 1.

Show that the map φn : Gm,k̄ // Gm,k̄ is a µn-torsor.

15This argument only makes sense for a perfect field k
16In other words, n is coprime to the characteristic p of k̄.
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Definition 2.73. Let X be a smooth k-variety. The set of isomorphism classes of A-torsors on X
is denoted by H1

ét(X,A).

It remains to prove that for a complex variety, this reproduces singular cohomology.

Lemma 2.74. For X a connected smooth complex variety and A a finite abelian group one has a
natural isomorphism H1

ét(X,A) ' H1
sing(Xan, A).

Proof. The Riemann Existence Theorem 2.59 yields an isomorphism between H1
ét(X,A) and the

set of isomorphism classes T (A) of covering spaces π : Z //Xan, endowed with an A-action, such
that π is A-invariant and A // AutA(Z/Xan) is an isomorphism.

We claim that every (Z/Xan) ∈ T (A) gives rise to a morphism π1(Xan, x) //A. To see this, we
choose an arbitrary connected component Z ′/Xan of Z. By construction, there exists a subgroup
B ⊂ A, such that Z ′/Xan is a B-torsor. In particular, B ⊂ Aut(Z ′/Xan). Since π−1(x) has as many
elements as B, we conclude from the theory of covering spaces that B = Aut(Z ′/Xan).

The homomorphism π1(Xan, x) //A is defined to be the composition

π1(Xan, x) � B ↪→ A.

A direct verification shows that it is independent of the chosen connected component Z ′ ⊂ Z.
Vice versa, given a homomorphism ρ : π1(Xan, x) // A one can construct the corresponding

A-torsor as follows:
Z = (X̃ ×A)/π1(Xan, x),

where π1(Xan, x) acts through the inverse of its usual action on the universal covering space X̃,
and through the homomorphism ρ : π1(Xan, x) //A on A:

γ · (x̃, a) = (γ−1x̃, ρ(γ)).

A direct computation shows that we constructed mutually inverse bijections

T (A) ' Hom(π1(Xan, x), A).

The right hand side can be identified with H1
sing(Xan, A).

Dangerous Bend 2.75. If the group order #A is divisible by the characteristic p of k̄, strange
things can happen. For instance, we will see that

H1(A1
k̄,Z /pZ) = Z /pZ .

A non-trivial torsor is given by the so-called Artin-Schreier map

A1
k̄

// A1
k̄, λ 7→ λp − λ.

2.10 Fibre products and equalisers

Definition 2.76. Let C be a category, and f : X → Z, g : Y → Z two morphisms. Consider the
category of diagrams

W //

��

Y

��

X // Z.
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If it exists, we denote the top left corner (W ) of the final object in this category by X ×Z Y , and
call it the fibre product of the two morphisms f and g.

By the definition of final objects, we see that whenever we have a commutative diagram as
above, there exists a unique morphism W → X ×Z Y , such that the resulting diagram

W

))

��

∃!
$$

X ×Z Y //

��

Y

��

X // Z.

commutes.

Example 2.77. For a topological space X, and inclusions of open subsets U ↪→ X, V ↪→ X,
we have that the fibre product U ×X V in the category Open(X), respectively Top, is given by the
inclusion of the open subset U ∩ V ↪→ X.

Proposition 2.78. Let Y // X be an étale morphism of smooth k-varieties, and Z // Y an
arbitrary morphism of smooth varieties. Then the fibre product W = Y ×X Z is a smooth variety,
and the map Y ×X Z // Z is étale.

Proof. See [Mil80, Proposition 3.3(c)].

2.11 Grothendieck topologies

Definition 2.79. Let C be a category. A Grothendieck topology T on C consists of a collection of
sets of morphisms (called coverings) {Ui → U}i∈I for each object U ∈ C, satisfying:

(a) For every isomorphism U ′ → U , the singleton {U ′ → U} is a covering.

(b) Coverings are preserved by base change, i.e. if {Ui → U}i∈I is a covering, and V → U a
morphism in C, then {Ui ×U V → V }i∈I is well-defined, and a covering.

(c) Given a covering {Ui → U}, and for each i ∈ I a covering {Uij → Ui}j∈Ji , then

{Uij → U}(i,j)∈∏i∈I Ji

is a covering.

Originally, Grothendieck topologies were called pretopologies. A pair (C, T ) is called a site. An
example everyone is familiar with is given by topological spaces.

Example 2.80. For the category Open(X), for X a topological space, we have a natural choice for a
Grothendieck topology. We define T (X) to be the collection of all {Ui ⊂ U}, such that

⋃
i∈I Ui = U .
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Definition 2.81. Let C be a category. A functor F : Cop → Set is called a presheaf. The category
of presheaves will be denoted by Pr(C). If (C, T ) is a site, a presheaf is called a sheaf, if for every
{Ui → U}i∈I the diagram

F (U)→
∏
i∈I

F (Ui) ⇒
∏

(i,j)∈I2

F (Ui ×U Uj)

is an equaliser. We denote the full subcategory of sheaves by ShT (C).

We fix a topological space X. As we have seen above, there is a category, denoted by Open(X),
whose objects are open subsets U ⊂ X, and morphisms are inclusions U ⊂ V .

Example 2.82. A (set-valued) presheaf on X is a functor F : Open(X)op → Set.

In more concrete terms, we associate to every open subset U ⊂ X a set F (U), as well as a
restriction map

rVU : F (V )→ F (U)

for every inclusion U ⊂ V . Moreover, the conditions

(a) rUU = idF (U),

(b) rVU ◦ rWV = rWU for triples of open subsets U ⊂ V ⊂W ,

are satisfied.
If Y is a topological space, we denote by Y X the presheaf on X, which associates to an open

subset U ⊂ X the set of continuous functions U → Y , i.e.,

Y X(U) = HomTop(U, Y ).

The restriction maps rVU are given by
f 7→ f |U ,

i.e., sending a continuous map f : V → Y to the composition f ◦ i, where i : U ↪→ V denotes the
inclusion.

If U =
⋃
i∈I Ui is an open covering, we have for every pair of open subsets Ui, Uj two maps

Ui ←↩ Ui ∩ Uj ↪→ Uj .

Hence, for every presheaf F we have a pair of restriction maps

F (Ui)→ F (Ui ∩ Uj)← F (Uj).

Taking a product over all pairs (i, j) ∈ I2, and relabelling indices, we obtain∏
i∈I

F (Ui) ⇒
∏

(i,j)∈I2

F (Ui ∩ Uj).

Example 2.83. A presheaf F is called a sheaf, if for every open subset U ⊂ X, and every open
covering U =

⋃
i∈I Ui, we have that

F (U)→
∏
i∈I

F (Ui) ⇒
∏

(i,j)∈I2

F (Ui ∩ Uj)

is an equaliser diagram.
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Unravelling the definition of equalisers, we see that a presheaf is a sheaf, if and only if for
every U =

⋃
i∈I Ui as above, the following condition is satisfied: given a collection of local sections

si ∈ F (Ui), which agree on overlaps, i.e. satisfy rUiUi∩Uj (si) = r
Uj
Ui∩Uj (sj) for all pairs of indices,

there exists a unique section s ∈ F (U), such that rUUi(s) = si.

Lemma 2.84. The presheaf Y X is a sheaf.

Concrete proof. If fi : Ui → Y are continuous functions, such that fi|Ui∩Uj = fj |Ui∩Uj for all pairs
of indices, then there is a well-defined map of sets f : U → Y , which sends x ∈ U to fi(x), if x ∈ Ui.
Since continuity is a local property, i.e. continuity at a point x ∈ X depends only on the restriction
f |Ui , for x ∈ Ui, we see that f is a continuous function.

Abstract proof. We can represent U as a co-equaliser∐
(i,j)∈I2

Ui ∩ Uj ⇒
∐
i∈I

Ui → U,

i.e., as a colimit in the category Top of topological spaces. The universal property of colimits implies
that HomTop(−, Y ) sends a co-equaliser to an equaliser.

Definition 2.85. Let X be a smooth k-variety. We denote by (X)ét the so-called small étale site
of X. The objects of the underlying category consists of étale morphisms of k-varieties Y // X.
Morphisms are given by commutative diagram of étale morphisms

Z

  

// Y

��

X.

The Grothendieck topology is defined as follows: a finite collection {Ui
fi //U} of étale morphisms

is said to be a covering family, if and only
⋃
i∈I fi(Ui) = U .

An important class of sheaves is given by so-called representable sheaves.

Definition 2.86. Let X and Y be k-varieties. We denote by Y X the presheaf on (X)ét which
assigns to an étale morphism U //X the set Mor(U, Y ).

It is an important consequence of faithfully flat descent theory that this presheaf is in fact a
sheaf. We defer the proof in Subsection 2.15.

Theorem 2.87. The presheaf Y X is an étale sheaf.

An important special case is Y = A1
k. In this case, A1

k is the sheaf of regular functions: it assigns

to U //X the set of f : U // A1
k. This sheaf is our first example of a sheaf in abelian groups.
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2.12 Sheaf cohomology: an axiomatic approach

Henceforth, we shall work under the following assumptions: let (C, T ) be a small site,17 such that
there exists a final object X ∈ C. We remark that this assumption is satisfied by Open(X), where
X is a topological space. Another example is given by (X)ét, the small étale site of X, where X is
a smooth k-variety.

Another convention we’re going to introduce is that: sheaves will be sheaves of abelian groups.
That is, we assume that F(U) is an abelian group for every U ∈ C and for every morphism V //U ,
the corresponding map F(U) // F(V ) is a homomorphism.

