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Abstract

Multiplicative Higgs bundles are an analogue of ordinary Higgs bundles where the Higgs field takes values
in a Lie group instead of its Lie algebra. The moduli space of multiplicative Higgs bundles on CP1 with
a framing at infinity has additional structure: that of an integrable system. In this talk I’ll discuss a few
different contexts where these integrable systems naturally appear: in physics (from supersymmetric gauge
theory), in geometry (from the theory of periodic monopoles), and in representation theory (as symplectic
leaves in a Poisson Lie group). This is based on joint work with Vasily Pestun.

1 Introduction

My goal in this talk is to introduce you to an algebro-geometric object – the multiplicative Hitchin system – and
explain how it shows up in quantum field theory in a few different contexts. I’ll also talk about a speculative
version of the geometric Langlands conjecture for this object. This is joint work with Vasily Pestun [EP19].

I’ll begin by defining the multiplicative Hitchin system on a curve C – which will be an algebraic integrable
system, in particular a hyperkähler variety – then explain several contexts in which it arises:

1. Directly from geometry: as a moduli space of multiplicative Higgs bundles (has a nice derived picture).

2. As a symplectic leaf in a Poisson Lie group.

3. As a moduli space of monopoles on C × S1.

4. In physics: as the Seiberg-Witten integrable system associated to a quiver gauge theory.

5. Also in physics: from twisting a 5d N = 2 supersymmetric gauge theory.

2 Multiplicative Higgs Bundles

Let’s explain the main object of study: the moduli space of multiplicative Higgs bundles. The moduli space we’ll
consider has been discussed in various guises before: the earliest reference I’m aware of is due to Arutyunov,
Frolov, and Medvedev [AFM97a, AFM97b]. We also refer to Frenkel-Ngô [FN11], Bouthier [Bou15a, Bou14,
Bou15b], and particulatly Hurtubise-Markman [HM02] – it is sometimes referred to as the moduli space of “G-
pairs”. Throughout this talk I’ll work over the complex numbers. I’ll write C for a smooth complex curve and G
for a complex reductive group.

Here’s the idea. Recall that a Higgs bundle on C is a principal G-bundle P along with a section φ of the coadjoint
bundle ad(P )∗ twisted by the canonical bundle. The set of Higgs bundles can be promoted to the closed points
of a stack: the moduli stack of Higgs bundles.
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Remark 2.1. I’m going to ignore that tricky twist by the canonical bundle. For this talk I’ll only be interested
in the Calabi-Yau case, where C is either an elliptic curve or an object modelling C or C× with appropriate
boundary conditions. While one can make sense of ordinary Higgs bundles on any curve this won’t be true
anymore for the multiplicative version I’m going to define in a moment, at least not along with all the structure
that the moduli space of Higgs bundles usually includes.

Let’s give a concise definition of the moduli space of Higgs bundles (without the canonical bundle twist).

Definition 2.2. The moduli space HiggsOG(C) of O-Higgs bundles on C is the moduli space Map(C, g∗/G) of
maps into the coadjoint quotient stack g∗/G.

The multiplicative version of this moduli space replaces the coadjoint bundle ad(P )∗ by the group adjoint bundle
Ad(P ). So a closed point in the moduli space corresponds to a principal G-bundle P on C along with a section
of Ad(P ): i.e. an automorphism of P . Let’s give the analogous concise definition as a mapping space.

Definition 2.3. The moduli space mHiggsG(C) of multiplicative Higgs bundles on C is the moduli space
Map(C,G/G) of maps into the group adjoint quotient stack G/G.

2.1 Including Poles

So far this moduli space won’t be very interesting, especially in the important example where C = A1. We get
something more interesting by introducing simple poles for our multiplicative Higgs fields. Let D ⊆ C be a finite
set of points in C.

Definition 2.4. The moduli space mHiggsG(C,D) of multiplicative Higgs bundles on C with poles at the subset
D is the moduli space modelling a G-bundle P on C equipped with a section of Ad(P )|C \ D. Globally we define
the moduli space as the fiber product

mHiggsG(C,D) := mHiggsG(C \ D)×BunG(C \ D) BunG(C).

