1.) Let M be a smooth **compact and connected** manifold. Define a \mathbb{Z} -local system or_M , called the *sheaf of orientations*, such that one has a natural isomorphism

 $\mathbf{E8}$

$$H^{\dim M}(M, \operatorname{or}_M) \simeq \mathbb{Z}.$$

2.) Let \mathcal{A}/\mathbb{F}_q be a connected commutative group object in varieties, and let $\mathcal{A} \to \mathcal{A}$ be the Lang isogeny. We denote by $\rho: \pi_1^{\text{ét}}(\mathcal{A}, 0) \to \mathcal{A}(\mathbb{F}_q)$ the corresponding group homomorphism. For every \mathbb{F}_q -rational point $a \in$ $\mathcal{A}(\mathbb{F}_q)$ we obtain an induced homomorphism $\rho_a: \widehat{\mathbb{Z}} \to \pi_1^{\text{ét}}(\mathsf{MSpec} \ \mathbb{F}_q, \mathsf{MSpec} \ \overline{\mathbb{F}}_q) \to$ $\mathcal{A}(\mathbb{F}_Q)$. Compute ρ_a in dependence of $a.^1$

Due on Tuesday, November 13th

¹The formulation of this exercise was slightly changed in order to account for what was covered in class. However the nature of the exercise remains essentially the same.