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1 Introduction

This introduction (just like the whole course) aims to explain two things: the meaning of the word
stack, and its connection with algebraic geometry. We begin by discussing three typical examples of
stacks, two of which take place in the category of topological spaces, while the third is of arithmetic
nature.

1.1 What is a stack?

Glueing of vector bundles

The archetypical example of a stack is well-known to every mathematician. In order to describe the
data of a rank n vector bundle E on a topological space X one often resorts to a so-called cocycle
description. This amounts to choosing an open covering {Ui}i∈I of X, and for each pair (i, j) of
indices, a vector bundle automorphism φij of the trivial vector bundle

(Ui ∩ Uj)× Rn

on the open subset Ui ∩ Uj . One then hopes to find a vector bundle E on X, together with vector
bundle isomorphisms (called local trivializations)

φi : Ui × Rn
∼=−→ E|Ui ,

such that the identities
φij = φi ◦ φ−1

j (1)

are satisfied on Ui ∩ Uj . A necessary condition for the existence of (E, (φi)i∈I) is that the cocycle
condition

φij ◦ φjk = φik (2)

is satisfied for every triple (i, j, k). Note that this identity implies for i = j = k that φii = id, and
hence for i = k that φji = φ−1

ij . It is essential to the theory of topological vector bundles that the
cocycle condition is also sufficient. Indeed, we can define E by glueing the trivial vector bundles
Ui×Rn with respect to the isomorphisms φij : let Ẽ be the disjoint union of the topological spaces
Ui × Rn; we define an equivalence relation, by declaring (x, v) ∈ Ui × Rn and (y, w) ∈ Uj × Rn as
equivalent if x = y and v = φij(w). The topological quotient space will be denoted by E and has a
canonical map E //X, and canonical trivializations (φi)i∈I , which satisfy the identity (1) above.

In modern language we would say that the theory of vector bundles on topological spaces is a
stack. Let’s be more precise and actually nail down what kind of mathematical object the stack
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is in this example. It is the following assignment, which associates to an open subset U ⊂ X the
groupoid of vector bundles on U . Groupoid is a fancy word for a simple thing. In fact, it simply
denotes a category where every morphism is invertible. Hence, the groupoid of vector bundles on
U denotes the category of vector bundles on U , where we discard non-invertible morphisms.

Remark 1.1. It is possible to formulate a theory of stacks (or rather sheaves of categories), which
takes values in honest categories and not just groupoids. However, it will not be necessary for us
to pursue that level of generality. As we have seen in the example of vector bundles on topological
spaces, we only need vector bundle isomorphisms to describe the glueing data. Hence it is sensible
to discard all the other morphisms of vector bundles.

The cocycle condition (2) can be elegantly reformulated. This requires the usage of fibre products.

Definition 1.2. For continuous maps of topological spaces f : X // Z and g : Y // Z, we denote
by X ×Z Y the subspace of X × Y , consisting of tuples (x, y) with f(x) = g(y).

We denote by

Y =
∐
i∈I

Ui,

and by π : Y // X the canonical map, induced by the inclusions Ui ↪→ X. Let Ẽ be the trivial
rank n vector bundle on Y . The fibre product Y ×X Y is equivalent to the disjoint union∐

(i,j)∈I2

Ui ∩ Uj .

The cocycle (φij)(i,j)∈I2 is captured by an isomorphism of vector bundles on Y ×X Y , namely

φ : p∗2Ẽ
∼=−→ p∗1Ẽ. (3)

Here, we use the suggestive notation which denotes the projection to the first component of a fibre
product X ×Z Y // X by p1, and similarly for the projection to the second component. Let’s
pause a second to see that this is indeed equivalent to a collection of automorphisms (φij) of the
trivial vector bundles on Ui ∩ Uj . The trivial vector bundle always pulls back to the trivial vector
bundle, no matter which map we considered. Hence, φ is really an automorphism of the trivial
vector bundle on Y ×X Y , which is, as remarked above, equivalent to the disjoint union of all the
spaces Ui ∩ Uj .

The cocycle condition amounts to the identity of vector bundle isomorphisms on Y ×X Y ×X Y :

p∗12φ ◦ p∗23φ = p∗13φ : p∗3Ẽ // p∗1Ẽ. (4)

The family of local trivializations (φi)i∈I amounts to

π∗E ∼= Ẽ = Y × Rn. (5)

We will re-encounter a similar formulation below.
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Descending vector bundles to quotients

One of the first non-trivial vector bundles one encounters in topology is a Möbius strip of infinite
width over the circle S1. A rigorous description of this bundle can be given as follows. At first we
observe the existence of a homeomorphism

S1/µ2
∼= S1,

where µ2 = {1,−1} denotes the group of second order roots of unity, acting on S1 ⊂ C multi-
plicatively. The homeomorphism is induced by the µ2-invariant map S1 // S1, z 7→ z2. Although
both spaces are homeomorphic, we will distinguish between both sides, and denote the canonical
projection by

π : Y = S1 //X ∼= S1/µ2
∼= S1.

The Möbius bundle E on S1 can be defined by extending the action of µ2 on S1 to the total space Ẽ
of the trivial rank 1 bundle S1×R //R. Namely, we define the action of ζ ∈ µ2 on (z, λ) ∈ S1×R
to be

ζ · (z, λ) = (ζx, ζλ).

The quotient Ẽ/µ2 will be denoted by E. It defines a rank 1 vector bundle on S1/µ2 = X ∼= S1.
One observes that π∗E ∼= S1×R, which should be compared to equation (5). But there are even

more similarities with the glueing procedure described in the proceeding subsection. Let’s take a
look at the fibre products Y ×X Y and Y ×X Y ×X Y .

Lemma 1.3. The map
Y × µ2

// Y ×X Y,

sending (z, ζ) to (z, ζz) is a homeomorphism. Similarly, the map

Y × µ2 × µ2
// Y ×X Y ×X Y,

which sends (z, ζ1, ζ2) to (z, ζ1z, ζ2z), is a homeomorphism.

Proof. We prove the first assertion, the second one is totally analogous. Since both sides of the map
are compact and Hausdorff (and every continuous map from a compact space to a Hausdorff space
is closed), it suffices to show that the map is a bijection of sets. This follows from the definition of
X as the quotient Y/µ2.

With respect to this canonical homeomorphism between Y ×X Y and Y × µ2, the projection
p1 corresponds to the map (z, ζ) 7→ z, and p2 is equivalent to the map describing the group action
Y × µ2, sending (z, ζ) to ζz.

The extension of the group action of µ2 to the total space Ẽ, can be understood as a vector
bundle isomorphism

φ : p∗2Ẽ
∼= // p∗1Ẽ

on Y ×X Y . The map φ is given as follows: since Ẽ is the trivial rank 1 bundle, the fibrewise
identity gives an isomorphism. We choose φ to be this map over the component of Y ×XY = Y ×µ2,
corresponding to 1 ∈ µ2, and modify this map by −1 over the component corresponding to −1 ∈ µ2.

To complete the circle, we observe that identity (4) is satisfied.
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Lemma 1.4. The cocycle condition

p∗12φ ◦ p23φ
∗ = p∗13φ

is satisfied on Y ×X Y ×X Y .

Proof. In Lemma 1.3 we have seen that the triple fibre product Y ×X Y ×X Y can be identified
with Y ×µ2×µ2. With respect to this identification, the projection p12 : Y ×µ2×µ2

// Y ×µ2 is
given by p12(z, ζ1, ζ2) = (z, ζ1), while we have p23(z, ζ1, ζ2) = (ζ1z, ζ2), and p13(z, ζ1, ζ2) = (z, ζ1ζ2).

The topological space Y × µ2 × µ2 has four connected components indexed by µ2 × µ2. On
the connected component corresponding to the pair (ζ1, ζ2), the maps p∗12φ is given by fibrewise
multiplication with ζ1, while p∗23φ agrees with fibrewise multiplication with ζ2. Similarly, p∗13φ is
fibrewise multiplication with ζ1ζ2. This implies the cocycle condition asserted above.

With the proof of this lemma concluded we should pause a second to contemplate about the
remarkable similarity between glueing of locally defined vector bundles, and descending a so-called
equivariant vector bundle to the quotient. We see that the theory of vector bundles on topological
spaces almost doesn’t see a difference between an open covering, and the map π : Y // X, given
by the canonical projection to the quotient of a free group action. The theory of Grothendieck
topologies, which we will encounter later in this course, provides a common framework to treat
open coverings, and such maps to quotients, on an equal footing.

Galois descent

Consider the field extension C/R. Its Galois group Γ is cyclic of order 2, generated by complex
conjugation z 7→ z̄. We will focus on this particular extension for simplicity, but the reader should
be feel free to work with an arbitrary finite Galois extension L/K instead.

It is well-known and ubiquitous principle that the Γ-action on C extends to an array of algebraic
objects, e.g. to the ring of of polynomials C[X]. Moreover, this principle extends to the assertion
that imposing Γ-invariance is tantamount to working over the smaller field R. For example, a
polynomial f ∈ C[X] has real coefficients, if and only if f ∈ C[X]Γ.

The theory of Galois descent is of a similar flavour, since it allows to describe mathematical ob-
jects over R, by descending objects over C. This allows to study the arithmetic of non-algebraically
closed fields like R, by constructing non-trivial (but ”locally trivial”) objects by descent. Since
this process would be boring if the Galois group Γ was uninteresting, we obtain at least a certain
amount of information about the Galois group.

We begin with a slightly boring but important example, in the sense that it doesn’t allow
to extract any arithmetic information, but still contains all the main features of Galois descent.
Namely, we will describe the datum of a R-vector space, by descending a C-vector space. The
statement below seems to be purely algebraic at first, but we will give a geometric interpretation
subsequently.

Proposition 1.5. The category of finite-dimensional real vector space V is equivalent to the cate-
gory of pairs (VC, f), where VC is a finite-dimensional complex vector space, and f an anti-linear
map, i.e. f(λv) = λ̄v, such that f2 = idVC . A morphism of such pairs consists of a complex linear
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map φ : VC //WC, such that the diagram

VC
φ
//

f

��

WC

g

��

VC
φ
// WC

commutes.

Proof. Let VectR denote the category of finite-dimensional real vector spaces. We denote the cate-
gory of pairs, as described above, by C. We begin by defining a functor F : VectR //C. It sends V
to the pair (VC, f), where VC = V ⊗RC, and f is the R-linear map induced by complex conjugation
C // C.

We define an inverse G : C // VectR, by sending (VC, f) to the real subspace of f -invariants
V = (VC)f . By definition, it consists of the vectors v ∈ VC, satisfying f(v) = v.

The map R //C induces a map of real vector spaces V // VC. Conjugation-invariance of this
map implies that it lands inside of (VC)f . Choosing a real basis (v1, . . . , vn) for V , we obtain a
basis (v1 ⊗ 1, . . . , vn ⊗ 1) for VC = V ⊗R C. This implies immediately, that the image of V // VC
agrees with (VC)f . Hence, we have constructed a natural isomorphism between the functor G ◦ F ,
and the identity functor of the category VectR.

Conversely, let (VC, f) be an object of C. We have a canonical map (VC)f ⊗R C // VC, which
sends v⊗λ to λv (with respect to the complex structure of VC). We claim that this map is bijective.
To see this, note that it certainly is injective when restricted to (VC)f ⊗ i, since multiplication with
i has zero kernel. Moreover, the image of this map agrees with the linear subspace of elements
v ∈ VC, such that f(v) = −v (anti-invariants). It is an elementary fact that every element v ∈ VC
can be decomposed uniquely as a sum of an invariant and an anti-invariant:

v =
1

2
(v + f(v)) +

1

2
(v − f(v)).

This yields a natural isomorphism between F ◦G and the identity functor on C.

In this course, we will associate to any ring R, in particular also fields, a geometric object,
denoted by SpecR. A ring homomorphism R // S will induce a map SpecS // SpecR. We will
argue, that for a Galois extension of fields, e.g. R ⊂ C, the resulting map SpecC //R behaves just
like a covering map with a group of deck transformations equivalent to the Galois group µ2. Vector
bundles on SpecK, for K a field will correspond to K-vector spaces. The above proposition can
then be understood as comparing Galois-equivariant vector bundles on SpecC with vector bundles
on the quotient SpecR.

1.2 What is algebraic geometry? A functorial approach.

Algebraic geometry is often described as the study of solutions to systems of polynomial equations
in several variables. Although this is a perfectly fine explanation, the modern, scheme-theoretic
approach, seems to be quite remote from solving polynomial equations. In fact, one needs to go
through a lot of definitions in order to explain how to pass from a system of equations to a scheme.
In the post-modern, functorial framework, this step becomes easier, as we explain below.
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The case of integral equations

Let f = (f1, . . . , fn) be an n-tuple of polynomials fi ∈ Z[t1, . . . , tm]. We view f as a system of
equation, i.e. we are interested in solving

f(x1, . . . , xm) = 0.

Since the coefficients have been chosen to be integral, it is possible to define the solution set

Zf (R) = {(x1, . . . , xm) ∈ Rm|f(x1, . . . , xm) = 0}

with respect to an arbitrary ring R (every ring is understood to be commutative and unital). Every
ring homomorphism φ : R // S induces a map of sets

Zf (φ) : Zf (R) // Zf (S),

which sends (x1, . . . , xm) ∈ Rm to (φ(x1), . . . , φ(xm)) ∈ Sm. By definition, we have Zf (idR) =
idZf (R), and

Zf (ψ) ◦ Zf (φ) = Zf (ψ ◦ φ)

for a ring homomorphism ψ : S // T . In other words, Zf defines a functor from the category Rng
of rings to the category Set of sets.

Coefficients in an arbitrary ring

If we want our coefficients of the system f to lie in an arbitrary ring A, we can solve the system
f = 0, i.e. define the set Zf (R) if we can make sense of the coefficients (which are elements of
A), as elements of R. In order for this to be possible, we have to consider rings R, endowed with
the structure of an A-algebra. By definition this amounts to a ring homomorphism A // R. A
morphism of A-algebras φ : R //S is simply a ring homomorphism, such that the following triangle
commutes:

A

��   

R
φ
// S.

We denote the category of A-algebras by AlgA.
If f ∈ A[t1, . . . , tm]n is an n-tuple of polynomials in m variables, then we have a well-defined set

Zf (R) = {(x1, . . . , xm) ∈ Rm|f(x1, . . . , xm) = 0}

for every A-algebra R. As before, one checks that this construction gives rise to a functor

Zf : AlgA // Set .

Subsequently, we postulate that algebraic geometry is concerned with the study of functors

X : Rng // Set .

We will call such a functor a space, and denote the category of spaces by Spaces. During this course,
we will restrict the class of functors X, such that it becomes meaningful to think of X as geometric
object, locally glued from solutions Zf to a system of equations.
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Affine schemes

Just as quickly as to an equation we can associate to every ring R a functor

SpecR : Rng // Set .

By definition, it is the functor HomRng(R,−), which sends a ring S to the set of ring morphisms
R // S. We will also say that the object R ∈ Rng co-represents the functor SpecR. We call the
functor SpecR the affine scheme associated to the ring R.

Lemma 1.6. Let f ∈ Z[t1, . . . , tm]n be a system of polynomial equations. Let R = Z[t1, . . . , tm]/(f),
where (f) denotes the ideal generated by the polynomials (f1, . . . , fn). Then, we have a natural
isomorphism of functors

ZF ' SpecR.

Proof. The ring Z[t1, . . . , tm] satisfies a universal property. For every ring S, and every m-tuple of
elements (x1, . . . , xm) ∈ Sm, there exists a unique morphism Z[t1, . . . , tm] // S, such that ti 7→ xi.
We have a commutative diagram

Z[t1, . . . , tm]

�� %%
R // S,

if and only if (x1, . . . , xm) ∈ Zf (S). Hence, we see that the set of morphisms HomRng(R,S) is
naturally isomorphic to Zf (S).

This lemma shows that the functors Zf are a special case of the Spec-construction. We therefore
want to think of the functor SpecR for a general ring R, to describe a generalized system of
equations. Solutions in a ring S correspond to a variable xr ∈ S for every r ∈ R, such that

xr1+r2 = xr1 + xr2 ,

and similarly
xr1r2 = xr1xr2 ,

and x1 = 1.
Note that every ring morphismR //S induces a map of functors HomRng(S,−) //HomRng(R,−).

It sends S // T to the composition R // S // T . This is summarized by the following assertion.

Lemma 1.7. The construction Spec defines a co-functor from the category of rings Rng, to the
category of spaces Spaces, i.e. a functor

Spec: Rngop // Spaces .

Yoneda’s lemma

Yoneda’s lemma provides both moral justification for the functorial approach to algebraic geometry,
but also implies the following statement, to which we will refer again and again: giving a map
SpecR // X, where R is an arbitrary ring, and X a space, is equivalent to giving an element of
X(R).
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Lemma 1.8 (Yoneda). Let C be a category, and X : C // Set a functor. If A ∈ C is an element,
then the set of natural transformations

α : HomC(A,−) //X

corresponds to elements of X(A). We send α to α(idA) ∈ X(A).

Proof. 1 We need to define the map in the other direction. For x ∈ X(A) we define x̄B :
Hom(A,B) → X(B) by f 7→ (X(f))(x). We need to check two things: that x̄B are the com-
ponents of a natural transformation x̄, and that the two constructions α 7→ αA(1A) and x 7→ x̄ are
mutually inverse.

To check naturality, we need to check that for g : B → C in C the diagram

Hom(A,B)
x̄B //

g◦−
��

X(B)

X(g)

��

Hom(A,C)
x̄C // X(C)

commutes. To see this, we chase some f : A→ B around the diagram: one way we get (X(gf))(x)
and the other way we get (X(g))(X(f))(x) – these are of course equal.

To show our constructions are mutually inverse, we first note that for x ∈ X(A) we have
x̄A(1A) = (X(1A))(x) = x by definition. For the other direction, let α : Hom(A,−) → X be a
natural transformation and f ∈ Hom(A,B) arbitrary. We have the naturality square for α

Hom(A,A)
αA //

f◦−
��

X(A)

X(f)

��

Hom(A,B)
αB // X(B)

from which we see, chasing 1A ∈ Hom(A,A) around, that αB(f) = (X(f))(αA(1A)) = αA(1A)B(f).

This means that α = αA(1A) as desired.
To show naturality in A, let f : A → B be an arrow in C. This induces a map − ◦ f :

Hom(B,−)→ Hom(A,−), and thence a map−◦(−◦f) : Nat(Hom(A,−), X)→ Nat(Hom(B,−), X).
To show naturality, we want to show that

Nat(Hom(A,−), X)
−◦(−◦f)

//

∼
��

Nat(Hom(B,−), X)

∼
��

X(A)
X(f)

// X(B)

commutes. To do this, we chase some α : Hom(A,−) → X around the diagram: one way we get
αB ◦ (−◦f)B(1B) = αB(f), and the other way around we get (X(f))(αA(1A)) – we saw above that
these are equal.

Naturality in X is easier. Suppose β : X → Y is a natural transformation. We want to show
that

1This proof was provided by Alexander Betts.
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Nat(Hom(A,−), X)
β◦−
//

∼
��

Nat(Hom(A,−), Y )

∼
��

X(A)
βA // Y A

commutes, which is now trivial.