We’d like to prescribe the behaviour of the multiplicative Higgs field near the punctures. In the neighbourhood
of a point z ∈ D the multiplicative Higgs field is described by an element of Maps(D×, G) = G((z)), where D×
is the formal punctured disk. This element is only well-defined up to gauge transformations which extend across
the puncture.

We’ll actually only specify the local behaviour up to the action of Maps(D, G)2 = G[[z]]2 on the left and right.
The set of G[[z]] double cosets in G((z)) is in canonical bijection with the set of dominant coweights of the group
G, so at each puncture z ∈ D we fix a dominant coweight ω∨z . I’ll write ω∨ for short for the set {ω∨z : z ∈ D}.

Remark 2.5. Recall that a coweight is just a homomorphism ω : T → Gm from the maximal torus. Inside
this lattice there is a “dominant cone” consisting of coweights that give a positive result when paired with any
positive coroot.

To specify the moduli space, we can think of the space of double cosets as a stack

G[[z]]\G((z))/G[[z]] = G[[z]]\GrG

where GrG is the affine Grassmannian. For each z ∈ D fix a left G[[z]]-orbit in GrG corresponding to a coweight
ω∨z , and let Λz ⊆ G[[z]] be the corresponding stabilizer.

Remark 2.6. We can think of the moduli space of multiplicative Higgs bundles as the moduli space of G-
bundles on the product (Σ × S1) \ (D × {0}), which are algebraic in the Σ direction and locally constant in
the S1 direction. One nice way of making this precise is using derived algebraic geometry, and considering G
bundles on the derived stack (Σ × S1

B) \ (D × {0}), where S1
B is the “Betti stack” of the circle, i.e. the stack

whose functor of points is the constant functor with value S1. We can think of fixing singularities as fixing the
restriction to a “formal punctured neighbourhood” of D.



3 Section 3 The Poisson Lie Group

Definition 2.7. The moduli space mHiggsG(C,D, ω∨) of multiplicative Higgs bundles on C with poles at the
subset D = {z1, . . . , zk} and fixed residue ω∨z at each z ∈ D is defined to be the fiber product

mHiggs(C,D, ω∨) = mHiggs(C,D)×(G[[z]]\GrG)k (BΛz1 × · · · ×BΛzk).

Remark 2.8. These moduli spaces are empty unless the coweights at each puncture are chosen appropriately.
Specifically one needs to assume that the sum

∑
z∈D ord〈ρ, ω∨z 〉 is equal to zero, where ρ is the Weyl vector, and

ord denotes the order of the pole or zero of a representative element of C((z)).

Examples 2.9. 1. Elliptic: Now let C = E, an elliptic curve. In this case we can just use the above definition
and consider the moduli space mHiggsG(E,D, ω∨). This is now a stack with a smooth map down to the
stack BunG(E) of principal G-bundles on the elliptic curve. In particular in this case one can consider the
non-trivial moduli space where D = ∅: mHiggsG(E) = Map(E,G/G). This example was studied in great
depth by Hurtubise and Markman.

2. Trigonometric: Let C = CP1, but now we fix the following data. Choose a pair B+, B− of opposite Borel
subgroups of G with unipotent radicals N+ and N−. We consider G-bundles on CP1 with a meromorphic
Higgs field g(z) with fixed poles, and with g(0) ∈ B+ and g(∞) ∈ N−. With fixed residues this again
defines a finite-dimensional smooth variety.

3. Rational: We still C = CP1 and consider the moduli space of multiplicative Higgs bundles with a fixed
framing at infinity. In other words, consider the fiber product mHiggs(CP1, D, ω∨)×G/G g∞, where we view
G/G as Map({∞}, G/G). This is a finite-dimensional smooth variety whose points are G-valued rational
functions with fixed simple poles and zeroes in C and asymptotic to g∞zd near z =∞.

