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1 Motivation: geometric class field theory

In this section we let k be a perfect field and X/k a smooth proper curve (which is geometrically
connected). The term local system on X can refer to one of the following things:

(a) a lisse `-adic sheaf,

(b) a vector bundle E with a flat connection ∇, if char(k) = 0,

(c) a locally constant sheaf (with respect to the standard topology), if k = C.

Type (b) will also be referred to as a de Rham local system, while type (c) is called a Betti local
system. The reason for this conflation of terminology is that these three distinct notions of local
systems are governed by similar formal rules. Therefore it is sometimes possible to transport
theorems and proofs almost verbatim. Such is the case for geometric class field theory which we
discuss in this subsection.

Theorem 1.1 (Deligne). Let L a rank 1 local system on X and ω a non-zero rational 1-form.
Then we have an isomorphism

(detH∗(X,L))(g − 1) '
⊗
x∈Xcl

L⊗νx(ω)
x .

Remark 1.2. Motivated by this product formula we call (Lx( 1
2 ))⊗−νx(ω) the ε-line Eω,x(L).

This theorem was proven by Deligne in a letter to Serre in 1974. The letter was published as an
appendix to [BE01]. In fact Deligne proves a more general statement which also applies to `-adic
rank 1 local systems on affine curves.

1.1 Recollection on geometric class field theory

We denote by Pic(X) the moduli space of line bundles (of arbitrary degree) on X. We write

Pic(X) =
⊔
d∈Z

Picd(X)
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to denote the decomposition according to degree.
The Abel-Jacobi map AJ : X // Pic1(X) sends x ∈ X to O(x) ∈ Pic1(X). More generally we

have a canonical morphism (Abel map) from X(d) to Picd(X). It is defined by viewing X(d) as the
fine moduli space of effective degree d divisors D on X and sending D to O(D).

Theorem 1.3 (Geometric class field theory). Let L be a rank 1 local system on X, then there exists
a rank 1 local system CL on Pic(X), such that

(a) AJ∗ CL ' L,

(b) CL is a character sheaf on Pic(X).

A character sheaf F on a commutative group scheme G is given by the following definition:
let e : Spec k // G be the unit map, and m : G × G // G the multiplication. We call a rank
1 local system F /G together with a trivialisation of e∗ F and an isomorphism m∗ F ' F �F a
precharacter sheaf.

Definition 1.4. Let m123 : G×G×G //G be the multiplication map for triples. A precharacter
sheaf is called a character sheaf if the diagram

m∗123 F //

��

F �m∗23 F

��

m∗12 F �F // F �F �F

commutes. Furthermore we require that for the natural map (id×e) : G // G × G we have a
commutative diagram

(id×e)∗m∗ F //

��

(id×e)∗ F

��

(m ◦ (id×e))∗ F // F .

In the case of `-adic local system over finite base fields, the function-sheaf dictionary allows us
to associate to a local system F a function fF on G(k).

Exercise 1.5. Assume that G is a smooth connected group scheme of finite type over a finite field
k.

(a) If F is an `-adic precharacter sheaf on G then fF : G(k) // Q̄×` is a character (that is, a
group homomorphism).

(b) Show that for every character χ : G(k) // Q̄×` there exists a character sheaf F , such that
fF = χ.1

In terms of stalks, a character sheaf F has the property that for g, h ∈ G there’s a (distinguished)
isomorphism

Lg ⊗Lh ' Lgh .
1Hint: use the Lang isogeny.
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This observation suggests a possible construction of the character sheaf CL on Pic(X). We know
that AJ∗ CL should be isomorphic to L. That is, for every divisor x of degree 1 we have an
isomorphism (CL)x ' Lx. The character sheaf property now suggest for a divisor D =

∑m
i=1 nixi

the formula (CL)O(D) '
⊗m

i=1 L
⊗ni
xi .

Lemma 1.6. Consider the quotient map π : Xd //X(d). The sheaf DL = π∗(F�d)Gi on X(d) is

a rank 1-local system with the property π∆DL ' F�d.

Proof. It suffices to show that for every D ∈ X(d) the stalk (DL)D is of rank 1. We can apply proper
base change to the map π. The fibre π−1(D) is a finite set endowed with a transitive Gd-action.
Therefore we have

dim(π∗ F�d)GdD = 1.

which is what we wanted. For the second assertion we observe that we have a natural morphism
π∆π∗ F�d // F�d which is by construction Gd-invariant. It factors through the coinvariants of
π∆π∗ F�d which are equivalent to the invariants of π∆π∗ F�d, and hence to π∆DL.

Next we will show that DL descends along the morphism AJd : X(d) // Picd(X) for d >> 0.

Lemma 1.7. For d > 2g − 2 the morphism AJd is a projective space fibration (in particular, it is
smooth).

Proof. Recall that AJd sends an effective divisor D of degree d of the line bundle L = O(D). The
fibre AJ−1

d (L) is a projective space PH0(X,L). It suffices to show that the dimension of these spaces

is constant for d > 2g − 2: since X(d) and Picd(X) are smooth, this implies flatness, and since the
fibres are smooth, this shows that the morphism itself is a smooth morphism.

Riemann-Roch shows χ(L) = h0(X,L) − h0(X,⊗X ⊗ L∨) = d + 1 − g. We have h0(X,⊗X ⊗
L∨) = 0, since the degree of ⊗X ⊗ L∨ is negative. This proves that the dimension of the fibres is
constant.

Sketch of Theorem 1.3. For d > 2g − 2 the Abel maps AJd are smooth fibrations in to projective
spaces. The latter are simply connected, and hence local systems on X(d) descend automatically
to local systems on Picd(X). This yields CL on components of Pic(X)

We have a commutative diagram

X(d1) ×X(d2) m //

��

X(d1+d2)

��

Picd1(X)× Picd2(X)
m // Picd1+d2

and one can show that m∗DL ' DL �DL. This allows one to check the character sheaf property
on the components where CL is already defined. The rest of the proof is left as an exercise to the
reader.

1.2 The use of character sheaves

For abelian varieties there is an interesting vanishing statement. It will play an important role in
the proof of Theorem 1.1.
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Lemma 1.8. Let F be a non-trivial precharacter sheaf of rank 1 on an abelian variety A. Then
H∗(Ak̄,F) = 0.

Proof for `-adic local systems. Using the (powerful) function-sheaf dictionary this case is particu-
larly easy to prove. Recall from the exercise above that F gives rise to a character χ ∈ G(k)∗. The
function-sheaf dictionary implies that χ is non-trivial. The Frobenius trace on H∗(Ak̄,F) is given
by
∑
g∈G(k) χ(g) (Grothendieck-Lefschetz). Since the right hand side is a non-trivial character sum,

it is zero.

Proof for Betti local systems. In this case we claim that a non-trivial local system (of rank 1) on
a torus T (in the sense of topology) has vanishing cohomology. We consider first the case of a
circle T = S1. We have H0(T,F) 6= 0 if and only if F is non-trivial. Poincarè duality implies that
H1(T,F) = H0(T,F∨) = 0.

In general we can write T = T ′ × S1. Since locally constant sheaves of rank 1 on a torus
T correspond to representations of the fundamental group, we see that F = F ′�F ′′ where F ′′
denotes a locally constant sheaf of rank 1 on S1. We may assume that F ′′ is non-trivial. Projecting
first to T ′ we obtain that the derived pushforward of F ′′ is zero (by virtue of proper base change
and the above). The projection formula implies that the cohomology H∗(T,F) is vanishes.

Finally we turn to the general proof which only uses general principles (i.e. derived pushforwards,
projection formula, Künneth formula). It is taken from Laumon’s [Lau96].

Proof for “all” notions of local systems. As before we use that we have H0(A,F) 6= 0 if and only
if F is non-trivial. We assume by contradiction that there exists a positive integer n, such that
Hn(A,F) 6= 0 and Hi(A,F) = 0 for all i < n.

Now we consider the complex Rm∗m
∗ F .The projection formula yields

Rm∗m
∗ F ' F ⊗Rm∗(triv),

where triv denotes the trivial rank 1 local system. The morphism m : A× A // A is equivalent to
p2 : A×A //A, and hence we obtain

The Künneth formula implies

Hn(A,Rm∗m
∗ F) =

⊕
i+j=n

Hi(A, triv)⊗Hj(A,F) = Hn(A,F) 6= 0,

where the last equality follows from the assumption Hj(A,F) = 0 for 0 ≤ j < n On the other
hand, using that m∗ F ' F �F we can apply the Künneth formula to obtain

Hn(A,Rm∗m
∗ F) = Hn(A×A,F �F) =

⊕
i+j=n

Hi(A,F)⊗Hj(A,F).

Since we assume Hi(A,F) = 0 for all 0 ≤ i < n we obtain that the right hand side is 0. This is
a contradiction.

We can now turn to the first step in the proof of Deligne’s theorem 1.1. To avoid considerations
of special cases we will assume that X is a curve of genus g at least 2. The Abel map of degree
2g − 2 will be essential to the proof. For general degrees d, the fibre AJ−1

d (L) for L ∈ Picd(X)
can be identified with PH0(X,L). A combination of Serre duality and Riemann-Roch shows that
AJ−1

2g−2(L) is a projective space of dimension g − 1 if L = ωX and of dimension g − 2 otherwise. In

fact, the morphism AJ2g−2 is a Pg−2-fibration away from {ωX} ⊂ Pic2g−2(X).
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Lemma 1.9. Let F be the character sheaf CL associated to a non-trivial rank 1 local system on X.
Then we have Hi(X(2g−2),AJ∗2g−2 F) = 0, if i 6= 2g−2 and H2g−2(X(2g−2),AJ∗2g−2 F) = FωX (g−1).

Proof. We use once again the projection formula to obtain the identity H∗(X(2g−2),AJ∗2g−2 F) =

H∗(Pic2g−2(X),F ⊗RAJ2g−2,∗(triv)). Since AJ2g−2 is a Pg−2-fibration, we obtain for i < 2g−2 that
RiAJ2g−2,∗(triv) is a trivial local system with fibre Hi(Pg−2, triv). Vanishing of the cohomology of
projective space in odd degrees implies that

RAJ2g−2,∗(triv) =

(
2g−3⊕
i=0

Hi(Pg−2)⊗ triv

)
⊕R2g−2 AJ2g−2,∗ F .

The Vanishing Lemma 1.8 yields that the first 2g−2 summands don’t contribute to the cohomol-
ogy of H∗(X(2g−2),AJ∗2g−2 F). It remains to deal with the contribution of R2g−2 AJ2g−2,∗ AJ∗ F .
By the proper base change theorem (and the fact that only the fibre over ωX is (g−1)-dimensional),
we infer that this is a skyscraper sheaf with support {ωX} ⊂ Pic2g−2(X). Applying proper base
change and the projection formula once more, we see that it equals H2g−2(Pg−1)⊗FωX , that is its
cohomology equals FωX (g − 1) as we wanted.

1.3 The proof of Deligne’s theorem

Proof of Theorem 1.1. Let us assume first that L is a trivial rank 1 local system on the curve
X. The cohomology groups Hi(X, triv) is then a equal to triv for i = 0 and to triv(1) for i = 2.
The determinant of H1(X, triv) is equal to H2g(Pic0(X)) = triv(g). This shows that we have an
isomorphism detH∗(X, triv) ' (1− g). Since Lx = triv for all closed points in x, this computation
confirms indeed Deligne’s product formula for the case of trivial rank 1 local systems.

Henceforth we may assume without loss of generality that L is a non-trivial rank 1 local system.
This is equivalent to H0(X,L) = 0, and by virtue of Poincaré duality also H2(X,L) = 0. These
vanishing statements can be used to determined the rank of H1(X,L):

Lemma 1.10. If L is a rank 1 local system on X then χ(X,L) = χ(X, triv) = 2− 2g.

Remark 1.11. I don’t know a proof of this formula which works for all notions of local systems
at once. In fact I believe that if such a proof exists it can’t be entirely obvious, as the `-adic case
follows (or rather is a special case) from Grothendieck–Ogg–Shafarevich.

Proof of the de Rham case. Let L = (E,∇) be a rank 1 local system. The de Rham cohomology
of L is then computed by the hypercohomology of the de Rham complex

[E // E ⊗ Ω1
X ].

on X. This implies
χdR(L) = χcoh(E)− χcoh(E ⊗ Ω1

X).

According to the Riemann-Roch formula, the right hand side can be identified with degE + (1 −
g)− (degE + (2g − 2) + (1− g)) = 2− 2g.

Over the field of complex numbers Betti local systems correspond to de Rham local systems by
means of the Riemann-Hilbert correspondence. It is therefore not necessary to treat the Betti case
separately.
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The determinant of cohomology which we wish to compute, therefore satisfies:

det(X,L)−1 =
∧2g−2

H1(X,L) = Sym2g−2
(
H1(X,L)[−1]

)
.

Remark 1.12. The second equality sign might come as a surprise to those unfamiliar with the
symmetric product operation for complexes. However that’s a fairly standard identification which
works as follows: for a vector space V (over a characteristic zero field) we have

Symi V = (V ⊗i)Gi

where Gi acts by permuting the factors,∧i
V = (V ⊗i)Gi,−

where the superscript − indicates that we take antiinvariants (or invariants for the action twisted
by the sign character). Those definitions can also be applied to a complex (using tensor products
of complexes instead). Using the usual sign rules one sees immediately that invariants turn into
antiinvariants in combination with the shift functor:

Symi(V [−1]) =

(∧i
V

)
[−i].

The classical Künneth formula states

H∗(Y1 × Y2,F1 �F2)

for local systems F i on Yi. It has the following counterpart for symmetric powers:

Corollary 1.13 (Symmetric power Künneth formula). Let L be a local system on X. Then we

have an isomorphism H∗(X(d), (L�d)Gd) ' Symd(H∗(X,L)).

Once one has observed that taking Gd-invariants commutes with cohomology, this statement
follows from the classical Künneth formula.