Standard open subfunctors

For a ring R and an element h ∈ R, we denote by Rh = R[h−1] = R[t]/(th − 1) the ring obtained
by adjoining a formal inverse for h to R. We say that Rh is obtained from R by localization at the
element h. The functor SpecRh can be described in terms of the ring R. For every ring S, the set
(SpecRh)(S) is given by the set of ring homomorphisms R //S, which send h ∈ R to an invertible
element of S.

The geometric meaning of this construction becomes evident, when considering the inclusion of
sets

SpecRh(k) // SpecR(k),

where k is a field, and R = Z[x1, . . . , xn]/(f).

Lemma 1.9. We know from Lemma 1.6 that SpecR(k) = Zf (k). With respect to this identification,
the subset SpecRh(k) is given by the difference of sets Zf (k) \ Zh(k).

In algebraic geometry, the subfunctors SpecRh // SpecR are often called the standard open
subfunctors. They generate what is classically known as the Zariski topology on SpecR.

Definition 1.10. If h1, . . . , h` ∈ R are elements generating the unit ideal, i.e. (h1, . . . , h`) = R,
then we say that the collection of standard open subfunctors (SpecRhi

// SpecR)`i=1 is a standard
open covering of SpecR.

To see why the terminology covering is justified, we consider again what happens on the level
of the set SpecR(k), where k is a field. Since there exist elements r1, . . . , r` ∈ R, such that we have
r1h1+· · · r`h` = 1 we see that every point x ∈ SpecR(k) lies in at least one of the subsets SpecRh(k).
Otherwise, if all (hi)

`
i=1 induced the zero element in k, we would obtain the contradiction 0 = 1.

An example of a moduli problem

The set of 1-dimensional subspaces of a 2-dimensional complex vector space C2 has the structure of
a complex manifold, often denoted by CP1. The analogue of a 2-dimensional complex vector space
over a general ring R, is the free module R2 of rank 2.

Definition 1.11. Recall that a submodule M ⊂ V of an R-module V is called a direct summand,
if there exists a submodule N ⊂ V , such that we have M ⊕N = V . The functor P1

Z : Rng // Set
sends a ring R to the set of direct summands M ⊂ R2, for which there exists a standard open
covering, corresponding to elements (hi)

`
i=1 ∈ R, such that Mhi = M ⊗R Rh is a free R-module of

rank 1, for all i.
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If R // S is a ring homomorphism, then then resulting map P1
Z(R) // P1

Z(S) is given by
M 7→M ⊗R S.

Definition 1.11 is the correct one for a couple of reasons. First of all one sees that P1
Z(C) is the

set of 1-dimensional subspaces M ⊂ C2. This follows from the fact that every subspace of a vector
space is a direct summand.

An element of P1
Z(Z[t]) induces for every complex number z ∈ C a 1-dimensional subspace

M ( C2, by virtue of functoriality applied to the ring homomorphism Z[t] // C, which sends
t to z. We may therefore think of it as a family of 1-dimensional subspaces, parametrized by a
formal variable t. One of the pleasant consequences of Definition 1.11 is that it guarantees that
the dimension of all induced complex subspaces (for any value of the parameter t) is equal to 1.
Moreover, it somehow guarantees that the subspaces in a given family vary continuously.

The third reason is that this definition allows us to describe P1
Z by glueing two copies of

SpecZ[t] = A1
Z, just like the complex manifold CP1 is obtained by glueing two copies of C.

Proposition 1.12. Let φ1 : A1
Z

// P1
Z be the map, which corresponds to the element of P1

Z(Z[t]),
given by the surjection, corresponding to the matrix (t, 1) : Z[t]2 � Z[t]. Similarly, φ2 corresponds to
the matrix (1, t). Then, for every ring R, and every M ∈ P1

Z(R), there exist finitely many elements
(hi)i∈I ∈ R, such that the ideal generated by (hi)i∈I = R, and M ⊗R Rhi ∈ P1

Z(Rhi) is induced by
an element of A1

Z(R) via the map φj, for j = 1, 2.

The rest of this subsection deals with the proof of this proposition.2 We have the functor
P1
Z : (Rng → Set, which sends a ring R into the set P1

Z(R) made up of direct summands M of
R2 which are projective modules of rank 1. In other words, a submodule M ⊆ R2 is an element
of P1

Z(R) if and only if there exist a submodule N ⊆ R2 and elements h1, . . . hn ∈ R such that
R2 = M ⊕N , Rh1 + · · ·+Rhn = R and M [h−1

i ] is a free R[h−1
i ]-module of rank 1 for i = 1, . . . , n.

Let φ1 : A1
Z

// P1
Z the scheme morphism associated to the element of P1

Z(Z[t]) corresponding
to the submodule

L1 := ker

(
Z[t]2

(t,1)−→ Z[t]

)
of Z[t]2. We see that L1 is the cyclic Z[t]-submodule of Z[t]2 generated by the vector (1,−t). For
every ring R, the set A1

Z(R) = Hom(Rng)(Z[t], R) is canonically identified with the set R, because
to the element r ∈ R we associate the unique ring homomorphism Z[t] // R which maps t to
r. If we use this identification, for every ring R, the function φ1(R) : A1

Z(R) // P1
Z(R) maps the

element r ∈ R into the R-submodule of R2 generated by the vector (1,−r). Therefore an element
M ∈ P1

Z(R) is in the image of φ1(R) if and only if there exists r ∈ R such that M is generated by
the vector (1,−r).

In an analogous way, we can define the scheme morphism φ2 : A1
Z

// P1
Z corresponding to the

submodule

L2 := ker

(
Z[t]2

(1,t)−→ Z[t]

)
of Z[t]2. Concretely, for every ring R, the function φ2(R) : A1

Z(R) // P1
Z(R) maps the element

r ∈ R into the R-submodule of R2 generated by the vector (−r, 1).

2This part has been written by Andrea Petracci.
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Lemma 1.13. Let R be a ring and let M be a direct summand of R2 such that M is a free R-module
of rank 1. Then M is generated by a vector (p, q) with p, q ∈ R such that Rp+Rq = R.

Proof. Since M is free of rank 1, M must be generated by a single vector (p, q). Let N ⊆ R2 such
that R2 = M⊕N . Suppose by contradiction that the ideal Rp+Rq is strictly smaller than R. Then
there exists a maximal ideal m of R such that Rp+Rq ⊆ m. This shows that the image of M⊗Rk(m)
inside R2⊗Rk(m) = k(m)2 is 0. Since N is a projective R-module, TorR1 (N, k(m)) = 0 and therefore
M ⊗R k(m) ↪→ R2 ⊗R k(m) = k(m)2. Hence M ⊗R k(m) = 0. But this is a contradiction, because
M is a free R-module of rank 1.

Proposition 1.14. Let R be a ring and let M ∈ P1
Z(R). Then there exist f1, . . . , fm ∈ R such that

Rf1 + · · ·+Rfm = R and

M [f−1
j ] ∈ im

(
φkj (R[f−1

j ]) : A1
Z(R[f−1

j ]) −→ P1
Z(R[f−1

j ])
)

for j = 1, . . . ,m, with kj ∈ {1, 2}.
Proof. So we have a submodules M ⊆ R2, N ⊆ R2 and elements h1, . . . , hn ∈ R such that R2 =
M ⊕N , Rh1 + · · ·+Rhn = R, and M [h−1

i ] is a free R[h−1
i ]-module of rank 1 for i = 1, . . . , n.

Now, fix i ∈ {1, . . . , n}. We have R[h−1
i ]2 = M [h−1

i ]⊕N [h−1
i ], so the R[h−1

i ]-module M [h−1
i ] is

a direct summand of R[h−1
i ]2 and is free of rank 1. By Lemma 1.13, we can find pi, qi ∈ R[h−1

i ] such
that R[h−1

i ] = R[h−1
i ]pi+R[h−1

i ]qi and M [h−1
i ] is generated by the vector (pi, qi). Up to multiplying

by a power of hi we may assume that pi and qi come from elements of R. With little abuse of
notation, we call pi and qi some liftings of pi and qi to R. From R[h−1

i ] = R[h−1
i ]pi +R[h−1

i ]qi we
deduce that hi ∈

√
Rhipi +Rhiqi. It is clear that M [h−1

i p−1
i ] = R[h−1

i p−1
i ](1, ri), for some ri, so it

is in the image of φ1(R[h−1
i p−1

i ]). In an analogous way, M [h−1
i q−1

i ] is in the image of φ2(R[h−1
i q−1

i ]).
From hi ∈

√
Rhipi +Rhiqi for i = 1, . . . , n, we getRh1p1+Rh1q1+· · ·+Rhnpn+Rhnqn = R.

Remark 1.15. Let R be a ring and let M ∈ P1
Z(R). We have that M is a submodule of R2 and it

corresponds to a scheme morphism SpecR // P1
Z.

For j = 1, 2, let πj : R2 //R denote the projection onto the j-th coordinate. Then Ij = πj(M)
is an ideal of R. Let Uj be the open subscheme of SpecR which is the complement of the closed
subscheme defined by the ideal Ij. Then the following diagram is cartesian.

Uj

��

// A1
Z

φj

��

SpecR
M // P1

Z

(6)

The principal open subschemes SpecR[h−1
i p−1

i ] give an affine cover of U1 and the principal open
subschemes SpecR[h−1

i q−1
i ] give an affine cover of U2. One could show that U1 and U2 are affine

schemes.

2 Faithfully flat descent

In this section we will recall the notion of flat modules over a ring. In a nutshell, flat modules are
well-behaved with respect to base change. We will see examples and non-examples, and the basic
properties of flat modules. In the second half of this section, we encounter faithfully flat maps of
rings, and descent (which is the converse to base change).
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2.1 Tensor products and flatness

2.1.1 A reminder on tensor products and base change

Recall that there is a functor

−⊗R − : Mod(R)×Mod(R)→ Mod(R),

which sends (MR, NR) to the tensor product MR⊗RNR. We are particularly interested in the case
where either of the modules is an R-algebra. This case admits an alternative description as base
change functor, which we discuss in this paragraph.

We fix a ring homomorphism
α : R→ S,

where R and S are, as always in this course, assumed to be commutative and unital. In the words
of the first section, S is endowed with the structure of an R-algebra. This section is concerned with
passing between categories of R and S-modules. For the sake of clarity, we will therefore carefully
indicate an R-module by the notation MR, respectively, write NS for an S-module. We denote the
underlying abelian group by M , respectively N .

Definition 2.1. For an S-module NS we denote by NR the R-module obtained by ”forgetting the
S-module structure” along the ring homomorphism α. Hence, NR is the R-module given by choosing
(N,+) as underlying group, and defining scalar multiplication

R×N //N

by (r, n) 7→ α(r)n. The induced functor will be denoted by resα : Mod(S) // Mod(R), and referred
to as restriction along α.

The functor resα is an example of what is traditionally called a forgetful functor. In many cases,
the ring S is of higher complexity, than the ring R. Applying the functor resα corresponds to
forgetting the extra structure imposed by being an S-module.

Example 2.2. Let K be a field, and ι : K → K[t] the canonical morphism of rings, which sends
an element of K to the corresponding degree 0 polynomial in K[t]. The category Mod(K[t]) is
equivalent to the category of K-vector spaces V , together with an endomorphism f : V → V (given
by multiplication with t). The restriction functor

resι : Mod(K[t])→ Mod(K)

sends a pair (V, f) to the K-vector space V , i.e. forgets the endomorphism f .

Tensor products provide a functor from Mod(R) to Mod(S). We will begin with an explicit
description, and then give a characterisation in terms of a universal property.

Definition 2.3. For an R-module MR we denote by S ⊗RMR the S-module S-linearly generated
by formal expressions s⊗m, where m ∈M and s ∈ S, satisfying the following identities:

(a) (s1 + s2)⊗m = s1 ⊗m+ s2 ⊗m, for m ∈M , and s1, s2 ∈ S,

(b) s⊗ (m1 +m2) = (s⊗m1) + (s⊗m2), for m1,m2 ∈M , and s ∈ S,
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(c) s⊗ (r ·m) = α(r) · (s⊗m) = (α(r)s)⊗m, for m ∈M , r ∈ R, and s ∈ S.

The resulting functor will be denoted by

S ⊗R − : Mod(R)→ Mod(S),

and referred to as tensor product or base change functor.

The overcautious reader may define MR ⊗R S as the quotient

SM/I,

where SM denotes the free S-module generated by the set underlying M , and I is a submodule of
SM , encoding the relations (a), (b), and (c) from the definition above.

Example 2.4. We continue Example 2.2. For a K-vector space V , the resulting K[t]-module V ⊗K
K[t] is isomorphic to the K[t]-module V [t], defined as follows. Its elements are formal polynomials
ant

n+· · ·+a0 with ai ∈ V , with coefficient-wise addition. The usual method to multiply polynomials
yields a scalar multiplication map

K[t]⊗ V [t]→ V [t].

The following example is an important tool for computations.

Example 2.5. Assume that α is the canonical projection R→ R/I, where I ⊂ R is an ideal. Then,
for every R-module MR, the abelian group underlying the base change MR ⊗R R/I is naturally
isomorphic to M/IM , where IM denotes the abelian subgroup, generated by λ · m, with λ ∈ I,
and m ∈ M . We have a well-defined scalar multiplication R/I ×M/IM → M/IM, endowing the
quotient M/IM with the structure of an R/I-module.

In order to characterise tensor products in terms of a universal property, we use the notion of
adjoint functors.

Definition 2.6. Let F : C → D and G : D // C be functors between categories C and D. We
say that F is left adjoint to G (respectively that G is right adjoint to F ), if we have a natural
isomorphism

HomC(X,G(Y )) ∼= HomD(F (X), Y )

for all objects X ∈ C and Y ∈ D.

In plain language this means that in order to describe morphisms from F (X) to another object Y ,
it suffices to understand morphisms from Y to G(Y ). We will see below what this means in concrete
terms for tensor products. Note that Yoneda’s lemma 1.8 implies that F (X) is characterised by
the functor HomC(F (X),−). In particular, we see that adjoint functors are unique up to a unique
natural transformation, if they exist.

Proposition 2.7. The base change functor − ⊗R S : Mod(R) // Mod(S) is left adjoint to the
restriction functor resα, i.e. we have a natural isomorphism

HomS(MR ⊗R S,NS) ∼= HomR(MR, NR),

for an R-module MR and an S-module NS.
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Proof. We have a map of R-modules

MR → (MR ⊗R S)R,

which sends m ∈M to m⊗ 1 ∈MR ⊗R S. Hence, given a map MR ⊗R S → NS , we may send it to
the composition

MR
//

&&

(MR ⊗R S)R

��

NS .

Vice versa, a morphism of modules f : MR → NR induces a map

MR ⊗R S → NS ,

by sending m⊗ s to s · f(m). The maps

HomS(MR ⊗R S,NS) � HomR(MR, NR)

are mutually inverse.

Let β : S → T be a ring homomorphism. We will now investigate transitivity of base change.

Lemma 2.8. For every R-module MR we have natural equivalences

(MR ⊗R S)⊗S T ∼= MR ⊗R T.

Proof. We observe that the analogous statement for the restriction functor holds strictly, i.e. we
have an equality of functors

resα ◦ resβ = resβ◦α .

To see this, choose a T -module MT . The underlying abelian group M is not altered by the
functors resβ , resα, and resβ◦α. In particular, it suffices to compare the S-module structures of
(resα ◦ resβ)(MT ) and resβ◦α(MT ). By Definition 2.1, it is in both cases given by the map

S ×M //M,

which sends (s,m) ∈ S ×M to (β ◦ α)(s) ·m.
By Proposition 2.7, − ⊗R T is a left adjoint to resβ◦α. By virtue of the identity resβ◦α =

resβ ◦ resα, we have that the composition (− ⊗R S) ⊗S T is left adjoint to the same functor. In
particular, we obtain a natural isomorphism between functors

(−⊗R S)⊗S T ' −⊗R T,

since adjoint functors are unique up to a unique natural isomorphism.

The following lemma is recorded for later purposes.
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Lemma 2.9. If R → S and R → T are ring homomorphisms, then the tensor product S ⊗R T
carries a natural ring structure. We have natural ring homomorphisms S → S ⊗R T (sending s to
s⊗ 1), and T → S ⊗R T (sending t to 1⊗ t), such that the diagram

R //

��

T

��

S // S ⊗R T,

(7)

commutes. Moreover, it is cocartesian in the category Rng (a pushout diagram), i.e., for every
other ring A, such that

R //

��

T

g

��

S
f
// A,

(8)

commutes, there exists a unique morphism S ⊗R T → A, rendering the resulting diagram commu-
tative.

Proof. One checks easily that (s ⊗ t) · (s′ ⊗ t′) = ss′ ⊗ tt′ yields a well-defined ring structure. For
r ∈ R we have r ⊗ 1 = (r · 1) ⊗ 1 = 1 ⊗ r, hence diagram (8) commutes indeed. If A is a ring,
as in the assertion above, we may produce the required map S ⊗R T → A, by sending s ⊗ t to
f(s) · g(t).

2.1.2 Base change invariant properties

The functor − ⊗R S preserves many properties of modules. We begin by recalling the definition
of these properties, and then state that they are preserved by tensor products. Our list is by no
means complete. A widely accepted dogma is that any reasonable property of modules should be
preserved by base change.

Definition 2.10. Let R be a ring, and MR an R-module.

(a) We say that MR is finite, if there exists a positive integer n, and a surjection Rn �MR.

(b) The R-module MR is called free if there exists a basis, i.e. an isomorphism M ∼= R⊕I , where
I is a set.

(c) The R-module MR is called projective, if there exists an R-module NR, such that MR ⊕NR
is free (i.e. MR is a direct summand of a free module).

This leads us to the assertion that those properties of modules are preserved by base change.

Proposition 2.11. If MR satisfies property (x) from Definition 2.10, then so does MR ⊗R S.

Proof. Finiteness of module is preserved, since − ⊗R S is a right exact functor, therefore sends a
surjection Rn � MR to a surjection Sn � MR ⊗R S. The second assertion follows from the fact
that RR⊗RS ∼= S, and that tensor products commute with direct sums. The third assertion follows
from similar reasoning: we know that MR ⊕NR is a free R-module. In particular, the direct sum

(MR ⊗R S)⊕ (NR ⊗R S) ∼= (MR ⊕NR)⊗R S

is free as well. This proves that MR ⊗R S is projective.
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In Subsection 2.2 we investigate when properties descend, i.e., when can we conclude from
MR ⊗R S having property (x) that MR has property (x)? This is the case if R → S is faithfully
flat. We will see that all properties on the list, except from freeness, descend.

2.1.3 Flatness

The functors resα and −⊗R S are examples of so-called additive functors (i.e. preserving addition
of morphisms). They satisfy additional properties, with respect to exact sequences of modules.

Definition 2.12. Let F : Mod(R) //Mod(S) be an additive functor between categories of modules.

(a) We say that F is left exact, if it sends an exact sequence

0→ U → V →W

of R-modules to an exact sequence

0→ F (U)→ F (V )→ F (W ).

(b) The functor F is called right exact, if it sends an exact sequence

U → V →W → 0

to an exact sequence
F (U)→ F (V )→ F (W )→ 0.

(c) If F is both left and right exact, it is called an exact functor. Equivalently, it sends a short
exact sequence

0→ U → V →W → 0

to a short exact sequence

0→ F (U)→ F (V )→ F (W )→ 0.

A sequence of S-modules is exact if and only if the underlying sequence of abelian groups is
exact. Since the restriction functor resα doesn’t alter the underlying abelian group, we obtain the
following lemma.