Remark 2.10. There are actually two rational/trigonometric/elliptic trichotomies that appear in this story. The
one we just discussed, and trichotomy: the ordinary (additive) spaces of Higgs bundles, the space of multiplicative
Higgs bundles, and a space of “elliptic” Higgs bundles. This latter moduli space is defined as the moduli space
BunG(C×Eq), where C is one of the curves above, and Eq is a fixed elliptic curve with parameter q. Alternatively
you can think of them as a space of “q-twisted” multiplicative Higgs bundles for the loop group LG. Note that
the multiplicative and additive cases arise when Eq is degenerated to a nodal or a cuspidal curve respectively.

3 The Poisson Lie Group

Let’s discuss the connection between the classical moduli spaces and Poisson Lie groups.

Definition 3.1. Write G1[[z−1]] for the group of G-valued power series in the parameter z−1 with constant
leading term. This group has a natural Poisson structure, coming – for instance – from the Manin triple
(G((z−1)), G1[[z−1]], G[z]). We’ll sometimes refer to it as the rational Poisson Lie group.

Remark 3.2. Alternatively, we can describe the Poisson structure as a formula in terms of the classical r-matrix
r = Ω

z−w , where Ω is the quadratic Casimir element. This element lives in g⊗2[w][[z−1]], and can be paired with
two tangent vectors to the Poisson Lie group using the residue pairing. We define the Poisson bracket of f1 and
f2, evaluated at g, by pairing r with the difference ∇L(f1)(g)⊗∇L(f2)(g)−∇R(f1)(g)⊗∇R(f2)(g).

Theorem 3.3. The algebraic map r∞ : mHiggsfr
G(CP1, D, ω∨) → G1[[z−1]] defined by restricting to a formal

neighbourhood of ∞ is a Poisson map: the inclusion of a symplectic leaf.

Dually, in terms of algebras of functions, there is a map of Poisson algebras O(G1[[z−1]])→ O(mHiggsfr
G(CP1, D, ω∨)).

It turns out that we can quantize this structure, using some pre-existing structures from the literature. First of
all, the quantization of the rational Poisson Lie group is well-known: it’s the so-called Yangian quantum group
Y (g).

Theorem 3.4 (Following from work of Gerasimov-Kharchev-Lebedev-Oblezin). The algebra O(mHiggsfr
G(CP1, D, ω∨))

admits a deformation quantization O~(mHiggsfr
G(CP1, D, ω∨)) with the canonical structure of a representation

for the Yangian Y (g).
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The additional observation that we need to make in order to see this is fairly simple. Gerasimov, Kharchev,
Lebedev and Oblezin [GKLO05] constructed Y (g)-modules whose classical limits sweep out the symplectic leaves
of G1[[z−1]] of each “type”, meaning each possible sum of residues. Our moduli spaces are symplectic leaves of
this form, therefore quantize to representations within the GKLO classification.

4 Monopoles and Integrable System Structures

From now on, we’ll focus our attention on the rational case from example 2.9. The elliptic version of the story
we’re about to tell is a theorem of Hurtubise and Markman [HM02]. The trigonometric version has not yet, to
my knowledge, been studied.

Let’s talk about the upshot of our discussion so far. The fact that we’ve identified the moduli space of multi-
plicative Higgs bundles with a Coulomb branch tells us that it should have the structure of an algebraic integrable
system: that is, it admits a holomorphic symplectic structure, and can be written as a fibration over an affine
base space whose fibers are, generically Lagrangian algebraic tori. Our work gives a natural algebraic description
for this integrable system structure, which we can explicitly compare with previously known constructions. Let
me elaborate on this.

A monopole on a Riemannian 3-manifold M for the group G is a G-bundle P on M with connection A along
with a section Φ of ad(P ) that satisfy the Bogomolny equation

∗FA − dAΦ = 0.

I won’t explain exactly what a Dirac singularity is, except to note that they are well-behaved local singularities
indexed by coweights of G. By a framing we mean a fixed limit for the holonomy of A+ iΦ around S1 at ∞.