By construction of the character sheaf F = CL, we have AJ∗d F ' (L�d)Gd). Lemma 1.9 therefore

shows that the only non-vanishing cohomology group of (L�d)Gd) is equal to (CL)ωX (g − 1). This
yields an isomorphism

det(X,L)−1 ' (CL)ωX (g − 1).

In order to conclude the proof, it remains to produce an isomorphism (CL))ωX '
⊗

x∈Xcl L
⊗νx(ω)
x .

This follows from the following more general assertion:

Lemma 1.14. For a divisor D =
∑
x∈Xcl nxx we have (CL)OD '

⊗
x∈X L

⊗nx
x .

Proof. This is the case since CL is a character sheaf and we have (CL)O(x) = Lx.

This concludes the proof of Deligne’s formula.
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2 Axiomatics and analogies

2.1 Epsilon factors for `-adic sheaves

Deligne’s Theorem 1.1 fits into a broader context. In this subsection we will focus on local systems
as lisse `-adic sheaves. The definition given below only applies to this case, as it is anchored to the
function-sheaf dictionary. We treat the global and local case separately.

Definition 2.1. Let k be a finite field and X/k a smooth proper curve. Let U ⊂ X be an open
subset and L an `-adic local system. We define the global epsilon factor as

ε(U,L) = Tr(−F,det(H∗(U,L))−1) ∈ Q̄×` .

Alternatively one can define ε(U,L) as the constant in the functional equation of L. This makes
for sense for complexes of constructible sheaves K on X which extend L:

L(X,K, t) = ε(X,K) · ta(X,K) · L(X,DK, t−1)

According to the Langlands conjecture (which is known for function fields), an irreducible `-adic
local system on U ⊂ X corresponds to a cuspidal automorphic representation for the function field
of X. Furthermore, this correspondence preserves L-functions.

The L-functions of a cuspidal automorphic representation can be written as an infinite product
over the places of X (i.e., closed points x of X). This presentation depends on an additional choice,
namely an additive Haar measure on the local field Fx which arises in the guise of a formal 1-forms
ω ∈ Ω1

F . The functional equation for the global L-function is then obtained by taking a product
over local functional equations. The local constants are also known as the local (automorphic)
epsilon factors. The Langlands programme therefore suggests that the following formalism should
exist.

In the following we denote by F and L local fields of equicharacteristic p, and an auxiliary prime

` 6= p. We also fix an additive character ψ : Fp // Q̄×` , and a square root p
1
2 ∈ Q̄`.

Definition 2.2 (Epsilon formalism). An ε-formalims assings to an isomorphism class of an `-adic

local systems L on SpecF , and ω a non-zero formal 1-form on F a constant εω(L) ∈ Q̄×` , such that
the following properties hold:

(a) For a short exact sequence of local systems L′ ↪→ L� L′′ on SpecF we have

εω(L) = εω(L′)εω(L′′).

We obtain a well-defined homomorphism εω : K0(Loc`(F )) // Q̄×` .

(b) For an element L of K0(Loc`(L)) of virtual dimension 0, and a finite field separable extension
L/F we have

εω(IndLF L) = εωL(L).

(c) (Product formula) Let U ⊂ X be an open subset of a smooth proper curve as in Definition
2.1. For an `-adic local system on U and a non-zero rational 1-form ω we have a product
formula (where only finitely many factors are 6= 1)

ε(U,L) =
∏
x∈Xcl

εωFx (L |Fx).
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(d) If L is a rank 1 `-adic local system on F , then εω(L) is the ε-factor assigned by Tate’s thesis to

the multiplicative character F× // Gal(F )ab // Q̄×` and the additive character Ψ: F // Q̄×`
which sends a ∈ F to ψ(TrkF /Fp res(a · ω)).

It was conjectured by Langlands and Deligne that such a formalism should exist. This conjecture
was proven by Laumon [Lau87] using `-adic Fourier transform. His proof is based on a local-to-
global argument. Every `-adic local system on a local field k((t)) can be extended to a ramified
local system on P1

k with tame ramification at∞ (by virtue of the Gabber–Katz theorem). Using the
product formula, one can therefore reduce the definition of epsilon factors to the tamely ramified
case.

Although the Langlands philosophy was essential in arriving at the conjecture of the existence
of local epsilon factors, we emphasise that Laumon’s proof is independent thereof, and in fact his
result is used in Lafforgue’s proof of the Langlands conjecture for function fields.

2.2 Epsilon lines

Question 2.3. Are the `-adic epsilon factors εω(L) Frobenius eigenvalues of `-adic lines Eω(L)?

Let’s try to make this question more precise:

Definition 2.4. Epsilon lines A formalism of epsilon lines associates to (F,L, ω) as in Definition

2.2 a rank 1 vector space over Q̄×` with a Ẑ-action, such that the following properties hold:

(a) For a short exact sequence of local systems L′ ↪→ L� L′′ on SpecF we have an isomorphism

Eω(L) ' Eω(L′)⊗ Eω(L′′),

which satisfies a compatibility condition for triples L1 ↪→ L2 ↪→ L3.

(b) For L of virtual rank2 0 and L/F a finite separable extension we have an isomorphism
Eω(IndLF L) ' EωL(L).

(c) For U ⊂ X an open subset in a smooth proper curve over a finite field k, and L /U an `-adic
local system, and ω a rational 1-form on X we want an isomorphism

det(H∗(U,L))−1 '
⊗
x∈Xcl

Eω|Fx (L |Fx),

where almost all factors are trivialised.

Deligne’s product formula 1.1 hints at how epsilon lines can be defined in the case of rank 1 local
sytems on X. For general ranks the situation is slightly more complicated. There is a persistent
sign issue which obstructs the existence of a formalism of `-adic epsilon lines (and in fact for all
notions of local systems). We will later see how to resolve this problem by using graded lines3.
This course is devoted to a theorem of Beilinson–Bloch–Esnault and Deligne which states that de
Rham epsilon (graded) lines exist. For the `-adic case this is not known. In fact several footnotes
scattered throughout the literature suggest that there should be another mysterious obstruction to
a formalism of `-adic epsilon lines:

2This requires a lot of contemplation, we will provide more details in a future section.
3A graded line is pair consisting of a rank 1 vector space and an integer. The integer is used as a device to resolve

sign problems, that is, only it congruence class modulo 2 really matters. You could also work with super lines.
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Remark 2.5 (For Fabio, Lei and Tanya; and everyone who likes gerbes). The expectation is (see
footnote 3 on p. 3 of [BBE02]) that for every cohomology theory there exists a µ2-gerbe, let’s call
it the epsilon gerbe, such that there is a formalism of twisted (graded) epsilon lines. For de Rham
and Betti cohomology this gerbe is trivial, but for `-adic and crystalline cohomology it is non-trivial
(if it exists).

2.3 Geometric analogies

Let us assume for now that we are working with a notion of local systems and a cohomology theory,
such that there is a formalism of epsilon lines. We will see later that this is true (at least up to
signs) for de Rham and Betti cohomology. The product formula

det(H∗(U,L))−1 '
⊗
x∈Xcl

Eω|Fx (L |Fx)

suggests that the determinant of cohomology (which depends on the global structure, or topology
of X), can be computed in terms of local contributions depending only on the auxiliary choice of
a non-zero rational 1-form. Particularly for the case of `-adic cohomology it is difficult to imagine
what the connection between rational 1-forms and cohomology could be.

It turns out that this is just the arithmetic counterpart of an old observation in topology which
is known as Morse theory. The first accounts can be found in papers by Cayley (“On contour and
slope lines”) and Maxwell (“On hills and dales”) in the 1860s.

2.3.1 Recollection of Morse theory

Let M be a smooth compact manifold (over the reals) and f : M // R a C2-function on M . A
point m ∈ M is called critical, if its a zero of the 1-form df . We assume that f has only finitely
many critical points, and that all critical points are non-degenerate (that is, the Hessian is non-
degenerate). Furthermore we assume that for every pair of critical points m1 and m2 we have
f(m1) 6= f(m2).

Definition 2.6. We say that m ∈M is a critical point of index γ, if there exists a chart near m,
such that f has the formal development

f(x) = f(m)− x2
1 − · · · − x2

γ + xγ+1 + · · ·+ x2
n + · · · .

We denote the critical points of index γ by cγ .

According to the main theorem of Morse theory, there exists a cell decomposition of M , such
that there is cell of dimension γ for every critical point of index γ. Therefore we have the following
identity:

χ(M) =
∑
γ∈Z

cγ ,

which looks like an additive form of the product formula describing the determinant of cohomology:

χ(M) =
∑

dmf=0

ind(m).

Furthermore, Morse theory only depends on the exact 1-form df .
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2.3.2 Poincaré–Hopf theorem

There is another classical theorem with a striking resemblance to the product formula. As before
we let M be a smooth compact manifold.

Definition 2.7. Let ν be a smooth vector field on Rn with isolated zeroes, such that ν(0) = 0. We
define the index of ν at 0 to be the degree of the induced self-map of a sphere Sn−1 of very small
radius .

Theorem 2.8 (Poincaré-Hopf). Let ν be a smooth vector field with finitely many isolated zeroes
on M . Then we have

χ(M) =
∑

ν(x)=0

indx(ν).

A particularly interesting case to consider is where ν has no zeroes at all.

Corollary 2.9. If there exists a smooth vector field ν on M without zeroes, then χ(M) = 0.

A geometric argument due to Thurston4. Choose a very fine triangulation ofM and place a positive
charge at the barycentre of every even-dimensional simplex, and a negative charge at the barycentre
of every odd-dimensional simples. The Euler characteristic of M equals the total charge.

For a split second we let the charges flow along the vector field. We take stock for each top-
dimensional simplex at a time: all charges now lie in the interior of a top-dimensional simplex.
Drawing a picture we convince ourselves that inside every top-dimensional simplex we have charge
zero. This proves the assertion.

3 D-modules

Henceforth we work over base fields k of characteristic 0. Let X be a smooth k-variety.

Definition 3.1. A D-module on X is a quasi-coherent sheaf F on X with a flat connection ∇.
That is, a k-linear map of sheaves ∇ : F // F ⊗Ω1

X , such that ∇ satisfies the Leibniz rule, and
∇2 = 0.5

As suggested by the terminology, every smooth variety X carries a sheaf of non-commutative
rings DX (the ring of differential operators), such that D-modules as defined above, correspond to
quasi-coherent sheaves of DX -modules. We will use these two viewpoints interchangeably.

Definition 3.2. (a) A differential operator on X of order ≤ 0 is a section of Endk(OX) given
by multiplication with a local section of OX .

(b) A differential operator of order ≤ k is a section of Endk(OX), such that for every local section
f of OX we have that [q, f ] is an operator of order ≤ k − 1.

(c) We denote by D≤kX the sheaf of differential operators of order ≤ k on X. The union of sheaves

DX =
⋃
k≥0D

≤k
X is defined to be the ring of differential operators.

5We should really call this a quasi-coherent sheaf of D-modules, but non-quasi-coherent examples will not be of
interest to us.
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Zariski-locally on X, an order ≤ k differential operators q can be expressed as a sum

m∑
i=1

∂i1 · · · ∂ik + q′,

where ∂ij are tangent vector fields, and q′ is a differential operator of order ≤ k−1. This important
observation can be neatly packaged as a statement about filtered rings.

Proposition 3.3 (PBW for differential operators). The associated graded gri(DX) = D≤iX /D≤i−1
X

is canonically isomorphic to Symi TX . Therefore gr(DX) ' SymTX = π∗OT∗X .

We will return to this in Subsection 3.4 when defining the category of holonomic D-modules.
A good source for the theory of D-modules are the lecture notes [] by Bernstein. Our exposition

is indebted to his.

3.1 An example in dimension 1

Let’s consider an example of a D-module on the affine line A1 which is not a vector bundle with a
flat connection. This is a purely algebraic problem: we have an k[x]-module M , and for the vector
field ∂ = ∂

∂x we have an operator
∂ : M //M

which satisfies the Leibniz rule.
Let s ∈ M be a non-zero element, such that x · s = 0. Applying ∂ to the equation, and using

the Leibniz rule we obtain
s = −x∂s.

We define s(0) = s, and recursively s(n) = ∂s(n−1). The equation above shows xs(1) = −s 6= 0,
which implies three things:

(a) s(1) 6= 0,

(b) xs(1) 6= 0,

(c) x2s(1) = 0.

By induction one proves the identities xns(n−1) = 0 and xn−1s(n−1) 6= 0. We conclude that there
cannot exist torsion D-modules on A1 which are finitely generated as O-modules. Using the same
method we can prove an interesting generalisation:

Exercise 3.4. (a) Let X be a curve and F a D-module on X which is coherent as OX-module.
Then F is locally free.6

(b) Prove (a) without assuming dimX = 1.7

6Hint: observe that F splits as direct sum of a torsion-module and a vector bundle. Observe that the torsion
part is a D-submodule.

7Hint: convince yourself that the assertion can be reduced to the one-dimensional case.

12



3.2 Pushforward and pullback

Let f : Y //X be a morphism of smooth varieties. There exist derived functors

f+ : D(Mod(DX)) //D(Mod(DY ))

and
f∆ : D(Mod(DX)) //D(Mod(DY )).

In terms of the classical theory of flat connections, f∆ generalises the construction of the pullback
connection, while f+ is best thought of as a generalisation of the Gauss-Manin connection on relative
de Rham cohomology.

Definition 3.5. There is a natural map DY
// f∗DX induced by TY // f∗TX . A DX-module

pulls back to a f∗DX-module, and by restriction of scalars along the composition DY
// f∗DX we

can define a natural DY -module structure on the pullback of a DX-module. We denote the resulting
derived functor by f∆. If the morphism f is flat, then f∆ also makes sense on the underived level.