Lemma 2.13. The functor resα is exact.

We will deduce from abstract nonsense that −⊗R S is right exact.

Lemma 2.14. Let F : Mod(R)→ Mod(S) be an additive functor which is left adjoint to a functor
G : Mod(S)→ Mod(R). Then, F is right exact.

Proof. 3 For the one direction, if the sequence is exact, then clearly HomR(WR,MR)→ HomR(VR,MR)
is injective and the composite HomR(WR,MR) → HomR(VR,MR) → HomR(UR,MR) is zero. To
show exactitude, suppose that f : VR →MR becomes zero when precomposed with UR → VR. Thus

3This proof was provided by Alexander Betts.
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f vanishes on the image of UR and so factors (uniquely) through the cokernel WR
∼= VR/ image(UR)

as desired.
For the converse direction, suppose that

0→ HomR(WR,MR)→ HomR(VR,MR)→ HomR(UR,MR)

is exact for any R-module MR. Let W ′R be the cokernel of UR → VR, so by the first part the same
is true of W ′R. Applying the exact sequence when MR = W ′R tells us that there is a unique map
WR →W ′R making commute

UR // VR // WR
//

��

0

UR // VR // W ′R
// 0

By exactly the same argument, there is also a unique map W ′R → WR making an appropriate
diagram commute. These are mutually inverse, since the composite WR →W ′R →WR must be the
unique map WR → WR making an appropriate diagram commute – this is of course the identity
map on WR. Similarly the composite W ′R →WR →W ′R is the identity on W ′R so WR is isomorphic
to the cokernel W ′R of UR → VR as desired.

For the second part, a small amount of care is needed. Suppose that

UR → VR →WR → 0

is exact. Then from naturality of the bijection in the adjunction, for each S-module NS we have a
commuting diagram

0 // HomS(F (WR), NS) //

∼
��

HomS(F (VR), NS) //

∼
��

HomS(F (UR), NS)

∼
��

0 // HomR(WR, G(NS)) // HomR(VR, G(NS)) // HomR(UR, G(NS))

where the bottom row is exact. This implies that HomS(F (WR), NS)→ HomS(F (VR), NS) is injec-
tive, and that its image is precisely the preimage of f ∈ HomS(F (UR), NS), where f is the element
corresponding to 0 ∈ HomR(UR, G(NS)) under the adjunction. However, 0 ∈ HomS(F (VR), NS) is
in the image of HomS(F (WR), NS) → HomS(F (VR), NS), and so we see that f = 0 and the top
row is exact.

Now the first part tells us that

F (UR)→ F (VR)→ F (WR)→ 0

is exact, i.e. that F is right exact.

Corollary 2.15. The tensor product functor −⊗R S is right exact.

Proof. By Proposition 2.7 it is left adjoint to the restriction functor resα. Since the latter is exact,
thus left exact, we obtain from Lemma 2.14 that −⊗R S is right exact.

Note that base change is not always a left exact functor, as we can see from the example below.
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Example 2.16. Consider for instance the ring homomorphism

α : Z→ Z/2Z,

and the short exact sequence

0→ Z ·2−→ Z→ Z/2Z→ 0.

Tensoring this sequence with Z/2Z, we obtain (from Example 2.5)

0→ Z/2Z 0−→ Z/2Z→ Z/2Z→ 0,

which isn’t exact.

The favourable case, where base change is an exact functor, deserves therefore a special name.

Definition 2.17. An R-module M is said to be flat, if −⊗RM : Mod(R)→ Mod(E) is an exact
functor. An R-algebra S is flat, if it is flat as R-module, i.e. if S ⊗R − is exact.

Free modules are the prime example of flat modules.

Example 2.18. The ring R, as a module over itself, is flat, since the tensor product functor is
naturally equivalent to the identity functor. Hence, a free R-module, i.e. a direct sum R⊕I , is flat.
Since every vector space over a field K is a free K-module, every K-module or K-algebra is flat.

Recall that an R-module is called projective, if it is a direct summand of a free module. Since
flatness is inherited to direct summands, and free modules are flat, we see that projective modules
are flat.

Lemma 2.19. The base change of a flat R-module is again flat. Hence, if MR is flat, so is S⊗RMR.

Proof. This follows from the property

S ⊗R (MR ⊗R NR) ∼= (S ⊗RMR)⊗S (S ⊗R NR).

2.2 Faithfully flat descent

2.2.1 Basic properties

Faithfully flat R-algebras S are flat R-algebras, which reflect if a module is zero.

Definition 2.20. A flat R-algebra S is called faithfully flat, if for every R-module MR we have
that S ⊗RMR = 0 implies that MR is the zero module.

A faithfully flat R-algebra S allows us to check that module is zero after tensoring with S.
This definition implies directly that many other properties of modules, and morphisms of modules,
descend along faithfully flat maps.

Lemma 2.21. Let α : R→ S be a faithfully flat ring homomorphism.

(a) Let f : MR → NR a morphism of R-modules, such that S ⊗RMR → S ⊗RMR is an injection
(respectively a surjection), then f is an injection (respectively a surjection).
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(b) A sequence of R-modules

UR
f−→ VR

g−→WR,

with g ◦ f = 0 is exact, if and only if the base change

S ⊗R UR → S ⊗R VR → S ⊗RWR

is exact.

(c) If MR is an R-module, such that S ⊗RMR is a finite S-module, then MR is finite as well.

(d) If S ⊗RMR is a finite projective S-module, then MR is a finite projective R-module.

(e) Flatness of S ⊗RMR as S-module implies flatness of MR as R-module.

Proof. A morphism of modules f : MR
//NR is an injection if and only i ker f = 0 (respectively if

coker f = NR/ image f = 0). Flatness of S implies that S⊗R− preserves ker and coker. Therefore,
by the assumption that S is faithfully flat, we see that f is an injection (respectively a surjection)
if and only if its base change is. This concludes the proof of (a).

Flatness implies that exactness is preserved, therefore it suffices to show that exactness of

S ⊗R UR → S ⊗R VR → S ⊗RWR

implies that
UR → VR →WR

is exact. Since g ◦ f = 0, we have to show that the induced map

coker f → ker g

is an isomorphism. We know that this is true after applying the functor S ⊗R −, this implies the
assertion, using statement (a).

Assertion (c) follows directly from (a). Choose a finite basis n1, . . . , n` for S ⊗R MR, where
each ni can be written as a sum mi1 ⊗ si1 + · · ·mik ⊗ sik. We claim that the collection of elements
mij yields a basis for MR. This is the case, since the corresponding map (R`k //MR) ⊗R S is a
surjection. Hence, by (a) R`k //MR is already a surjection.

The proof of assertion (d) is left as an exercise.4 Assertion (e) follows from (b).

It is also true that projectivity descends without finiteness assumptions, but the proof requires
Raynaud–Gruson’s characterisation of projective modules.

Lemma 2.22. Let R→ S be faithfully flat, and R→ T an arbitrary morphism of rings. Then the
co-base change T → S ⊗R T is faithfully flat.

Proof. We have seen in Lemma 2.19 that co-base change preserves flatness. Hence, we only have
to show that for a T -module MT we have MT ⊗T (S ⊗R T ) = 0 if and only if MT = 0. By virtue
of MT ⊗T (S ⊗R T ) ∼= MT ⊗R S, we see that MT must be zero. This concludes the proof.

4Jack volunteered.
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2.2.2 Descending modules

So far our treatment of descent theory has focused on qualitative aspects of modules. We have
seen that properties like finiteness, flatness, and projectivity descend along faithfully flat map of
rings. One can do better. It is possible to describe the datum of an R-module MR in terms of the
S-module S ⊗RMR, endowed with extra structure, which we will pin down subsequently.

We refer the reader to Vistoli’s chapter in [FGI+05, Thm. 4.21] for a more detailed version of
the proofs below.

Definition 2.23. For a ring homomorphism R→ S we define a category DescR→S as the category
of pairs (MS , φ), where MS is an S-module, and φ is an isomorphism of S ⊗R S-modules

φ : MS ⊗R S
∼=−→ S ⊗RM,

which satisfies the identity

MS ⊗R S ⊗R S //

))

S ⊗RM ⊗R S

��

S ⊗R S ⊗RMS

(9)

of (S ⊗R S ⊗R S)-modules.

Forgetting the isomorphism φ (a.k.a. the descent datum), we obtain a forgetful functor

DescR→S → Mod(R).

Base change always factors through this forgetful functor.

Lemma 2.24. We have a commutative diagram of categories5

Mod(R) //

S⊗R− %%

DescR→S

��

Mod(S).

By abuse of language, the resulting functor Mod(R)→ DescR→S will also be denoted by S ⊗R −.

Proof. Let MR be an R-module. We have to produce an isomorphism φM of (S ⊗R S)-modules

(S ⊗RMR)⊗R S
φ−→ S ⊗R (S ⊗RMR).

There is a natural choice for such a morphism, it sends the element s1⊗m⊗ s2 to s1⊗ s1⊗m. We
now have to check that (9) is satisfied. This amounts to

s1 ⊗m⊗ s2 ⊗ s3 7→ s1 ⊗ s2 ⊗m⊗ s3 7→ s1 ⊗ s2 ⊗ s3 ⊗m

being the same map as
s1 ⊗m⊗ s2 ⊗ s3 7→ s1 ⊗ s2 ⊗ s3 ⊗m.

This defines the required functor Mod(R)→ DescR→S , such that the diagram above commutes.

5We adopt the convention that a diagram of functors which commutes up to a natural transformation is called
commutative. A more precise formulation would be to call such diagrams 2-commutative.
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Theorem 2.25 (Faithfully flat descent). Let R → S be a faithfully flat morphism of rings. The
canonical functor

−⊗R S : Mod(R) // DescR→S

is an equivalence of categories.

Proof. We denote the functor −⊗R S by F . Let G : DescR→S → Mod(R) be the functor, sending
(MS , φ) to the R-module

G(MS , φ) = {m ∈M |φ(m⊗ 1) = 1⊗m}.

We claim that F andG are mutually inverse functors. At first, we construct a natural transformation
idMod(R) → GF , i.e. for every R-module MR a canonical map

τ : M→ G(S ⊗RMR).

Lemma 2.26. Let R → S be faithfully flat, and MR an R-module. For i = 1, 2 we denote by
ei : S → S ⊗R S the maps e1(s) = s⊗ 1, and e2(s) = 1⊗ s. The sequence

0→MR
δ−→ S ⊗RMR

(e1−e2)⊗RidM−−−−−−−−−−→ S ⊗R S ⊗RMR

is an exact sequence.

We will prove this lemma at the end of this subsection. For now we note that ker((e1−e2)⊗RidM )
can be identified with G(S ⊗RMR), since we have

((e1 − e2)⊗R idM )(s⊗ b) = s⊗ 1⊗m− 1⊗ s⊗m = φM (s⊗m⊗ 1)− 1⊗ s⊗m.

By virtue of the lemma we have that G(S ⊗RMR) is isomorphic to MR.
Vice versa, if (NS , φ) is an object in DescR→S , we have to produce a natural morphism

γ : S ⊗R G(NS , φ)→ NS .

By definition, we have that G(NS , φ) ⊂ NS . In particular, we obtain a morphism γ by S-linear
extension:

s⊗ n 7→ s · n.
As before, we have to check that γ is an isomorphism. In order to see this, we define morphisms
of modules fi : NS // S ⊗R NS for i = 1, 2. We set f1(n) = 1 ⊗ n, and f2(n) = φ(n ⊗ 1). The
morphisms are chosen in a way, such that we have

G(N,φ) = ker(f1 − f2).

We then use the following commutative diagram

0 // MR ⊗R S //

γ◦T
��

N ⊗R S
(e1−e2)⊗RidS

//

φ

��

S ⊗RMR ⊗R S

��

0 // NS // S ⊗R NS
(f1−f2)
// S ⊗R S ⊗R NS .

Here, T denotes the map exchanging the factors MR ⊗R S
∼=−→ S ⊗RM . Since the second and third

vertical arrow are isomorphisms, so is the first. This implies that S ⊗R G(NS , φ) ∼= NS .
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It remains to prove Lemma 2.26. It could be considered at the key technical result which lies at
the heart of descent theory. It is also the only place where we will visibly use the assumption that
α : R→ S is faithfully flat.

Proof of Lemma 2.26. We assume that there exists a ring homomorphism g : S → R, such that
g ◦ α = idR. In plain language: g is a left inverse. This implies in particular that α is injective,
hence deals with exactness at the first node from the left. We have to show that an element in
the kernel of (e1 − e2) ⊗ idM lies in the image of δ. Let s ⊗ m be in the kernel, i.e. we have
s⊗m⊗ 1 = 1⊗ s⊗m. Apply the map g to the first factor, which yields the identity

g(s)⊗m = s⊗m.

Since g(s) ∈ R, we can rewrite the left hand side as 1⊗ g(s)m. This implies that s⊗m ∈ image(δ).
If R→ S is a ring homomorphism, we observe that the base change

R⊗R S ∼= S → S ⊗R S

has a section given by the multiplication map S⊗R S → S. This implies directly that the sequence
of Lemma 2.26 is exact, after tensoring with −⊗R S. Since α : R→ S is faithfully flat, we conclude
from Lemma 2.21(b) that the original sequence is exact as well.

2.2.3 Descent for ring homomorphisms

Assume that we have a ring homomorphism β : S → T , and a third ring R. We will see in this
paragraph that ring homomorphisms from R to S can be described in terms of the composition
R → T , provided that β is faithfully flat. While this is a purely algebraic statement at this point,
we will give a geometric interpretation of this result in a later section.

Proposition 2.27. We have natural maps e1 : T → T ⊗S T , and e2 : T → T ⊗S T . The diagram
of sets

HomRng(R,S)→ HomRng(R, T ) ⇒ HomRng(R, T ⊗S T )

is an equalizer diagram in the category of sets. I.e., the set of ring homomorphism g : R → T ,
satisfying e1 ◦ g = e2 ◦ g, is in bijection with the set of ring homomorphisms f : R→ S.

Proof. Lemma 2.26 implies that we have an exact sequence

0→ S
e1−e2−−−−→ S ⊗R S,

hence an equalizer diagram in the category of rings

S → T ⇒ T ⊗S T.

Since HomRng(R,−) sends equalizers to equalizers, we obtain the assertion.

3 Sheaves and stacks

Grothendieck topologies provide a framework which allow to formalise the process of glueing global
data from local data. The ability to glue, or descend, is the defining quality of sheaves and stacks.
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3.1 Sheaves

3.1.1 Topological spaces

We fix a topological space X. There is a category, denoted by Open(X), whose objects are open
subsets U ⊂ X, and morphisms are inclusions U ⊂ V .

Definition 3.1. A (set-valued) presheaf on X is a functor F : Open(X)op → Set.

In more concrete terms, we associate to every open subset U ⊂ X a set F (U), as well as a
restriction map

rVU : F (V )→ F (U)

for every inclusion U ⊂ V . Moreover, the conditions

(a) rUU = idF (U),

(b) rVU ◦ rWV = rWU for triples of open subsets U ⊂ V ⊂W ,

are satisfied.
If Y is a topological space, we denote by Y X the presheaf on X, which associates to an open

subset U ⊂ X the set of continuous functions U → Y , i.e.,

Y X(U) = HomTop(U, Y ).

The restriction maps rVU are given by
f 7→ f |U ,

i.e., sending a continuous map f : V → Y to the composition f ◦ i, where i : U ↪→ V denotes the
inclusion.

If U =
⋃
i∈I Ui is an open covering, we have for every pair of open subsets Ui, Uj two maps

Ui ←↩ Ui ∩ Uj ↪→ Uj .

Hence, for every presheaf F we have a pair of restriction maps

F (Ui)→ F (Ui ∩ Uj)← F (Uj).

Taking a product over all pairs (i, j) ∈ I2, and relabelling indices, we obtain∏
i∈I

F (Ui) ⇒
∏

(i,j)∈I2

F (Ui ∩ Uj).

Definition 3.2. A presheaf F is called a sheaf, if for every open subset U ⊂ X, and every open
covering U =

⋃
i∈I Ui, we have that

F (U)→
∏
i∈I

F (Ui) ⇒
∏

(i,j)∈I2

F (Ui ∩ Uj)

is an equalizer diagram.
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Unravelling the definition of equalizers, we see that a presheaf is a sheaf, if and only if for
every U =

⋃
i∈I Ui as above, the following condition is satisfied: given a collection of local sections

si ∈ F (Ui), which agree on overlaps, i.e. satisfy rUiUi∩Uj (si) = r
Uj
Ui∩Uj (sj) for all pairs of indices,

there exists a unique section s ∈ F (U), such that rUUi(s) = si.

Lemma 3.3. The presheaf Y X is a sheaf.

Concrete proof. If fi : Ui → Y are continuous functions, such that fi|Ui∩Uj = fj |Ui∩Uj for all pairs
of indices, then there is a well-defined map of sets f : U → Y , which sends x ∈ U to fi(x), if x ∈ Ui.
Since continuity is a local property, i.e. continuity at a point x ∈ X depends only on the restriction
f |Ui , for x ∈ Ui, we see that f is a continuous function.

Abstract proof. We can represent U as a co-equalizer∐
(i,j)∈I2

Ui ∩ Uj ⇒
∐
i∈I

Ui → U,

i.e., as a colimit in the category Top of topological spaces. The universal property of colimits implies
that HomTop(−, Y ) sends a co-equalizer to an equalizer.

3.1.2 Grothendieck topologies and sheaves

Definition 3.1 of presheaves would work for any category C instead of OpenX . In fact, our prime
example, the sheaf Y X , extends by definition to a functor

TopopHomTop(−,Y )
// Set

Open(X)op.

OO

Y X

99

The only reason to prefer the category Open(X) over an abstract category C is the fact that we
have a notion of open coverings in Open(X), coming from point-set topology. This is essential to
introduce sheaves. Grothendieck topologies provide a remedy for general categories.

Definition 3.4. Let C be a category. A Grothendieck topology T on C consists of a collection of
sets of morphisms (called coverings) {Ui → U}i∈I for each object U ∈ C, satisfying:

(a) For every isomorphism U ′ → U , the singleton {U ′ → U} is a covering.

(b) Coverings are preserved by base change, i.e. if {Ui → U}i∈I is a covering, and V → U a
morphism in C, then {Ui ×U V → V }i∈I is well-defined, and a covering.

(c) Given a covering {Ui → U}, and for each i ∈ I a covering {Uij → Ui}j∈Ji , then

{Uij → U}(i,j)∈∏i∈I Ji

is a covering.
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Originally, Grothendieck topologies were called pre-topologies. We drop the prefix, but will
comment later on the reasons for this distinction.

A pair (C, T ) is called a site. Implicitly, we have already seen an example of a site.

Example 3.5. (a) For the category Open(X), for X a topological space, we have a natural choice
for a Grothendieck topology. We define T (X) to be the collection of all {Ui ⊂ U}, such that⋃
i∈I Ui = U .

(b) The Grothendieck topology T (X) can be extended to T on Top. We say that {Ui
fi−→ U}i∈I ∈

T , if
⋃
i∈I f(Ui) = U , and each fi is an open map, which is a homeomorphism onto its image

(in other words, it is equivalent to the inclusion of an open subset).

(c) Let Aff denote the category Rngop. Recall, that we denote the object in Aff, corresponding
to the ring R by SpecR. We have a Grothendieck topology on Aff, consisting of singletons
{SpecS → SpecR}, where R→ S is a faithfully flat map of rings.