Now we can explain what this has to do with the moduli space of multiplicative Higgs bundles that I introduced
earlier!

Theorem 4.1 (Charbonneau-Hurtubise [CH10] (for GL(n)), Smith [Smi16] (for general G)). Let D ⊆ C × S1

be a finite subset, write π for the projection C × S1 → C and assume that D contains at most one point in each
fiber of π. Fix a dominant coweight ω∨z at each point z ∈ D. There is an analytic equivalence

MonG(C × S1, D, ω∨) ∼→ mHiggsG(C, π(D), ω∨)

between the moduli space of monopoles on C × S1 and the moduli space of (poly-stable) multiplicative Higgs
bundles on C with compatible singularities, given by taking the holonomy of A+ iΦ around the circle S1.

This equivalence commutes with natural maps down to the base B on the two sides. Here one can identify

B = Γ
(
C;

r⊕
i=1

OC (ω∨D(λi) ·D)
)

where ω∨D(λi) · D denotes the divisor {ω∨z (λi) · z : z ∈ D}. This space of global sections is the same as the
space of maps C \ D → T/W with simple poles with prescribed residues at the divisor D. The space of
multiplicative Higgs bundles maps down to B by composing with the characteristic polynomial (Chevalley) map
χ : G/G→ T/W . On the other hand the projection down to B in the integrable system as calculated by Nekrasov
and Pestun is indeed given by the map χ(

∮
S1 A+ iΦ).

Theorem 4.2. In the rational case, the multiplicative Hitchin system with fixed residues mHiggsfr
G(CP1, D, ω∨)

naturally has the structure of an algebraic completely integrable system with base B. With respect to this
symplectic structure the Charbonneau–Hurtubise–Smith isomorphism is a symplectomorphism.

Remark 4.3. We can write the symplectic structure down very explicitly. Intuitively we think of it as coming
from the formalism of shifted symplectic structures and shifted Poisson structures (as developed in [PTVV13,
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CPT+17, MS16, MS17]). We don’t have time to talk about this construction today, but the idea is to exhibit
a 1-shifted Lagrangian structure on the restriction map to the 1-shifted symplectic stack G[[z]]\G((z))/G[[z]]
representing G-bundles on the formal bubble B = D tD× D. While this is an attractive intuitive story, there are
technical obstructions that make it hard to make this rigorous using current technology.

In particular, this theorem implies that the moduli spaces mHiggsfr
G(CP1, D, ω∨) are hyperkähler (although not

necessarily canonically: fixing a canonical structure requires fixing a polarization, i.e. a positive integral 1, 1-form
on each generic fiber of the integrable system). We can actually go further and explain what happens when we
vary the complex structure in the twistor sphere. The deformed moduli spaces have a natural description in
terms of q-difference connections.

Definition 4.4. Let q be an automorphism of a curve C – as usual we’ll think of the three examples where
C = C,C× or E, in which case we can think of C as its own group of automorphisms. A q-difference connection
on C is a G-bundle P along with an isomorphism A : P → q∗P of G-bundles. One can consider q-difference
connections with poles at a finite subset D ⊆ C: just as for multiplicative Higgs fields we can fix the behaviour of
a q-difference connection near a pole by fixing a closed point in G[[z]] \ GrG, or equivalently a dominant coweight.

The moduli space of q-difference connections on C with singularities at D and residues {ω∨} is defined to be

q-ConnG(C,D, ω∨) := Map(C ×q S1
B \ D,BG)×(G[[z]] \ GrG)k (BΛ1 × · · · ×BΛk)

where by C ×q S1
B we mean the mapping torus of the automorphism q, viewed as a derived stack, and by

C ×q S1
B \ D we mean the complement of the subset D of the fiber over 1 ∈ S1. When q → 0 this recovers the

moduli space of multiplicative Higgs fields.

Let’s discuss what Theorem 4.2 tells us about the twistor deformation of our moduli space.