For a presheaf F on C we’ll also suggestively write Γ(X,F) = F(X), and refer to this abelian
group as the group of global sections of F .

Definition 2.88. A sequence F
f
// G

g
//H of sheaves is said to be exact at G, if and only if for

every U ∈ C and every s ∈ G(U), such that gU (s) = 0, ther exists a covering {Ui // U}i∈I ∈ T ,
such that there are sections ti ∈ F(Ui) satisfying ti = fUi(ti) = s|Ui .

A special case of the above definitions are exact sequences of the form

0 // F
f
// G,

which amount to the map f being locally injective. We will see that locally injective maps of sheaves
are actually injective. Another special case is given by exact sequences

F
g
// G // 0.

This amounts to g being locally surjective. It is not true that a locally surjective map of sheaves is
surjective, as shown by the following example.

Example 2.89. Let X = C× with the standard topology. We denote by O the sheaf of holomorphic
functions on X, and by O× the sheaf of invertible holomorphic functions (that is, they are nowhere
zero). The sequence

0 // 2πiZ // O
exp
// O× // 0

is exact. However, the induced map between global sections O(X) // O×(X) is not surjective, as
the function idC× cannot be expressed as the exponential of a holomorphic function.

The most general statement we can make is the following:

Lemma 2.90. Let 0 // F
f
// G

g
//H // 0 be a short exact sequence of sheaves. The sequence

of abelian groups
0 // Γ(X,F) // Γ(X,G) // Γ(X,H)

is exact.

Proof. We claim that exactness at Γ(X,F) is equivalent to injectivity of the map F(X) // G(X).
The assumption fX(s) = 0 implies 0 = fX(s)|Us = fU (s|U ) = 0 for every object U of the site. By
assumption, there exists a covering {Ui //X}i∈I , such that s|Ui = 0 for all i ∈ I. Hence, we have

17Small is a technical term, it means that there’s an actual set of objects, and not just a class.

49



s|Ux = 0 for every x ∈ X. The sheaf property implies now that s = 0, since the two sections s and
0 both solve the glueing problem for 0 ∈ F(Uxy) for (x, y) ∈ X2.

Exactness at Γ(X,G) can be shown as follows: let s ∈ G(X), such that g(s) = 0. By assumption
there exists a covering {Ui // X}i∈I , and sections ti ∈ F(Ui), such that f(ti) = s|Ui . We claim
that the glueing condition is satisfied, that is ti|Uij = tj |Uij for all (i, j) ∈ I2, where Uij = Ui×U Uj .
This is true, since f(ti|Uij) = s|Uij = f(tj |Uij ), but f is injective, which implies what we want.
Therefore, there exists a section t ∈ F(X), such that f(t)|Ui = s|Ui for all i ∈ I. We conclude that
f(t) = s.

Definition 2.91. A sheaf I is called injective, if the following is true: let F ↪→ G be an injective
morphism of sheaves, and f : F // I a morphism of sheaves. Then there exists a morphism
G // I, such that the diagram

F �
�

//

f

��

G

∃
��

I
commutes.

We emphasise that injectivity is a property, and not a universal property! We are now ready to
state the third axiom of sheaf cohomology, and prove the existence of such a theory.

Definition 2.92 (Sheaf cohomology). A sheaf cohomology theory is a collection of functors

Hi(X,−) : Sh(X) // AbGrp

for i ≥ 0, such that:

(A1) H0(X,F) = Γ(X,F) as functors,

(A2) for every short exact sequence of sheaves 0 // F // G // H // 0 we have a long exact
sequence

· · · //Hi(X,F) //Hi(X,G) //Hi(X,H) //Hi+1(F) // · · · .

And for every commutative diagram with exact rows

0 // F1
//

��

G1
//

��

H1
//

��

0

0 // F2
// G2

// H2
// 0

we have a commutative diagram whose rows are the aforementioned long exact sequences.

· · · // Hi(X,F1) //

��

Hi(X,G1) //

��

Hi(X,H1) //

��

Hi+1(X,F1) //

��

· · ·

· · · // Hi(X,F2) // Hi(X,G2) // Hi(X,H2) // Hi+1(X,F2) // · · ·

(A3) If I is an injective sheaf, then Hi(X, I) = 0 for i ≥ 1.
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2.13 Existence of sheaf cohomology

What does (A3) of the definition of sheaf cohomology buy us? Every sheaf F can be embedded
into an injective sheaf I. Therefore, there exists a short exact sequence

0 // F // I // I /F // 0.

Assuming that there is a theory of sheaf cohomology satisfying the axioms (A1-3), we obtain for
i ≥ 0 an exact sequence

· · · //Hi(X, I) //Hi(X, I /F) //Hi+1(F) // 0 = Hi+1(X, I),

where we use that Hi+1(X, I) = 0, since I is injective. This implies

H1(X,F) ' coker(H0(X, I) //H0(X, I /F)),

and for i ≥ 1:
Hi+1(X,F) ' Hi(X, I /F).

We will turn this observation into an inductive definition. For this to make sense, we have to verify
the resulting higher cohomology groups, are independent of the choice of the embedding F ↪→ I.

Lemma 2.93. The following defines a functor H1(X,−) : Sh(X) // AbGrp. For every F ∈ Sh(X)
we choose an embedding F ↪→ I, where I is an injective sheaf, and define

H1(X,F) = coker(H0(X, I) //H0(X, I /F)).

For a morphism F
f
// G we choose a commutative diagram

F �
�

//

f

��

I

∃
��

G �
�

// J

and define H1(f) to be the map

H0(X, I) //

��

H0(X, I /F)

��

// H1(X,F) //

H1(f)

��

0

H0(X,J ) // H0(X,J /G) // H1(X,G) // 0.

The resulting functor is independent (up to a unique natural isomorphism) of the chosen embeddings
F // I.

Proof. We begin the proof by verifying that the resulting map H1(f) is independent of the choices.
That is, if we have two morphisms g and h giving rise to a commutative diagram

F �
�

//

f

��

I
g

��

h

��

G �
�

// J
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we want to prove that the induced maps α, β : H1(X,F) // H1(X,G) agree. We will show that
α− β = 0.

H0(X, I) //

g

��

h

��

H0(X, I /F)

g

��

h

��

// H1(X,F) //

α

��

β

��

0

H0(X,J ) // H0(X,J /F) // H1(X,F) // 0.

The map g − h : I // I satisfies (g − h)|F = 0 by definition. Therefore, we obtain a factorisation
as indicated by the dotted arrow

I //

g−h
��

I /F

}} ��

J // J /G,

and we see that g−h : H0(X, I /F) //H0(X, I /F) factors through H0(X,J ). Since H1(X,G) =
coker(H0(X,J ) //H0(X,J /G)), we obtain α− β = 0.

Applying this to the commutative diagram

F �
�

//

idF
��

I

g

��

idI
��

F �
�

// I,

we see that H1(idF ) is the identity map of H1(X,F). Applying the observation to

F �
�

//

��

I

��

F �
�

//

��

J

��

F �
�

// I,

(and also switching the roles of I and J ) we see that the abelian group H1(X,F) is independent
of the chosen embedding F ↪→ I.

It remains to see that for composable morphisms of sheaves F
f
// G

g
//H we have H1(g◦f) =

H1(g) ◦H1(f). Consider the commutative diagram

F �
�

//

f

��

I

∃
��

G �
�

//

g

��

J

∃
��

H �
�

// K .
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We know that the induced maps H1(f), H1(g), H1(g◦) are independent of the chosen extensions
presented by the dashed arrows. Therefore H1(g ◦f) = H1(g)◦H1(f), because we can simply form
the composition of two successive extension.

The next lemma can be understood as a consistency check of the third axiom of sheaf cohomology
(A3). The condition H1(X, I) = 0 for an injective sheaf I implies in particular (using the long
exact sequence) that every short exact sequence of sheaves 0 // I // G //H // 0 gives rise to a
short exact sequence of global sections. This can be verified directly, and will be used in the proof
of existence of sheaf cohomology.

Lemma 2.94. Let 0 // I // G //H // 0 be a short exact sequence of sheaves, such that I is
injective. Then the sequence of global sections

0 // Γ(X, I) // Γ(X,G) // Γ(X,H) // 0

is exact.

Proof. Using injectivity of I, we obtain a morphism of sheaves r : G // I, such that

I

id

��

� � // G

∃s
��

I

commutes. This implies that the short exact sequence 0 // I // G // H // 0 splits, that is
G ' I ⊕H = I ×H. But H0(X, I ⊕H) ' H0(X, I)⊕H0(X,H), and therefore we see that the map
H0(X,G) //H0(X,H) is indeed surjective, and the sequence above thus exact.

Lemma 2.95. For every short exact sequence of sheaves 0 // F // G //H // 0 we have a long
exact sequence 0 //H0(X,F) //H0(X,G) //H0(X,H) //H1(X,F) //H1(X,G) //H1(X,H),
where H1(X,−) is the functor defined in Lemma 2.93.

Proof. It is left as an exercise to show that there exist embeddings into injective sheaves F ↪→ I,
G ↪→ J , and H ↪→ K, such that we have the following commutative diagram with exact rows and
exact columns.

0

��

0

��

0

��

0 // F //

��

G //

��

H //

��

0

0 // I //

��

J //

��

K //

��

0

0 // I/F //

��

J /G //

��

K/H //

��

0

0 0 0
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Applying the functor H0(X,−) to the lower two rows we obtain the commutative diagram with
exact rows

0 // H0(X, I) //

��

H0(X,J ) //

��

H0(X,H) //

��

0

0 // H0(X, I/F) // H0(X,J /G) // H0(X,K/H).