Proof. Statements (a) and (b) follow right from the definitions. We will therefore focus on assertion

(c). We know that an isomorphism of rings R
'−→ S is faithfully flat, hence axiom (a) of Definition

3.4 is satisfied. We now have to show that for a covering {SpecS → SpecR}, and an arbitrary map
SpecT → SpecR, the base change

SpecS ×SpecR SpecT → SpecT

is also a covering. Note that SpecS ×SpecR SpecT ∼= Spec(S ⊗R T ), since the tensor product is
the coproduct in the category Rng (Lemma 2.9). For a faithfully flat R-algebra S, the base change
S ⊗R T is a faithfully flat T -algebra (Lemma 2.22), which concludes the verification of axiom (b)
of Definition 3.4.

If (C, T ) is a site, we can make sense of sheaves on C. We define a presheaf on C to be a
functor Cop → Set. We will use the abstract coverings provided by the Grothendieck topology T
to make sense of the sheaf condition. In order to imitate Definition 3.2, we have to make sense of
the intersection Ui ∩ Uj .

Definition 3.6. Let C be a category, and f : X → Z, g : Y → Z two morphisms. Consider the
category of diagrams

W //

��

Y

��

X // Z.

If it exists, we denote the top left corner (W ) of the final object in this category by X ×Z Y , and
call it the fibre product of the two morphisms f and g.

By the definition of final objects, we see that whenever we have a commutative diagram as
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above, there exists a unique morphism W → X ×Z Y , such that the resulting diagram

W

))

��

∃!
$$

X ×Z Y //

��

Y

��

X // Z.

commutes.

Example 3.7. For a topological space X, and inclusions of open subsets U ↪→ X, V ↪→ X, we have
that the fibre product U ×X V in the category Open(X), respectively Top, is given by the inclusion
of the open subset U ∩ V ↪→ X.

This motivates us to replace every occurrence of intersections, in the definition of a sheaf, by
fibre products.

Definition 3.8. Let C be a category. A functor F : Cop → Set is called a presheaf. The category
of presheaves will be denoted by Pr(C). If (C, T ) is a site, a presheaf is called a sheaf, if for every
{Ui → U}i∈I the diagram

F (U)→
∏
i∈I

F (Ui) ⇒
∏

(i,j)∈I2

F (Ui ×U Uj)

is an equalizer. We denote the full subcategory of sheaves by ShT (C).

The heuristics behind this definition is the same as for topological spaces. Given an abstract
covering {Ui → U}i∈I of U ∈ C, and locally defined sections si ∈ F (Ui), which agree when restricted
(or pulled back) to the ”intersections” Ui×U Uj , then there exists a unique section s ∈ F (U), which
agrees with si over each Ui.

3.1.3 Three examples

What makes the theory of sheaves over general sites slightly more harder to wrap ones head around
is the fact that the maps of the abstract coverings Ui → U cannot be pictured as inclusions
of open subsets, but could in principle be arbitrarily complicated. In this paragraph we discuss
three abstract examples of Grothendieck topologies and sheaves, which illustrate that the glueing
procedure, imposed by the sheaf condition, can be reasonable even in the absence of topological
context.

Example 3.9. Let C = Set be the category of sets. We consider the Grothendieck topology T ,

which consists of all collections {Ui
fi−→ U}, such that

⋃
i∈I f(Ui) is surjective. For a set X we have

the presheaf hX = HomSet(−, X), represented by X. We claim that hX is a sheaf with respect to
the topology T .

Example 3.10. For C the category of open subsets U ⊂ Rn (where n is allowed to vary), and

smooth maps as morphisms, we may choose T to consist of all sets {Ui
fi−→ U}i∈I , where each fi is

28



a smooth submersion, and
⋃
i∈I f(Ui) = U . Every smooth manifold X gives rise to a sheaf on C,

by sending U ∈ C to the set of smooth maps U → X. The resulting functor

Mfd→ ShT (C)

is an embedding of categories (i.e. fully faithful).

Proof. Exercise.6

Example 3.11. As in Example 3.5(c), we choose C to be Aff = Rngop, with the topology induced
by {SpecS → SpecR}, with R → S being a faithfully flat map of rings. For every SpecT ∈ Aff,
the presheaf hSpecT = HomAff(−,SpecT ), represented by SpecT , is a sheaf.

Proof.

3.2 Stacks

3.2.1 Groupoids as generalised sets

Definition 3.12. A category in which every arrow is invertible is called a groupoid.

Every set can be viewed as a category, with every morphism being the identity morphism of
an object. Hence, sets give rise to examples of groupoids. Groupoids are best visualised as a
generalised set, where every element has a possibly non-trivial group of automorphisms.

Example 3.13. Let G be a group acting on a set X. We denote by [X/G] the so-called quotient
groupoid. It is defined to be the category, whose set of objects is X. A morphism x → y is given
by an element g ∈ G, such that g · x = y. For every x ∈ X, we have Aut[X/G](x) = Gx, i.e. the
stabiliser subgroup of x ∈ X.

Another example of groupoids is induced by topological spaces.

Example 3.14. For every topological space X we have a groupoid π≤1(X), whose objects are given
by the points x ∈ X, and morphisms are homotopy classes of paths x→ y. We have Autπ≤1(X)(x) =
π1(X,x), by definition. One can show that every groupoid arises as π≤1(X) for a topological space
X.7

One could arrange groupoids into a category. However, this is often too strict, to capture the
higher nature of groupoids. It is infinitely more sensible to consider the 2-category of groupoids
instead.

Definition 3.15. A (strict) 2-category C consists of the following data:

• a class of objects Obj(C),

• for every X,Y ∈ Obj(C) a category HomC(X,Y ) of morphisms,

• for X,Y, Z ∈ Obj(C) a functor ◦ : HomC(X,Y )× HomC(Y, Z)→ HomC(X,Z),

6Volunteers?
7Jack volunteered.
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• for every X ∈ Obj(C) an object idX ∈ HomC(X,X), satisfying idY ◦f = f ◦ idX = f , for
every f ∈ HomC(X,Y ),

• such that associativity holds, i.e. for X,Y, Z,W ∈ Obj(C) we want the two natural functors
HomC(X,Y )× HomC(Y,Z)× HomC(Z,W )→ HomC(X,W ) to agree.

In other words, a 2-category is a category, where we additionally have 2-morphisms between
morphisms.

Example 3.16. We denote by Cat the 2-category of (small) categories. It’s class of objects is
the class of categories whose class of objects is a set (hence, the terminology small).8 The set of
morphisms HomCat(C,D) is defined to be the set of functors Fun(C,D). We denote by [F,G] the set
of natural transformations between two functors F,G : C→ D. Recall that a natural transformation
consists of a morphism ηX : F (X) → G(X) for every object X ∈ C, such that for every arrow
α : X → Y the diagram

F (X)
F (α)

//

ηX

��

F (Y )

ηY

��

G(X)
G(α)

// G(Y )

commutes. The full 2-subcategory of groupoids will be denoted by Gpd.

Every 2-morphism in the 2-category Gpd is invertible. Such a 2-category is often called a (2, 1)-
category.

3.2.2 Stacks as groupoid-valued sheaves

In order to define prestacks and stacks, we have to clarify the notion of functors between 2-categories.
The naive definition, which requires a functor to respect composition on the nose, is too strict to
be a good definition by today’s understanding of category theory. However, it gets the job done
(since every functor can be strictified), and we will therefore stick to it for now.

Definition 3.17. Let C and D be 2-categories. A strict functor F : C → D is given by a map
between objects Obj(C) → Obj(D), as well as a functor HomC(X,Y ) → HomC(F (X), F (Y )) for
every pair of objects X,Y , which is compatible with composition.

The definition of sheaves also rested on the notion of equalizers, i.e., limits. Therefore it is
necessary to discuss limits in the 2-categorical framework of groupoids. We first give a concrete
definition of the limit of a diagram of groupoids.

Definition 3.18. Let I be a category, and I → Gpd a functor, which sends i ∈ I to the groupoid
Ci. The limit limi∈I Ci is defined to be the following groupoid: its objects are collections Xi ∈ Ci,

and for every morphism α : i → j in I an isomorphism φα : F (α)(Xi)
'−→ Xj, such that for two

composable arrows α : i→ j, and β : j → k, we have φβ◦α = φβ ◦ φα.

Limits in 2-categories are often referred to as 2-limits. We drop the prefix, and refer to a limit
in the classical sense in a 2-category as strict limit. As one would expect, limits are characterised
by a universal property.

8This distinction between sets and classes is usually handled by referring to universes. The reader not acquainted
with these aspects of set theory can safely ignore all set-theoretic intricacies.
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Definition 3.19. Let C be a category. A prestack9 is a strict functor Cop → Gpd. The 2-category of
prestacks will be denoted by PrSt(C). If (C, T ) is a site, we denote by StT (C) the full 2-subcategory
of prestacks F , for which for every {Ui → U}i∈I the diagram10

F (U)→
∏
i∈I

F (Ui) ⇒
∏

(i,j)∈I2

F (Ui ×U Uj)
∏

(i,j,k)∈I2

F (Ui ×U Uj ×U Uk)

induces is a limit in the 2-category of groupoids (i.e., induces an equivalence with the limit defined
in Definition 3.18). We call such a prestack a stack. The full 2-subcategory of stacks will be denoted
by StT (C).

In concrete terms, the definition of a stack is tantamount to the following.

Lemma 3.20. A prestack F is a stack if and only if the following two conditions are satisfied.

(a) For every {Ui → U}i∈I , and a collection of objects Xi ∈ F (Ui), and isomorphisms

φij : Xi|Ui×UUj
'−→ Xj |Ui×UUj ,

which satisfy the cocycle condition φij ◦ φjk = φik on Ui ×U Uj ×U Uk, there exists an object

X ∈ F (U), together with isomorphisms φi : X|Ui
'−→ Xi.

(b) For every U ∈ C, and X,Y ∈ F (U), we have that the functor Hom(X,Y ) : C/U → Set, which
sends V → U to Hom(X|V , Y |V ) is a sheaf.11

Proof. 12 To show that these conditions are sufficient, suppose that we have a prestack F on C
satisfying (i) and (ii). Fix a covering {Ui → U}i∈I . The commutativity of

F (U)→
∏
i∈I

F (Ui) ⇒
∏
i,j∈I

F (Ui ×U Uj)
∏

i,j,k∈I

F (Ui ×U Uj ×U Uk)

and the universal property of limits gives us a canonical functor from F (U) to the limit of∏
i∈I

F (Ui) ⇒
∏
i,j∈I

F (Ui ×U Uj)
∏

i,j,k∈I

F (Ui ×U Uj ×U Uk) (∗).

It is enough, then, to show that this functor is fully faithful and essentially surjective. Let us denote
the two parallel maps

α1, α2 :
∏
i∈I

F (Ui) ⇒
∏
i,j∈I

F (Ui ×U Uj)

and the three parallel maps

β1, β2, β3 :
∏
i,j∈I

F (Ui ×U Uj)
∏

i,j,k∈I

F (Ui ×U Uj ×U Uk).

9Note that our terminology differs from Vistoli’s.
10parametrised by the category, whose objects are the ordered sets {0}, {0, 1}, {0, 1, 2} ⊂ N, with order-preserving

maps as morphisms.
11In Vistoli’s convention, a prestack is required to satisfy this property.
12This proof was provided by Craig Smith.

31



Then the limit of (∗) has as object collections (C1, C2, C3) where

C1 ∈
∏
i∈I

F (Ui), C2 ∈
∏
i,j∈I

F (Ui ×U Uj), C3 ∈
∏

i,j,k∈I

F (Ui ×U Uj ×U Uk)

such that there are isomorphisms ζn : C2

∼=−→ αn(C1) and ξm : C3

∼=−→ βm(C2) that compose to

give isomorphisms C3

∼=−→ βmαn(C1). Given (C1, C2, C3) in the limit of (∗), we have C1 = (Xi)i∈I ,
C2 = (Yi,j)i,j∈I , C3 = (Zi,j,k)i,j,k∈I for Xi ∈ F (Ui), Yi,j ∈ F (Ui×U Uj), Zi,j,k ∈ F (Ui×U Uj×U Uk).
Then the isomorphisms ζm are of the form ζm = (ζi,jm )i,j∈I giving isomorphisms

φi,j = ζi,j2 (ζi,j1 )−1 : Xi|Ui×UUj
∼=−→ Xj |Ui×UUj .

Then these satisfy the cocycle condition as ζi,j2 (ζi,j1 )−1ζj,k2 (ζj,k1 )−1, ζi,k2 (ζi,k1 )−1 agree when restricted

to F (Ui ×U Uj ×U Uk). Thus there is an object X ∈ F (U) with isomorphisms X|Ui
∼=−→ Xi by our

assumption. So the functor from the limit of (∗) to F (U) is essentially surjective.
Morphisms in the limit of (∗) are collections of morphisms (f1, f2, f3) : (C1, C2, C3)→ (C ′1, C

′
2, C

′
3),

where fi : Ci → C ′i, which induce commutative diagrams

C2 αn(C1)

C ′2 αn(C ′1)

∼=

∼=

C3 βm(C2)

C ′3 βm(C ′2).

∼=

∼=

Thus these morphisms are determined by maps f1 : C1 → C ′1 such that α1(f1) = α2(f1) under
the identification C2

∼= αn(C1). That is, morphisms in this limit correspond to morphisms in the
equaliser of

Hom(X|Ui , X ′|Ui) ⇒
∏
i,j∈I

Hom(X|Ui×UUj , X ′|Ui×UUj )

under our canonical functor. Since we assume that Hom(X|V , X ′|V ) is a sheaf for every X,X ′ ∈
F (U), we have exactly the result that this equaliser is Hom(X,X ′) in F (U), and that our functor
must be fully faithful. Thus we have that F (U) is isomorphic to the limit of (∗), and so F is a stack.

Suppose now that a F is a stack. Then for every {Ui → U}i∈I , F (U) is isomorphic to the limit
of the diagram ∏

i∈I
F (Ui) ⇒

∏
i,j∈I

F (Ui ×U Uj)
∏

i,j,k∈I

F (Ui ×U Uj ×U Uk) (∗)

So, for a collection of objects Xi ∈ F (Ui), and isomorphisms φij : Xi|Ui×UUj
∼=−→ Xj |Ui×UUj

satisfying the cocylce condition, we obtain an object

((Xi)i∈I , (Xi|Ui×UUj )i,j∈I , (Xi|Ui×UUj×UUk)i,j,k∈I)

of the limit of this diagram. Thus we get an X ∈ F (U) corresponding to this element. That is,
an X ∈ F (U) together with an isomorphism between the image of X under the map F (U) →∏
i∈I F (Ui) and the collection (Xi)i∈I . So we have isomorphisms φi : X|Ui → Xi.
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Suppose now that we have U ∈ C and X,Y ∈ F (U). Suppose further that we have a collection
of objects {Ui → U}i∈I in C/U . Then for every object (fi)i∈I in

∏
i∈I Hom(X|Ui , Y |Ui) which has

the same image under the parallel maps∏
i∈I

Hom(X|Ui , Y |Ui) ⇒
∏
i,j∈I

Hom(X|Ui×UUj , Y |Ui×UUj )

we obtain a morphism

((XUi)i∈I , (Xi|UixUUj )i,j∈I , (Xi|Ui×UUj×UUk)i,j,k∈I)→

((YUi)i∈I , (Yi|UixUUj )i,j∈I , (Yi|Ui×UUj×UUk)i,j,k∈I)

in the limit of the diagram (∗). Since F (U) is isomorphic to the limit of this diagram, we obtain
a unique map f : X → Y that restricts to the maps f |Ui : XUi → YUi . This is precisely the result
that

Hom(X,Y )→
∏
i∈I

Hom(X|Ui , Y |Ui) ⇒
∏
i,j∈I

Hom(X|Ui×UUj , Y |Ui×UUj )

is an equaliser diagram. That is, we have that the functor Hom(X,Y ) : C/U → Set, which sends
V → U to Hom(X|V , Y |V ) is a sheaf. Hence we have that these conditions are necessary.

3.2.3 Examples

The first example is closely related to what we discussed in the Subsection 1.1. We consider
a topological space X, and let C be the category Open(X) of open subsets, with its canonical
Grothendieck topology T . We know that it is possible to glue sheaves with respect to open coverings,
i.e. given U =

⋃
i∈I Ui, and a sheaf Gi on Ui, for each i ∈ I, as well as isomorphisms φij : Gi|Ui∩Uj →

Gj |Ui∩Uj , satisfying the cocycle condition, there is a sheaf G on U , well-defined up to a unique
isomorphism, which restricts to Gi on each Ui.

Example 3.21. Let F : Open(X)op → Gpd be the prestack which sends U ⊂ X to the groupoid13

of set-valued sheaves on U . Then, F is a stack.

In fact, we could have formulated this example without reference to topological spaces.

Proof of Example 3.21. 14 Suppose we have an open covering {Ui ⊂ U}i∈I and a collection of set-

valued sheaves Gi on Ui for i ∈ I with isomorphisms φi,j : Gi(Ui ∩ Uj)
∼=−→ Gj(Ui ∩ Uj) satisfying

the cocycle condition φi,j ◦ φj,k = φi,k on Ui ∩ Uj ∩ Uj . Then, for an open subset V ⊂ U we have
{Vi ⊂ V }i∈I is an open cover for V where Vi = V ∩ Ui. Then we define

G(V ) = {(si)i∈I ∈
∏
i∈I

Gi(Vi) | φi,j(si) = sj for all i, j}.

We want to check that this defines a sheaf on U . Suppose we have open subsets W ⊂ V ⊂ U . Then
we have Wi ⊂ Vi ⊂ Ui for all i ∈ I and so we have restriction morphisms ρi : Gi(Vi) → Gi(Wi).
Then we can define a map

G(V )→ G(W ), (ri)i∈I 7→ (ρi(ri))i∈I .

13This means that we discard all morphisms of sheaves, which are not isomorphisms.
14This proof was provided by Craig Smith.
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Since φi,j are morphisms of sheaves, they commute with the restrictions maps ρi, and hence
φi,j(ρi(ri)) = ρj(φi,j(ri)) = ρj(rj) for all i, j ∈ I for all (ri)i∈I ∈ G(V ). Hence this map is
well defined. It is clear then that G defines a functor Open(U)op → Set, and hence is a presheaf.

Suppose now that we have V ⊂ U with open covering {V (j) ⊂ V }j∈J . Let us again denote

Vi = V ∩ Ui, V (j)
i = V (j) ∩ Ui. Consider the parallel maps∏

j∈J
G(V (j)) ⇒

∏
i,k∈J

G(V (j) ∩ V (k)).

Then we clearly have a map G(V ) →
∏
j∈J G(Vj), which we must show is an equaliser of this

diagram. But this follows immediately from the fact that

Gi(Vi)→
∏
j∈J

Gi(V
(j)
i ) ⇒

∏
i,k∈J

Gi(V
(j)
i ∩ V (k)

i )

is an equaliser diagram for each i ∈ I.
Now we can define maps φi : G|Ui → Gi, (sj)j∈I 7→ si which clearly give our required com-

mutative diagram. These maps are clearly isomorphisms as we can define an explicit inverse
si 7→ (φi,j(si))j∈I . Thus we have our result.