If we choose a radius r, the moduli space of periodic G-monopoles (so monopoles on R2 × S1
r ) is not just

holomorphic symplectic but hyperkähler – it’s defined as a hyperkähler quotient. Our theorem then gives a
canonically associated hyperkähler structure to the multiplicative Hitchin system (depending on r).

In the limit r → ∞ one can explicitly describe the twistor family of holomorphic symplectic spaces on the
monopole side. Consider the space MonG(C × S1

r , D, ω
∨)Jζ , i.e. the space considered in the complex structure

at ζ in the twistor sphere. Take the limit r → ∞ and ζ → 0, keeping the product rζ = q fixed. In this limit
we can identify MonG(C × S1

r , D, ω
∨)Jζ with monopoles on the twisted product MonG(C ×q S1

1 , D, ω
∨)J0 in the

untwisted complex structure. In fact the argument of Charbonneau and Hurtubise works equally well for this
twisted product, providing an equivalence

MonG(C ×q S1
1 , D, ω

∨)→ q-ConnG(C,D, ω∨).

Therefore our theorem implies the following.

Corollary 4.5. If mHiggsG(C,D, ω∨) is equipped with the hyperkähler metric in the r → ∞ limit, in the
complex structure at q in a neighbourhood of 0 in the twistor sphere it becomes algebraically isomorphic to
q-ConnG(C,D, ω∨).

5 Origins via Gauge Theory

Let me briefly describe two contexts in which the moduli space of multiplicative Higgs bundles naturally appears:
via Seiberg-Witten theory for N = 2 4d quiver gauge theories, and via the “twisting” construction applied to
N = 2 5d gauge theories.
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5.1 Quiver Gauge Theory

The first appearance that we’ll discuss arises from work of Nekrasov, Pestun and Shatashvili [NP12, NPS18].
They studied the theory of N = 2 quiver gauge theories in dimension 4, in particular analysing, and later
quantizing, their Coulomb branches.

To be a little more specific, to specify an N = 2 gauge theory one need to fix some data:

1. A compact semisimple group Ggauge: the gauge group (I’m saving the notation G for something else shortly).

2. A representation V of Ggauge: the matter representation.

3. A complex number τi for each simple factor of Ggauge: the coupling constants.

4. A complex number mj for each irreducible summand of V : the masses.

Most of these theories are pretty badly behaved when you try to quantize them, but there’s an especially nice
family of “quiver gauge theories”. One chooses the group Ggauge to be a product of SU(ni), where we think of
the factors as associated to the vertices of an ADE quiver. One then chooses the representation V to have a
summand Vij for each edge of the quiver isomorphic to the bifundamental representation of SU(ni)×SU(nj), plus
a summand for each vertex that looks like ki copies of the fundamental representation of SU(ni). The masses
associated to the bifundamental representations are fixed, but the masses of the fundamental representations are
free: we label them as mi,f .

These theories are “superconformal” when ki =
∑
j Cijnj , where Cij is the Cartan matrix of the ADE quiver.

This is why we used an ADE quiver specifically: you can build a theory like the above out of any quiver but
these are almost the only superconformal examples

Remark 5.1. There’s another family of superconformal quiver gauge theories: you can also use an affine ADE
quiver with ki = 0. These will be related to the “elliptic” Higgs moduli spaces we briefly mentioned at the end
of the previous section.

In the example of an ADE quiver gauge theory, Nekrasov and Pestun [NP12] calculated its Coulomb branch of
vacua – an algebraic integrable system – generalizing work of Cherkis and Kapustin [CK98].

Theorem 5.2 (Nekrasov-Pestun). The Seiberg-Witten integrable system for the N = 2 quiver gauge theory
associated to a complex simple group G of ADE type is isomorphic, as a complex manifold, to the moduli space
of multiplicative Higgs bundles on CP1 for the group G, with singularities at the points (mi,f , 1) with charge
given by the fundamental coweight λ∨i , and with a fixed framing at ∞.