The first row is exact by virtue of Lemma 2.94. The Snake Lemma gives rise to the required long
exact sequence 0 //H0(X,F) //H0(X,G) //H0(X,H) //H1(X,F) //H1(X,G) //H1(X,H).

Theorem 2.96. There exists a unique (up to a unique isomorphism) formalism of sheaf cohomology
as in Definition 2.92.

Proof. We will prove by induction on the degree i, that there exists a family of functors

Hi(X,−) : Sh(X) // AbGrp,

verifying the axioms (A1− 3) up to the given degree. For i ≤ 1 we know that such a family exists
by virtue of Lemma 2.93. In this lemma we verified explicitly that (A1-2) are satisfied, and (A3)
holds by definition of the functor H1(X,−). Indeed, if I is an injective sheaf, we may consider the

trivial embedding idI : I ↪→ I, and hence obtain H1(X, I) = coker(H1(X, I)
id //H0(X, I)) = 0.

For i ≥ 1 we define Hi+1(X,F) = Hi(X, I /F), where F ↪→ I is an embedding into an injective

sheaf (according to E7, ex. 5 this is always possible). For a morphism of sheaves F
f
// G we

choose a commutative diagram
F �
�

//

f

��

I

��

G �
�

// J .

(5)

as in our construction of the functor H1(X,−) in Lemma 2.93. We will use the same strategy as
in loc. cit. to verify that the induced map

Hi+1(X,F) // Hi+1(X,G)

Hi(X, I /F) // Hi(X,J /G)

is independent of the choice of the dashed morphism. Again we denote by g, h : I // J two
morphisms of sheaves, fitting into the commutative diagram (5). Their difference g − h satisfies
(g − h)|F = 0 by commutativity. Therefore, we obtain a factorisation

I

g−h
��

// I /F

g−h
��||

J // J /G .

(6)
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as indicated by the dotted arrow. Applying the functor Hi(X,−), we obtain a commutative diagram

Hi(X, I)

g−h
��

// Hi(I /F)

g−h
��ww

Hi(X,J ) // Hi(X,J /G).

(7)

By the induction hypothesis we have Hi(X,J ) = 0. Therefore, we see that g − h induces the zero
morphism. As in the proof of Lemma 2.93 we conclude that Hi+1(X,−) is a functor.

It remains to verify the axioms (A2 − 3). If I is an injective sheaf, then we obtain for i ≥ 1,
Hi+1(X, I) = Hi(X, I / I) = 0. This shows that our family of functors satisfies (A3).

Let 0 // F // G //H //0 be a short exact sequence of sheaves. There exists a commutative
diagram with exact rows and columns, such that I, J , and K are injective sheaves.

0

��

0

��

0

��

0 // F //

��

G //

��

H //

��

0

0 // I //

��

J //

��

K //

��

0

0 // I/F //

��

J /G //

��

K/H //

��

0

0 0 0

(8)

For i ≥ 2 we may simply apply the existence of the long exact sequence for Hi−1(X,−) and
Hi(X,−), to obtain

Hi−1(X, I /F) // Hi−1(X,J /G) // Hi−1(X,K /H) // Hi(X, I /F) // Hi(X,J /G) // Hi(X,K /H)

Hi(X,F) // Hi(X,G) // Hi(X,H) // Hi+1(X,F) // Hi+1(X,G) // Hi+1(X,H).

For i = 1 we have to be more careful, because H1(X,F) is not equal to H0(X, I /F) in general, but
rather to coker(H0(X, I) // H0(X, I /F)). We obtain the corresponding part of the long exact
sequence as follows. Consider the bottom two rows of (8). Lemma 2.93 implies that we have a
commutative diagram

0 // H0(X, I) //

α

��

H0(X,J ) //

β

��

H0(X,K) //

γ

��

0 //

��

0 //

��

0

��

0 // H0(X, I/F) // H0(X,J /G) // H0(X,K/H) // H1(X, I/F) // H1(X,J /G) // H1(X,K/H)
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with exact rows. Taking cokernels of the vertical arrows, a simple diagram chase verifies that the
sequence

cokerα // cokerβ // coker γ // H1(X, I/F) // H1(X,J /G) // H1(X,K/H)

H1(X,F) // H1(X,G) // H1(X,H) // H2(X,F) // H2(X,G) // H2(X,H)

is exact as required.

2.14 H1, torsors and the Picard group

Let F be a sheaf (in abelian groups) on a site (C, T ) with initial object X. Elements of H1(X,F)
can still be grasped “geometrically” in terms of objects called torsors.

Definition 2.97. An F-sheaf is a sheaf in sets T on (C, T ), together with a map a : F ×T // T ,
such that

(a) for U ∈ C the map aU : F(U)× T (U) // T (U) defines an action on T .

An F-sheaf is called an F-torsor, if

(b) for every U ∈ C there exists a T -covering {Ui // U}i∈I , such that T (Ui) ' F(Ui) as sets
with F(Ui)-actions.

Given two F-sheaves (T1, a1) and (T2, a2), one can build a new F-sheaf T1 ⊗F T2 which we will
refer to as the F-tensor product or Baer sum.

Definition 2.98. We define T1 ⊗F T2 to be the quotient sheaf of T1 × T2 by the F-action

F ×T1 × T2

(a1,a
−1
2 )
// T1 × T2.

That is, the action which on the level of local sections looks like λ · (t1, t2) 7→ (at1, a
−1t2).

Just like the tensor product of vector spaces, T1⊗F T2 satisfies a universal property with respect
to F-bilinear maps.

Definition 2.99. Let T1, T2 and S be F-sheaves. An F-bilinear map is a morphism of sheaves
ϕ : T1 × T2

// S, such that for local sections we have

ϕ(ft1, t2) = ϕ(t1, ft2).

Similarly one defines trilinear and multilinear maps.

Lemma 2.100. The canonical map

T1 × · · · × Tn // T1 ⊗F · · · ⊗F Tn

is the universal F-multilinear map. That is, for every F-multilinear map of F-sheaves

ϕ : T1 × · · · × Tn // S

56



there exists a unique F-linear map T1 ⊗F · · · ⊗F Tn // S, such that

T1 × · · · × Tn

�� &&
T1 ⊗F · · · ⊗F Tn ∃!

// S.

Corollary 2.101. We have canonical isomorphisms F ⊗F F ' F and (T1 ⊗F T2)⊗F T3 ' T1 ⊗F
(T2 ⊗F T3) and T1 ⊗F T2 ' T2 ⊗F T1.

Proof. For the first isomorphism it suffices to observe that the multiplication map F ×F // F
is universal amongst F-bilinear maps. Similarly, both (T1 ⊗F T2) ⊗F T3 and T1 ⊗F (T2 ⊗F T3)
receive a universal F-trilinear map, and both T1⊗F T2 and T2⊗F T1 receive a universal F-bilinear
map.

Next, we observe that the tensor product operation preserves F-torsors.

Lemma 2.102. Let T1 and T2 be F-torsors, then T1 ⊗F T2 is an F-torsor.

Proof. Let U be an object of C, there exists a T -covering {Ui // U}i∈I , such that T1|Ui ' F |Ui .
For every i ∈ I there exists a T -covering {Uij //Ui}j∈Ii , such that T2|Uij ' F |Uij . By the axioms
of a Grothendieck topology, {Uij // U}(i,j)∈⊔ Ii is a T -covering of U . Therefore we may assume
without loss of generality that {Ui // U}i∈I satisfies T1|U1

' F |Ui and T2|Ui ' F |Ui for all i ∈ I.
The tensor product of the trivial torsors F ⊗F F is isomorphic to F (Corollary 2.101). Since

T -torsors are T -locally trivial, the tensor product of F-torsors is again an F-torsor.

Lemma 2.103. For an F-sheaf T we denote by T∨ the F-sheaf Hom(T,F), that is the sheaf of
sheaf morphisms T // F . If T is an F-torsor there is a canonical isomorphism F ⊗F∨ ' F .

Proof. We have a canonical F-bilinear map T × T∨ // F , since T∨ = Hom(T,F) (given by
evaluation). Hence we get an F-linear map T ⊗F T∨ // F . Since an F-linear map of torsors is
always an isomorphism, this concludes the proof.

Definition 2.104. We define Tors(F) to be the set of isomorphism classes of F-torsors. Tensor
product and duals of F-torsors give rise to a structure of an abelian group on Tors(F).

Let

0 // F // G
g
//H // 0

be a short exact sequence of sheaves. There is a natural map from H(X) = H0(X,H) //Tors(F).
It assigns to a global section s ∈ H(X) the F-torsor Ts of local liftings.

Definition 2.105. We define the sheaf Ts = g−1(s) to be Ts(U) = {t ∈ G(U)|g(t) = s}.

Exactness of the sequence implies right away that Ts is an F-torsor.

Theorem 2.106. There exists an isomorphism H1(X,F) ' Tors(F), such that the map s 7→ Ts =
g−1(s) corresponds to the boundary map

H0(X,H) //H1(X,F)

in the long exact sequence of sheaf cohomology.
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Sketch. The proof is divided into two steps.

Claim 2.107. The abelian group Tors(F) is isomorphic to the abelian group of isomorphism classes
of extensions Ext(Z,F) of Z by F , that is short exact sequences

0 // F // E // Z // 0,

where Z denotes the sheafification of the constant presheaf U 7→ Z.18

Proof. Given an extension E as above, one associates to it the F-torsor E1, that is, the sheaf of
local liftings of 1 ∈ Z(X). Vice versa, given an F-torsor T , one constructs E as sheafification of⊔

i∈Z
T⊗i,

where T⊗0 = F and T−⊗n = (T⊗n)∨.