The second example is of algebraic nature. We consider the site, introduced in Example 3.11.
Recall that its underlying category is Aff = Rngop. Coverings are given by morphisms corresponding
to faithfully flat ring homomorphisms R → S. We will reformulate the fact that modules satisfy
faithfully flat descent, (Theorem 2.25), using the language of stacks. The first formulation below
contains the gist of it, although it is strictly speaking incorrect, since the stack of modules, as
defined there, isn’t even a prestack. We will fix this after having discussed the general idea.

Example 3.22 (Naive/incorrect formulation). Consider the map Mod× which assigns to SpecR ∈
Affop the groupoid of R-modules (i.e., we discard all non-invertible morphisms of R-modules). The
map in induced by a morphism SpecS → SpecR (corresponding to R→ S) is given by S⊗R−. As
we have seen in Lemma 2.8, we have a natural equivalence of functors T ⊗S (S ⊗R −) ' T ⊗R −,
for every composable chain of ring homomorphisms R → S → T . But the functors don’t strictly
agree. We will ignore this subtlety for a moment, and pretend that Mod× is a well-defined prestack.
Theorem 2.25 implies then that Mod× is a stack.

The problem is that base change isn’t strictly transitive, but only up to a natural transformation.
In order to fix this, we use a general construction, which could be seen as a strictification strategy.
See also [Toe] for a more detailed account.

Definition 3.23. For a ring R we denote by M̃od(R) the groupoid, whose objects are S-modules

M(α) for every ring homomorphism α : R → S, together with isomorphisms φγ : M(α) ⊗S T
'−→

M(β) for every morphism γ of R-algebras:

R
γ
//

α

��

T

S,

β

??
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such that φidS : M(α) ⊗S S
'−→ M(α) is the canonical map, and for every composable pair of

morphisms of R-algebras δ : S → T , and ε : T →W , as given by a commutative diagram

R

α

��

β

��

γ

  

S
δ // T

ε // W,

we have a commutative square

(M(α)⊗S T )⊗T W //

��

M(β)⊗T W

��

M(α)⊗S W // M(γ).

The essential difference is that the restriction map is obtained by restricting a data to a smaller
index set, which is functorial on the nose, on not just up to a natural equivalence. However, we
still retain the original information, as the next lemma shows.

Lemma 3.24. The groupoids M̃od(R) and Mod(R)× are equivalent.

Proof. We have a functor F : M̃od(R)→ Mod(R)×, which sends (M(S), φS) to M(R). Let

G : Mod(R)× → M̃od(R)

be the functor, sending M ∈ Mod(R) to the tautological collection (M ⊗R S, idM⊗RS).
We certainly have (F ◦G)(M) agrees with M , by definition. Vice versa, given (M(S), φS), the

collection G(F (M(S), φS)) is given by (M(R) ⊗R S, idM(R)⊗RS), which is naturally equivalent to
(M(S), φS) by means of the system of maps φS .

We can now (correctly) formulate the faithfully flat descent as the statement:

Example 3.25. The prestack M̃od is a stack over Aff with respect to the Grothendieck topology
given by faithfully flat morphisms.

3.2.4 Fibre products in 2-categories

In the next section we will define the notion of algebraic stacks. The definition of algebraicity uses
fibre products of stacks. The universal property of fibre products can be formulated in an arbitrary
2-category.

Definition 3.26. Let C be a 2-category, an object X ∈ C is called final, if for every other object
Y ∈ C, there exists a morphism φ : Y → X, and for every two morphisms φ, ψ : Y → X, there
exists a unique invertible 2-morphism between φ and ψ.

Final objects in 2-categories provide a convenient way to introduce fibre products.
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Definition 3.27. For a co-span
Y

h

��

X
k
// Z,

we consider the 2-category, whose objects are 2-commutative diagrams

W
f
//

g

��

Y

h

��

X
k
// Z,

i.e., we have an invertible 2-morphism α : k ◦ f '−→ h ◦ g. A final object in this category of diagrams
will be referred to as fibre product, and the object in the top left corner W will be denoted by X×Z Y .

In the 2-category of groupoids Gpd, we have an explicit model for fibre products, which is closely
related to the one of Definition 3.18.

Remark 3.28. Let the co-span of Definition 3.27 be a diagram in the 2-category of groupoids. We
then have an explicit model for X ×Z Y , given by the groupoid, whose objects are triples (x, y, α),

with x ∈ X, y ∈ Y , and k(x)
α−→ h(y) being an isomorphism between k(x) and h(y) in the groupoid

Z.

In order to illustrate the concept of limits in 2-categories, we give a sample computation of a
2-limit.

Example 3.29. Let • be the set with one element, endowed with the trivial action of an abstract
group G acting on it. The fibre product • ×[•/G] • is equivalent to the set underlying the group G.

Proof. This follows directly from Remark 3.28. As we observe there, a model for the fibre product
is given by the set of triples (x, y, α) with x, y ∈ •, and α an automorphism of the object • ∈ [•/G]
(i.e., an element of G).

4 Algebraicity

In this section we add geometric meaning to the abstract functorial framework we have previously
built. Just like manifolds are geometric objects obtained by glueing the local model of Euclidean
space along smooth diffeomorphisms; schemes, algebraic spaces, and eventually also algebraic stacks,
are modelled in a similar style on affine schemes. The latter will be introduced by means of category
theory. We define the category of affine schemes to be the dual of the category of commutative rings.
This approach does not ”waste time” on constructing a geometric object whose ring of functions
agrees with a given commutative ring. Instead, we take the category of rings as it is, and assert
dogmatically its geometric content.
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4.1 Schemes

4.1.1 Affine schemes

Let us recall one more time the definition of affine schemes.

Definition 4.1. The category Aff of affine schemes is defined to be Rngop, i.e., the opposite category
of the category of (commutative and unital) rings.

We have already constructed a natural Grothendieck topology T on Aff, using faithfully flat
ring homomorphisms. There is a weaker topology, called the Zariski topology.

Definition 4.2. (a) Let R be a ring, and f ∈ R an arbitrary element. We denote by Rf the ring
R[t]/(tf − 1), obtained by adjoining an inverse for f . We say that SpecRf → SpecR is a
standard open subscheme of SpecR.

(b) We denote by Zar the Grothendieck topology on Aff, given by all collections {SpecSi →
SpecR}i∈I , which are isomorphic to

{SpecRfi → SpecR}i∈I ,

where I is a finite set, and fi ∈ R is a collection of elements, satisfying
∑
i∈I fi = 1.

The next lemma shows that faithfully flat descent theory is applicable to Zariski open coverings.

Lemma 4.3. Let {SpecSi → SpecR} ∈ Zar, then R→
∏
i∈I Si is a faithfully flat map of rings.

Proof. If I is a finite set, R→ Si a collection of ring homomorphisms, and M an R-module, then

M ⊗R (
∏
i∈I

Si) ∼=
⊕
i∈I

(M ⊗R Si).

In particular, we see that R→
∏
i∈I Si is flat, if and only if each homomorphism R→ Si is. Recall

that a localization R→ Rf is a flat map of rings. Indeed, for an R-module M , the tensor product
M ⊗R Rf can be described as a localization of the module: Mf = M [t]/M(tf − 1). Note that we
have a canonical map M →Mf , the kernel of which consists precisely of elements m ∈M , for which
there exists a power fn of f with fn ·m = 0. This implies that for an injective map of R-modules
M ↪→ N , the induced map Mf → Nf is injective as well.

To conclude the proof we have to show that
⊕

i∈IMfi
∼= 0, if and only if M = 0. The canonical

map

M →
⊕
i∈I

Mfi

would then be zero. In particular, for every m ∈M , and every i ∈ I, there would exist an ni ∈ N,
such that fnii ·m = 0. Let n = maxi∈I(ni) be the maximum of these positive integers. The relation

(
∑
i∈I

fi)
2n = 1

implies that m = (
∑
i∈I fi)

2n ·m = 0. This implies that M is the zero module.
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Corollary 4.4. The Yoneda embedding Aff ↪→ Pr(Aff) factorises through the full subcategory
ShZar(Aff) of Zariski sheaves:

Aff //

$$

ShZar(Aff)

��

Pr(Aff).

We identify the category Aff with its essential image inside Pr(Aff), respectively ShZar(Aff).
The sheaf corresponding to an object SpecR ∈ Aff is the actual geometric object, associated to the
ring R.

Definition 4.5. A morphism of affine schemes SpecS ∼= Y → X ∼= SpecR is called a closed
immersion, if it corresponds to a surjective ring homomorphism R� S.

This is tantamount to the classical viewpoint that closed subschemes of SpecR (or a variety)
are characterised by ideals in the ring of regular functions R.

Sometimes, the presheaf SpecR is easier to describe than the ring R (see example (c) below,
and Example 4.7).

Example 4.6. (a) We denote by A1
Z : Affop → Set the functor, sending a ring R to its set of

elements. We have a canonical equivalence A1
Z
∼= SpecZ[t].

(b) We denote by Gm ∈ Pr(Aff) the presheaf sending a ring R to the set of units R×. We have a
canonical equivalence Gm ∼= SpecZ[t, t−1].

(c) Let GLn ∈ Pr(Aff) be the functor, which sends a ring R to the set of invertible (n×n)-matrices
over R. We have a canonical equivalence GLn ∼= SpecZ[t11, . . . , tnn][det(tij)

−1].

Proof. We know that the set of ring homomorphisms Z[t] → R is in bijection with the set of
elements of R (universal property of polynomial rings). In particular A1

Z ' HomRng(Z[t],−) '
HomAff(−,SpecZ[t]).

Similarly, Z[t, t−1]→ R is uniquely characterised by the image of t, which has to be a unit. We
have Gm(R) ' HomRng(Z[t, t−1],−) ' HomAff(−,SpecZ[t, t−1]).

The last example follows by similar reasoning: the data of an invertible (n × n)-matrix (aij)
over R is given by choosing n2 coefficients, such that the determinant is an invertible element of R.
This functor is corepresented by the ring Z[t11, . . . , tnn][det(tij)

−1].

Example 4.7. Let R be a ring. A formal group law over R is given by a formal power series
f(x, y) ∈ R[[x, y]], satisfying the axioms

(a) (Unit) f(x, 0) = f(0, y) = 0,

(b) (Commutativity) f(x, y) = f(y, x),

(c) (Associativity) f(x, f(y, z)) = f(f(x, y), z) in R[[x, y, z]].

The functor FGL, which sends a ring R to the set of formal group laws, is represented by an affine
scheme SpecL ∈ Aff.
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Proof. A power series f(x, y) can be presented in terms of its coefficients f(x, y) =
∑∞
i,j=0 aijx

iyj .
The unit axiom translates into the equations ai0 = a0j = 0 for all i, j. The commutativity condition
can be stated as aij = aji, while the associativity condition can also be presented as an equation
the coefficients have to satisfy. Let L be the ring Z[(aij)i,j=0,...,∞]/I, where I is the ideal generated
by these equations. The universal property of polynomial algebras guarantees that Hom(L,R) is
canonically equivalent to the set of formal group laws over R. In particular, FGL ∼= SpecL.

The following theorem is only mentioned as a side remark. It should be understood as a
classification result for formal group laws.

Theorem 4.8 (Lazard). The ring L is isomorphic to a polynomial ring in countably many gener-
ators.15

4.1.2 Open subfunctors of affine schemes

The definition of open subfunctors relies on the notion of injectivity and surjectivity for maps of
sheaves. While injectivity is straightforward to define, surjectivity requires a little more care.

Definition 4.9. For a site (C, T ) we say that a map of sheaves F → G is injective, if for every
U ∈ C, the map F (U) → G(U) is an injective map of sets. It is called surjective, if for every
U ∈ C, and every s ∈ G(U), there exists a covering {Ui → U}i∈I , such that each s|Ui ∈ G(Ui) lies
in the image of F (Ui)→ G(Ui).

We can now define an open subscheme of an affine scheme SpecR. They are given by the
sheaf-theoretic union of standard open subfunctors SpecRf ↪→ SpecR.

Definition 4.10. Let SpecR ∈ Aff, and F ∈ ShZar(Aff) be a Zariski sheaf. Given an injective
map F ↪→ SpecR in ShZar(Aff), we say that F is an open subfunctor of SpecR, if there exists a
(not necessarily finite collection of elements (fi)i∈I ∈ RI of elements of R), such that we have a
surjective map of sheaves

∐
i∈I SpecRi � F , fitting into a commutative triangle∐

i∈I SpecRi // //

&&

F� _

��

SpecR.

The case where I is a finite set deserves particular attention.

Definition 4.11. A sheaf F ∈ ShZar(Aff) is called a quasi-affine scheme if there exists a ring R,
such that F is an open subfunctor of SpecR, for which the index set I in Definition 4.10 can be
chosen to be finite.

Open subfunctors of schemes, particularly also quasi-affine schemes, are in general not affine.
We will prove this for the following example after having developed a criterion for affineness.

15See http://www.math.harvard.edu/~lurie/252xnotes/Lecture2.pdf for a proof.
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Example 4.12. Consider the sheaf X = A2
Z \0 ∈ ShZar(Aff), given by the pushout

Gm×Gm //

��

Gm×A1
Z

��

A1
Z×Gm // X

(10)

in the category ShZar(Aff). The Zariski sheaf X is a quasi-affine scheme.

Proof. By construction we have a surjection of sheaves A1
Z×Gm

∐
Gm×A1

Z � X. By construction,
the map X ⊂ A2

Z is injective. Hence, X is a quasi-affine scheme.

4.1.3 Schemes

The following definition should be seen as a template to relativise absolute geometric notions. The
strategy is to use fibre products with affine schemes.

Definition 4.13. Let f : F → G be a morphism in the category ShZar(Aff). We say that f is
an open immersion, if for every affine scheme SpecR, the base change F ×G SpecR → SpecR is
isomorphic to the inclusion of an open subscheme of SpecR.

We can now give a functorial definition of schemes.

Definition 4.14. A sheaf F ∈ ShZar(Aff) is called a scheme, if there exists a (not necessarily
finite) collection of affine schemes {SpecRi}i∈I , together with morphisms SpecRi → F , which are
open immersions, such that the map

∐
i∈I SpecRi → F is a surjection of sheaves. The category of

schemes will be denote by Sch.

Schemes are obtained by patching affine schemes along open subfunctors. We have already seen
a non-trivial example of such an object.

Example 4.15. Recall the definition of the functor P1
Z from Definition 1.11. According to Propo-

sition 1.12 we have a surjective map A1
Z
∐

A1
Z → P1

Z of Zariski sheaves. Each one of the maps
A1

Z → P1
Z is an open immersion. In particular, P1

Z is a scheme.

Proof. Exercise.16

The presheaf or functor corresponding to a scheme is the actual geometric object. It could be
thought of as a generalised system of equations which can be solved over any ring.

Definition 4.16. (a) A presheaf F ∈ Pr(Aff) is called affine, if there exists a ring R, and an
equivalence X ∼= SpecR.

(b) A map of presheaves F → G is called affine, if for every affine scheme U , and every morphism
U → G, the fibre product F ×G U is an affine scheme.

(c) We say that F → G is a closed immersion, if for every affine scheme U , and every morphism
U → G, the base change U ×G F → F is a closed immersion.

16Claudio has volunteered.
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The next lemma is a useful tautology.

Lemma 4.17. Let U be an affine scheme, and F → U an affine morphism of presheaves, then F
is affine.

Proof. Consider the identity map U
idU−−→ U . By assumption, the base change F ×U U ∼= F is

affine.

The following observation yields a useful criterion to prove that a scheme is not affine.

Lemma 4.18. (a) Consider the affine scheme A1
Z = SpecZ[t]. The morphisms +: A1

Z×A1
Z →

A1
Z, and · : A1

Z×A1
Z → A1

Z, corresponding to the ring homomorphisms Z[t] → Z[t1, t2] (map-
ping t 7→ t1 + t2), and Z[t]→ Z[t1, t2] (mapping t 7→ t1t2), endows A1

Z with the structure of a
ring object in Pr(Aff).

(b) For every F ∈ Pr(Aff), we define the ring of regular functions Γ(F ) on F to be the ring of
morphisms HomPr(Aff)(F,A1

Z).

(c) For a ring R, we have a canonical equivalence R ∼= Γ(SpecR). It is given by the equivalence

R
'−→ Γ(SpecR), corresponding to the map of sets

R→ HomRng(Z[t], R) = HomAff(SpecR,A1
Z),

which sends r ∈ R to the ring homomorphisms mapping t to r.

Proof. 17

(a) We need to check the commutativity of a lot of diagrams. The important remarks are that
A1

Z = Spec Z[t] is affine and that morphisms between (powers of) A1
Z are related to ring

homomorphisms between (powers of) Z[t], thanks to Yoneda’s Lemma.

Before we start, let’s define the morphism T : A1
Z

// Spec Z as the natural morphism
to the terminal object in the category of affine schemes and the diagonal morphism ∆ :
A1

Z
// A1

Z × A1
Z, given by Z[t1, t2] // Z[t] which sends t1 and t2 to t.

i) Associativity of +. The following diagram

A1
Z × A1

Z × A1
Z

+×id
��

id×+
// A1

Z × A1
Z

+

��

A1
Z × A1

Z
+

// A1
Z

is commutative if and only if the diagram of rings

Z[t1, t2, t3] Z[t1, t2]oo

Z[t2, t3]

OO

Z[t]

OO

oo

17This proof was provided by Claudio Onorati.
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is. On one hand we get t 7→ t1 + t2 7→ t1 + t2 + t3; on the other hand we get t 7→ t2 + t3 7→
t1 + t2 + t3. From now on we systematically avoid to draw the diagram of rings, but we
will always check the commutativity on it.

ii) Existence of neutral element for +. Let’s define 0 : Spec Z //Z[t] given by sending t to
0. Then,

A1
Z × Spec Z id×0

// A1
Z × A1

Z

+

��

Spec Z× A1
Z

0×id
oo

A1
Z × A1

Z

id×T

OO

A1
Z

∆oo ∆ // A1
Z × A1

Z.

T×id

OO

Let’s check only the first square, the other one is analogous. Starting from the bottom
right object we get t 7→ t1 + t2 7→ t1 7→ t, that is what we were looking for.

iii) Existence of the inverse element for +. Let’s define r : A1
Z

//A1
Z sending t to −t. Then,

A1
Z × A1

Z
+
// A1

Z A1
Z × A1

Z
+

oo

Spec Z

0

OO

A1
Z × A1

Z

r×id

OO

A1
Z

∆oo ∆ //

T

OO

A1
Z × A1

Z.

id×r

OO

Again, let’s look only at the first square, starting from the right-up object: on one hand
we get t 7→ 0 7→ 0; on the other hand, t 7→ t1 + t2 7→ −t1 + t2 7→ −t+ t = 0.

iv) Commutativity of +. Let’s define I : A1
Z×A1

Z
//A1

Z×A1
Z by exchanging the coordinates

t1 and t2. Then the commutativity of

A1
Z × A1

Z
I //

+

##

A1
Z × A1

Z
+

{{

A1
Z

is trivial.

v) Associativity of ·. The commutativity of the following diagram is equivalent to that of
the point i),

A1
Z × A1

Z × A1
Z

·×id
��

id×·
// A1

Z × A1
Z

·
��

A1
Z × A1

Z
· // A1

Z.
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vi) Existence of unit element for ·. Let’s define 1 : Spec Z // A1
Z by sending t to 1. Then

the commutativity of the following diagram is equivalent to that of the point ii):

A1
Z × Spec Z id×1

// A1
Z × A1

Z

·
��

Spec Z× A1
Z

1×id
oo

A1
Z × A1

Z

id×T

OO

A1
Z

∆oo ∆ // A1
Z × A1

Z.