5.2 Twisted 5d Gauge Theory

There’s another, quite different, origin of the moduli space of multiplicative Higgs bundles from supersymmetric
gauge theory. One can compute a partially topological twist twist of N = 2 supersymmetric 5d gauge theory. It
makes sense to consider this twisted theory on manifolds of the form D×C × S1 where C is a Calabi-Yau curve
(so one of our three examples) and D is a formal disk. If one computes the space of solutions to the equations
of motion in this twisted theory one recovers the space Map(D,mHiggsG(C)) of maps with target multiplicative
Higgs bundles 1. One can also define the twisted theory in the presence of ‘t Hooft type surface defects at a finite
set D of points in C × S1. This twisted theory introduces Dirac singularities at D, and so yields the space of
maps into the more interesting moduli space mHiggsG(C,D, ω∨).

1More precisely, the result is the 1-shifted cotangent space with this base.
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Remark 5.3. A key piece of motivation for our study of these multiplicative Higgs moduli spaces arises from a
generalization of the geometric Langlands program, as a 5d analogue of Kapustin and Witten’s work on geometric
Langlands and 4d N = 4 gauge theory. When we take the limit where the radius of the circle becomes very small,
we end up with a holomorphic twist of 4d N = 4 gauge theory studied by Kapustin. It has two further twists
to an A-model and a B-model. Kapustin and Witten argued that S-duality interchanges these two twists, while
replacing the gauge group G by its Langlands dual. By studying boundary conditions in these two dual twisted
theories they recovered the geometric Langlands conjecture.

We can, therefore, try to tell the same story but keeping the circle large. One of the two further twists corresponds
to a quantization of the moduli space of multiplicative Higgs bundles, and the other to a deformation (rotation
in the twistor sphere, which we’ll discuss in a moment). There are some special cases where we can actually
formulate, and try to prove, a careful mathematical conjecture.

6 Consequences and Extensions

Let me conclude with some future directions in which we hope to extend this work.

1. There is a gap in our trichotomy: we still haven’t analysed the trigonometric case, where we have opposite
Borel reductions at two points in CP1. We believe that the trigonometric version of our multiplicative
Hitchin system will still have the natural structure of an algebraic integrable system, and quantizations of
the moduli space with prescribed singularities should give modules for the quantum affine algebra.

2. There’s an analogue of our moduli space corresponding to the vacua of an asymptotically free, rather than
conformal, ADE quiver gauge theory. This corresponds to allowing the multiplicative Higgs field to have a
singularity at infinity. These moduli spaces should correspond to symplectic leaves in the Poisson variety
Wµ from [KWWY14], and quantize to modules for the shifted Yangian generalizing the modules appearing
in that work. Some analysis has been done for the group SO(3) [Fos13, Moc17], but there are significant
new analytic subtleties corresponding to the fact that our symplectic structure is no longer defined in terms
of spaces of sections of vector bundles over CP1, but one has to use Sobolev space techniques involving
appropriate singularity conditions at infinity.

3. In our paper we described a multiplicative analogue of the brane of opers, using the Steinberg section of the
adjoint quotient map G→ H/W . That is, the brane of opers arises by considering a multiplicative analogue
of the Hitchin section, and viewing it in complex structure Jq. We conjecture, and provide computational
evidence, that by triangulizing the multiplicative Hitchin section in as an element of G[[z−1]] we obtain an
inverse for the Yangian q-character map first described by Knight [Kni95]. This is a quantization of the
fact that the Steinberg section is a section, and therefore inverse to the character map.

4. We previously discussed the elliptic Hitchin system corresponding to the moduli space of vacua of an affine
ADE quiver gauge theory. By quantizing these moduli spaces we expect to obtain representations of doubly
affine quantum groups, such as affine Yangians (in complex structure I) or quantum toroidal algebras (in
complex structure J). This would generalize known results in the case G = GL(1), c.f. results of Oblomkov,
Schiffman and Vasserot, and work in progress of Gukov, Koroteev, Nawata, Saberi.
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