We observe that there is a diagram of derived functors

D(Mod(DX))
f∆

//

��

D(Mod(DY ))

��

D(Mod(OX))
Lf∗
// D(Mod(OX))

which commutes up to natural isomorphisms. The vertical functors are given by forgetting the
D-module structure and retaining only the underlying (complex of) quasi-coherent sheaves.

The definition of f+ is more complicated. The reason for this is that its more naturally defined in
terms of right D-modules than left D-modules. One then uses that there is an equivalence between
the categories of left and right D-modules. Mathematically speaking this is akin to swapping
functions for distributions. But in practical terms one obtains a definition which is more complicated
than what one would like. Therefore we will circumvent a rigorous definition of f+ for as long as
possible. Rather than defining f+ we will describe an compatibility relation derived pushforward
of O-modules Rf∗ which determines f+.

Definition 3.6. We denote by DX⊗OX : Modqc(OX) // Mod(DX) the functor which assigns to
a quasi-coherent OX-module M the free DX-module generated by it. We let DX⊗LOX be its left
derived functor.

D-module pushforward is compatible with this free construction of D-modules. For the purpose
of these notes this is going to be the only thing we have to know about f+.

Proposition 3.7. Let f : Y // X be a morphism of smooth varieties and F a complex of OY -
modules on Y . There is a natural isomorphism f+(DY ⊗LOY F) ' (Rf∗ F)⊗LOX DX .

At least locally it is always possible to express a D-module M on Y as a cokernel of a presentation

D⊕IY
//D⊕JY

//M,

that is, of two D-modules in the image of the functor ⊗LOY . This is the reason why the proposition

above can be used (in combination with a Čech resolution) to compute f+ for arbitrary DY -modules.

Remark 3.8. We are not claiming that f∆ and f+ are adjoint functors (that might be the reason
for the unfamiliar notation). This will happen under circumstances to be discussed later.
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3.3 Kashiwara’s theorem and consequences

There are a few places where the theory of D-modules behaves unexpectedly different from the
theory of quasi-coherent sheaves of O-modules. Kashiwara’s theorem is an instance of this phe-
nomenon. It shows that D-modules do not see nilpotent thickenings of subvarieties.

Theorem 3.9 (Kashiwara). Let X and Y be a smooth variety and Y ↪→ X be a closed immersion.
The full subcategory of D-modules on X with set-theoretic support Y is equivalent to the category
of D-modules on Y :

Mod(DY ) ∼= ModY (DX).

This result has several far-reaching applications. For instance it allows one to define D-modules
on a singular variety Y by plunging Y (locally) into a smooth variety X and considering the full
subcategory of D-modules on X which are set-theoretically supported on Y .

A second application is the following consequence about D-modules on projective spaces.

Corollary 3.10 (Beilinson–Bernstein). Let X be a smooth affine variety and M be a D-module on
PnX . Then M 6= 0 if and only if HomD(DPn ,M) 6= 0. (In other words, the category Mod(DPn) is
globally generated by DPn .) Furthermore, the functor HomD(DPn ,−) is exact.

Remark 3.11. The analogous assertion for quasi-coherent O-modules is never true for non-affine
schemes. One says that Pn is D-affine in reference to this phenomenon. Beilinson–Bernstein have
shown that flag varieties are D-affine, other examples are probably not known.

Proof of Corollary 3.13. Let π : An+1 \{0} //Pn the canonicalGm-invariant morphism. We denote
by j : An+1 \{0} ↪→ An+1.

For every D-module M on Pn, the pullback π∆M is a Gm-equivariant sheaf on An+1 \0. We
can express the functor HomD(DPn ,−) as the composition

(j∗ ◦ π∆M)Gm .

The functor (−)Gm is exact, and so is π∆. It remains to analyse the functor j∗.
LetM ′ ↪→M �M ′′ be a short exact sequence ofD-modules on Pn, such that j∗π

∆M //j∗π
∆M ′′

is not surjective. Its cokernel N defines a D-module on An+1 with set-theoretic support {0}.
Kashiwara’s Theorem 3.9 implies that N is isomorphic to i+W where W is a vector space, and
i : {0} ↪→ An+1.

Claim 3.12. The Gm-equivariant D-module N corresponds to a graded k[x0, . . . , xn]-module where
all elements are negatively-graded.

Proof. The Euler vector field e =
∑n
i=0 xi

∂
∂xi

is an infinitesimal generator of the Gm-action on

An+1. Since N is a Gm-equivariant D-module we have that s ∈ Ni if and only if es = is. Using
computations similar to those in 3.1, one can prove that es = is and e(∂js) = (i−1)s. We conclude
that the positively-graded part of i+W is zero.

We conclude that NGm = 0, and hence exactness of the functor (j∗π∗)
Gm . It remains to check

conservativity, that is, that HomD(DPn ,M) = 0 implies M = 0.
If M 6= 0 there must be a minimal non-negative integer n ∈ Z , such that (j∗π

∆M)n 6= 0. Let
m ∈ j∗π

∆M be a section of weight n. Using the Euler vector field defined earlier, we see that
em = nm.

Assume n > 0: since e =
∑n
i=0 xi

∂
∂xi

there exists an i = 0, . . . , n, such that ∂im 6= 0. We have
e(∂im) = (n− 1)(∂im) which contradicts the minimality assumption of m.
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Corollary 3.13. The category of D-modules on PnX (where X is as before a smooth affine variety)
is equivalent to the category of R-modules where R = Γ(DPnX ).

Proof. We have shown that DPnX is projective generator. By virtue of Morita theory we obtain
what we wanted.

We won’t stop here. There’s another corollary of this corollary coming up.

Definition 3.14. A D-module is called coherent, if its Zariski-locally finitely presented as a sheaf
of D-modules. A complex of D-modules is called coherent, it its cohomology sheaves are coherent.

Corollary 3.15. Let f : Y //X be a projective morphism. Then f+ : D(Mod(DY )) //D(Mod(DX))
preserves coherent complexes.

Proof. It suffices to check the assertion for the case of closed immersions and the projection Y =
PnX //X where X is a smooth affine variety.

If f : Y //X is a closed immersion of affine varieties we can use the identity

f+(DY ) ' f+(OY ⊗OYDY ) ' f∗(OY )⊗LOX DXDX

to deduce that f+ sends coherent objects to coherent objects.
Henceforth we assume that f is a trivial Pn-fibration over a smooth affine variety. Let R =

Γ(DY ). An R-module N is finitely presented if and only if the functor HomR(N,−) preserves
filtered colimits. Similarly, (for any smooth variety) Y , we have that a DY -module M is coherent
if and only if the functor HomD(M,−) preserves filtered colimits. By virtue of Corollary 3.13 we
see that a coherent D-module on PnX is globally finitely presented.

It suffices therefore to prove f∗(DPnX ) ⊂ Dcoh(Mod(DX)). This follows from the compatibility
condition of f+ with derived pushforward of O-modules (see Proposition 3.7) f+(DY ) ' DX ⊗OX
Rf∗(OPnX ) ' DX .

3.4 Holonomic D-modules

Holonomic D-modules form a particularly nice subcategory. Their definition is closely tied to the
order filtration on the sheaf of rings DX .

Definition 3.16. Let M be a coherent D-module on X. A good filtration on M is a structure of
a filtered module (M,M≤i) with respect to the filtered ring (D,D≤i), such that the pieces M≤i are
coherent.

Good filtrations can be constructed by hand Zariski-locally for every coherent D-module. The
associated graded gr(M) is a module with respect to π∗OT∗X and therefore gives rise to a coherent
sheaf on T ∗X.

Theorem 3.17 (Bernstein). Let M be a coherent D-module with a good filtration. The underlying
(reduced) closed subset of T ∗X given by the support of gr(M) is independent of the chosen filtration.
It is a co-isotropic subset of T ∗X (i.e. its dimension is ≥ dimX).

This reduced subset of T ∗X is also known as the singular support of M . Note that this subset
is well-defined globally without assuming the existence of global good filtrations. The estimate
dim suppM ≥ dimX is also known as the Bernstein inequality. The case where dim suppM =
dimX corresponds to holonomic D-modules.
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Definition 3.18. A coherent D-module M on X is holonomic if its singular support satisfies
dim suppM = dimX.

The singular supports of holonomic D-modules are Gm-equivariant Lagrangian subsets of T ∗X.

Lemma 3.19. A coherent D-module is O-coherent if and only if its singular support is contained
in the zero section X ↪→ T ∗X.

Proof. Let (M≤i)i∈N be a filtration on M , such that the associated graded gr(M) is a coherent
π∗OT∗X -module with set-theoretic supportX ↪→ T ∗X. This implies that gr(M) =

⊕∞
i=1M

≤i/M≤i−1

is OX -coherent, and therefore there exists n0 ∈ N, such that M≤n = M≤n−1 for n > n0. Since the
filtered piec M≤n0 is O-coherent by the defining assumption on good filtrations, we conclude that
M = M≤n0 is O-coherent.

We have seen in Exercise 3.4 that O-coherent D-modules are vector bundles with a flat con-
nection. Since singular supports of holonomic D-modules are Gm-invariant Lagrangian subsets of
T ∗X, they are generically contained in the zero section X ↪→ T ∗X. We conclude the following:

Corollary 3.20. Holonomic D-modules are generically vector bundles with a flat connection.

For this reason, holonomic D-modules on X give a particularly nice “compactification” of a
local system defined over an open subset of X. Their singular support is measuring where and to
which degree, the holonomic D-module deviates from being a local system.

Example 3.21. Consider the Dirac Delta D-module M on A1 of Subsection 3.1. We identify T ∗A1

with A2 = Spec k[x, y]. The singular support of M is then given by {x = 0} ⊂ A2.

Indeed we have seen that M was generated by a single section s. As a k-vector space one can
write M = k[∂] ⊗k 〈s〉. A good filtration on M is given by M≤n = 〈∂n−1s, . . . , s〉. The induced
associated graded yields the polynomial k[y] where we identify y = ∂.

4 Deligne lattices, irregularity and de Rham epsilon factors

4.1 Regular and irregular connections

In this subsection we denote by k a field of characteristic zero. We denote by X a smooth proper
curve over k and j : U ↪→ X an affine open subset. Its complement will be referred to as S = X \U .
Let E = (E,∇) be a flat connection on U .

Since X is a curve, the vector bundle E extends to X. In general we cannot expect ∇ to extend
from U to X. In such a case we say that the connection ∇ is singular near S. Not all singularities
are born equal.

Definition 4.1. (a) By abuse of notation we view S as an effective reduced divisor on X. The
invertible sheaf Ω1

X(S) will be referred to as the sheaf of log-differential forms on X.

(b) We say that E has regular singularities at S, if there exits an extension L of E to X, such
that ∇(L) ⊂ L⊗ Ω1

X(S).

In concrete terms this amounts to the existence of a local presentation of ∇ as d + ω where ω
is a section of Ω1

X(S). That is, ω has poles of order ≤ 1. The extension L/X of E/U in (b) is not
unique.
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Theorem 4.2 (Deligne). Let k ⊂ C, and τ : C /2πiZ //C a set-theoretic section of C //C /2πiZ.
There exits a unique extension L of E to X, such that the residues of ∇ along S are contained in
the image of τ . Furthermore, the complex of sheaves

[L // L⊗ Ω1
X(S)]

is quasi-isomorphic to the de Rham complex

[j∗E // j∗(E ⊗ Ω1
U )].

A connection with singularities along S which isn’t regular is called irregular. There is a natural
generalisation of Deligne’s theorem on regular connections.

Definition 4.3. A pair of good lattices for E is an ordered pair of locally free subsheaves M ⊂ N ⊂
j∗E, such that

(1) M |U = N |U = E|U ,

(2) ∇(M) ⊂ N ⊗ Ω1
X(S),

(3) For every effective divisor D with supp D = S, the inclusion of complexes

[M //N ⊗ Ω1
X(S)] // [M(D) //N(D)⊗ Ω1

X ]

is a quasi-isomorphism.

By taking the colimit over the filtered set of divisors D with support S, it follows from (3) that

[M //N ⊗ Ω1
X(S)] // [j∗(E|U ) // j∗(E|U )⊗ Ω1

X ] (1)

is a quasi-isomorphism.

Theorem 4.4 (Deligne). Good lattices exist.

The proof of this result is deferred to Subsection 4.6. In the meantime we will discuss special
cases and consequences. At first we focus on the application for de Rham epsilon factors.

4.2 Graded lines and determinants

Let k be a field (the characteristic 0 assumption won’t be necessary in this subsection). We denote
by Pic(k) the groupoid of rank 1 k-vector spaces. That is, it is the category whose objects are
vector spaces of rank 1 and morphisms are invertible linear maps between them. At face value,
that’s a rather boring category.

Lemma 4.5. The category Pic(k) is equivalent to the groupoid Bk×, that is, the category with
precisely one object •, and Hom(•, •) = k×.

The Tensor product ⊗ = ⊗k defines a symmetric monoidal structure on Pic(k). In terms of our
simple toy model above, ⊗ is given by • ⊗ • = • and

Hom(•, •)× Hom(•, •) ⊗
//

��

Hom(•, •)

��

k× × k× mult // k×.
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The symmetry constraint is an additional structure. We have to specify an isomorphism

s : • = •1 ⊗ •2 ' •2 ⊗ •1 = •.

In order to be consistent with the natural isomorphism V ⊗kW 'W ⊗k V which exists for k-vector
spaces, we choose s = id•.

Let Vectk denote the groupoid of all finite-dimensional k-vector spaces. That is, we discard all
non-isomorphisms from the category of finite-dimensional k-vector spaces and linear maps. The
direct sum operation of vector spaces ⊕, defines a symmetric monoidal structure on Vectk. Fur-
thermore we have a monoidal functor det : Vectk // Pic(k) which sends V to its top exterior power∧top

V .
The formulation that det is a monoidal functor actually disguises an extra structure. For every

pair of finite vector spaces V,W we have a natural isomorphism

cV,W : detV ⊗ detW ' det(V ⊕W )

which is given by (v1 ∧ · · · ∧ vn) ⊗ (w1 ∧ · · · ∧ wm) 7→ v1 ∧ · · · ∧ vn) ∧ (w1 ∧ · · · ∧ wm). These
isomorphisms satisfy a coherence condition for triples of vector spaces.

