- 1.) Show that for $X = \mathsf{MSpec} R$ we have a bijection $\mathcal{O}(X) \simeq R$.
- 2.) (a) Show that Zariski open subsets of |X| define a topology on X.
 - (b) For $f \in \mathcal{O}(X)$ we denote by $U(f) \subset X = \mathsf{MSpec} \ \mathcal{O}(X)$ the subset $\{\mathfrak{m} \in X | f \notin \mathfrak{m}\}$. Show that

 $\{U(f)|f\in\mathcal{O}(X)\}$

defines a basis for the Zariski topology.

Due on Tuesday, September 25th