Claim 2.108. One has a natural isomorphism Ext(Z,F) ' H1(X,F).

In order to see this we recall that H1(X,F) is defined as the quotient H0(X, I /F)/H0(X, I)
where F ↪→ I is an embedding of F into an injective sheaf I. Let E be an extension of Z by F
as above. By injectivity of I there exists a map g1 : E // I, such that the left hand square of the
diagram below commutes:

0 // F //

��

E

��

// Z //

��

0

0 // F // I // I /F // 0.

By exactness of the first row we get an induced map s1 : Z // I /F . It corresponds to a global
section s1 ∈ H0(X, I /F). Given a different choice of a map g1 : E // I we obtain an element s2,
such that the difference s1 − s2 factors through H0(X, I). The resulting element of H1(X,F) is
therefore well-defined.

Vice versa, given a global section s ∈ H0(X, I /F), there is a corresponding map Z // I /F .
We obtain a commutative diagram with exact rows:

0 // F //

��

I ×I /FZ

��

// Z //

��

0

0 // F // I // I /F // 0.

The top row is the sought-for extension of Z by F .

After a lot of abstract nonsense we finally return to algebraic geometry.

Definition 2.109. For a smooth k-variety X one defines the Picard group Pic(X) = H1
Zar(X,Gm).

18For the Zariski or small étale site this corresponds precisely to the sheaf of locally constant Z-valued functions.

58



Elements of the Picard group can also be understood in terms of line bundles on X, that is,
algebraic vector bundles of rank 1.

By definition, the Picard group Pic(X) can be identified with the group of Gm-torsors on X,
defined with respect to the Zariski topology. However, descent theory (to be discussed subsequently)
implies the following:

Theorem 2.110 (Grothendieck’s Hilbert 90). There is an isomorphism Pic(X) = H1
ét(X,Gm).

Corollary 2.111. Let k be a field, then H1
ét(MSpec k,Gm) = 0.

Proof. The only non-empty Zariski open subset of MSpec k is MSpec k itself. Therefore, every
Zariski Gm-torsor has to be trivial.

Lemma 2.112. We have Pic(MSpecR) = 0, if R is a principal ideal domain. In particular,
H1

ét(MSpecR,Gm) = 0.

Proof. A Gm-torsor on X = MSpecR can be represented by a Zariski covering {Ui // X}i∈I
(without loss of generality, by affine varieties Ui = MSpecRi) and a so-called cocycle (φij)i,j∈I2 ,
where φij : Uij = Ui×X Uj // Gm. We can consider U =

⊔
i∈I Ui

//X, and consider the (φij)ij as
a descent datum for a module M on X. One has M⊗RRi ' Ri, that is, M is finitely generated and
locally free of rank 1. Since R is a principal ideal domain, the classification of R-modules implies
that M is a free R-module of rank 1. This implies triviality of the corresponding Gm-torsor.

2.15 Descent theory

Descending modules

Faithfully flat R-algebras S are flat R-algebras, which reflect if a module is zero.

Definition 2.113. A flat R-algebra S is called faithfully flat, if for every R-module MR we have
that S ⊗RMR = 0 implies that MR is the zero module.

A faithfully flat R-algebra S allows us to check that module is zero after tensoring with S.
This definition implies directly that many other properties of modules, and morphisms of modules,
descend along faithfully flat maps.

Lemma 2.114. Let α : R→ S be a faithfully flat ring homomorphism.

(a) Let f : MR → NR a morphism of R-modules, such that S ⊗RMR → S ⊗RMR is an injection
(respectively a surjection), then f is an injection (respectively a surjection).

(b) A sequence of R-modules

UR
f−→ VR

g−→WR,

with g ◦ f = 0 is exact, if and only if the base change

S ⊗R UR → S ⊗R VR → S ⊗RWR

is exact.

(c) If MR is an R-module, such that S ⊗RMR is a finite S-module, then MR is finite as well.
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(d) If S ⊗RMR is a finite projective S-module, then MR is a finite projective R-module.

(e) Flatness of S ⊗RMR as S-module implies flatness of MR as R-module.

Proof. A morphism of modules f : MR
//NR is an injection if and only i ker f = 0 (respectively

if coker f = NR/ im f = 0). Flatness of S implies that S ⊗R − preserves ker and coker. Therefore,
by the assumption that S is faithfully flat, we see that f is an injection (respectively a surjection)
if and only if its base change is. This concludes the proof of (a).

Flatness implies that exactness is preserved, therefore it suffices to show that exactness of

S ⊗R UR → S ⊗R VR → S ⊗RWR

implies that
UR → VR →WR

is exact. Since g ◦ f = 0, we have to show that the induced map

coker f → ker g

is an isomorphism. We know that this is true after applying the functor S ⊗R −, this implies the
assertion, using statement (a).

Assertion (c) follows directly from (a). Choose a finite basis n1, . . . , n` for S ⊗R MR, where
each ni can be written as a sum mi1 ⊗ si1 + · · ·mik ⊗ sik. We claim that the collection of elements
mij yields a basis for MR. This is the case, since the corresponding map (R`k //MR) ⊗R S is a
surjection. Hence, by (a) R`k //MR is already a surjection.

The proof of assertion (d) is left as an exercise. Assertion (e) follows from (b).

So far our treatment of descent theory has focused on qualitative aspects of modules. We have
seen that properties like finiteness, flatness, and projectivity descend along faithfully flat map of
rings. One can do better. It is possible to describe the datum of an R-module MR in terms of the
S-module S ⊗RMR, endowed with extra structure, which we will pin down subsequently.

We refer the reader to Vistoli’s chapter in [FGI+05, Thm. 4.21] for a more detailed version of
the proofs below.

Definition 2.115. For a ring homomorphism R→ S we define a category DescR→S as the category
of pairs (MS , φ), where MS is an S-module, and φ is an isomorphism of S ⊗R S-modules

φ : MS ⊗R S
∼=−→ S ⊗RM,

which satisfies the identity

MS ⊗R S ⊗R S //

))

S ⊗RM ⊗R S

��

S ⊗R S ⊗RMS

(9)

of (S ⊗R S ⊗R S)-modules.

Forgetting the isomorphism φ (a.k.a. the descent datum), we obtain a forgetful functor

DescR→S → Mod(R).

Base change always factors through this forgetful functor.
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Lemma 2.116. We have a commutative diagram of categories19

Mod(R) //

S⊗R− %%

DescR→S

��

Mod(S).

By abuse of language, the resulting functor Mod(R)→ DescR→S will also be denoted by S ⊗R −.

Proof. Let MR be an R-module. We have to produce an isomorphism φM of (S ⊗R S)-modules

(S ⊗RMR)⊗R S
φ−→ S ⊗R (S ⊗RMR).

There is a natural choice for such a morphism, it sends the element s1⊗m⊗ s2 to s1⊗ s1⊗m. We
now have to check that (9) is satisfied. This amounts to

s1 ⊗m⊗ s2 ⊗ s3 7→ s1 ⊗ s2 ⊗m⊗ s3 7→ s1 ⊗ s2 ⊗ s3 ⊗m

being the same map as
s1 ⊗m⊗ s2 ⊗ s3 7→ s1 ⊗ s2 ⊗ s3 ⊗m.

This defines the required functor Mod(R)→ DescR→S , such that the diagram above commutes.

Theorem 2.117 (Faithfully flat descent). Let R → S be a faithfully flat morphism of rings. The
canonical functor

−⊗R S : Mod(R) // DescR→S

is an equivalence of categories.

Proof. We denote the functor −⊗R S by F . Let G : DescR→S → Mod(R) be the functor, sending
(MS , φ) to the R-module

G(MS , φ) = {m ∈M |φ(m⊗ 1) = 1⊗m}.

We claim that F andG are mutually inverse functors. At first, we construct a natural transformation
idMod(R) → GF , i.e. for every R-module MR a canonical map

τ : M→ G(S ⊗RMR).

Lemma 2.118. Let R → S be faithfully flat, and MR an R-module. For i = 1, 2 we denote by
ei : S → S ⊗R S the maps e1(s) = s⊗ 1, and e2(s) = 1⊗ s. The sequence

0→MR
δ−→ S ⊗RMR

(e1−e2)⊗RidM−−−−−−−−−−→ S ⊗R S ⊗RMR

is an exact sequence.

19We adopt the convention that a diagram of functors which commutes up to a natural transformation is called
commutative. A more precise formulation would be to call such diagrams 2-commutative.
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We will prove this lemma at the end of this subsection. For now we note that ker((e1−e2)⊗RidM )
can be identified with G(S ⊗RMR), since we have

((e1 − e2)⊗R idM )(s⊗ b) = s⊗ 1⊗m− 1⊗ s⊗m = φM (s⊗m⊗ 1)− 1⊗ s⊗m.

By virtue of the lemma we have that G(S ⊗RMR) is isomorphic to MR.
Vice versa, if (NS , φ) is an object in DescR→S , we have to produce a natural morphism

γ : S ⊗R G(NS , φ)→ NS .

By definition, we have that G(NS , φ) ⊂ NS . In particular, we obtain a morphism γ by S-linear
extension:

s⊗ n 7→ s · n.

As before, we have to check that γ is an isomorphism. In order to see this, we define morphisms
of modules fi : NS // S ⊗R NS for i = 1, 2. We set f1(n) = 1 ⊗ n, and f2(n) = φ(n ⊗ 1). The
morphisms are chosen in a way, such that we have

G(N,φ) = ker(f1 − f2).