Warning 4.6. The functor det : Vectk // Pic(k) is not symmetric monoidal functor. What does
this mean? For every pair of vector spaces V,W we can ask if the following diagram commutes

detV ⊗ detW //

��

det(V ⊕W )

��

detW ⊗ detV // det(W ⊕ V ),

which compares the commutativity constraint for tensor products with the one of direct sums. It
turns out that the diagram commutes only up to the sign (−1)mn where m,n are the dimensions of
V respectively W .

In order to fix this we would like to twist the commutativity constraint of lines by the sign
(−1)mn. This can be done by remembering the ranks m,n.

Definition 4.7. (a) A graded line is a pair (L, n) where L ∈ Pic(k) and n ∈ Z. We denote the
category of graded lines by Picgr(k). Formally it is defines to be Picgr(k) = Pic(k)× Z.

(b) The monoidal structure on Picgr(k) is defined factorwise:

(L1, n1)⊗ (L2, n2) = (L1 ⊗ L2, n1 + n2).

(c) The symmetry constraint c12 : (L1, n1)⊗(L2, n2
//(L2, n2)⊗(L1, n1) is defined by multiplying

the factorwise symmetry constraint with (−1)n1n2 .

The groupoid of graded lines is a product of the two gropoids Z (viewed as a discrete category,
all all morphisms are identities) and Pic(k). This is also true for the monoidal structure. But, as a
symmetry monoidal category, Picgr(k) is not a product.

Definition 4.8. We let detgr : Vectk //Picgr(k) be the symmetric monoidal functor V 7→ (detV, rkV ).
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The definition of Picgr as a symmetric monoidal category is rigged for the functor above to re-
spect the symmetry constraint. Graded determinants are a device which takes care of sign problems
which would otherwise be inevitable.

The graded determinant is multiplicative with respect to short exact sequences. This follows
by combining additivity of rank with respect to short exact sequences and multiplicativity of top
exterior powers.

Lemma 4.9. Let 0 //V1
//V2

//V3
//0 be a short exact sequence of finite-dimensional k-vector

spaces. We have an isomorphism detgr(V2) ' detgr(V1)⊗ detgr(V3).

4.3 Lattices and relative determiants

Let X be a k-curve (not necessarily smooth or proper) and j : U ↪→ X an open subset. We fix a
vector bundle E on U . We will also allow X to be a trait, that is, isomorphic to Spec k′[[t]] where
k′/k is a finite field extension.

Definition 4.10. A U -lattice L is a locally free subsheaf L ⊂ j∗E, such that L|U = E.

If X is proper then we can define detgr(X,L) = detgr(H∗(X,L)) =
⊗1

i=0(detgr(Hi(X,L))(−1)i).
If X is not proper, the cohomology groups of L will not be finitely generated and hence the
graded determinant is not well-defined. Let L1, L2 be two lattices, then “there is a way to define”
detgr(X,L1)⊗ (detgr(X,L2))−1 even if X is not proper.

Lemma-Definition 4.11. For a pair of lattices L1, L2 ⊂ j∗E we define a graded line

detgr(L1 : L2) = detgr(Γ(L1/L))⊗ (detgr(Γ(L2/L)))−1,

where L is an arbitrarily chosen lattice satisfying L ⊂ L1 ∩ L2. This graded line only depends on
(L1, L2) up to a unique isomorphism.

Proof. It suffices to show that detgr(L1 : L2) is well-defined, that is, independent of the choice of
L. For L,L′ ⊂ L1 ∩ L2 we may choose L′′ ⊂ L ∩ L′. We have detgr(Γ(L1/L

′′) ' detgr(Γ(L1/L) ⊗
detgr(Γ(L/L′′), and similarly detgr(Γ(L2/L

′′) ' detgr(Γ(L2/L) ⊗ detgr(Γ(L/L′′). This induces an
isomorphism

detgr(L1 : L2) = detgr(Γ(L1/L))⊗ (detgr(Γ(L2/L)))−1 ' detgr(Γ(L1/L
′′))⊗ (detgr(Γ(L2/L

′′)))−1.

Reversing the role of L and L′ we obtain an isomorphism

detgr(L1 : L2) = detgr(Γ(L1/L))⊗ (detgr(Γ(L2/L)))−1 ' detgr(Γ(L1/L
′))⊗ (detgr(Γ(L2/L

′)))−1.

The verification that this isomorphism is independent of the choice of L′′ is left to the reader.

The multiplicativity of graded determinants with respect to short exact sequences yields the
following transitivity property whose proof we leave to the reader.

Lemma 4.12. For every triple of lattices L1, L2, L3 ⊂ j∗E we have an isomorphism t123 : detgr(L1 :

L2)⊗ detgr(L2 : L3)
' // detgr(L1 : L3), such that for every quadruple L1, L2, L3, L4 ⊂ j∗E we get
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a commutative diagram

detgr(L1 : L2)⊗ detgr(L2 : L3)⊗ detgr(L3 : L4)
t123⊗id

//

id⊗t234

��

detgr(L1 : L3)⊗ detgr(L3 : L4)

t134

��

detgr(L1 : L2)⊗ detgr(L2 : L4)
t124 // detgr(L1 : L4)

of graded lines.

Another important aspect of relatives determinants is their factorisation property. We denote
by S = X \ U the compliment of X.

Lemma 4.13. For two lattices L1, L2 we have

detgr(X,L1 : L1) '
⊗
x∈S

det(Vx, L1 : L2),

where Vx ⊂ X intersects S precisely in x.

Proof. Let N ⊂ L1 ∩ L2 be a lattice. The coherent sheaf L1/N can be expressed as a sum of the
stalks

L1/N = ⊕x∈S(L1/N)x,

and similarly for L2/N . We therefore have

detgr(Γ(X,L1/N)) '
⊗
x∈S

detgr(Γ(X, (L1/N)x)).

This yields the required factorisation format.

Proposition 4.14. Let X be proper, then for a pair of lattices L1, L2 we have an isomorphism

detgr(X,L1 : L2) ' detgr(X,L1)⊗ detgr(X,L2)−1.

Proof. There exists a lattice N ⊂ L1 ∩ L2. By virtue of Lemma 4.12 it suffices to prove this for
N ⊂ L2. Therefore we may assume L1 ⊂ L2 without loss of generality.

The short exact sequence of sheaves

0 // L1
// L2

// L2/L1
// 0

yields a long exact sequence of sheaf cohomology groups. Since X is proper, this is an exact sequence
of finite-dimensional k-vector spaces. Applying detgr we obtain an isomorphism

detgr(H∗(X,L2)) ' detgr(H∗(X,L1))⊗ detgr(H∗(X,L2/L1)).

This concludes the argument.
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4.4 De Rham epsilon factors

Let X be a k-curve (or a trait), U ⊂ X and E = (E,∇) a flat connection on U . We denote by
(L,N) a pair of good lattices for (E,∇) as in Definition 4.3, and by ν a 1-form on U without zeroes.

Lemma-Definition 4.15. We define

ε̃ν(X,E,∇) = detgr(L : ν−1(N ⊗ Ω1
X(S))).

Proof. In order for this to be a well-defined graded line we have to show independence from the
chosen pair of good lattices. Recall that for any effective divisor D supported on S, (L(D), N(D))
is as well a pair of good lattices. Since this family of good lattices exhausts j∗E, ever pair of good
lattices is eventually contained in (L(D), N(D)) for a sufficiently big divisor D. We can therefore
assume that we have a nested pair of good lattices (L1, N1) ⊂ (L2, N2).

Inclusion of the complexes [L1
// N1 ⊗ Ω1

X(logS)] // [L2
// N2 ⊗ Ω1

X(logS)] is a quasi-
isomorphism. This follows from [L1

// N1 ⊗ Ω1
X(logS)] // [j∗E // j∗(E ⊗ Ω1

X)] being quasi-
isomorphisms for i = 1, 2. We conclude that [L2/L1

// N2/N1 ⊗ Ω1
X(logS)] is acyclic. Taking

global sections we conclude

detgr(L2 : ν−1(N2 ⊗ Ω1
X(logS))) ' detgr(L1 : ν−1N1)⊗ detgr(Γ[L2/L1

//N2/N1 ⊗ Ω1
X(logS)]),

but the additional factor on the right is (by virtue of acyclicity) isomorphic to the trivialised k-line
k.

Definition 4.16. Let Vx ⊂ X be an open subset (or a trait) which intersects S precisely in x. We
define

εν,x(E,∇) = ε̃ν(Vx, E,∇)

Theorem 4.17 (Product formula, Beilinson–Bloch–Esnault). Let X be proper and smooth. We
have an isomorphism of graded lines⊗

x∈S
εν,x(E,∇) ' H∗dR(U,E,∇).

Proof. We choose a global pair of good lattices (L,N) for E = (E,∇). By virtue of the definition
of good lattices we have

detgr(H∗dR(U, E)) ' detgr(H∗(X, [L //N⊗Ω1
X(logS)])) ' detgr(H∗(X,L))⊗detgr(X,N⊗Ω1

X(logS))−1.

According to Proposition 4.14, the right hand side is isomorphic to

det(X,N : ν−1(N ⊗ Ω1
X(logS))).

Lemma 4.13 yields and isomorphism with⊗
x∈S

det(Vx, N : ν−1(N ⊗ Ω1
X(logS))) '

⊗
x∈S

ενx(E).

This concludes the proof.
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4.5 Epsilon factors for holonomic D-modules

In this subsection we discuss a variation of the product formula 4.17 for holonomic D-modules on
smooth proper curves. The starting point is the following general fact. We assume k to be a field
of characteristic 0.

Proposition 4.18. Let X be a k-variety and i : Z ↪→ X a closed subset with open complement
U ⊂ X. For a holonomic D-module M we have a distinguished triangle

RΓdR,Z(X,M) //RΓdR(X,M) //RΓ(U,M) //RΓZ(X,M)[1].

In particular we have a long exact sequence of finite-dimensional vector spaces

· · · //Hi
dR,Z(X,M) //Hi

dR(X,M) //Hi
dR(U,M) //Hi+1

dR,Z(X,M) // · · · .

This motivates the following definition.

Definition 4.19. Let V be a curve (or a trait), M a holonomic D-module on X. For a non-zero
rational 1-form ν on X we choose an open subset U ⊂ V , such that M |U = E is a flat connection
and ω|U is nowhere vanishing. We then define

εν(V,M) = εν(V, E)⊗ detgr(H∗dR,X\U (M)).

For x ∈ V we can define a local factor εν,x(M) using Lemma 4.13.

We leave it as an exercise to the reader to check that this definition is independent of the choice
of U . We obtain the following product formula as a consequence of Theorem 4.17.

Corollary 4.20 (Product formula). Let X be a smooth proper curve, M a holonomic D-module
on X, and ν a non-zero rational 1-form. We then have

detgr(H∗dR(X,M)) '
⊗
x∈S

εx,ν(M),

for any finite closed subset Xsing ⊂ S ⊂ X, such that M |(X \S) is a flat connection and S contains
all zeroes and poles of ν.

Proof. We write U = X \ S, and E = M |U . By virtue of Theorem 4.17 we have

detgr(H∗dR(U, E)) '
⊗
x∈S

εx,ν(E).

We have detgr(H∗dR(X,M)) ' detgr(U,M |U )⊗detgr(H∗dR,S(X,M)), and the factor detgr(H∗dR,S(X,M))
decomposes as a tensor product

⊗
x∈S detgr(H∗dR,{x}(X,M)). Re-arranging terms we obtain the

asserted identity.

Exercise 4.21. Develop a formalism for de Rham epsilon factors for holonomic D-modules on
singular curves.
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4.6 Good lattices exist

We now turn to the proof of the existence of good lattices in the local case (the global version is
deduced as a corollary using formal glueing). The strategy is to produce good lattices more or less
explicitly in the case where the connection (E,∇) is regular, and for irregular singularities of rank
1. We then combine these two cases using the Levelt–Turrittin decomposition.8

Lemma 4.22. Let ∇ = d+ω be a formal connection on k((t))⊕r where ω has a regular singularity.
We assume k ⊂ C and assume that the real parts of the eigenvalues of the residue belong to the
interval (−1, 0]. Then there exists a good lattice pair (L,L) for ∇.

The second case we consider is a rank 1 example of a flat connection.

Lemma 4.23. Let ω ∈ k((t))dt be a 1-form of valuation n ≤ −2. Then (k[[t]], t−n+1k[[t]]) is a
good lattice pair.

Proof. Let ω =
(∑∞

i=n ait
i
)
dt. We write

∑∞
i=0 bit

i to denote an element of k[[t]]. The connection
d+ ω maps it to ( ∞∑

i=1

ibit
i

)
dt

t
+

 ∞∑
i=n+1

(
∑
j+`=i

ajb`)t
i

 dt

t
.

Since a−n 6= 0 it is easy to see that ker(d + ω) = coker(d + ω) = 0. This implies right away that
(k[[t]], t−n+1k[[t]]) is a good lattice pair.

The general case is implied by the following result due to Levelt–Turrittin about flat connections
on k((t)). It can be compared with the existence of a Jordan normal form for matrices. In order to
emphasise this analogy we begin by stating the existence of Jodan normal forms for non-algebraically
closed fields.

Theorem 4.24. Let F be a field and A : F r //F r a linear operator. Then there exists a finite field
extension F ′/F , such that AF ′ = A⊗F idF ′ is a direct sum of operators Dλ +N(i), where Dλ = λ1
is a diagonal matrix with diagonal entry λ ∈ F ′, and N(i) is an i× i nilpotent Jordan block matrix.

