E5 Elliptic curves, again

1.) Let k =F, be a finite field, and E/k an elliptic curve.

(a) Prove the formula
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(b) Recall that N, = #E(F,). We define N) = N, — (¢" + 1). Show
that there exists a recursive relation
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Conclude that the values of N; and N, completely determine the
zeta function Z(E,T).

2.) This time we consider a complex elliptic curve E/C. Let m: £ — E
be a finite covering space. Show that E’ has a natural structure of a
complex manifold (to be precise, a Riemann surface), such that:

(a) the map 7 is a holomorphic map between complex manifolds,
(b) the complex manifold E’ is an elliptic curve,

(c) there exists a positive integer n, such that we have a holomorphic
map E — FE’, such that the diagram

E—F
[n] l
E

commutes. Here, we denote by [n]: E — E the map sending = € £
to nx.
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