We then use the following commutative diagram

0 // MR ⊗R S //

γ◦T
��

N ⊗R S
(e1−e2)⊗RidS

//

φ

��

S ⊗RMR ⊗R S

��

0 // NS // S ⊗R NS
(f1−f2)
// S ⊗R S ⊗R NS .

Here, T denotes the map exchanging the factors MR ⊗R S
∼=−→ S ⊗RM . Since the second and third

vertical arrow are isomorphisms, so is the first. This implies that S ⊗R G(NS , φ) ∼= NS .

It remains to prove Lemma 2.118. It could be considered at the key technical result which lies
at the heart of descent theory. It is also the only place where we will visibly use the assumption
that α : R→ S is faithfully flat.

Proof of Lemma 2.118. We assume that there exists a ring homomorphism g : S → R, such that
g ◦ α = idR. In plain language: g is a left inverse. This implies in particular that α is injective,
hence deals with exactness at the first node from the left. We have to show that an element in
the kernel of (e1 − e2) ⊗ idM lies in the image of δ. Let s ⊗ m be in the kernel, i.e. we have
s⊗m⊗ 1 = 1⊗ s⊗m. Apply the map g to the first factor, which yields the identity

g(s)⊗m = s⊗m.

Since g(s) ∈ R, we can rewrite the left hand side as 1⊗ g(s)m. This implies that s⊗m ∈ im(δ).
If R→ S is a ring homomorphism, we observe that the base change

R⊗R S ∼= S → S ⊗R S

has a section given by the multiplication map S⊗R S → S. This implies directly that the sequence
of Lemma 2.118 is exact, after tensoring with −⊗RS. Since α : R→ S is faithfully flat, we conclude
from Lemma 2.114(b) that the original sequence is exact as well.
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Descent for ring homomorphisms

Assume that we have a ring homomorphism β : S → T , and a third ring R. We will see in this
paragraph that ring homomorphisms from R to S can be described in terms of the composition
R → T , provided that β is faithfully flat. While this is a purely algebraic statement at this point,
we will give a geometric interpretation of this result in a later section.

Proposition 2.119. We have natural maps e1 : T → T ⊗S T , and e2 : T → T ⊗S T . The diagram
of sets

HomRng(R,S)→ HomRng(R, T ) ⇒ HomRng(R, T ⊗S T )

is an equalizer diagram in the category of sets. I.e., the set of ring homomorphism g : R → T ,
satisfying e1 ◦ g = e2 ◦ g, is in bijection with the set of ring homomorphisms f : R→ S.

Proof. Lemma 2.118 implies that we have an exact sequence

0→ S
e1−e2−−−−→ S ⊗R S,

hence an equalizer diagram in the category of rings

S → T ⇒ T ⊗S T.

Since HomRng(R,−) sends equalizers to equalizers, we obtain the assertion.

By virtue of the Dictionary 1.22, and the fact that surjective étale morphisms of k-varieties give
rise to faithfully flat ring homomorphims, we obtain the following corollary.

Corollary 2.120. Let X be a smooth k-variety and Y be an arbitrary k-variety. Then, the set-
valued presheaf Y X on (X)ét, which assigns to an étale morphism U //X the set Mor(U, Y ), is
a set-valued sheaf.

2.16 Example: the cohomology of elliptic curves

Let k̄ be an algebraically closed field. If char(k̄) is positive, we will denote the corresponding prime
number by p, and let ` be a prime number, such that ` 6= p.

Recall that an elliptic curve Ē over k̄ is a smooth projective k̄-variety Ē, together with the
structure of a commutative group object. That is, we have morphisms

m : Ē × Ē // Ē,

ι : Ē // Ē,

and e : MSpec k̄ = A0
k̄

// Ē, such that the diagrams

Ē × Ē × Ē m×id
//

id×m
��

Ē × Ē

m

��

Ē
(ι,id)

//

��

Ē × Ē

m

��

Ē
(id,e)

//

idĒ
""

Ē × Ē

m

��

Ē × Ē m // Ē MSpec k̄
e // Ē Ē
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commute.20

For k̄ = C the field of complex numbers, we have seen that the complex manifold Ēan associated
to Ē, is equivalent to C /Γ, where Γ = Z⊕τ Z with Im(τ) > 0. The group structure on the complex
manifold Ēan is the one induced by addition of complex numbers.

The singular homology of an elliptic curve, can be identified with the exterior algebra of Γ.

Proposition 2.121. Let Ē/C be an elliptic curve. For i = 0, 1, 2 we have an isomorphism

Hsing
i (Ēan,Z) '

∧i
Γ. All other homology groups vanish.

Proof. We prove this for i = 1 (the other cases being left as an exercises). We have that C // C /Γ
is a universal covering space of C /Γ, since C is simply connected. The deck transformation group
of this covering is equal to Γ. This yields an isomorphism π1(C /Γ, 0) ' Γ. The first homology
group of a space, is isomorphic to the abelianisation of the fundamental group π1. Since the group
Γ is already abelian, we obtain an isomorphism Hsing

1 (Ēan,Z) ' Γ.

We remark that as an abstract group, Γ is isomorphic to Z⊕Z. The Universal Coefficient
Theorem implies the following description of the cohomology groups:

H1
sing(Ēan,Z /`n Z) ' Hom(Γ,Z /`n Z) ' Z /`n Z⊕Z /`n Z .

In the inverse limit n //∞ we obtain

H1
sing(Ēan,Z`) ' Hom(Γ,Z`).

As an abstract group, this is isomorphic to Z`⊕Z`, however there’s no canonical isomorphism. A
canonical description can be given in terms of the Tate module. Recall that the notation Ē[n]
denotes the group of n-torsion points of Ē.

Definition 2.122. Let k̄ be an arbitrary algebraically closed field, and Ē an elliptic curve. We
define the Tate module of Ē to be

T`Ē = lim←−n>0
Ē[`n],

where the inverse limit is taken with respect to the chain of maps

Ē[`n+1] // Ē[`n],

given by raising an `n+1-torsion point to its `-th power.

The Tate module is a purely algebraic way to define the singular homology of an elliptic curve
with Z`-coefficients. We will see later, that this also works for étale cohomology over arbitrary
algebraically closed fields.

Lemma 2.123. Let Ē/C be an elliptic curve over the complex numbers, such that Ēan ' C /Γ.
Then we have natural isomorphisms

Hsing
1 (Ēan,Z`) ' T`Ē,

H1
sing(Ēan,Z`) ' Hom(T`Ē,Z`).

20There’s one diagram missing, corresponding to commutativity. This is left as an exercise to the reader.
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Proof. For a positive integer n > 0 we have Ē[n] = (C /Γ)[n] = 1
nΓ/Γ. The right hand side is

naturally isomorphic to Γ/nΓ (simply multiply with n). Applying this observation to n = `i we
obtain Ē[`i] ' Γ/`iΓ, and therefore

T`Ē ' lim←−Γ/`iΓ ' Γ⊗ Z` .

Since Γ ' Hsing
1 (Ēan,Z) (canonically), we obtain, T`Ē ' Hsing

1 (E,Z) ⊗ Z` ' Hsing
1 (Ēan,Z`) from

the Universal Coefficient Theorem for singular homology. Dualising (and applying the Universal
Coefficient Theorem for cohomology) we obtain H1

sing(Ēan,Z`) ' Hom(T`Ē,Z`).

Corollary 2.124. Every isomorphism of free abelian groups
∧2

Γ ' Z induces an isomorphism
H1

sing(Ē,Z`) ' T`Ē.

Proof. We have a perfect pairing Γ × Γ //
∧2

Γ ' Z, and therefore we obtain an isomorphism
Γ ' Hom(Γ,Z). This implies Hom(T`Ē,Z`) ' Hom(Γ⊗ Z`,Z`) ' Γ⊗ Z` ' T`Ē.

We have already seen that Hi
sing(Ēan,Z`) ' Hi

ét(Ē,Z`). For k̄ = C, the lemma above therefore
gives us an explicit description of the étale cohomology groups of an elliptic curve in degree 1, in
terms of the Tate module. The next result shows that this works for arbitrary algebraically closed
fields.

Proposition 2.125. Let Ē/k̄ be an elliptic curve over an algebraically closed field k̄. Let ` be a
prime number, different from the characteristic of k̄. We denote by A the profinite group given by
the inverse limit

lim←−i>0
µ`i ,

where the transition maps are given by µ`i+1 // µ`i , raising a root of unity to its `-th power. Then
we have a natural isomorphism of Z`-modules

H1
ét(Ē, A) ' T`Ē.

In particular, every isomorphism of profinite groups A ' Z` induces an iso

H1
ét(Ē,Z`) ' T`Ē.

Proof. One has H1
ét(Ē, A) ' lim←−i>0

H1
ét(Ē, µ`i). We have seen that there is a natural isomorphism

H1
ét(Ē,Gm) ' Pic(Ē). The Kummer sequence

0 // µ`i //Gm
[`i]
//Gm // 0

yields the long exact sequence

H0
ét(Ē,Gm)

[`i]
//H0

ét(Ē,Gm) //H1
ét(Ē, µ`i)

// Pic(Ē)
[`i]
// Pic // · · · .

The first map on the left hand side can be identified with

k̄×
[`i]
// k̄×,
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since the set of invertible regular functions on Ē equals k̄×. This map is surjective since k̄ is
algebraically closed. This shows that

H1
ét(Ē, µ`i) ' ker([`i] : Pic(Ē) // Pic(Ē)).