T×id

OO

vii) Commutativity of ·. Again, it is equivalent to point iv):

A1
Z × A1

Z
I //

·

##

A1
Z × A1

Z

·

{{

A1
Z .

viii) Left and right distributions. Finally, let L : A1
Z × A1

Z × A1
Z

// A1
Z × A1

Z be the left
distribution, given by sending t1 to t1t2 and t2 to t1t3, and let R : A1

Z×A1
Z×A1

Z
//A1

Z×A1
Z

be the right distribution, given by sending t1 to t1t3 and t2 to t2t3. Then,

A1
Z A1

Z × A1
Z

·oo

A1
Z × A1

Z

+

OO

A1
Z × A1

Z × A1
Z

+×id
��

R //Loo

id×+

OO

A1
Z × A1

Z

+

��

A1
Z × A1

Z
· // A1

Z.

Let’s start by checking the left-up square: on one hand we get t 7→ t1t2 7→ t1(t2 + t3); on
the other hand, t 7→ t1+t2 7→ t1t2+t1t3. Of course, they coincide. In the same way we get,
for the last square, t 7→ t1t2 7→ (t1 + t2)t3 that is tantamount to t 7→ t1 + t2 7→ t1t3 + t2t3.

(b) Let’s define the following operations on Γ(F ):

+ : Γ(F )× Γ(F ) −→ Γ(F )
(f, g) 7−→ f + g

and
· : Γ(F )× Γ(F ) −→ Γ(F )

(f, g) 7−→ f · g,
defined locally by

(f + g)(Spec S) : F (Spec S) −→ A1
Z(Spec S)

σ 7−→ f(S)(σ) + g(S)(σ)

and
(f · g)(Spec S) : F (Spec S) −→ A1

Z(Spec S)
σ 7−→ f(S)(σ) · g(S)(σ).
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Now we should check the commutativity of the same diagrams of the previous point. However,
it is clear that the check is only moved from Γ(F ) to A1

Z and so the thesis follows from the
point (a).

(c) Let Spec R be an affine scheme. Then by definition and Example 4.6 (a) we get

Γ(Spec R) = HomPr(Aff)(Spec R,A1
Z) =

= HomPr(Aff)(Spec R,Spec Z[t]) = HomRng(Z[t], R),

where in the last passage we have used the Yoneda’s Lemma. Finally, as observed several
times in these notes, there is a natural isomorphism between HomRng(Z[t], R) ∼= R given by
sending t to r, for every r ∈ R.

As a corollary we obtain our first examples of non-affine schemes.

Corollary 4.19. (a) The quasi-affine scheme X = A2
Z \ 0 of Example 4.12 is non-affine.

(b) The map X → P1
Z is affine, in particular, P1

Z cannot be affine.

Proof. 18

(a) Recall that X rises as the pushout of the following diagram

Gm ×Gm //

��

Gm × A1
Z

��

A1
Z ×Gm // X

and so, by the Remark ??, this defines a commutative diagram

Γ(X) //

��

Γ
(
A1

Z ×Gm
)

α

��

Γ
(
Gm × A1

Z
) β

// Γ (Gm ×Gm) .

that turns out to be cartesian in the category of ring Rng (here α and β are just the inclusion
maps). Now, since Gm ×Gm, Gm ×A1

Z and A1
Z ×Gm are affine schemes, the previous lemma

tells us that
Γ (Gm ×Gm) = Z[t1, t

−1
1 , t2, t

−1
2 ],

Γ
(
Gm × A1

Z
)

= Z[t1, t
−1
1 , t2]

and
Γ
(
A1

Z ×Gm
)

= Z[t1, t2, t
−1
2 ].

18This proof was provided by Claudio Onorati.
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Finally, if we want that two polynomials f(t1, t
−1
1 , t2) ∈ Z[t1, t

−1
1 , t2] and g(t1, t2, t

−1
2 ) ∈

Z[t1, t2, t
−1
2 ] coincide in Z[t1, t

−1
1 , t2, t

−1
2 ], then we must request at least that they only depend

on t1 and t2. For this reason we get

Γ(X) = Z[t1, t2].

If X was an affine scheme, then Spec Γ(X) = X. But Spec Γ(X) = A2
Z 6= X, so it cannot be

affine.

We have the following definition.

Definition 4.20. A map F → G is called schematic, if for every affine scheme U and every map
U → G the base change F ×G U is a scheme.

4.2 Algebraic spaces and stacks

4.2.1 Finite presentation

Definition 4.21. A ring homomorphism R → S is called of finite presentation, if there exists a
factorisation

R //

%%

R[t1, . . . , tn]

����

S,

such that the kernel of the surjection R[t1, . . . , tn] � S is a finitely generated ideal.

There is a categorical reformulation of this definition, which will be useful in generalising this
notion to general morphisms of presheaves.

Lemma 4.22. We denote by I a directed set, i.e., it is endowed with a partial ordering ≤, such
that for every pair of indices (i, j) ∈ I2 there exists a k ∈ I, such that i ≤ k and j ≤ k. We
consider diagrams of rings (Ti)i∈I , parametrised by I. For a ring homomorphism R → S to be of
finite presentation is equivalent to the natural map

colim
i∈I

HomR(S, Ti)→ HomR(S, colim
i∈I

Ti)

to be an equivalence, for every directed system of R-algebras.

Proof. 19 Suppose we have a ring homomorphism R → S such that, for every diagram of rings
(Ti)i∈I parametrised by a directed set I we have that

lim−→
i∈I

HomR(S, Ti)→ HomR(S, lim−→
i∈I

Ti)

is an equivalence. Then S is an R-algebra. Let I be the set of finite subsets I ⊂ S, a di-
rected set ordered by inclusion, and let TI be the R-subalgebra of S generated by I. Then it is

19This proof was provided by Craig Smith.
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clear that lim−→I∈I TI = S. So the identity morphism in HomR(S, lim−→I∈I TI) corresponds to an ele-

ment of lim−→I∈I HomR(S, TI) under the equivalence, and hence corresponds to an element of some

HomR(S, TI) for some finite subset I ⊂ S. Thus there is an isomorphism between S and some
finitely generated R-subalgebra of S. So S is a finitely generated R-algebra. So there exists n ∈ N
and an epimorphism R[ti, t2, ..., tn] � S mapping {t1, ..., tn} bijectively to a finite generating set of
S. So the diagram

R R[t1, t2, ..., tn]

S

π

commutes. Now let J be the set of finite subsets J ⊂ kerπ, a directed set ordered by inclusion,
and now let TJ be the quotients R[t1, ..., tn]/〈J〉. Then whenever J ⊂ J ′ we have a projection
TJ � TJ′ , giving a directed diagram of rings. It is clear that lim−→J∈J TJ = R[t1, ..., tn]/ kerπ ∼= S.

Indeed, this limit is a coproduct of each TJ under the equivalence relation generated by x y if
x − y ∈ 〈J〉 ∩ 〈J ′〉 where x ∈ TJ , y ∈ TJ′ . It then follows that xỹ ⇔ x − y ∈ kerπ. Thus the
isomorphism R[t1, ..., tn]/ kerπ ∼= S is contained in HomR(S, lim−→J∈J TJ) and so, as before, must

come from some HomR(S,R[t1, ...tn]/〈J〉). Thus we may conclude that kerπ is a finitely generated
ideal. Thus R→ S is finitely presented.

Now suppose R → S is finitely presented. That is, there is n ∈ N and an epimorphism π :
R[t1, t2, ..., tn] � S such that the diagram

R R[t1, t2, ..., tn]

S

π

commutes and kerπ = 〈r1, ..., rm〉 is a finitely generated ideal. Let si = φ(ti). Suppose we have a
directed set I and a diagram of rings (Ti)i∈I indexed by I. Then there is a natural map

lim−→
i∈I

HomR(S, Ti)→ HomR(S, lim−→
i∈I

Ti).

Suppose f ∈ HomR(S, lim−→i∈I Ti). Then, for each i = 1, 2, ..., n, there is ji ∈ I with f(si) ∈ Tji .

Then, as I is directed, there is j ∈ I with ji ≤ j for all i. Then, as f is a map into lim−→i∈I Ti
we have that f(si) ∈ Tj for all i. So we may define a map f ′ : R[t1, t2, ...tn] → Tj , ti → f(si).
Furthermore, for i = 1, ...,m there is ki ∈ I with ki ≥ j such that ri is mapped to 0 under the map
f ′ : R[t1, t2, ...tn] → Tj → Tki since f is a well defined map into lim−→i∈I Ti. That is, the relation

given by ri is satisfied in some Tki , and we can take these ki ≥ j. Since I is directed, there is k ∈ I
with ki ≤ k for all i. Then it is clear that the map f ′′ : R[t1, t2, ...tn] → Tj → Tk descends to a

well defined map from S. So f defines a map f̃ : S → Tk and hence comes from an element of
lim−→i∈I HomR(S, Ti). Thus the natural map is surjective. Now suppose f ∈ lim−→i∈I HomR(S, Ti) map

to the zero morphism of HomR(S, lim−→i∈I Ti) under this correspondence. Then f is an equivalence
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class fi of morphisms in the coproduct of all HomR(S, Ti) such that fi(s) are equivalent to 0 for all
s ∈ S and i ∈ I. So each fi is equivalent to the zero morphisms in this coproduct. Thus f itself
is zero in lim−→i∈I HomR(S, Ti). Thus the correspondence is also injective. So we have a bijective

correspondence.

4.2.2 Smooth and étale morphisms

For the purpose of illustration we fix a ring R = Z[x1, . . . , xm]/(f1, . . . , fn), and define X = SpecR.
For a field k, the affine scheme Spec k is often described as an abstract k-point. The reason is that
the set of morphisms HomSch(Spec k,X) ∼= HomRng(R, k) is canonically equivalent to the solution set
of the set system of equations (f1, . . . , fn) over the field k. Let now k[ε] = k[t]/(t2), be the so-called
ring of dual numbers. The affine scheme Spec k[ε] could analogously be referred to as an abstract
tangent vector defined over k. Indeed, the relation ε2 = 0 allows us to treat ε as the algebraic
incarnation of infinitesimals, as used by Newton and Leibniz in their treatment of differentiation.

Lemma 4.23. Let J(x1, . . . , xm) be the Jacobi matrix of the system of equations (f1, . . . , fn). For
a fixed solution xi = λi over k, given by Spec k → X the set of commuting triangles

Spec k //

��

X

Spec k[ε]

;;

corresponds to the kernel of J(λ1, . . . , λm), i.e. the tangent space at the chosen solution.

Proof. For λi, µi ∈ k we have

fi(λ1 + µ1ε, . . . , λm + µmε) = f(λ1, . . . , λm) + ε

n∑
j=1

∂fi
∂xj

µj .

So we see that this expression is 0, if and only if f(λ1, . . . , λm) = 0, and (µ1, . . . , µm) ∈ ker J(λ1, . . . , λm).

Inspired by this discussion, we have the following definition.

Definition 4.24. Let f : F → G be a morphism of presheaves.

(a) We say that f is formally étale, if for every ring surjective homomorphism R � S, with the
kernel I satisfying I2 = 0 (known as a square-zero extension), a unique dashed arrow exists,
rendering the diagram

SpecS //

��

F

��

SpecR //

<<

G

(11)

commutative.

(b) The morphism f is called formally smooth, if for every square-zero extension, a dashed arrow
rendering the diagram (11) commutative, exists.
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(c) We call f formally unramified, if for every square-zero extension, there exists at most one
dashed arrow as in (11), rendering the diagram commutative.

By definition, a formally étale morphism is formally smooth and formally unramified.
One can show the following properties (see [Mil80]).

Proposition 4.25. (a) A morphism of finite presentation of affine scheme SpecS → SpecR is
smooth (respectively étale), if and only if it corresponds to a ring homomorphism R → S,
which is isomorphic to

R→ R[x1, . . . , xm]/(f1, . . . , fn),

with the Jacobi matrix
(
∂fi
∂xj

)
being surjective (respectively bijective).

(b) Smooth morphisms are flat.

4.2.3 Various Grothendieck topologies

In this paragraph we define the Grothendieck topologies fppf , et, and smth; corresponding to
flat maps coverings which are additionally assumed to be of finite presentation, respectively étale,
respectively smooth. In this section only the fppf topology will be needed, but we will refer to the
other topologies in later sections.

Definition 4.26. (a) The Grothendieck topology consisting of coverings isomorphic to {SpecRi →
SpecR}, where I is a finite set, each R→ Ri étale, and R→

∏
i∈I Ri is fully faithful, will be

denoted by et.

(b) The Grothendieck topology consisting of coverings isomorphic to {SpecRi → SpecR}, where
I is a finite set, each R → Ri smooth, and R →

∏
i∈I Ri is fully faithful, will be denoted by

smth.

(c) The Grothendieck topology consisting of coverings isomorphic to {SpecRi → SpecR}, where
I is a finite set, each R→ Ri flat and of finite presentation, and R→

∏
i∈I Ri is fully faithful,

will be denoted by fppf .

The following proposition implies that the Grothendieck topologies et and smth have equivalent
categories of sheaves. We record it for later use.

Proposition 4.27. Let V → U be a smooth morphism of affine schemes. There exists a covering
{Ui → U}i∈I ∈ et, such that V ×U Ui → Ui has a section si : Ui → V ×U Ui.

Proof. The proof relies on Proposition 4.25(a), and is an application of the strategy which is used
to deduce the Regular Value Theorem in differential geometry from the Inverse Function Theorem.
We leave it as an exercise to the keen reader.20

20Alexander has volunteered.
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4.2.4 Algebraic spaces

The definition of algebraic spaces is formally very similar to the functorial definition of schemes.
The role of open immersions will taken by étale maps. Heuristically speaking, an algebraic space is
obtained by glueing affine schemes along étale equivalence relations. We will discuss this interpre-
tation in Paragraph 4.2.6.

Definition 4.28. An fppf sheaf F is called an algebraic space, if there exists a collection of
schematic étale morphisms {Ui → F}i∈I , where each Ui is affine, such that p :

∐
i∈I Ui → F

is a surjection. We call the map p :
∐
i∈I Ui → F an atlas for F .

One can construct examples of algebraic spaces which are not schemes. We defer this to a later
section, respectively the exercises.

Definition 4.29. A morphism of algebraic spaces F → G is called smooth, respectively étale, if
there an atlas

∐
i∈I Ui → F for F , and an atlas

∐
j∈J Vj → G for G, which fit in a commutative

diagram ∐
i∈I Ui

//

��

∐
j∈J Vj

��

F // G,

such that the corresponding maps Ui → Vj are smooth (respectively étale).

Examples of algebraic spaces arise naturally when considering quotients of schemes with respect
to free group actions. This way one can construct algebraic spaces which are not schemes, using for
example an involution on a non-projective scheme, constructed by Hironaka. Moreover, a theorem
of Artin states that for proper smooth algebraic spaces, defined over C, the resulting compact
complex manifold is Moishezon, and the converse is true as well. Such a result is not known for
schemes.

A morphism of presheaves, whose fibres are algebraic spaces, is called representable. The same
notion makes sense for prestacks, and it is the first step in the definition of algebraic stacks.

Definition 4.30. (a) A map of prestacks F → G is called representable, if for every affine
scheme U mapping into G, i.e. U → G, the fibre product F ×G U is an algebraic space.

(b) A representable map of prestacks F → G is called smooth (respectively étale), if for every affine
scheme U , and morphism U → G the base change F ×G U → U is a smooth (respectively
étale) morphism of algebraic spaces.

This definition allows us to define the notion of an atlas for algebraic stacks.

4.2.5 Algebraic stacks

Definition 4.31. Let (C, T ) be a site. A map of stacks F → G is called a surjection, if for every
U ∈ C, and every object X ∈ G(U), there exists a covering {Ui → U}i∈I , and object Yi ∈ F (Ui),
such that each X|Ui is isomorphic to Yi.

We can now define the notion of algebraic stacks.
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Definition 4.32. (a) An fppf stack F is called an algebraic stack (or Artin stack), if there exists
a collection of representable smooth morphisms {Ui → F}i∈I , where each Ui is affine, such
that p :

∐
i∈I Ui → F is a surjection of stacks. We call the map p :

∐
i∈I Ui → F an atlas for

F .

(b) An fppf stack F is called a Deligne-Mumford stack, if there exists an atlas
∐
i∈I Ui � F , with

each map Ui → F being étale.

We have the following observation, the first part of which follows directly from the definitions.

Remark 4.33. For an fppf sheaf F being a Deligne-Mumford stack is equivalent to being an al-
gebraic space. Using a result similar to Proposition 4.27, one can show that an fppf sheaf is an
algebraic space if and only if it is an algebraic stack (hence, a smooth atlas implies the existence of
an étale atlas).

The following lemma can often be found as one of the axioms an algebraic stack has to satisfy.

Lemma 4.34. Let F be an algebraic stack, and f : U → F a morphism, where U is an affine.
Then, f is representable, in the sense that for every affine scheme V , mapping into X, the fibre
product U ×F V is an algebraic space.

Proof. Let p : X =
∐
i∈I Ui → F be an atlas for F . We begin with the assumption (which will be

removed later) that there exists a factorisation

V
s //

  

X

p

��

F.

Then we have U ×F V ∼= (X ×F U)×U V . By definition of an atlas, the fibre product X ×F U is an
algebraic space. Since the fibre product of algebraic spaces defines an algebraic space, we have won
in this case. As a next step we need to remove the assumption that a section s exists. We will do
this by means of the observation that such a section exists always locally in the smooth topology
smth. Indeed, we have a natural map from the fibre product

X ×F V → X,

and the projection X ×F V → V is a surjective smooth morphism, since X → F is an atlas. We
conclude therefore that U ×F (X ×F V ) → U ×F V is a surjective smooth morphism from an
algebraic space onto U ×F V . Choosing an atlas for U ×F (X ×F V ) we also obtain an atlas for
U ×F V .

4.2.6 Presentations

Algebraic spaces can be represented as quotients of schemes with respect to étale equivalence
relations.

Definition 4.35. Let U be a scheme, an étale equivalence relation on U is given by a monomor-

phism R ↪→ U × U , such that each of the composition R→ U × U pi−→ X for i = 1, 2 is étale, such
that for each ring R, the set X(R) ⊂ U(R)× U(R) is an equivalence relation.
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Proposition 4.36. Let F be an algebraic space, and p :
∐
i∈I Ui → F an atlas. We denote the

scheme
∐
i∈I Ui by U . The fibre product R = U ×F U ↪→ U is an étale equivalence relation.

Moreover, R⇒ U → F is a co-equalizer diagram in Shfppf (Aff).

Proof. Exercise.21

The converse is true as well, i.e., given an étale equivalence relation R on an algebraic scheme
U , the co-equalizer R ⇒ U → F exists, and F is an algebraic space. This works even if U is an
algebraic space. We will prove this result in a later section.

Definition 4.37. A smooth groupoid in algebraic spaces is given by two algebraic spaces X0, and
X1, together with two smooth representable maps s, t : X1 ⇒ X0, as well as a composition law
X1 ×t,X0,s X1 → X1, such that for each ring R the resulting object in sets X1(R) ⇒ X0(R), with
induced composition, corresponds to a groupoid.