The version stated above has the downside that we have to extend scalars from F to F ′. If we
prefer to retain the base field we enlarge F ′ (if necessary) to obtain a finite Galois extension, and
define ⊕

σ∈Gal(F ′/F )

(Dσ(λ) +N(i)).

Since this is a Galois-invariant operator, it descends to an irreducible F -linear operator. The
direct sum indexed by the Galois orbits of the operators (Dλ +N(i)) defines a decomposition into
irreducible F -linear operators of A.

The Levelt–Turritin decomposition provides a fairly similar statement for differential operators
on fields k((t)). We begin by defining the basic building blocks which will take the role of Jordan
blocks.

Definition 4.25. We denote by N(i) = (k((t))⊕i,∇(i)) the regular connection given by d+N(i)
dt
t ,

where N(i) is an i× i Jordan block.

8This argument was explained to us by H. Esnault.
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We denote by F = k((t)). A finite field extension F ′/F is always of the shape k′((s)) for a finite
field extension k′/k. We have a canonical isomorphism Ω1

F ⊗F F ′ ' Ω1
F ′ . This gives rise to a sort

of pushforward operation IndF
′

F for flat connections on F ′ to flat connections on F .

Theorem 4.26 (Levelt–Turrittin). Let F = k((t)) and E a formal flat connection over F . There
exists a finite field extension, such that we have

(a) rank 1 connections L1, . . . ,Lm on F ′,

(b) positive integers n1, . . . , nm,

(c) an isomorphism E ' IndF
′

F

(⊕m
i=1 Li⊗Nc(ni)

)
.

We refer the reader to Levelt’s article [Lev75] for a proof of this result. The existence of pairs
of good lattices (in the local case) is a consequence of the following lemma.

Lemma 4.27. Good lattice pairs are compatible with IndF
′

F .

Proof. Let (E,∇) be a formal connection on F ′, and let (M,N) be a pair of OF ′ -submodules of E
which are a good lattice pair for ∇. We then view M and N as OF -modules by restricting scalars
along the inclusion OF ⊂ OF ′ . Using the definition of the induction functor, it is easy to see that
the complex

[M //N ⊗ Ω1
OF (S)]

is quasi-isomorphic to the de Rham complex of IndF
′

F (E,∇) (which is the the same complex as
the de Rham complex for (E,∇)). Here we make use of the fact that log-differential forms are
well-behaved with respect to the field extension F ′/F . That is, we have (Ω1

F (S))F ′ ' Ω1
F ′(S).

We can now prove Deligne’s theorem on the existence of good lattice pairs.

Proof of Theorem 4.4. By the Levelt–Turrittin decomposition it suffices to produce a good lattice

for a flat connection of the form IndF
′

F (L⊗N(n)) where L is a rank 1-connection. Recall that N is

endowed with a good lattice by virtue of the presentation (O⊕n, d+ N
t dt).

Claim 4.28. Let (L,M) be a good lattice pair for L on F ′. Then, (L⊕n,M⊕n) is a good lattice
pair for (L⊗N(n)).

The claim can be checked by induction on n by using the fact that we have short exact sequences
N(n) ↪→ N(n+1) � (O, d). The existence of good lattices follows then from Lemma 4.27 by pushing
forward the good lattice pair on F ′.

5 Central extensions

This section provides us with the tools to study the variation of de Rham epsilon lines εν(E) in
dependence of ν. We will see below that for an invertible rational function f we have

εfν(E) ' εν(E)⊗ det(f,E),

where det(f,E) is the so-called (graded) determinant line of f on E. These determinants line
stem from a central extension of the formal loop group LGm by Gm which we will construct in
two complimentary ways in Subsection 5.3 and 5.4. The second construction seems to mimic the
definition of de Rham epsilon lines, the second construction is representation-theoretic in nature.
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5.1 Preliminaries on central extension

Let G be a group and A an abelian group.

Definition 5.1. A central extension of G by A is given by a short exact sequence of groups

1 //A // Ĝ
p
//G // 1, (2)

such that A ⊂ Z(Ĝ).

The set of isomorphism classes of central extensions of G by A carries a natural structure of an
abelian group. It is isomorphic to degree two group cohomology H2(G,A) (see Remark 5.7 below,
for an explanation of this fact).

We denote by P (G) the set of commuting pairs of elements in G.

Lemma-Definition 5.2. Let f, g ∈ P (G), and f̃ ∈ p−1(f), g̃ ∈ p−1(g). Then the commutator

[f̃ , g̃] = f̃ g̃f̃−1g̃−1 belongs to A and depends only on f and g. We denote the resulting function
P (G) //A by (f, g) 7→ 〈f, g〉.

Proof. Since p([f̃ , g̃]) = [f, g] = e we have [f̃ , g̃] ∈ A. Two choices for elements in p−1(f) differ

by an element in A. Since A ⊂ Z(Ĝ) we see that the commutator [f̃ , g̃] depends indeed only on
(f, g).

Lemma 5.3. For f, g, h ∈ P (G) we have identities

(a) 〈e, g〉 = 1

(b) 〈g, g〉 = 1

(c) 〈fg, h〉 = 〈f, h〉 · 〈g, h〉.

Proof. The proof is left to the reader, (a) and (b) follow right from the definitions, the third equation
is slightly less obvious.

If G itself is abelian, then the construction above gives rise to a homomorphism

H2(G,A) // Hom(
∧2

G,A).

By definition, the kernel of this map consists of central extensions, such that Ĝ is abelian. We
obtain a short exact sequence

0 // Ext1(G,A) //H2(G,A) // Hom(
∧2

G,A) // 0.

In Prasad’s notes [Pra] this sequence is deduced from abstract properties of group (co)homology.

Exercise 5.4. Let G be a cyclic group. Show that H2(G,A) ' Ext1(G,A).

There is an alternative viewpoint on central extensions. For every g ∈ G, a central extension as
in (2) associates an A-torsor Lg = p−1(g). This defines a functor from the discrete category G (all
morphisms are identities) to the category of A-torsors BA.
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Definition 5.5. Let A be an abelian group, we denote by TorsA the symmetric monoidal groupoid
of A-torsors. That is, as a category its objects are A-torsors (non-empty sets with a faithful and
transitive A-action), and morphisms are A-maps (automatically isomorphisms). The symmetric
monoidal structure is given by L⊗AM = (L×AM)/antiA with the obvious symmetry constraint.

The category TorsA is rather modest. It is equivalent to the category BA consisting of a unique
object •, such that Hom(•, •) = A. Unravelling the symmetric monoidal structure for this model
of the category BA, we see that •⊗A • = •, and on the level of morphisms, a⊗A b = ab is given by
the group operation on A. The symmetry constraint arises naturally from the commutativity of A.
All of this should be reminiscent from the discussion of the category of lines Pic(k) in Subsection
4.2 (which is indeed equivalent to Bk×).

For (g, h) ∈ G we have a natural map

m : Lg × Lh // Lgh

given by multiplication in Ĝ. This map satisfies m(ax, y) = m(x, ay) for x ∈ Lg, y ∈ Lh and a ∈ A.
Therefore we obtain a morphism of A-torsors

Lg ⊗A Lh // Lgh,

where we use the suggestive shorthand Lg ⊗ Lh to denote (Lg × Lh)/antiA with A acting anti-
diagonally. A morphism of torsors is automatically an isomorphism. This shows that we have
produced an isomorphism mg,h : Lg ⊗A Lh ' Lgh.

Lemma 5.6. A central extension of the group G by A gives rise to a monoidal functor G // TorsA.

Proof. We have already constructed isomorphisms mg,h : Lg⊗ALh //Lgh which correspond to the
A-bilinear multiplication map Lg × Lh // Lgh. For this reason, associativity of multiplication in

Ĝ yields immediately that for a triple g1, g2, g3 of elements in G we have a commutative diagram

Lg1 ⊗A Lg2 ⊗A Lg3

mg1,g2⊗id
//

id⊗mg2,g3
��

Lg1g2 ⊗A Lg3

mg1g2,g3

��

Lg1 ⊗A Lg2g3
// Lg1g2g3

of isomorphims. Furthermore, for the unit e ∈ G we have a trivialisation of A-torsors Le ' p−1(e) '
ker p ' A. For g ∈ G, the map

me,g : Le ⊗A Lg ' A⊗A Lg ' Lg

agrees with the canonical map A ⊗A Lg ' Lg induced by the A-action A × Lg // Lg (which is
evidently A-bilinear). This concludes the verification that the functor G //BA is monoidal.

Remark 5.7. A monoidal morphism G //BA corresponds to a morphism of 2-groupoids BG //B2A
(this follows right from the definitions). Taking geometric realisations of the associated nerves we
obtain a map from the classifying space of G to the degree two Eilenberg–MacLane space K(A, 2).
That is, by virtue of the topological definition of group cohomology as cohomology of the classifying
space of G, an element of H2(G,A).
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The commutator pairing 〈g, h〉 of a central extension also has a natural interpretation in terms
of this picture. If G is abelian, it measures the obstruction to

G //BA

being a symmetric monoidal functor. This is the content of the following proposition. We denote
by cL,M : L⊗AM 'M ⊗A L the symmetry constraint for A-torsors.

Proposition 5.8. For every commuting pair of elemements (g, h) ∈ P (G) we have a commutative
diagram

Lgh //

〈g,h〉−1· id
��

Lg ⊗A Lh
cLg,Lh

��

Lhg // Lh ⊗A Lg

of A-torsors.

Proof. We fix g̃ ∈ p−1(g) = Lg and h̃ ∈ p−1(h) = Lh. As A-torsors we have Lg = A · g̃ and

Lh = A · h̃. Furthermore we can use A · g̃h̃ = Lgh. Tracing through the maps of the commutative
diagram above, we obtain

g̃h̃ 7→ g̃ ⊗ h̃ 7→ h̃⊗ g̃ 7→ h̃g̃.

Viewing this as a self-map of the A-torsor Lgh we see that it is given by multiplication with

h̃g̃(g̃h̃)−1 = 〈g, h〉−1.

This lengthy discussion about central extensions finally leads us to a generalised notion of central
extensions where abelian groups can be replaced by so-called Picard groupoids.

Definition 5.9. A Picard groupoid is a groupoid endowed with a symmetric monoidal structure ⊗
which is group-like, that is, the induced monoid structure on π0(P) (the set of isomorphism classes)
is a group. We denote by π1(P) the group of automorphisms of the unit object e ∈ P.

A priori the group π1(P) could be non-commutative. Using the Eckmann–Hilton trick one can
prove that it is an abelian group.

Definition 5.10. Let G be a group and P a Picard groupoid. A central extension of G by P
is a monoidal functor F : G // P. For (g, h) ∈ P (G) a commuting pair of elements we define
〈g, h〉 ∈ π1(P), such that the diagram

F (gh) //

〈g,h〉−1· id
��

F (g)⊗A F (h)

cF (g),F (h)

��

F (hg) // F (h)⊗A F (g)

commutes.

We leave it to the reader to check that the pairing P (G) // π1(P) satisfies the properties

(a) 〈g, h〉 = 〈h, g〉,
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(b) 〈g1g2, h〉 = 〈g1, h〉 · 〈g2, h〉,

(c) 〈g, e〉 = 〈e, g〉 = 1.

Warning 5.11. It is no longer true that 〈g, g〉 = 1 for all g ∈ G.

For the Picard groupoid of graded lines Picgr(k), a central extension G // Picgr(k) is called a
graded central extension. We have monoidal functors Picgr(k) //Bk× and Picgr(k) // Z. Therefore

we see that a graded central extension of G corresponds to a pair (Ĝ, v), where

1 // k× // Ĝ
p
//G // 1

is a central extension, and v : G // Z is a group homomorphism. For f, g ∈ P (G) we compute the
graded commutator pairing to be

〈f, g〉 = (−1)v(f)v(g)[f̃ , g̃]

where f̃ ∈ p−1(f) and g̃ ∈ p−1(g).

5.2 Tate vector spaces

After having discussed central extensions in theory it is time to take a look at examples “arising in
nature”. A common source of these natural examples are related to a theory of infinite-dimensional
linear algebra: the study of Tate vector spaces. Tate vector spaces were introduced by Lefschetz
under the name of linearly locally compact vector spaces. Below we will discuss directly the more
general notion of Tate R-modules introduced by Drinfeld.

Definition 5.12. Let R be a commutative ring which we endow with the discrete topology. A
discrete Tate R-module is defined to be a projective R-module V with the discrete topology. A
compact Tate R-module is the topological dual of a discrete R-module. A topological R-module V
is called an elementary Tate R-module if there exists a clopen submodule L ⊂ V , such that L is a
compact Tate module and V/L is a discrete Tate module.

The canonical example of a Tate R-module is R((t)) with the t-adic topology. It decomposes as
a direct sum

R((t)) ' R[[t]]⊕ t−tR[t−1].

The factor on the left hand side is the topological dual of t−1R[t−1]dt with the pairing being the
residue pairing.

Definition 5.13. A Tate R-module is a topological R-module which is a topological direct summand
of an elementary Tate R-module.

The category of Tate R-modules is interesting in its own sake. For instance one can show that its
Grothendieck group is isomorphic to K−1(R). We will not use this, and focus mostly on elementary
Tate R-modules. Drinfeld shows that every Tate R-module is étale-locally (even Nisnevich-locally)
elementary.

Lemma 5.14. (a) An elementary Tate R-module is of finite rank if and only if it is simultane-
ously compact and discrete.
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(b) The kernel of a surjective morphism of discrete Tate R-modules is a discrete Tate R-module.

Proof. It suffices to prove this assertion Zariski-locally on SpecR. We may assume that R is a
local ring. Let D be a discrete projective R-module, such that its topological dual D∨ is discrete.
Since projective modules on local rings are free, we may choose an isomorphism D ' R⊕I where I
is a set. We then have D∨ ' RI (endowed with the product topology). But since R has at least
two elements, the topological space RI is discrete if and only if I is finite. This proves assertion
(a). Assertion (b) is obvious, as a surjective morphism of projective R-modules has a splitting, and
direct summands of projective R-modules are projective.