The Picard group of an elliptic curve over an algebraically closed field can be identified with the
abstract group Ē × Z. This yields an isomorphism

H1
ét(Ē, µ`i) ' ker([`i] : Ē // Ē) ' E[`i].

Taking the inverse limit we obtain what we wanted.

Lemma 2.126. One has an isomorphism of abstract Z`-modules T`E ' Z`⊕Z`.

Proof. Recall that we saw that the endomorphism ring of an elliptic curve End(Ē) is endowed with
the following extra structures. There’s a degree map

deg : End(E) // N,

and an involution f 7→ f̂ , satisfying the properties

(a) ̂(f + g) = f̂ + ĝ,

(b) (̂fg) = ĝf̂ ,

(c) ff̂ = f̂f = [deg(f)] (were [n] ∈ End(Ē) denotes the image of n ∈ Z under the natural ring
homomorphism Z // End(Ē)).

(d) deg idĒ = 1.

Property (c) and (d) imply îdĒ = idĒ = [1]. Using (a) we deduce that [̂n] = ̂([1] + · · ·+ [1]) =
[1] + · · ·+ [1] = [n]. By virtue of (c) we have [deg[n]] = [n] · [n] = [n2], and therefore deg[n] = n2.

For an étale morphism of elliptic curves Ē′
f
// Ē one has deg f = #f−1(0). If n is coprime to

p the map [n] is étale, and we therefore obtain #[n]−1(0) = n2. Since [n] is the multiplication by
n map, the preimage [n]−1(0) agrees with the n-torsion Ē[n].

Claim 2.127. Let A be a finite abelian group of order n2, such that for every divisor d|n one has
#A[d] = d2. Then, there exists an abstract isomorphism A ' (Z /nZ)2 of abelian groups.

The proof of this assertion is left as an exercise. Since these assumptions are met by Ē[n], we
deduce that Ē[n] ' (Z /nZ)2. In particular, for ` 6= p we have Ē[`i] ' (Z /`i Z)2. In the limit
i //∞ we obtain T`Ē ' (Z`)2.

Corollary 2.128. We have dimH1
ét(Ē,Q`) = 2.

Proof. By virtue of the definition, H1
ét(Ē,Q`) ' H1

ét(Ē,Z`) ⊗Z` Q`. This implies the existence of
an isomorphism H1

ét(Ē,Q`) ' Q`⊕Q`.

3 On Deligne’s proof

In this section we’re going to give an overview of Deligne’s proof of the Weil conjectures. At first we
take a look at L-functions, and then we turn to the proof of the key lemma of Deligne’s argument.
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3.1 Local systems

The topological counterpart of local systems are also known as locally constant sheaves. Recall that
for an abelian group A, one can define a sheaf AX on a topological space X. For an open subset
U ⊂ X one has that AX(U) is the abelian group of continuous maps U //A, where A is endowed
with the discrete topology.

Definition 3.1. Let X be a topological space a manifold (or a “nice” topological space), a local
system L on X is a locally constant sheaf of abelian groups, that is, there exists an open covering
{Ui}i∈I of X, such that each L|Ui is equivalent to the constant sheaf AUi .

There is an interesting link between locally constant sheaves L and covering spaces. For an
A-local system F on X, there exists a universal local homeomorphism π : YF //X, such that F
can be identified with the sheaf of sections of YF . This construction is referred to as the étale space
of the sheaf F . This space is constructed as follows: choose an open covering {Ui}i∈I of X, such
that each F |Ui is equivalent to the constant sheaf AUi . Define YF to be the quotient space

YF =

(⊔
i∈I

Ui ×F(Ui)

)
/ ∼,

where we stipulate that (x, s) ∈ Ui × F(Ui) is equivalent to (y, t) ∈ Uj × F(Uj), if and only if
x = y ∈ Ui ∩ Uj and s|Ui∩Uj = t|Ui∩Uj .

Since F is assumed to be a local system the étale space YF can be seen to be a covering. The
condition of L being locally constant translates directly into YL // X being locally trivial, since
the étale space of the constant sheaf A is given by X ×A.

We can recover F from the covering YF //X as the sheaf of (continuous) sections. We assign to
an open subset U ⊂ X the set of continuous maps s : U //YF , fitting into a commutative diagram

YF

��

U //

s

>>

X.

This discussion reveals in particular that local systems on a simply connected manifold is trivial
(since all covering spaces are), which yields the following useful description of locally constant
sheaves.

Proposition 3.2. Let L be a local system on X and x ∈ X a base point. If Lx ' A, A being a fixed
abelian group, we call L a local system with fibre A, or an Aut(A)-local system. There is a natural
equivalence of categories of Aut(A)-local systems and representations of the fundamental group

ρ : π1(X,x) // Aut(A).

Sketch. We begin by associating a representation ρ : π1(X,x) // Aut(A) to an A-local system.
Choose a closed path γ : [0, 1] // X based at x. By virtue of the definition of A-local systems,
there exists an open neighbourhood Ut of γ(t) for every t ∈ [0, 1], such that L|Ut is isomorphic to
the constant sheaf AUt .

The proposition above motivates us to replace the topological fundamental group by the étale
fundamental group.
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Definition 3.3. Let G be a profinite group and X a smooth k-variety with geometric base point
x ∈ X(K) (where K is an algebraically closed field containing k). An étale G-local system is a
continuous representation

πét
1 (X,x) //G.

Dangerous Bend 3.4. Unlike the case of local systems on topological spaces, it is not true that
continuous representation of étale fundamental groups correspond to sheaves on the small-étale site
(X)ét. This is only the case, if G is a finite group. However, G-local systems can be represented by
a pro-system of étale sheaves (see the example below).

Of particular importance to us will be `-adic local systems, which correspond to continuous
representations taking values in GLn(Z`). This profinite group can be obtained as the inverse limit

lim←−i>0
GLn(Z /`i Z).

In particular, we see that a continuous representation

ρi : π
ét
1 (X,x) //GLn(Z`)

corresponds to a compatible system of representations ρi : π
ét
1 (X,x) //GLn(Z /`i Z).

The representations ρi actually correspond to an étale sheaf F i on (X)ét, which is étale-locally
equivalent to Z /`i Z. That is, there exists a finite collection of étale maps {Uj // X}j∈I , whose

images cover all of X, such that F i |Uj ' Z /`i Z
Uj

.

Definition 3.5. Let F be a Z`-étale local system on X. We denote by (F i) the corresponding
compatible family of Z /`i-étale local systems on X, and define

Hi
ét(X,F) = lim←−i>0

Hi
ét(X,F i).

3.2 The function sheaf dictionary

In the section part of these notes we consider varieties X over a finite field of characteristic p. We
emphasis that ` and p are always assumed to be coprime.

We denote by k̄ a fixed algebraic closure of k, and by X̄ the base change of X to Spec k̄. Every
element of Gal(k̄/k) induces a scheme-theoretic automorphism of X. This implies the existence
of an interesting extra structure for the `-adic cohomology, which is not present over the field
of complex numbers: the action of the Galois group Ẑ = Gal(k̄/k) on Hi

et(X,Q`). Since Ẑ is

topologically generated by the Frobenius automorphism 1 ∈ Ẑ, it suffices to study the action of the
Frobenius automorphism of an algebraic variety on `-adic cohomology. It can be described in terms
of the Frobenius endomorphism.

Definition 3.6. A Weil `-adic local system on X̄ is an `-adic local system L on X̄ together with
an isomorphism

F ∗XL ' L.

One can show that an `-adic local system L on X, induces a Weil `-adic local system on X̄. In
particular, one gets a Frobenius operator

Hi(F ) : Hi
ét(X̄, L) //Hi(X̄, L).
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Character sheaves on commutative algebraic groups

We refer the reader to Gaitsgory’s [Gai03]. Let A (resp. A0) be a connected commutative algebraic
group variety, defined over a finite field k, and let A = A(k) be the finite commutative group of
k-points. The Frobenius morphism F : A // A can be shown to be an isomorphism of group object
in varieties. The group A can be identified with the fixed-points of F , or alternatively with the zero
fibre of the map

L : A // A,

which sends x to x − Fx. The map L is called the Lang isogeny, and can be shown to be a finite
étale covering. In the special case of the additive group Ga, the Lang isogeny is given by the
Artin-Schreier map A1 // A1, sending x to x− xp.

Lemma 3.7. The Lang isogeny L is a regular étale covering, with group of deck transformations
canonically equivalent to A.

Proof. Every non-trivial element of A induces a non-trivial action on A by translation. In particular
we have a canonical action of A on A, which by definition of L preserves the Lang isogeny. In
particular we see that there is an injection

A ↪→ Aut(L),

but since each fibre of L can be non-canonically identified with the kernel A of L, we conclude that
A acts transitively on the fibres. This implies that L is a regular étale covering, and moreover that
A ' Aut(L).

This simple result, combined with Lemma 2.58, yields a construction of associating an Weil
`-adic local system on A (preserved by FA) to a representation

ρ : A //GLn(Q̄`).

Lemma 3.8. To every representation ρ : A(Fq) // GLn(Z̄`) we can naturally associate a Weil
`-adic local system Lρ on A, satisfying Lρ1⊕ρ2

' Lρ1
⊕ Lρ2

and Lρ1⊗ρ2
' Lρ1

⊗ Lρ2
.

Proof. Lemma 3.7 shows that the Lang isogeny L : A // A is a finite étale covering with group of
deck transformations given by the finite commutative group A. In particular we have a surjection
πét

1 (A, 0) � A by Lemma 2.58. By composing with the representation ρ : A //GLn(Q̄`) we obtain
a continuous representation of the fundamental group, giving rise to an `-adic local system Lχ.