Proposition 4.38. Let F be an algebraic stack, and U → F an atlas. Then, U ×F U ⇒ U , with
composition given by the natural morphism

(U ×F U)×p2,U,p1
(U ×F U)→ (U ×F U)

is a smooth groupoid in algebraic spaces.

Proof. Exercise.22

4.2.7 Base change

So far we have been working with stacks over Aff = Rngop. As we alluded to in the introduction, we
could also fix a base ring R, and replace the category Rng by AlgR, the category of R-algebras. We
could then denote the opposite category by AffR, and refer to its objects as affine schemes defined
over R, and consistently replace every appearance of Aff by AffR. It turns out that this exercise in
notation is subsumed entirely in category theory.

Definition 4.39. For a 2-category C and an object X ∈ C, we denote by C/X the so-called over-
2-category, whose objects are morphisms Y → X, and whose 1-morphisms are strictly commuting
triangles

Y //

��

Z

~~

X,

and the set of 2-morphisms between two 1-morphisms agrees with the set of 2-morphisms in C.

In Subsection 1.2, the category of R-algebras was defined in a similar way, but with the direction
of the arrows inverted. In particular we see that the following is true, essentially by definition.

Remark 4.40. For a ring R, the category AffR = Algop
R is equivalent to Aff /(SpecR).

This tautology extends to the 2-category of (algebraic) stacks defined over R.

21Volunteers?
22Volunteers?
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Proposition 4.41. The 2-category of prestacks PrSt(AffR), defined over a ring R, is equivalent
to the 2-category PrSt(Aff)/(SpecR). Moreover, this equivalence respects the notion of stacks and
algebraicity.

Proof. Exercise.23

For every ring homomorphism R→ S we obtain a natural 2-functor St(AffR)→ St(AffS), which
preserves the notion of algebraicity. This base change functor is given by the fibre product along
the map SpecS → SpecR.

5 Torsors and quotient stacks

One of the simplest examples of an algebraic stack is the stack of torsors for an algebraic group. It
can be described as the quotient stack of a point by the trivial action of a group G. We will discuss
the notion of algebraic groups, torsors, their relation with cohomology, and show algebraicity of the
stack of torsors and more general quotient stacks.

5.1 Group objects

A group object in a category C can be defined as follows.

Definition 5.1. Let C be a category, the structure of a group object on X ∈ C is equivalent to a
factorisation of functors

Cop //

HomC(−,X)
!!

Grp

��

Set,

where Grp→ Set is the forgetful functor from groups to sets.

By Yoneda, this is equivalent to the standard definition of group objects (if C has finite products),
as one often finds it in the literature, but the functorial point of view will be of advantage to us.

Lemma 5.2. If C has finite products, the structure of a group object on X ∈ C is equivalent to the
following collection of morphisms:

(a) e : • → X, where • ∈ C is a final object,

(b) m : X ×X → X,

(c) ι : X → X,

satisfying the group axioms, which are stipulated in form of the commutativity of the diagrams

(a) (unit)

X
' //

idX ""

X × •

m◦(idX ×e)
��

X,

23Volunteers?
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(b) (associativity)

X ×X ×X m×idX//

idX ×m
��

X ×X

m

��

X ×X m // X,

(c) (inverses)

X ×X idX ×ι //

��

X ×X

m

��

• e // X.

We have already seen a few examples of group schemes (i.e., group objects in the category of
schemes).

Example 5.3. Fix a base ring R. A group R-scheme is a group object in the category SchR.

(a) Let A1
R : AlgR → Set be the functor sending an R-algebra R→ S to the set underlying S. We

have A1
R
∼= A1

Z ×SpecZ SpecR, in particular we see that A1
R is a scheme. It carries a natural

structure of a group object, given by the group-valued functor, sending R → S to the abelian
group (S,+).

(b) Similarly, we may define Gm,R as the group-valued functor, sending an R-algebra R → S to
the set of invertible elements S×. It is a commutative group R-scheme.

(c) We have a group scheme GLn,R, sending an R-algebra S to the group of invertible (n × n)-
matrices.

If G is an affine group R-scheme, then Lemma 5.2 implies that R-algebra Γ(G) of regular
functions on G is endowed with the structure of a Hopf R-algebra.

Definition 5.4. A Hopf R-algebra consists of an R-algebra S, together with R-algebra maps

(a) e] : S → R, the co-unit,

(b) m] : S → S ⊗R S, called comultiplication,

(c) ι] : S → S, the co-inverse,

such that (S, e],m], ι]) satisfies the axiom of a group object (see Lemma 5.2) in Algop
R
∼= AffR.

All of the examples of 5.3 are affine group schemes, therefore correspond to Hopf algebras.
One can show that a group object in algebraic spaces, which is of finite type over a field k, is

in fact a group scheme. This follows from the general principle that group objects in geometric
categories ”don’t have corners”. Heuristically speaking, if U is a neighbourhood of the unit element
of G, and g ∈ G an arbitrary element, then the translate gU defines a neighbourhood of the element
g. Hence, we see that a group object G has a uniform local geometry. This implies that if P is
a geometric property which holds for an open dense subset of points in G, then it has to hold for
all points of G. An example of such a property for algebraic spaces is, lying an open subscheme
U ⊂ G. In [The, 0ADC] it is shown that every algebraic space of finite type over a field k has an
open dense subset which is a scheme. Hence, every group object in algebraic spaces of finite type
over a field is actually a scheme.
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5.2 Torsors

5.2.1 Definition and basic properties

We fix a site (C, T ), and consider a group-valued sheaf Gop : C→ Grp (i.e., a group object in Sh(C)).
We assume that the Yoneda embedding factorises through the category ShT (C) of sheaves, i.e., for
every U ∈ C, the representable functor HomC(−, U) is a sheaf.

Definition 5.5. Let Y ∈ ShT (C) be endowed with a G-action, and π : Y → X be a morphism
G-invariant morphism in ShT (C). Then we say that π is a G-torsor, if for every U → X, where
U ∈ C the G-action on Y ×X U is T -locally trivial, i.e., there exists {Ui → U}i∈I , such that
Y ×X Ui ∼= Ui ×G as a G-space.

Paraphrasing the definition above, one could also refer to a G-torsor as a locally trivial G-bundle.

Lemma 5.6. We say that π : Y → X is a trivial torsor, if we have an isomorphism Y ∼= X ×G,
respecting the projection π, and the G-action. A G-torsor is trivial if and only if there exists a
section s : X → Y , π ◦ s = idX .

Proof. A section s induces a map of G-torsors X × G (s×idG)−−−−−→ Y × G → Y . Lemma 5.7 below
implies that it is an isomorphism.

Vice versa, given an isomorphism X ×G ∼= Y , as torsors, it induces a section

X
'−→ X × • idX ×e−−−−→ X ×G a−→ Y.

This concludes the proof.

Lemma 5.7. A map of G-torsors over X is a commutative diagram

Z //

  

Y

��

X,

where Z → X and Y → X are G-torsors. Then, every map of G-torsors is an isomorphism.

Proof. By Yoneda’s lemma, it suffices to show that for every U ∈ C, and U → X, the map
Z ×X U → Y ×X U , of G-torsors over U is an isomorphism. Moreover, since X, Y , Z are sheaves,
and a map of sheaves is an isomorphism, if and only it locally is an isomorphism, it suffices to prove
the assertion for trivial G-torsors.

Let φ : U×G→ U×G a G-equivariant map of G-torsors. For every V ∈ C, and every morphism
V → U , we obtain a G-equivariant map of G(V )-torsors U(V ) × G(V ) → U(V ) × G(V ). Every
map of torsors in sets is an equivalence, since the transitivity and freeness of the action guarantee
bijectivity of the map. Yoneda’s lemma implies now that φ is an isomorphism.

Corollary 5.8. Every commutative diagram of sheaves, and G-equivariant maps

Z //

��

Y

��

W // X,

where Z →W and Y → X are G-torsors, is cartesian.
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Proof. The commutative diagram induces a map of G-torsors Z →W ×X Y . According to Lemma
5.7, it is an isomorphism.

We now switch to the category C = AffR, and show that the notion of torsors is often surprisingly
well-behaved with respect to changing the topology.

Definition 5.9. For a group-valued sheaf G on AffR, we denote by BG : Affop
R → Gpd the prestack,

sending an R-algebra S to the groupoid of collections (πT : YT → SpecT, φT ), where πT is a G-
torsor on SpecT for each S-algebra T , and φT : YT ∼= YS ×SpecR G is an equivalence of G-torsors.

Moreover, this collection is assumed to satisfy the conditions: φidS : YS ×SpecS S
'−→ YS is the

canonical map, and for every composable pair of morphisms of R-algebras δ : S → T , and ε : T →W ,
as given by a commutative diagram

R

α

��

β

��

γ

  

S
δ // T

ε // W,

we have a commutative square

(YS ×SpecS SpecT )×SpecT SpecW //

��

YT ×SpecT SpecW

��

YS ×SpecS SpecW // YW .

The prestack BG is actually a stack. This is tautological, using descent for sheaves.

Lemma 5.10. The prestack BG of fppf -torsors is a stack with respect to the fppf topology.

The inclusions of Grothendieck topologies et ⊂ smth ⊂ fppf imply that every torsor with
respect to the étale topology is also a torsor with respect to the smooth and fppf topology. However,
G is a smooth affine group scheme, these are actually equivalences, i.e, a torsor with respect to the
fppf topology is also a torsor with respect to the coarser topology et. The proof stretches over the
following two paragraphs.

Proposition 5.11. Let G be a smooth affine24 group R-scheme. Then, a G-torsor Y → X, with
respect to the fppf is also a G-torsor in the étale (and hence also smooth) topology.

Since every smooth morphism has a section in the étale topology, it suffices to construct a
covering of {Ui → X} of X in the smooth topology, such that Y ×X Ui ∼= Ui ×SpecR G as a G-
torsor. This follows directly from Proposition 4.27, which states that every smooth morphism has
a section in the étale topology. It is a worthwhile exercise to think through the details of the proof.

Lemma 5.12. Let G be a smooth affine group R-scheme. Then every G-torsor with respect to the
smooth topology is also a G-torsor with respect to the étale topology.

Proof. Exercise.25

24We could relax this condition.
25Alex has volunteered.
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Another example is that every GLn-torsor with respect to the fppf or et topology, is actually
a torsor with respect to the much coarser Zariski topology.

Proposition 5.13. For every affine scheme U ∈ AffR, the groupoids of GLn,R-torsors and rank n
vector bundles (i.e., finite projective modules, locally of rank n) are equivalent. Since every finite
projective module is Zariski locally free, we see that every GLn-torsor, defined with respect to the
fppf or étale topology, is also a GLn-torsor with respect to the topology Zar.

Proof. We fix an affine scheme U , in order to establish an equivalence of groupoids of GLn-torsors
(denoted by BGLn(U)), and rank n vector bundles (VBn(U)), a priori we have to define mutually
inverse functors F : BGLn(U)→ VBn(U), and G : VBn(U)→ BGLn(U).

We will only construct the functor G, and verify locally that it is an equivalence. Since VBn
and BG are stacks, this is sufficient to conclude the proof.

The functor G : VBn(U)→ BGLn(U) sends a vector bundle E to the torsor whose total space

is the sheaf on Aff /U , sending V
f−→ U to the set of bases of f∗E. Since the set of bases of a vector

space is freely and transitively acted on by GLn(V ), we obtain that G is a fully faithful functor.
It is also easily seen to be locally essentially surjective (hence globally essentially surjective, by
the stack property), since every GLn-torsor is locally trivial, thus the image of the trivial vector
bundle.

We can also give a direct description of the functor F : BGLn(U) → VBn(U). It takes a GLn-
torsor Y → X, and first extracts a cocycle, by choosing an fppf covering {Ui → U}i∈I , over which
Y becomes trivial (the cocycle is obtained by comparing trivialisations over the fibre products
Ui ×U Uj). Since automorphisms of a vector bundle are GLn-valued regular functions, we can also
view this as a cocycle for the glueing of vector bundles. Hence, obtain a well-defined vector bundle
EY associated to the torsor Y .

A more conceptual description of the total space of EY is given by the following general con-
struction:

EY ∼= An×GLnY = (An×Y )/GLn .

This comparison result for torsors is far from being a purely abstract statement. It generalises
a classical result in number theory, concerning the vanishing of a certain Galois cohomology set.
In order to explain the connection with Galois cohomology, we have to comment on the connection
between torsors and the first cohomology set.

Remark 5.14. For a site (C, T ), and a group sheaf G on C we define the first cohomology set
H1
T (U,G), given by a colimit (ranging over coverings U of U in T ) of quotients Z1

U/C
0
U, where C0 is

a group acting on a set Z1, both of which will be defined subsequently. For every U = {Ui → U} ∈ T ,
we let C0

U be the group of cochains (ψi)i∈I ∈
∏
i∈I G(Ui). We denote by Z1

U the set consisting of
cocycles (φij)(i,j)∈I2 ∈

∏
(i,j)∈I2 G(Ui ×U Uj), satisfying the cocycle condition φijφjk = φik on

Ui ×U Uj ×U Uk. A cochain (ψi) acts on (φij) by the formula

ψjφijψ
−1
i .

One sees that H1
T (U,G) is in bijection with the set of isomorphism classes of G-torsors on U .

Corollary 5.15 (Hilbert’s Theorem 90). Let K be a field, with separable closure L. Then, the
Galois cohomology group H1

Gal(K,GLn(L)) vanishes.
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Proof. It is a general fact that H1
Gal(K,L

×) ∼= H1
et(SpecK,GLn), which relies on a morphism of

field K → L being étale, if and only if it is separable (see Example 1.7(a) in [Mil80]).
The group H1

et(SpecK,GLn) is equivalent to the set of isomorphism classes of rank n vector
bundles on SpecK, according to Proposition 5.13, i.e., rank n vector spaces over K. Therefore
we obtain the vanishing result from the fact that, up to isomorphism, there is precisely one vector
space of dimension n.

5.2.2 Faithfully flat descent revisited

In this paragraph we discuss descent for smooth morphisms. We will use the classification of smooth
maps of affine schemes in terms of Jacobi matrix, which was stated in Proposition 4.25(a). At first
we have to verify that being of finite presentation descends along faithfully flat maps.

Lemma 5.16. For ring homomorphisms R → S, and R → R′ faithfully flat, the co-base change
R′ → S ⊗R R′ is of finite presentation if and only if R→ S is.

Proof. Being of finite presentation is certainly invariant under tensor products. Hence, we focus on
establishing the descent result. By Lemma 4.22, it suffices to show that for every directed system
(Ti)i∈I of R-algebras, the natural map

colim
i∈I

HomR(S, Ti)→ HomR(S, colim
i∈I

Ti)

is an equivalence. Faithfully flat descent for ring homomorphisms (see Proposition 2.27) implies
that we have a commutative diagram, with the columns being equalizer diagrams

colim HomR(S, Ti) //

��

HomR(S, colimTi)

��

colim HomR′(S ⊗R R′, Ti ⊗R R′)
' //

�� ��

HomR′(S ⊗R R′, colimTi ⊗R R′)

�� ��

colim HomR′⊗RR′(S ⊗R R′ ⊗R R′, Ti ⊗R R′ ⊗R R′)
' // HomR′⊗RR′(S ⊗R R′ ⊗R R′, colimTi ⊗R R′ ⊗R R′).

Since the middle and bottom horizontal arrows are isomorphisms, the equalizer property implies
that also the top horizontal map is an isomorphism.

We can now turn to the case of smooth and étale morphisms.

Lemma 5.17. Let V → U be a morphism of affine schemes, and U ′ → U a faithfully flat morphism
of affine schemes. Then, the base change V ′ = V ×U U ′ → U ′ is smooth, respectively étale, if and
only if the map V → U is smooth, respectively étale.

Proof. Choose a presentation U = SpecR, V = SpecR[t1, . . . , tm]/(f1, . . . , fn). We have to show
that the Jacobi matrix J = (∂fi∂tj

) is surjective (respectively bijective), if and only if the Jacobi

matrix J ′, for V ′ → U ′ is surjective (respectively bijective). But since we have a presentation
V ′ = SpecR′[t1, . . . , tm]/(f1, . . . , fn), we obtain for J ′ the matrix associated to J with respect to
the natural map from R-matrices to R′-matrices.

The Jacobi matrix J can be seen as an R-linear map from the R-module Rm to Rn. Since
R→ R′ is faithfully flat, we obtain from Lemma 2.21(a) that J is surjective (respectively bijective)
if and only if the Jacobi matrix for the map V ′ → U ′ is surjective (respectively bijective).
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Corollary 5.18. Let F → G a representable morphism of prestacks over R. Then for a faithfully
flat ring homomorphism R → S, the base change F ×SpecR SpecR → G ×SpecR SpecS is smooth
(respectively étale) if and only if F → G is smooth (respectively étale).

We also have to show that affineness descends.

Lemma 5.19. Let F → U be a map of fppf sheaves, and V → U an fppf map of affine schemes,
such that F ×U V is affine, then F is an affine scheme.

Proof. We use the notation U = SpecR, and V = SpecS. We will show that the ring T ′ =
Γ(F ×U V ) is naturally endowed with a descent datum, hence defines an R-algebra T by faithfully
flat descent (Theorem 2.25). We have a natural isomorphism SpecT ×U V → F ×U V , which
satisfies the descent condition, hence an isomorphism of stacks F ∼= SpecT .

We have a commutative diagram with the columns being colimit diagram (or ”co-equalizers”)
by descent theory

F ×U (V ×U V ×U V )
' //

���� ��

SpecT ′ ⊗S (S ⊗R ⊗RS ⊗R S)

���� ��

F ×U (V ×U V )
' //

�� ��

SpecT ′ ⊗S (S ⊗R S)

�� ��

F ×U V
' //

��

SpecT ′

��

F
' // SpecT,

We therefore obtain from faithfully flat descent, and the condition that F is a sheaf that F is
equivalent to SpecT .

5.2.3 The tautological trivialisation

Every torsor is trivial when pulled back to itself.

Proposition 5.20. Let π : Y → X be a G-torsor over an affine R-scheme X, where G is a smooth
affine group R-scheme. Then, π is a covering in the smooth topology, and we have a canonical
equivalence of G-torsors

Y ×X Y ∼= Y ×G.

Proof. We obtain from Lemmas 5.17 and 5.19 that π is a smooth affine map. Since faithfully
flatness descends, one sees that π is indeed a covering in the smooth topology.

In order to prove the second assertion, it suffices to produce a map of G-torsors Y ×G→ Y ×X Y
over Y (every map of G-torsors is automatically an isomorphism, since the G-action is free and
locally transitive. The required map is given by idY ×a, i.e. the identity in the first, and the
G-action in the second component.

This concludes the proof of Proposition 5.11.
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5.3 Algebraicity of quotient stacks

5.3.1 Algebraicity of the stack of torsors

We have already seen that BG is a stack (Lemma 5.10). This allows us to check algebraicity of
BG.

Theorem 5.21. For a smooth affine26 group R-scheme G, the stack BG is algebraic. An atlas is
given by the map p : SpecR→ BG, corresponding to the trivial G-torsor on SpecR.

Proof. We will show that p is a surjective, smooth, affine morphism. By the Definition 4.32 of
algebraic stacks, this implies the assertion.

Surjectivity of p amounts to the statement that for every G-torsor Y on an affine scheme U ,
there exists an fppf covering {Ui → U}i∈I , such that Y ×U Ui is equivalent to the trivial G-torsor
on Ui. However, this local triviality property is the defining property of torsors (see Definition 5.5).