Definition 5.15. Let V be a Tate R-module. A lattice in V is a compact Tate submodule L ⊂ V ,
such that V/L is projective.

By definition, a lattice exists if and only if V is elementary. Unless dimV = 0 there is always
more than one lattice. Two lattices are commensurable in the sense that they differ by a finite-
dimensional projective R-module:

Lemma 5.16. Let L1 ⊂ L2 ⊂ V be two lattices inside a Tate R-module V . Then L2/L1 is a
projective R-module of finite rank.

Proof. The quotient L2/L1 is the kernel of the morphism V/L1 � V/L2. Therefore it is a discrete
Tate R-module by part (b) of Lemma 5.14. On the other hand, L2/L1 is the cokernel of an injective
map of Tate R-modules. By duality we obtain that L2/L1 is also a compact Tate R-module. We
infer that L2/L1 is a finite rank projective R-module by using Lemma 5.14.

Proposition 5.17. For every pair of lattices L1, L2 ⊂ V there exists a lattice L ⊂ L1 ∩ L2.

We omit the proof of this proposition, it will be added to a future version of these notes.

5.3 The Tate extension

Let V be an elementary Tate object. In this section we construct a central extension (of fppf group
sheaves)

1 // Gm // Âut(V ) // Aut(V ) // 1

In fact we will produce a graded central extension, that is, a central extension of Aut(V ) by the
Picard groupoid Picgr(R) of graded lines (in Subsection 4.2 we only defined Picgr(k) where k is a
field, mutatis mutandis one obtains the definition for general commutative rings).

Lemma-Definition 5.18. Given two lattices L1, L2 ⊂ V we define detgr(L1 : L2) by choosing a
lattice L ⊂ L1 ∩ L2 and defining

detgr(L1 : L2) ' detgr(L1/L)⊗ detgr(L2/L)−1.

We leave it to the reader to check that this definition is independent of L up to a natu-
ral isomorphism. Using this independence of the auxiliary lattice, one observes that for an au-
tomorphism g ∈ Aut(V ), and a lattice L ⊂ V , the graded line detgr(gL : L) depends only
on g up to a canonical isomorphism. Indeed, if L′ is another lattice, then detgr(gL : L) '
detgr(gL′ : L′) ⊗ detgr(gL : gL′) ⊗ detgr(L′ : L). The automorphism g induces an isomorphism
detgr(gL : gL′) ' detgr(L : L′) ' detgr(L′ : L)−1.
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Lemma-Definition 5.19. We define a monoidal functor FL : Aut(V ) // Picgr(R) as follows:
choose a lattice L ⊂ V . The functor sends g ∈ Aut(V ) // detgr(g−1L : L). For g = e we have
an isomorphism FL(e) = detgr(eL : L) = detgr(L : L) ' 1. For g, h ∈ Aut(V ) we specify the
isomorphism

detgr((gh)−1L : L) ' detgr(h−1g−1L : g−1L)⊗ detgr(g−1L : L) ' detgr(g−1L : L)⊗ detgr(h−1L : L).

The easy verification that this defines a monoidal functor is left to the reader. As we have seen
earlier, monoidal functors Aut(V ) // Picgr(R) correspond to functors of 2-groupoids

BAut(V ) //B Picgr(R).

There is a direct construction of this functor, which is based on the fact that B Picgr(R) is equivalent
to the 2-groupoid of Picgr(R)-torsors. Furthermore, we observe that BAut(V ) embeds into the
groupoid of all elementary Tate R-modules (discard all non-isomorphisms). We denote this groupoid
by Tateel(R)×. It suffices therefore to associate an elementary Tate R-module a Picgr(R)-torsor,
which is functorial in isomorphisms of Tate R-modules.

Definition 5.20 (Determinantal theories, Kapranov). Let V be a Tate vector space. A determi-
nantal theory is a pair (φ, (αL,L′)), where

φ : {L ⊂ V |L is a lattice} // Picgr(R)

assigns to a lattice L ⊂ V a graded line, and for a pair (L,L′) we have an isomorphism

αL,L′ : φ(L) ' φ(L′)⊗ detgr(L : L′),

such that the following properties hold

(a) αL,L : φ(L) ' φ(L)⊗ 1 is the tautological isomorphism

(b) for a triple of lattices L,L′, L′′ we have a commutative diagram

φ(L) //

��

φ(L′)⊗ detgr(L : L′)

��

φ(L′′)⊗ detgr(L : L′′) // φ(L′′)⊗ detgr(L′ : L′′)⊗ detgr(L : L′).

Condition (a) and (b) imply that for a given lattice L ⊂ (V ), the map (φ, (αL,L′)) 7→ (φ(L)) is an
equivalence. That is, a determinantal theory is uniquely determined (up to a unique isomorphism)
by its value on a fixed lattice. This shows that the groupoid of determinantal theories is a Picgr(k)-
torsor. We denote this torsor by T V .

Lemma-Definition 5.21. There is a functor of 2-groupoids Tateel(R)× //B Picgr(R) which sends
an elementary Tate vector space V to the Picgr(R)-torsor of determinantal theories T V . An iso-
morphism of elementary Tate vector spaces f : V // W induces an isomorphism T V ' T W of
Picgr(R)-torsors, as the image of a lattice in V under the isomorphism f is a lattice in W .
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The torsor T V induces a natural Z-torsor for every elementary Tate space V . If R = k is a
finite field, this torsor is closely related to the R×>-torsor of non-zero Haar measures on the locally
compact topological vector space V .

The graded central extension
Aut(V ) // Picgr(R)

discussed above, gives rise to a function v : Aut(V ) // Z and a graded commutator pairing
P (Aut(V )) //R×. In the case V = k((t)), both devices are closely related to classical constructions
in number theory.

Lemma 5.22. Let k be a field, and f, g ∈ k((t))× units which we view as continuous automorphisms
of the Tate vector space V = k((t)). We then have v(f) = vt(f) (that is, the map v agrees with the

t-valuation), and 〈f, g〉 = (−1)v(f)v(g) f
v(f)

gv(f) |t=0 is the tame symbol.

Proof. Since v is a group homomorphism k((t))× // Z it suffices to verify the claim for f = t, and
f ∈ k[[t]]× By definition, v(t−1) equals the degree of the graded line detgr(t−1k[[t]] : k[[t]]). The
latter is equal to detgr(t−1k[[t]]/k[[t]]) = detgr(k) = (k, 1). That is, v(t) = 1. If f ∈ k[[t]]×, then
detgr(fk[[t]] : k[[t]]) = detgr(k[[t]] : k[[t]]) = (k, 0). This concludes the proof of the first assertion.

For the second claim, we remark that (f, g) 7→ 〈f, g〉 and (f, g) 7→ (−1)v(f)v(g) f
v(f)

gv(f) |t=0 are

bimultiplicative and alternating. Thus it suffices to prove the assertion for (f, g) = (t, t), f = t and
g ∈ R[[t]]×. In the first case, 〈t, t〉 = −1, as well as (−1)1 t

t = 1.
In the second case: assume g ∈ R[[t]]×, we then have

〈f, g〉−1 = det(g|t=0 : t−1k[[t]]/k[[t]] // t−1k[[t]]/k[[t]]) = g|t=0

as we wanted.

5.4 The Clifford extension

Remark 5.23. In this subsection we assume for simplicity that Q ⊂ R.

There is a second viewpoint on the graded central extension Aut(V ) // Picgr(R). In this
approach one associates to a Tate R-module V its so-called Clifford algebra ClV (which is an
infinite-dimensional topological R-algebra with a natural Z-grading). A choice of a lattice L ⊂ V
gives rise to a ClV -module ML, and we will see that ML is a projective Aut(V )-action (in fact the
infinite-dimensional symplectic group Sp(V ⊕ V ∨) acts projectively on ML). The existence of a
central extension can then be inferred from the following well-known lemma.

Lemma 5.24. Let M be a free R-module acted on projectively by a group G. Then there exists a
central extension

1 //R× // Ĝ //G // 1,

such that the projective G-action on M lifts to a Ĝ action.

Proof. We have a central extension of groups

1 //R× // Aut(M) // PAut(M) // 1.
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A projective action corresponds to a group homomorphismG //PAut(M). We set Ĝ = G×PAut(M)

Aut(M) and observe that Ĝ acts on M through the projection Ĝ // Aut(V ).

1 // R× // Ĝ //

��

G //

��

1

1 // R× // Aut(M) // PAut(M) // 1

By definition, Ĝ is a central extension of G by R×.

Definition 5.25 (Clifford Lie algebras). Let V be a Tate R-module. We consider the continuous
bilinear map

b : V × V ∨ //R

given by (v, α) 7→ α(v). The topological R-module V ⊕V ∨ is endowed with a continuous symmetric
form

b((v1, α1), (v2, α2)) = α1(v2)⊕ α2(v1).

We consider the topological R-algebra generated by V ⊕ V ∨ ⊕R modulo the relation

xy + yx = b(x, y),

and 1 ∈ R ⊂ V ⊕ V ∨ ⊕R is the unit in ClV .

We have an isomorphism ClV ' ClV ∨ . The topological R-module V ⊕ V ∨ is endowed with a
non-degenerate alternating 2-form ω((v1, α1), (v2, α2)) = α1(v2)− α2(v1).

Let L ⊂ V ⊕V ∨ be a lattice (that is, we assume it to be a compact Tate R-module with discrete
quotient), such that L⊥ = L. We call such a subspace a maximally isotropic lattice.

Definition 5.26 (Vacuum module). We define ML to be the topological ClV -module, such that

HomClV (ML, N) = NL.

One can define ML in rather explicit terms. It is generated by a single element |0〉, called
the vacuum vector, satisfying L · |0〉 = 0. That is, as a topological R-module it is isomorphic to
(V ⊕ V ∨)/L.

Lemma 5.27 (Schur’s lemma for vacuum modules). We have EndClV (ML) = R.

Proof. By definition we have EndClV (ML) = ML
L . As a topological R-module, ML is isomorphic to

((V ⊕ V ∨)/L) · |0〉.
Let y ∈ (V ⊕ V ∨)/L) be a non-zero element. We have to show that y · |0〉 is not annihilated by

L. Choose x ∈ L, such that ω(x, y) = 1. Then we have

xy|0〉 = yx|0〉+ |0〉 = |0〉 6= 0.

This proves ML
L = R · |0〉 and hence concludes the proof.

Theorem 5.28. Let L,L′ ⊂ V ⊕ V ∨ be two maximally isotropic lattices. Then, Zariski-locally
on SpecR, there exist isomorphisms ML ' ML′ . Furthermore, the set of such isomorphisms is a
torsor under R×.
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The proof of this result will be given below. We start with a special case: V being a finite-
dimensional vector space over a field k.

Lemma 5.29. Let V be a finite-dimensional vector space over a field k. Then the algebra ClV is
isomorphic to Endk(ML) where L ⊂ V ⊕ V ∨ is an isotropic lattice.

Proof. One sees that the morphism ClV // End(ML) is injective, and dim(ClV ) = 22n = (2n)2 =
dim End(ML).

Corollary 5.30. Let V be a finite projective R-module, then ClV is a split Azumaya algebra. Every
vacuum module ML for L ⊂ V a maximal isotropic subspace, gives rise to a splitting.

Now we are ready to prove the theorem above.

Proof of Theorem 5.28. The second assertion follows from the first and Lemma 5.27. So it remains
to show that we have an isomorphism ML 'ML′ . This is equivalent to showing that ML′

L is a free
invertible R-module. We choose a lattice K ⊂ L,L′. It is easy to see that K⊥ ⊂ K, and the quotient
K⊥/K is a projective R-module of finite rank, inheriting non-degenerate pairing. Furthermore we
can write

ML =
⋃

K⊂L,L′
(ML)K .

Each of the spaces (ML)K is a finite-dimensional subset, as it’s a quotient of K⊥/K. As a con-
sequence of the universal property of vacuum modules, (ML)K itself is a vacuum module for the
Clifford algebra of the quadratic space K⊥/K. Hence, for every lattice L′/K ⊂ K⊥/K, we have
that ((ML)K)L

′
is an invertible R-module. Taking the union over all K, we obtain that (ML)L

′
is

an invertible R-module.

Corollary 5.31. Let V be a Tate R-module. We denote by VV the stack on SpecR, given by
ClV -modules which are étale-locally vacuum modules (discard all non-invertible morphisms). Then
VV is an O×-gerbe on SpecR.

Fix a maximally isotropic lattice L ⊂ V ⊕V ∨. An automorphism g ∈ O(V ⊕V ∨) ⊂ Aut(V ⊕V ∨)
which preserves the symmetric bilinear form b, maps L to another maximally isotropic lattice gL. In
particular, we see that ML and the twisted ClV -representation (ML)g = MgL are non-canonically
isomorphic (and these isomorphisms are unique up to an element of R×). Therefore, we obtain a
projective representation of O(V ⊕V ×) on ML. The corresponding central extension of O(V ⊕V ∨)

will be denoted by ˜O(V ⊕ V ∨).

Proposition 5.32. Let Aut(V ) // O(V ⊕ V ∨) be the canonical embedding. The pullback of the
central extension of O(V ⊕ V ∨) to Aut(V ) agrees with the Tate central extension defined in the
previous subsection.

Proof. See [BBE02, Proposition 2.15].

The Clifford perspective implies the following property of the central extension of Aut(V ) which
we don’t know how to explain purely in term of Tate modules.