Since every representation of the commutative group A decomposes into a sum of 1-dimensional
representation (i.e. characters), this case is of particular importance. Applying this construction
to the Artin-Schreier morphism, gives rise to interesting local systems on the affine line, usually
referred to as Artin-Schreier sheaves.21 Similarly, Kummer sheaves on the multiplicative group Gm
and Hecke eigensheaves on Jacobians of curves, can be constructed.

In the next subsection we will see how to reconstruct the representation ρ from the `-adic sheaf
Lρ. Since representations of finite groups are governed by their character theory, it suffices to
reconstruct the character of ρ, which will simply be given by a function

A = A0(k) // Q̄`.
21This statement is to be contrasted with the analogous situation over the complex numbers, where the affine

line, due to its simply-connectedness, does not carry any interesting local systems. As we can see, A1 is not simply-
connected in positive characteristic!
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Extracting a function from a sheaf

For a finite field k the absolute Galois group Gal(k) is abstractly isomorphic to the profinite group

Ẑ. The arithmetic Frobenius ϕ ∈ Gal(k) is given by the field automorphism λ 7→ λq, where q = #k.
Its inverse is denoted by Fr and referred to as the geometric Frobenius.

Conversely to the process described in the proceeding subsection, we would like to associate a
function on X(k) to a local system L on X. In order to do that we let x : Spec k //X be a k-point
of X. This yields a map of étale fundamental groups πét

1 (Spec k, Spec k̄) // πét
1 (X,Spec k̄).

Pulling back L to x, we simply obtain a representation of ρx : πét
1 (Spec k) = Gal(k̄/k) = Ẑ,

which is determined by the action of the Frobenius morphism. The corresponding element ρx(Frx)
is well-defined up to conjugation.

In analogy with the above character-theoretic construction, we therefore associate the trace of
the Frobenius ρx(Frx). The corresponding function will be denoted by

fL : X(k) // Q̄`.

The lemma below follows directly from the definition of the Lang isogeny, and establishes a com-
patibility with the character sheaf construction of Lemma 3.8. The proof of the following lemma is
left as an exercise:

Exercise 3.9. Let A be a connected commutative group k-variety, and χ : A(k) // Z×` a character.
Then we have fLχ = χ.

This is not the only convenient property of the function-sheaf correspondence.

Lemma 3.10. The following properties hold for `-adic local systems L1, L2 on X, and a map
π : Y //X:

(a) fL1⊕L2 = fL1 + fL2 , and more generally for short exact sequences

(b) fL1⊗L2
= fL1

· fL2
,

(c) fπ∗L = fL ◦ π, where π∗L denotes the local system corresponding to the composition

πét
1 (Y, ȳ) // πét

1 (X,π(x̄)) // GLn(Z`).

A morphism of varieties π : Y //X is called projective, if there exists a factorisation

Y
i //

��

PN ×X

{{

X,

where i is a closed immersion, that is, the inclusion of a (closed) subvariety. In this case, for every
x ∈ X(k), one has that the fibre Yx = Y×X , xMSpec k is a projective k-variety.

Theorem 3.11 (Grothendieck-Lefschetz). For a projective morphism π : Y //X and L an `-adic
local system on L, we have an equality of functions∑

y∈Y (k), f(y)=x

fL(y) =
∑
i≥0

(−1)i Tr(Fr, Hi(Ȳx, L)).
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This result is a powerful analogue of Lefschetz’s fixed point formula 2.14. We remark that the
right hand side is a finite sum, by virtue of the following important result (see [Mil80, Theorem
VI.1.1]):

Theorem 3.12 (Vanishing Theorem). Let X̄ be a k̄-variety and F a constructible sheaf of Z`-
modules. Then, Hi(X̄,F) = 0 for i > 2 dim X̄.

3.3 L-functions

To a local system F on a k-variety X one can associate the so-called L-function. For the trivial rank
1 local system, the L-function is an old acquaintance of ours: the zeta function. The definition
makes use of a characteristic polynomial of a Frobenius operator which is associated to a point
x ∈ |X|.

Definition 3.13. Let F be a rank n local systems on a k-variety X. We denote by ρF,x : πét
1 (MSpec k) =

Z // GLn(Z`) continuous homomorphism defined by composition

πét
1 (MSpec k,MSpec k̄) //

((

πét
1 (X, x̄)

��

GLn(Z`),

where x̄ ∈ X(k̄) denotes the k̄-point induced by x.

This definition can be extended to a bigger class of “sheaves” (or rather prosystems of sheaves
of Z`-modules): so-called constructible `-adic sheaves. For a constructible sheaf F on X one can
find an open subset U ⊂ X, such that F |U is a local systems, and such that the restriction of F to
X \ U is a constructible sheaf. In fact, there exists a finite disjoint union

X =
⊔
i∈I

Zi,

such that F |Zi is a local system.

Definition 3.14. Let F be a constructible sheaf of Z`-modules on X. We denote by

L(X,F , T ) =
∏
x∈|X|

1

det(1− T deg(x)ρF,x(F ))

the element of 1 + T Z`[[T ]] ⊂ Q`[[T ]] given by formally evaluating the infinite product above.

The Grothendieck-Lefschetz Theorem 3.11 implies the following assertion.

Exercise 3.15. The L-function of a constructible sheaf is the Taylor expansion of a rational func-
tion. To be precise, it equals.

L(X,F , T ) =
∏
i≥0

(
det(1−Hi(Fr)|Hi

ét(X,F))
)
.
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3.4 Poincaré duality

Theorem 3.16 (Poincaré duality, no weights). Let X̄ be a smooth projective k̄-variety of dimension
n where k̄ is an algebraically closed field, and F a constructible sheaf of Z`-modules on X̄. Then,
we have an abstract isomorphism

H2n(X̄,Q`) ' Q`,

and the induced pairing
Hi(X̄)×H2n−i(X̄) // Q`

is perfect.

Theorem 3.17.

3.5 The key estimate

We follow section 3 in [Del74]. Let k be a finite field, and consider a non-empty affine open subset
U ⊂ P1

k. We denote by Ū ⊂ P1
k̄ the base change to the algebraic closure. Let u ∈ |U | be a point of

the k-variety U with residue field ku. We write qu = qdeg(u) = #ku. For a local system F on U we
denote by Fu = ρF,u(F ) the corresponding local Frobenius operator.

Definition 3.18. Let β ∈ Z be an integer. We say that a local system F on U is pure of weight
β, if for all u ∈ U we have that the eigenvalues of Fu are algebraic numbers α, such that for every

field homomorphism σ : Q̄ ↪→ C we have |σ(α)| = q
β
2
u .

The trivial local system Q
`

is of weight 0, because all local Frobenius operators Fu are the
identity map. We have already seen a non-trivial class of examples: the Tate twist Q

`
(r) is pure of

weight −2r.
An algebraic number α with the property that for every embedding σ : Q ↪→ C, the images

σ(α) have the same absolute value, is called a Weil number. This is a special property which isn’t
shared by all algebraic numbers. It is clear that a root of unity ζn = 1 is a Weil number, since σ(ζ)
remains a root of unity in C, and therefore has absolute value 1. However, α = 1 +

√
2 is not a

Weil number, as there exists an embedding σ exchanging ±
√

2, and |σ(α)| = |1−
√

2| < |1 +
√

2|.

Theorem 3.19 (Deligne). Suppose that the following assumptions are met:

(a) There exists a non-degenerate alternating pairing ψ : F ⊗F //Q
`
(−β), where β is an integer.

This implies that ρF : πét
1 (U, x̄) // GLn(Q`) factors through the symplectic group Sp(2n,Q`).

(b) The image of ρF is an open subgroup of the topological group Sp(2n,Q`).

(c) For every u ∈ U the local L-factor

1

det(1− T · Fu)

has rational coefficients.

Then, F is pure of weight β.

The proof of this result will be given at the end of this subsection. We start with a couple of
lemmas.
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Lemma 3.20. Let m be a positive integer, we denote by Fu,2m the value of the 2m-fold tensor
power of ρF : πét

1 (U, x̄) // GLn(Q`) at the local Frobenius Fu.

(a) The logarithmic derivative d log
(
det(1− T · Fu,2m)−1

)
is a power series in T with non-negative

rational coefficients.

(b) The local L-factor det(1 − T · Fu,2m)−1 is a power series in T with non-negative rational
coefficients.

Proof. Assertion (a) implies (b): since log
(
det(1− T · Fu,2m)−1

)
doesn’t have a constant term, non-

negativity of the coefficients of log
(
det(1− T · Fu,2m)−1

)
implies non-negativity of the coefficients

of (
det(1− T · Fu,2m)−1

)
= exp log

(
det(1− T · Fu,2m)−1

)
.

It therefore remains to prove (a). Recall from Lemma 2.20 that we have

∞∑
i=1

Tr(F ru,2m)

r
= det(1− T · Fu,2m)−1.

We have Tr(F ru,2m) = Tr(F ru)2m, in particular the coefficients of the right hand side power series are
non-negative integers. This concludes the proof.

Lemma 3.21. (a) Let I be a countable set, and let (fi)i∈I ∈ 1 + T R≥0[[T ]] ⊂ R[[T ]]×, such that

f =
∏
i∈I

fi

is a well-defined element of 1 +T R[[T ]]. Then, the radius of convergence of f is less than the
radius of convergence of fi for all i ∈ I.

(b) Assume that (fi)i∈I and f are Taylor series expansions of meromorphic functions. Then,

inf(|x| : f(x) =∞) ≤ inf(|x| : fi(x) =∞).