Corollary 5.33. For f ∈ R((t))× we denote by det(f) the fibre of the central extension Âut(V )
over f . Then this Gm,R-torsor has a reduction to µ2,R.
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Proof. We claim that in the group O(V ⊕ V ∨) we can write f = gh, where g2 = 1. Since

det(f) ' det(g)⊗ det(h),

and det(g)2 ' det(h)2 ' 1 we obtain a µ2-reduction of det(g), det(h) and hence det(g)⊗ det(h).
The elements g and h are constructed as follows. At first we observe R((t))∨ ' R((t))dt (with

respect to the residue pairing). A 1-form ν gives therefore rise to a morphism R((t)) //R((t))dt =
R((t))∨. In particular we can view ν as an endomorphism V ⊕V ∨. In matrix form these morphisms
look like (

0 ν−1

ν 0

)
We set g = fdt and h = dt. These are orthogonal automorphisms, as the induced maps

R((t)) //R((t))dt are isomorphisms.
By definition we have gh = f , where f is viewed as the orthogonal automorphism in the image

of Aut(R((t))) ↪→ O(R((t))⊕R((t))∨). In matrix form:(
0 ν−1

ν 0

)
·
(

0 f−1ν−1

fν 0

)
=

(
f 0
0 f−1

)
.

This concludes the proof.

As a consequence of this µ2-reduction we obtain that the Gm-torsor det(f) carries the structure
of a crystal. Recall the following definition going back to Grothendieck.

Definition 5.34. Let Y be a k-scheme and F a G-torsor Y . The structure of a crystal on F is
given by the following data: for every pair of morphisms x, y : SpecR //Y , such that x|Rred = y|Rred

an isomorphism
cx,y : x∗ F ' y∗ F ,

such that cx,y◦cy,z = cx,z for every triple of points x, y, z ∈ Y (R), satisfying x|Rred = y|Rred = z|Rred .

Since µ2,R
// SpecR is a finite étale group scheme, every µ2-torsor carries a canonical crystal

structure.

Corollary 5.35. For every f ∈ R((t))× the Gm-torsor is endowed with the structure of a crystal.

5.5 The epsilon connection

The definition below defines the de Rham epsilon line with respect to a family of 1-forms. We
leave the connection E constant, in order to avoid introducing the notion of ε-nice families of flat
connections.

Definition 5.36. Let E be a flat connection on U ⊂ X, and ν ∈ Ω1
UR/R

(UR) be a generating

section. For x ∈ X a closed point we define εν,x = detgr(MR : ν−1(N ⊗ Ω1(S)))x where (M,N) is
a good lattice pair for E.

The link of the central extension Âut(R((t))) with epsilon factors is provided by the following
lemma.
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Lemma 5.37. For an invertible function f on UR we have an isomorphism

εfν,x(E) ' εν,x ⊗ det
x

(f)rkE ,

where we view f as an element in R′((tx))× where tx is a choice of a uniformiser near x.

Proof. This follows from the transitivity property of relative graded determinants:

εfν,x(E) = detgr(MR : f−1ν−1(N ⊗ Ω1(S)))x ⊗ detgr(f−1(ν−1(N ⊗ Ω1(S))) : (ν−1(N ⊗ Ω1(S)))).

The factor on the right hand side can be identified with the graded determinant line associated
to the automorphism of the Tate R-module Vx = R′((tx)) ⊗ N ⊗ Ω1

X(S) given by multiplication
with f . Since the rank of N ⊗ Ω1

X(S) is n, it isn’t difficult to show that this line is isomorphic to
detx(f)n.

We denote by 
x the functor assigning to a commutative k-algebra R the set R((tx))×dtx where
tx is a local uniformiser at x.

Corollary 5.38. Let ν1, ν2 be two R-families of generating forms on U , such that ν1|Rred = ν2|Rred ,
then εν1,x(E) ' εν2,x(E), and these isomorphisms define the structure of a crystal on Ωx denoted
εx(M).

Proof. By assumption, ν2 = fν1 and f |Rred = 1. Hence we have an isomorphism det(f) ' det(1) '
1. The right hand side being the trivial Gm-torsor, we obtain an isomorphism

εν1,x(E) ' εν2,x(E).

The crystal property follows from the fact that the lines det(f) have a crystal structure.

The product formula of Beilinson–Bloch–Esnault also holds on the crystalline level. In the
following we denote by Ω the functor assigning to a commutative k-algebra R the set (Ω1

X/k⊗kR)×.

Theorem 5.39 (BBE). Let X be a smooth proper curve over k and let E/U be a flat connection
on an open subscheme U ⊂ X. For a generating section ν ∈ Ω1

XR/R
(UR) we have⊗

x∈X
εx(M) ' (detgr(RΓdR(M)))Ω,

where the right hand side denotes the constant crystal with value detgr(RΓdR(M)).

6 Patel’s epsilon lines via algebraic K-theory

The graded determinant, that is, the functor

detgr : Vectk // Picgr(k),

plays a particularly important role in these notes. Recall that Picgr(k) is a so-called Picard groupoid ;
a groupoid endowed with a group-like symmetric monoidal structure ⊗. Furthermore, the functor
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detgr is symmetric monoidal with respect to the symmetric monoidal structure ⊕ on Vectk. For
every short exact sequence of k-vector spaces

0 // V ′ // V // V ′′ // 0

we have an isomorphism
detgr(V ) ' detgr(V ′)⊗ detgr(V ′′).

The theory of higher algebraic K-theory provides a far-reaching generalisation of this picture.
The category of k-vector spaces can be replaced by an arbitrary category endowed with a notion
of extensions9, and the target Picgr(k) is replaced by a topological space with a product structure
well-defined and commutative up to homotopy. The target’s true nature is that of a spectrum. We
begin by giving a biased account of the theory of spectra.

6.1 Spectra as generalisations of Picard groupoids

We begin our spectral tour with a panoramic overview of stable homotopy theory, emphasising the
similarity with derived categories. We follow Thomason–Trobaugh’s unforgettable credo

“ignore any pointless examples involving baroque curiosities like ”MU,” ”MSO,” ”MSpin,”
or the ”Steenrod algebra””10

and thereby completely overlook the historical development of this branch of algebraic topology.
Spectra give rise to a category Ho(Sp), the homotopy category of spectra, which possesses many

similar traits to the derived category of abelian groups D(Z):

(a) The homotopy category Ho(Sp) is a triangulated category.

(b) It is endowed with a t-structure whose heart Ho(Sp)♥ is equivalent to the category of abelian
groups. The induced homology functors are denoted by (πi)i∈Z : Ho(Sp) // Mod(Z).

(c) There exists an exact functor of triangulated categories D(Z) // Ho(Sp) which is compatible
with the standard t-structure.

These similarities continue when focusing attention on the subcategory of connective spectra,
that is, spectra whose negative homotopy group vanish (πi(X) = 0 for i < 0).

Theorem 6.1 (Deligne). There exists an equivalence between the homotopy category of strict
Picard groupoids, and the full subcategory D[0,1](Z) of the derived category D(Z), consisting of
chain complexes supported in degrees [0, 1].11

A Picard groupoid is called strict, if it is equivalent to a strict commutative group object in the
category of groupoids. Dropping strictness we arrive at a similar theorem (a proof of which can be
found in [Pat12, 5.1]) linking Picard groupoids to spectra.

Theorem 6.2. There exists an equivalence between the homotopy category of Picard groupoids
and the full subcategory Ho(Sp)[0,1] ⊂ Ho(Sp) consisting of spectra E whose homotopy groups πi(E)
vanish whenever i 6= 0, 1.

9That is, an exact category, or Waldhausen category, a stable ∞-category, ...
10[TT90, p. 249]
11In this subsection we use homological grading conventions when referring to chain complexes. That is, differentials

lower degrees.
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This theorem in turn is just a special case of description of connective spectra Ho(Sp)≥0 in
terms of symmetric monoidal structures on∞-groupoids. Tracing this through the by now classical
equivalence of the homotopy category of∞-groupoids and topological spaces (with respect to weak
homotopy equivalence), this is a theorem of Segal.

Theorem 6.3. The homotopy category of connective spectra Ho(Sp)≥0 is equivalent the homo-
topy category of Picard ∞-groupoids, that is, ∞-groupoids endowed with a group-like symmetric
monoidal structure.

In particular we see that there is a functor Ω∞ : Ho(Sp) // Ho(Spaces), which forgets the
symmetric monoidal structure.

The theorem above should be compared to the Dold-Kan correspondence.

Theorem 6.4 (Dold–Kan). The category of simplicial abelian groups is equivalent to the category
of connective chain complexes D(Z)≥0 (that is, chain complexes C• satisfying Hi(C•) = 0 for
i < 0).

In the light of the above a simplicial abelian group is a model for a strict Picard ∞-groupoid.
The algebraic K-theory discussed in the next subsection is a connective spectrum which is hardly
every strict. We can therefore only use the analogy between spectra and chain complexes as a rough
guiding principle when thinking about algebraic K-theory.

6.2 Algebraic K-theory

Algebraic K-theory (as developed by Quillen and Waldhausen) assigns to a category C with a
notion of extensions (this is usually an additional structure) a connective spectrum K(C). Taking
the point of view of Theorem 6.3 we may say that algebraic K-theory assigns a Picard ∞-groupoid
to C. Furthermore there exists a functor of ∞-groupoids

C× //K(C),

where C× denotes the groupoid obtained from C by discarding non-invertible morphisms. For every
extension in C,

X ↪→ Y � Z

one obtains a homotopy
[Y ] ' [X]⊗ [Z]

in the ∞-groupoid K(C).
Furthermore, denoting πiK(C) by Ki(C), one has that K0(C) is isomorphic to the Grothendieck

group of the category C.
The right class of input categories C for K varies from purpose to purpose. In the context of

algebraic geometry it is most convenient to work with your favourite enhancement of triangulated
categories, be it dg-categories or stable ∞-categories. A triangulated category by itself doesn’t
contain enough information to recover the K-theory spectrum. However, it gets close to doing
so: if F : C // D is an exact functor of enhancement of triangulated categories (e.g. dg or stable
∞-categories), such that F induces an equivalence of triangulated categories, then F induces an
equivalence K(C) ' K(D).
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Definition 6.5. Let X be a variety, we define K(X) to be the K-theory spectrum of the dg or
stable ∞-category Perf(X) of perfect complexes on X. For a closed subvariety Z ⊂ X we define
K(X,Z) to be the K-theory of the full subcategory Perf(X,Z) ⊂ Perf(X) (that is, perfect complexes
on X which are acyclic when restricted to X \ Z).

With respect to these definition we have the following celebrated result by Thomason–Trobaugh:

Theorem 6.6 (Thomason–Trobaugh, proto-localisation). We have a fibre diagram

K(X,Z) //

��

K(X)

��

0 // K(X \ Z).

of connective spectra.

In concrete terms this means that we obtain a long exact sequence

K0(X,Z) //K0(X) //K(X\Z) // · //Ki−1(X\Z) //Ki(X,Z) //Ki(X) //Ki(X\Z) // · · · ,

however we don’t have an injective map K0(X,Z) //K0(X) in general. It is tempting to believe
that this lack of injectivity can be explained through K-groups in negative degrees. This is indeed
the case.

Theorem 6.7 (Thomason–Trobaugh, localisation). There exist spectra K(X,Z), K(X) and K(X \
Z), such that we have a bicartesian diagram

K(X,Z) //

��

K(X)

��

0 // K(X \ Z).

In particular there is a long exact sequence

· · · // Ki−1(X \ Z) // Ki(X,Z) // Ki(X) // Ki(X \ Z) // · · ·

for all integers i ∈ Z. Furthermore one has Ki = Ki for i ≥ 0.12

For a regular variety X one has K(X) = K(X). Related to this is the following intriguing
property of algebraic K-theory.

Theorem 6.8 (A1-invariance). Let X be a regular variety and let π : V //X be a fibration into
affine spaces which is Zariski-locally trivial. Then the induced functor Lπ∗ : K(X) //K(V ) is an
equivalence of spectra.

12The spectra K can be defined for arbitrary enhancements of triangulated categories or exact categories. We have
K0(C) = K0(C) if C is idempotent complete.
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6.3 Patel’s epsilon factor

In [Pat12] Patel introduced a formalism of de Rham epsilon factors for higher-dimensional schemes.
This subsection is devoted to reviewing Patel’s construction. We denote by k a field of characteristic
0.

Definition 6.9. Let X be a scheme of finite presentation and D ⊂ X a closed subset. We say that
a finite presentation morphism of schemes f : Y //X is an isomorphism infinitely near D, if the
induced morphism of formal schemes ŶD // X̂D is an isomorphism.

Situation 6.10. Let X be a smooth separated k-scheme, D ⊂ X a closed subset, and ν ∈ Ω1
X(X\D)

a nowhere vanishing 1-form. We denote by Dhol(X) the bounded derived category of holonomic D-
modules on X, and by Dν

hol(X) the full subcategory of objects M ∈ Dhol(X) whose singular support
S does not intersect the graph of ν.

Theorem 6.11 (Patel). There exists a morphism of spectra EPν : K(Dhol(X)) // K(X,D), satis-
fying the following properties.

(a) “Excision”: For a morphism of smooth varieties f : Y //X which is an isomorphism infinitely
near D ⊂ X we have a commutative diagram of spectra

K(Dν
hol(X)) //

EPν
��

K(Df∗ν
hol (Y ))

EPf∗ν
��

K(X,D) // K(Y, f−1(D)).

(b) “Product formula”: If X is proper we have a commutative diagram

K(Dν
hol(X))

EPν //

RΓdR
&&

K(X,D)

RΓ

��

K(k)

relating the morphisms RΓ and RΓdR induced by the exact functors RΓ = RΓ(X,−) : Dperf(X,D) //Dperf(k),
respectively RΓdR = RΓdR(X,−) : Dhol(X) //Dperf(k).

Remark 6.12. According to Thomason–Trobaugh [TT90, Theorem 2.6.3(d)], every f : Y //X as

in Definition 6.9 induces an equivalence K-theory spectra Lf∗ : K(X,D)
' // K(Y,D). Thomason–

Trobaugh’s definition of isomorphisms infinitely near D in [TT90, Definition 2.6.2.1] is different
from our Definition 6.9. Yet, these two definitions are equivalent as is shown in [TT90, Lemma-
Definition 2.6.2.2]. In the light of Thomason–Trobaugh’s result, the excision property (a) in Patel’s
Theorem 6.11 can therefore be accurately described as stating that the epsilon factor EPν (M) of a
holonomic D-modules depends only on the geometry of X and M near D.

If D is proper, we may consider the composition RΓ◦EPν K(Dν
hol(X)) // K(k). Post-composing

this with the graded determinant map K(k) // PicZ we can define a de Rham epsilon line εPν (M).
Furthermore, by virtue of the definition of algebraic K-theory we have the following.
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Lemma-Definition 6.13. For every short exact sequence of holonomic D-modules

ξ : M ′ ↪→M �M ′′

we have an isomorphism of graded lines

βPξ : εPν (M) ' εPν (M ′)⊗ εPν (M ′′),

such that for every diagram
M
� � // N

����

� � // P

����

N/M
� � // P/M

����

P/N

we have a commutative diagram of isomorphisms of graded lines

εPν (P ) //

��

εPν (N)⊗ εPν (P/N)

��

εPν (M)⊗ εPν (P/M) // εPν (M)⊗ εPν (N/M)⊗ εPν (N/M)−1 ⊗ εPν (P/M).

If dimX = 1, D ⊂ X a divisor, we will show in Theorem 6.18 that Patel’s epsilon line satisfies

εPν (M) ' εBBEν (M),

and that with respect to this equivalence, βPξ corresponds to βBBEξ .
In the remainder of this subsection we will sketch the main steps of Patel’s construction. The

starting point is a theorem of Quillen about the K-theory of D-modules on a smooth k-scheme X.
We denote by FModcoh(DX) the quasi-abelian category of DX -modules with a good filtration. The
associated graded defines an exact functor

gr : FModcoh(DX) // Coh(T ∗X).

Proposition 6.14 (Quillen). There exists a morphism of spectra Q : K(DX) // K(T ∗X), such
that the diagram

K(DX)

''

K(FModcoh(DX))oo

gr

��

K(T ∗X)

commutes.

The key result underlying Patel’s epsilon factors is a refinement of Quillen’s result on filtered
rings. Let S ⊂ T ∗X be a closed subset. We denote by Dhol(X,S) the derived ∞-category of
holonomic D-modules on X with singular support contained in S.
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Proposition 6.15 (Patel). There exists a morphism of spectra QS : K(Dhol(X,S)) // K(T ∗X,S)
fitting into a commutative square

K(Dhol(X,S))

��

// K(T ∗X,S)

��

K(Dhol(X)) // K(T ∗X).

We denote by U = X \D. The 1-form ν defines a section ν : U //T ∗X which does not intersect
S (by assumption). Let π : T ∗X //X be the canonical projection.

The identity π ◦ ν = idU gives rise to a commutative diagram of spectra

K(X)

$$

Lπ∗ // K(T ∗X)

Lν∗

��

K(U).

Since X is regular and π : T ∗X //X is Zariski-locally a fibration in to affine spaces, the induced

morphism of spectra π∗ : K(X)
' // K(T ∗X) is an equivalence. Therefore we also have a commu-

tative diagram

K(X)

$$

K(T ∗X)
(π∗)−1

oo

ν∗

��

K(U).

In particular, we get a commutative square

K(T ∗X) //

(Lπ∗)−1

��

K(T ∗U)

Lν∗

��

K(X) // K(U)

This induces a morphism between the fibres (of the rows) φν : K(T ∗X,S) // K(X,D).

Definition 6.16 (Patel). The morphism EPν is defined to be φν ◦QS : K(Dν
hol(X)) // K(X,D).

Let’s prove the product formula for Patel’s epsilon factor.
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Proof of the product formula. We have a commutative diagram

K(DX , S)

QS

��

Q

&&

K(T ∗X,S) //

φν

��

K(T ∗X) //

(Lπ∗)−1

��

K(T ∗X \ S)

(ν)∗

��

K(X,Z) //

RΓ
&&

K(X) //

RΓ

��

K(X \ Z)

K(k).

Therefore we obtain a homotopy Eν ' RΓ ◦ φν ◦QS ' RΓ ◦ (Lπ∗)−1 ◦Q. It remains to show that
the right hand side is homotopic to morphism RΓdR. This follows from the following assertion.

Claim 6.17. There is a commutative diagram

K(DX)

RΓdR $$

(Lπ∗)−1Q
// K(X)

RΓ

��

K(k)

The claim can be reduced to checking commutativity of

K(X)

DX⊗OX
��

id

$$

K(DX)

RΓdR $$

K(X)

RΓ

��

K(k)

since K(X) //K(DX) is an equivalence of spectra (this is analogue to the A1-invariance property
for the induced map in K-theory of the projection T ∗X // X). This square commutes since
RΓdR(DX ⊗OX F) ' RΓ(F) (see Proposition 3.7).

6.4 Comparison

This subsection is devoted to confirming that Patel’s epsilon line for curves agrees with Beilinson–
Bloch–Esnault’s epsilon line.

Theorem 6.18. For a holonomic D-module M on X we have an isomorphism of graded lines

αM : εPν (M)
' // εBBEν (M).
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The proof of this result will be given below. At first we link Patel’s QS and Quillen’s Q with
Deligne’s good pairs. This is the content of Lemma 6.22 below.

We denote by π≤1 : ∞− Gpd // Grpd the functor sending a space X to the Poincaré groupoid
consisting of points of X and homotopy classes of paths between points, and by π≤ the Poincaré
2-groupoid of a space.

Lemma-Definition 6.19. (a) Let X, U , and E = (E,∇) be as in Situation ??. There is a
morphism

γ0 : π≤2K(Loc(U)) // π≤2K(X),

such that for a good lattice pair (M,N) for E we have

γ0(E) ' [M
0 //N ⊗ Ω1

X(D)].

(b) For ν ∈ Ω1,×
X (U) we have a morphism

γν : π≤1K(Loc(U)) // π≤1K(X,D),

such that the square

π≤1K(Loc(U))
γν //

��

π≤1K(X,D)

��

π≤1K(Loc(U))
γ0 // π≤1K(X)

commutes, and for a good lattice pair (M,N) for E we have

γν(E) ' [M
ν //N ⊗ Ω1

X(D)].

Proof. (a): We check first that there’s a well-defined map Loc(U)× //π≤2K(X) sending E ∈ Loc(U)

to [M
0 //N ⊗ Ω1

X(D)].

Claim 6.20. Let (M1, N2), and (M2, N3) be good lattices for E. There exists a homotopy q12 in

π≤2K(X) between [M1
0 // N1 ⊗ Ω1

X(D)] and [M2
0 // N2 ⊗ Ω1

X(D)]. Furthermore, given a third
good lattice pair (M3, N3) we have

q12 · q23 ' q13.

This construction is compatible with quadruples of good lattice pairs.

Proof. This proof is a facsimile of the proof of the existence of good epsilon lines (with the additional
dimension of taking the 2-categorical nature of π≤2 into account). Without loss of generality (since
the poset of good lattice pairs is filtered) we may assume that (M1, N2) ⊂ (M2, N2) ⊂ (M3, N3).
Using the H-group structure on π≤2K(X) we see that it suffices to construct a homotopy between

0 ∈ π≤2K(X,Z) and [Mi+1/Mi
0 //Ni+1/Ni ⊗ Ω1

X(D)].
By virtue of the definition of good lattice pairs, the complexes

[Mi+1/Mi
∇ //Ni+1/Ni ⊗ Ω1

X(D)]
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are acyclic for i = 1, 2. The map ∇ is not OX -linear. However, we observe that K(X,Z) is

equivalent to the K(ShfX,Z(k)), where ShfX,Z denotes the abelian category of sheaves of k-vector

spaces on X with support Z. In π≤2K(ShfX,Z(k)) we have a homotopy

[Mi+1/Mi
∇ //Ni+1/Ni⊗Ω1

X(D)] ' [Mi+1/Mi]	[Ni+1/Ni⊗Ω1
X(D)] ' [Mi+1/Mi

0 //Ni+1/Ni⊗Ω1
X(D)],

where 	 denotes subtraction with respect to the H-group structure on π≤2K(X). The left hand
side is represented by an acylic complex, and therefore homotopic to 0. This concludes the proof
of the claim.

It remains to check that there exists a map K(Loc(U)) //K(X), such that the diagram

Loc(U)×

&&��

π≤1(Loc(U)) // K(X)

commutes. This follows at once from the behaviour of lattice pairs with respect to short exact
sequences.

Claim 6.21. A short exact sequence of flat connections E ′ ↪→ E � E ′′ on U can be lifted to a short
exact sequence of good lattice pairs:

M ′
� � //

∇
��

M // //

∇
��

M ′′

∇
��

N ′ ⊗ Ω1
X(D) �

�
// N ⊗ Ω1

X(D) // // N ′′ ⊗ Ω1
X(D).

Proof. By virtue of formal descent we may assume that X is a trait. Without loss of generality we
assume that X = Spec k[[t]] and U = SpecF where F = k((t)). For split short exact sequences the
assertion is obvious. It suffices therefore to prove the claim when E ′ and E ′′ are indecomposable
and the short exact sequence is non-split. It then follows from Levelt–Turritin that there exists a
finite étale morphism q : SpecF ′ // SpecF (of generic points of traits), such that the short exact
sequence is given by the push-forward q∗ applied to the short exact sequence

L ⊗ (E(n−1) ↪→ E(n)
// E(i))

where E(n) is the flat connection (OF ′ , d+
J(n)

z dz) (where J(n) is an (n× n)-Jordan block), and L
is a rank 1 flat connection on SpecF ′.

We can then construct the short exact sequence of good lattice pairs by pushing-forward the
pairs (L⊕`, L(irr(L))⊕`) for ` = n − i, n, i, where L ⊂ L is a Deligne lattice and irr(L) denotes the
irregularity of L.

This concludes the construction of the map γ0. We now briefly turn to γν : as in the proof
of Claim 6.20 one verifies that there is a well-defined map Locn(U)× // π≤1K(X,Z) given by

E 7→ [M1
ν //N1 ⊗Ω1

X(D)]. At first we remark that the complex [M1
ν //N1 ⊗Ω1

X(D)] is acyclic
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when restricted to U , since ν(U) ∩ S = ∅. Therefore it defines indeed a point in π≤1K(X,Z).
Furthermore, we may assume that (M1, N2) ⊂ (M2, N2) ⊂ (M2, N3). As in the proof of Claim 6.20

we see that in π≤1K(ShfX,Z(k))

[M2/M1
ν //N2/N1⊗Ω1

X(D)] ' [M2/M1]	[N2/N1⊗Ω1
X(D)] ' [M2/M1

∇ //N2/N1⊗Ω1
X(D)] ' 0.

The compatibility of good lattice pairs with short exact sequences (Claim 6.21) implies the assertion.

Lemma 6.22. There is a commutative diagram of Picard groupoids

π≤1K(Locn(U))
Eν //

γν
((

π≤1K(X,D)

π≤1K(X,D).

Proof. We will verify these statements after formal completion at D (that is, after replacing X by

the disjoint union of traits X̂D). This is justified by the following well-known property of algebraic
K-theory.

Claim 6.23 (Formal descent for algebraic K-theory). The commutative square of spectra

K(X)
j∗

//

��

K(U)

��

K(X̂D)
ĵ∗
// K(X̂D ×X U)

is cartesian.

Proof. It suffices to show that the induced map of fibres fib(j∗) // fib(ĵ∗) is an equivalence.
Thomason–Trobaugh’s localisation theorem implies that this map is homotopic to the natural mor-
phism

K(X,D) //K(X̂D, D).

According to [TT90, Theorem 2.6.3(d)] this is an equivalence.

In order to conclude the assertion, we have to show that the following commutative diagrams
of 2-Picard groupoids are equivalent:

π≤2K(Loc(U))

((

γ0 //

γ0

��

π≤2K(U)

f∗

��

π≤2K Loc(U)
(π∗)−1

//

((
(π∗)−1

��

π≤2K(U)

f∗

��

π≤2K(X̂D)
ĵ∗
// π≤2K(X̂D ×X U) π≤2K(X̂D)

ĵ∗
// π≤2K(X̂D ×X U).
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In order to construct such an equivalence we “cut” the commutative squares into two halves along
the dashed arrow, as indicated in the diagram above. We will then compare these halves individually.
We claim that we have a two equivalent commutative triangles of Picard 2-groupoids

π≤2K(Loc(U))

F ((

γ0 // π≤2K(U)

f∗

��

π≤2K Loc(U)
(π∗)−1

//

F ((

π≤2K(U)

f∗

��

π≤2K(X̂D ×X U) π≤2K(X̂D ×X U),

where F : Db(Loc(U)) // Perf(X̂D×XU) is the exact functor sending (E,∇) to [E
0 //E⊗Ω1

X ]⊗OU
ÔX,D. For the left hand side this follows from the definition of γ0, for the right hand side this is
a consequence of (π∗)−1 ' i∗0, where i0 : X // T ∗X denotes the zero section. The same argument
provides a homotopy between γ0 and (π∗)−1 which extends to a comparison of the two commutative
diagrams. Mutatis mutandis we compare the remaining two commutating triangles.

Proof of Theorem 6.18. For a holonomic D-module M on X, there exists an open subset j : U ↪→ X,
such that M |U ' E is a vector bundle with a flat connection. The fibre of the map M // j∗E is a
complex of D-modules with support on D = X \ U . Thus it suffices to prove the theorem for the
D-module j∗E .

Applying the determinant of cohomology, Lemma 6.22 yields a commutative diagram of Picard
groupoids.

π≤1K(Locn(U))
εPν //

detgr(RΓ(γν))
''

Picgr(k)

Picgr(k).

It remains to show that detgr(RΓ(X, γν)) is isomorphic to ε̃BBE(X, E). This is a consequence of
Corollary ??.
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