Proof. The second assertion follows from the first. We write f =
∑∞
j=0 bjT

j and fi =
∑∞
j=0 aijT

j .
By assumption we have

b0 = ai0 = 1.

Furthermore, the coefficients bj and aij are non-negative. The relation f =
∏
i∈I fi implies the

inequality bj ≤ aij for all i ∈ I. This implies the inequality

lim sup
j //∞

(
1

bj

) 1
j

≤ lim sup
j //∞

(
1

aij

) 1
j

,

which amounts to what we wanted to show.

Lemma 3.22. For every m there exists a non-negative integer N , such that we have an isomorphism

H2
c (Ū ,F⊗2m) ' Q`(−mβ − 1)N .

73



Proof. By Poincaré duality we have

H2
c (Ū ,F⊗2m)(1) ' H0

c (Ū ,F∨,⊗2m)∨.

The right hand side agrees with the coinvariants of πét
1 (Ū , u)-representation corresponding to F⊗2m.

Let V be the standard representation of the symplectic group Sp = Sp(2n,Q`). By virtue of
assumption (b) of Theorem 3.19, the right hand side above agrees with the Sp-coinvariants of V ⊗2m.
The latter were computed by H. Weyl (see [Wey39, Chapter 6.1]). It follows from Weyl’s theory
that there exists a set S of partitions of {1, . . . , 2m} into two-element sets

{i1, j1} t · · · t {im, jm},

such that the maps
F⊗2m // Q`(−mβ),

given by

x1 ⊗ · · · ⊗ x2m 7→
m∏
α=1

ψ(xiα , yjα)

give rise to an isomorphism

(V ⊗2m)Sp
' // (Q`(−mβ))

S
.

We denote the cardinality of S by N , and conclude H2
c (Ū ,F⊗2m)(1) ' Q`(−mβ)N .

Proof of Theorem 3.19. It follows from the Grothendieck-Lefschetz formula that we have an identity

L(X,F⊗2m, T ) =

2∏
i=0

(
det(1− T · F ∗|Hi

c(X,F
⊗2m))

)(−1)i+1

. (10)

The compactly supported cohomology group H0
c (X,F⊗2m)(1) ' H2(X,F∨,⊗2m)∨ vanishes, since

U is assumed to be affine see Theorem 3.17. This implies that the denominator of L(X,F⊗2m, T )
equals det(1 − T · F ∗|H2

c (X,F⊗2m)). By virtue of Lemma 3.22 this determinant is equal to (1 −
qmβ+1T )N .

Recall that the Taylor series expansion of L(X,F⊗2m, T ) equals an infinite product of the local
L-factors:

L(X,F⊗2m, T ) =
∏
u∈|U |

1

det(1− T deg(u) · Fu,2m)
.

Let α be an eigenvalue of Fu, then the corresponding local factor has a pole at α
−2m

deg(u) . It follows
from the inequality of Lemma 3.21(b) that

q−mβ−1 ≤ |α|
2m

deg(u) .

This is equivalent to the inequality

|α| ≤ q
β
2 + 1

2m
u ,

where we use qu = qdeg(u). In the limit m //∞ we obtain |α| ≤ q
β
2
u .
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By assumption (a) of Theorem 3.19, that is, the existence of a non-degenerate alternating pairing

ψ : F ⊗F // Q`(−β),

we have that also α−1qβu is an eigenvalue of Fu. This yields the inequality

|α−1qβ | ≤ q
β
2
u ⇔ |α−1| ≤ q−

β
2

u ⇔ q
β
2
u ≤ |α|.

We conclude |α| = q
β
2
u .

Corollary 3.23. Let γ be a Frobenius eigenvalue of H1
c (Ū ,F) for a local system F as in Theorem

3.19. Then, for every embedding σ : Q̄ ↪→ C we have |σ(γ)| ≤ q
β
2 +1.

Proof. By equation (10) we have that σ(α−1) is a zero of L(U,F , T ). It suffices therefore to show

that L(U,F , T ) doesn’t have a zero for |T | < q−
β
2−1. This is a consequence of convergence of the

infinite product

L(U,F , T ) =
∏
u∈|U |

1

det(1− T deg(u) · Fu)
.

Let α1,u, . . . , αm,u be a full list of eigenvalues of Fu possibly containing repeating entries, as dictated
by algebraic multiplicities of eigenvalues. We can then write

1

det(1− T · Fu)
=

m∏
i=1

1

1− T · αi,u
.

According to Theorem 3.19 we have |αi,u| ≤ q
β
2 . For a fixed i the infinite product∏

u∈|U |

1

1− T deg(u) · αi,u

converges, if the series
∑
u∈|U | |αi,uT deg(u)| converges absolutely. This series can be estimated as

follows:∑
u∈|U |

|αi,uT deg(u)| =
∑
d≥1

#{u ∈ |U | : deg(u) = d} · |αi,uT d| <
∑
d≥1

qd+d β2 |T |d =
∑
d≥1

|q1+ β
2 T |d.

Here we used the fact that |U | has at most qd point of degree d. The right hand side converges

absolutely, if and only if |T | < q−
β
2−1.

4 p-adic integration

4.1 The p-adic analogue of the Lebesgue measure

On R there is a unique Borel measure µ which has the following properties:

• µ(S) = µ(S + x) for every x ∈ R and a Borel measurable subset S,

• µ([0, 1]) = 1.
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This measure is also known as the Lebesgue measure (however, we point out that there are more
Lebesgue measurable subsets than Borel measurable subsets). This is a special case of a Haar
measure (see [Haa33]).

Theorem 4.1 (Haar). Let G be a locally compact topological group. There exists a Borel measure
µ, such that

(a) µ(gS) = µ(S) for g ∈ G and S ⊂ G a Borel measurable subset,

(b) µ(K) <∞ for K ⊂ G a compact subset.

Furthermore, if µ1 and µ2 are two such measures (which we assume to be non-trivial), then there
exists a positive real number λ, such that µ1 = λµ2.

Haar’s theorem is a far-reaching generalisation of Lebesgue integration. It also applies to non-
commutative topological groups, as long as they are locally compact. In this case, it is important
to note that left translation invariance

µ(gS) = µ(S)

does not imply right translation invariance

µ(Sg) = µ(S).

The field Qp of p-adic numbers gives rise to a topological group (Qp,+). It is locally compact,
since Zp = lim←−Z /pm Z is an inverse limit of finite groups, and therefore compact. Since the subset
Zp ⊂ Qp is also open, one sees that every x ∈ Qp as a compact neighbourhood x + Zp. We infer
the following corollary of Haar’s result:

Corollary 4.2. There exists a unique Haar measure µQp on Qp, such that

µQp(Zp) = 1.

The translation invariance of µQp makes it easy to compute the volume of certain subsets of Qp
which are just as important to the p-adic theory, as intervals are to the real theory.

Definition 4.3. We denote by p subgroup pZp ⊂ Zp.

First of all, we remark that as an abstract topological group we have an isomorphism Zp ' pZp,
given by multiplication with p. This shows that pZp is compact. Furthermore, since multiplication
by p induces a homeomorphism Qp //Qp sending the open subset Zp to pZp, we see that pZp ⊂ Zp
is open. The quotient Zp /p is isomorphic to Z /pZ by means of the canonical projection

Zp = lim←−m Z /pm Z // Z /pZ .

Lemma 4.4. µQp(p) = 1
p .

Proof. We have a disjoint decomposition

Zp =
⊔

x̄∈Z /pZ

x+ p.

This yields

1 = µ(Zp) =
∑

x̄∈Z /pZ

µ(x+ p) =
∑

x̄∈Z /pZ

µ(p) = p · µ(p),

where we used the translation invariance of µ. This shows µ(p) = 1
p .
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A similar computation yields:

Lemma 4.5. µ(pn) = 1
pn .

We can use these formulae to compute the volume of {0} ⊂ Qp.

Corollary 4.6. µ({0}) = 0.

Proof. For every m ≥ 1 we have an inequality

µ({0}) ≤ µ(pm) =
1

pm
,

since 0 ∈ pm. This implies the claim.

We now turn to discussing two generalisations of this measure. First of all, it is clear that we way
replace Qp by a finite-dimensional Qp-vector space V . In addition we choose a free Zp-submodule
V ⊂ V , such that V = V ⊗Zp Qp. Then, there exists a unique Haar measure µ on V , such that
µ(V) = 1. The following results are proven with the same techniques as above.

Lemma 4.7. (a) We have µ(pmV) = 1
pm .

(b) Let W ⊂ V be a Qp-linear subspace of strictly smaller dimension, then µ(W ) = 0.

We can be more general than this: rather than working with Qp we can choose a field F
endowed with a topology, such that addition and multiplication are continuous, and the underlying
topological space F is locally compact. Furthermore, we assume that there exists a compact open
subring OF ⊂ F , which has a unique maximal ideal p. Topological fields with these properties are
known as non-archimedean local fields.

Definition 4.8. We denote the field OF /p by kF and refer to it as the residue field of F . We
denote its cardinality by q = qF = |kF |.

As before, we observe the existence of a unique Haar measure µF on F , such that µF (OF ) = 1.

Lemma 4.9. One has µF (pm) = 1
qm and µF ({0}) = 0.

Similarly, for a finite-dimensional F -vector space V with a free OF -submodule V, such that
V = V ⊗Zp Qp there exists a unique Haar measure µ on V , such that µ(V) = 1.

The choice of V ⊂ V is slightly cumbersome, and difficult to keep track off. It turns out that
there’s a better approach to Haar measures on finite-dimensional vector spaces, in terms of top
degree forms.

5 Motivic integration
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