We now have to check that p is representable and smooth. Let U → BG be an arbitrary map,
classified by a G-torsor Y on U , where U is an affine R-scheme. We claim that the fibre product
SpecR ×B GU is equivalent to Y . The first part of Proposition 5.20 states that Y is affine, and
Y → U is a smooth map. This shows that U → BG is affine and smooth.

In order to see that SpecR×BGU is equivalent to Y , we observe that for every affine R-scheme
V we have that the fibre product of groupoids • ×BG(V ) U(V ) agrees with the set of isomorphisms
from the trivial G(V )-torsor to the G(V )-torsor Y (V ). This set is canonically equivalent to the set
Y (V ).

5.3.2 Quotient stacks

Many examples of algebraic stacks are actually quotient stacks. As we will explain in the next
subsection, they provide a geometric counterpart for equivariant constructions in geometry.

In order to get started, we consider a set X with a group action, and describe maps into the
quotient groupoid [X/G] in terms of torsors.

Example 5.22. In Example 3.13 we defined a groupoid [X/G], whose object are the elements of
X, and morphisms from x to y correspond to g ∈ G with g · x = y. If U is a set, then the groupoid
of morphisms U → [X/G] is equivalent to the groupoid of pairs (π : Y → U, f : Y → X), where π is
a G-torsor (i.e. a G-set with a free and transitive action), and f is a G-equivariant map.

Proof. We will be content with exhibiting functors in both directions, and leave the verification
that they are mutually inverse to the reader. Given a pair (Y → U, Y → X) as above, one applies
the [−/G] construction, to obtain a map U → [X/G]. Vice versa, given U → [X/G], we form the
pullback square

U ×[X/G] X //

��

X

��

U // [X/G].

One sees that U ×[X/G] X → U is a G-torsor, and the top horizontal map U ×[X/G] X → X is
G-equivariant.

26We could relax this assumption.
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The example discussed above motivates the definition of quotient stacks, which we record in
heuristic form, i.e. in non-strict form (imitate Definition 5.9 for a rigorous definition).

Definition 5.23. Let G be a group-valued fppf sheaf acting on an fppf sheaf X. The quotient
stack [X/G] is defined to be the prestack, sending an affine R-scheme U to the groupoid of pairs
(π : Y → U, f : Y → X), where π is a G-torsor, and f is a G-equivariant map.

A verification similar to the one for BG shows that [X/G] is a stack.

Lemma 5.24. The prestack [X/G] is a stack.

Proof. Exercise.27

Theorem 5.25. If G is a smooth affine28 group scheme, and X an algebraic R-space, then [X/G]
is an algebraic stack. The canonical projection p : X → X/G, corresponding to the trivial pair
(X ×G→ X,X ×G→ X) is a surjective, smooth, affine morphism.

Proof. The second statement implies the first: to see this choose an atlas
∐
i∈I Ui → X for the

algebraic space X. The composition with p defines then an atlas for the stack [X/G].
In order to conclude that p is surjective, smooth, and affine, we use base change invariance of

these properties, and the fact that

X //

��

SpecR

��

[X/G] // BG

is a cartesian square. To see this, choose an affine R-scheme V , and consider the corresponding
square of sets

X(V ) //

��

•

��

[X/G](V ) // BG(V ).

For each object of [X/G](V ) we can find an fppf covering, such that the corresponding G-torsor is
trivial, hence the square is evidently cartesian. This proves the assertion.

5.4 Philosophy: quotient stacks and equivariant objects

In this subsection we give a heuristic account of the prevalent point of view, that object on a
quotient stack [X/G] correspond to G-equivariant objects on X. We will therefore refrain from
giving proofs in this subsection.

Lemma 5.26. Let Z be an fppf sheaf, with trivial G-action. A G-invariant map X → Z corresponds
to a morphism [X/G]→ Z.

27Volunteers?
28We could relax this condition
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Similarly, there’s the notion of a G-equivariant vector bundle. Rank n vector bundles are
equivalent to GLn-torsors, which yields a convenient way to stating the next result without having
to define vector bundles on stacks first. We begin with the definition of G-equivariance.

Definition 5.27. Let π : Y → X be an H-torsor, and X a space acted on by G. A G-equivariant
structure on Y amounts to a an action of G on Y , which commutes with the action of H, such that
the map π is G-equivariant.

One can then show the following result:

Proposition 5.28. The datum of a G-equivariant H-torsor on X is equivalent to an H-torsor on
[X/G], i.e. a morphism [X/G]→ BH.

It is often easier, and conceptually preferable, to replace equivariant constructions by analogous
objects for stacks. For example, the study of equivariant cohomology is subsumed by the cohomology
of stacks.

6 The stack of G-bundles on a curve

This section is devoted to establishing algebraicity of the stack of G-bundles on a curve, where G is
a smooth affine group scheme. A good source for this material is Gaitsgory’s geometric Langlands
seminar29, we will follow their presentation closely.

6.1 Preliminaries

6.1.1 Curves and vector bundles on curves

We begin by recalling a few basic facts about algebraic curves and vector bundles on algebraic
curves.

Definition 6.1. A curve over a field k is a proper, smooth k-scheme of dimension 1.

We also record a relative version of Serre duality for cohomology groups of vector bundles.

Theorem 6.2 (Serre duality). Let X be a k-curve, and R a k. We denote by ωX the line bundle
of 1-forms on X. For every vector bundle E on X × SpecR we have a canonical equivalence of
R-modules

H0(X × SpecR,E) ∼= H1(X × SpecR,E∨ ⊗ ωX)∨.

The assumption of being of dimension 1 implies an important cohomology vanishing result.

Lemma 6.3. Let X be a k-curve, and R a k. For every quasi-coherent sheaf M on X ×SpecR we
have Hi(X × SpecR,M) = 0 for i ≥ 2.

6.1.2 Recollection of cohomology of coherent sheaves

Theorem 6.4 (Semicontinuity Theorem). For a projective morphism for noetherian schemes Y →
X, and a coherent sheaf M , which is X-flat, we have that dimHi(Yx,Mx) is an upper semicontiuous
function on X, i.e. the sets {x ∈ X|dimHi(Yx,Mx) ≤ n} are open.

29http://www.math.harvard.edu/~gaitsgde/grad_2009/
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6.1.3 Stacks which are locally of finite presentation

We have cited a few results on the cohomology of coherent sheaves which (at least in the way cited)
required the assumption that the schemes were of finite type. We will be interested in applying
these results to families of vector bundles, i.e., a vector bundle on a product X × S, where S is an
affine scheme, and X a curve over a field k. The definition of stacks requires S to vary through
all affine schemes, so stipulating the condition of being of finite type a priori seems to seriously
hinder the application of cohomology. We will circumvent this problem by showing that the stack
of bundles Bun(X) is locally of finite presentation. This condition stipulates that the stack can

be recovered by restricting it to the category (Afffp
R )op, i.e. affine R-schemes which are of finite

presentation.

Definition 6.5. A prestack F : Affop
R → Gpd is said to be locally of finite presentation, if the map

colim
i∈I

F (Ti)→ F (colim
i∈I

Ti)

is an equivalence for every filtered inverse system of affine R-schemes Ti.

As a formal consequence we obtain the following straightforward assertion.

Lemma 6.6. Let R be a ring, then every prestack F : Affop
R which is locally of finite presentation,

can be recovered from its restriction to the category (Afffp
R )op.

Proof. We will show that ring can be written as a directed colimit of finitely presented rings. In
fact, we can express a ring R as an ascending union of subrings R′, which are finitely generated
over Z: every ring R contains either a copy of Z or Fp as subrings; for x ∈ R we can consider the
subring Z[x], respectively Fp[x]. This shows that every x ∈ R lies in a finitely generated subring R′.
Since the set of finitely generated subrings is clearly directed with respect to inclusion, we obtain
the statement.

One can show that all stacks in this section are locally of finite presentation.30

6.1.4 A criterion for surjectivity

In this paragraph we record a short and useful criterion, which allows to check surjectivity of a map
of prestacks F → G, by evaluating at fields. (...)

Lemma 6.7. Let f : F → G be a morphism of stacks which is smooth and representable. We then
have that f is surjective if and only if for every field-valued point x ∈ G(k′) there exists a finite
field extension k′′/k (can be chosen to be separable), such that the object in G(k′′) induced by x lies
in the image of the map of groupoids F (k′′)→ G(k′′).

Proof. This is an interesting exercise.31

6.1.5 Quot schemes

(...)

30This will be added to the notes at a later point.
31Volunteers?
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6.2 The stack of vector bundles on a curve

6.2.1 Families of vector bundles

Recall that we fix a field k and consider all schemes, spaces, and stacks as objects over k. Conse-
quently we drop the subscript k in a lot of places, hence write ×, where we should write ×Spec k.

Definition 6.8. Let X be a curve over a field k, and X an affine scheme. A family of rank n
vector bundles parametrised by S is a vector bundle of rank n, denoted by E, on the fibre product
X × S.

Describing the moduli problems of vector bundles has been a well-researched topic in the last
century, and this quest is continuing to the present day. In the language of this course we can
think of this as the study of the stack Bunn : Affop

k → Gpd, sending S ∈ Affk to the groupoid of
S-families of rank n vector bundles. Since pullback of vector bundles is not a strict functor, we have
to strictify the functor. We omit this process and leave it to the reader to copy Definition 3.23.

Definition 6.9. We define Bunn : Affop
k → Gpd to be the prestack sending an affine k-scheme S to

the groupoid of vector bundles of rank n on X × S. The connected component of rank n and degree
d vector bundles will be denoted by Bundn(X).

It is central to the theory of vector bundles that this is actually an algebraic stack.

Theorem 6.10. The prestack Bunn is an algebraic stack.

The proof needs to verify to assertions: that Bunn is a stack, which follows directly from descent
theory, and the existence of an atlas. We will deal with the latter in the following paragraph, and
conclude the present one by remarking on the details of the proof that Bunn is a stack. (...)

6.2.2 The atlas

We will produce an atlas for Bunn(X), using an open subscheme of QuotX(OX(m)`), where OX(1)
denotes an ample line bundle on X with tensor powers OX(m), and m, and ` are appropriately
chosen integers. In order to achieve this, we remark first that every vector bundle of sufficiently
high degree can be obtained as a quotient of OX(m)`.

Lemma 6.11. Let E be a vector bundle on the curve X, with a chosen ample line bundle OX(1)
(i.e., of positive degree). For an integer m, we denote by E(m) the tensor product E ⊗OX(1)⊗m.
There exists an integer m0, such that for all m ≥ m0 we have that H1(X,E(m)) = 0. Under this
assumption, E(m) is generated by global sections, i.e., the map

H0(X,E(m))⊗OX → E(m)

is surjective. The dimension ` of H0(X,E(m)) is locally constant in S-families.

Proof. This is just a general fact for ample line bundles. See [?] for a proof in a far more general
context. (...)

The Semicontinuity Theorem 6.4 implies that the open subscheme U is well-defined.
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Definition 6.12. Let U (m) be the open subscheme of Quotdn(OX(−m)`), consisting of quotients

(OX(m)`) � E,

such that E satisfies the vanishing condition H1(X,E(m)) = 0, and d(E) = d, and n = rk(E).

This definition allows us to state a corollary of Lemma 6.11.

Corollary 6.13. The map p :
∐
m≥0 U

(m) → Bundn is a surjection.

Proof. We have seen in Lemma 6.7 that it suffices to check that every field-valued point E ∈
Bundn(X)(k′), can be lifted to Quotdn(OX(−m)`)(k′′), after passing to a field extension k′′/k′. We
show that p is smooth and representable in Corollary 6.15. Lemma 6.11 implies right away that
every vector bundle E on X × Spec k′ we can express E(m) as a quotient of O`X ∼= H0(X,E(m))⊗
OX , hence E as a quotient of OX(−m)`. As mentioned above, Lemma 6.7, this concludes the
argument.

We will show that p is an atlas. In order to verify representability and smoothness, we will check
that p is a GL`-torsor. This will be a corollary of the following geometric statement.

Lemma 6.14. Let q : X×S → S be the canonical projection. For every rank n vector bundle E on
X×S, such that the fibrewise degree is equal to d, and satisfying the assumptions of Definition 6.12,

we have a bijection between surjections φ : O`X×S � E(m) and isomorphisms φ] : O`S
'−→ q∗(E(m)).

Proof. The pullback functor q∗ is left adjoint to the pushforward functor q∗. In particular, we
obtain a bijection between maps φ : q∗O`X ∼= O

`
X×S → E(m), and maps φ]OS → q∗(E(m)). It

remains to show that surjections on one side correspond to isomorphisms on the other.
We begin by showing that φ] being an isomorphism implies that φ is a surjection. This is

immediate, since the data of an isomorphism O`S
'−→ q∗(E(m)) is equivalent to choosing an Γ(S)-

linear basis for the space of global sections of E on X × S. Since E is generated by its global
sections by assumption, we obtain that the induced map φ : O`X×S � E(m) is a surjection.

To show that φ] is an isomorphism if φ is a surjection, we begin by observing that φ] = q∗(φ).

Indeed, we have that the natural map OS → q∗(OX×S), corresponding to q∗OS
'−→ OX×S , is an

equivalence, because X has only constant global sections. Moreover, since E is generated by global
sections, the map φ is a surjection. To conclude the proof we show that q∗(E(m)) is a vector bundle.
This follows as an application of Theorem III.12.11 in [Har77]. Hence, we have a surjection between
vector bundles of the same rank. Such a map is always an isomorphism.

Corollary 6.15. The map p : U (m) → Bundn(X) is a GL`-torsor over its image, i.e., for every
affine scheme V , and morphism V → Bunn, the base change V ×Bundn

U → V is a GL`-torsor over
an open subscheme of V .

Proof. A map V → Bundn(X) corresponds to a rank n, degree d vector bundle E on X×S. Consider
the cartesian square

P //

��

V

��

Quotdn(OX(−m)`) // Bundn(X).
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By definition of fibre products of groupoids, for every affine scheme W , the groupoid P (W ) is the set
of surjections OX×W (−m)` � E. By Lemma 6.14, this set is equivalent to the set of isomorphisms

O`W = q∗O`X×W
'−→ q∗E(m). This set of isomorphisms (if non-empty) is freely transitively acted

on by GL(W ). Since p is surjective, P is non-empty, after replacing V by an fppf covering. This
shows that P → V is indeed a GL`-torsor.

Corollary 6.16. The stack Bundn(X) is algebraic, with atlas p :
∐
m≥0 U

m → Bundn(X).

Proof. We have seen in Corollary 6.13 that p is a surjection. Corollary 6.15 showed that p is a
GL`-torsor. Since GL` is a smooth and affine group scheme, we obtain from Proposition 5.20 that
p is a smooth and affine morphism. Therefore, p satisfies all conditions required to be an atlas for
Bundn(X).

6.3 The stack of G-bundles on a curve

6.3.1 Stacks of G-bundles as mapping stacks

Let F and Y be stacks. The mapping stack Map(Y, F ) is defined as the prestack

Map(Y, F )(U) = Hom(Y × U,F ),

where Hom(Y ×U,F ) is a groupoid, because stacks form a 2-category. The stack property for F and
Y implies that Map(Y, F ) is a stack as well. In general, it is unreasonable to expect mapping stacks
to be algebraic, if however Y is a projective scheme, the chances for this to happen are much better.
In fact, we have just established algebraicity of the mapping stack Bunn(X) ∼= Map(X,VBn).

We fix a smooth affine group k-scheme G, and as before a curve X, defined over k.

Definition 6.17. The stack BunG(X) of G-bundles on X, is defined (as the strictification, similar
to Definition 3.23), of the groupoid-valued functor, sending an affine k-scheme S to the groupoid of
G-torsors on X × S.

Since rank n vector bundles correspond to GLn-torsors (see Proposition 5.13), we have BunGLn(X) ∼=
Bunn(X).

Lemma 6.18. We have an equivalence of prestacks BunG(X) ∼= Map(X,BG). In particular,
BunG(X) is a stack.

Proof. By definition, Map(X,BG)(S) = Hom(X × S,BG), but the latter is equivalent to the
groupoid of G-torsors on X × S, hence to BunG(X)(S).

Theorem 6.19. Let G ↪→ GLn an embedding of G into the general linear group. The induced map
BunG(X)→ Bunn(X) is representable. In particular, BunG(X) is an algebraic stack.

We will prove this assertion in the next paragraph, after having established that the mapping
space Map(X,Y ) is a scheme, if X is projective, and Y quasi-projective.
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6.3.2 Presentability statements

We will need the following generalisation of mapping stacks.

Definition 6.20. Let Y → X × S be a morphism of sheaves, where S = SpecR is an affine k-
scheme, and X a curve. We denote by SectX×S(Y ) the space, sending an affine R-scheme U to the
set of commutative diagrams

Y

��

X × U

99

// X × S.

The reason for introducing these stacks of sections is their appearance in the proof of Theorem
6.19. It will be important to us to understand representability of these spaces of sections for quasi-
projective morphisms. We begin by establishing this in the special case that Y is a vector bundle
over X × S.

Lemma 6.21. Let E be a vector bundle on X × S. Denote by SectX×S(E) the stack which sends
an affine R-scheme U to the set of sections of the pullback π∗E on X × U . Then we have

SectX×S(E) ∼= Spec Sym(H1(X × S,E∨ ⊗ ωX)).

Proof. We have to show that affine R-scheme Spec Sym(H0(X×S,E∨⊗ωX)) represents the functor
SectX×S(E). This is equivalent to the R-algebra Sym(H0(X × S,E∨ ⊗ ωX)) corepresenting the
functor T 7→ SectX×S(E)(T ). Hence, we have to show that for every R-algebra T there’s a natural
bijection between maps of S-modules

HomR(H1(X × S,E∨ ⊗ ωX), T ) ∼= H1(X × S,E∨ ⊗ ωX)∨ ⊗ T

and the set of sections
H0(X × T,E ⊗S T ) ∼= H0(X × S,E)⊗S T.

However, according to Serre duality (see Theorem 6.2), we have a canonical equivalence

H0(X × S,E) ∼= H1(X × S,E∨ ⊗ ωX)∨.

This implies the claim.

The main result on spaces of sections is the following.

Proposition 6.22. Let S be an affine scheme, and Y → X × S a quasi-projective morphism, i.e.,
a morphism of schemes, which can be factored as

Y
i //

((

Z
j
//

""

P(E)

��

X × S,

where P(E) is the projective space bundle, associated to a vector bundle E over X × S, and i is an
open immersion, and j a closed immersion. Under these assumptions we have that SectX×S(Y ) is
a scheme.
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Proof. Lemmas 6.23 and 6.24 below allow us to reduce the proof of the Proposition to showing
that SectX×S(P(E)) is a scheme. As we will see, this is the content of Grothendieck’s celebrated
representability result for Quot schemes.

Let U → S be a morphism of affine schemes. A section s : X × U → P(E), i.e., a U -point of
SectX×S(P(E)), corresponds to a surjection π∗UE �M , where M is a line bundle on X × U .

This should be compared to the U -points of QuotX×S/S(E). By definition, QuotX×S/S(E)
consists of quotients π∗E �M , such that M is U -flat.

We claim that the natural morphism SectX×S(P(E)) → QuotX×S/S(E) is an open immersion.
This implies in particular that SectX×S(P(E)) is a scheme.

We have to show that for every U → QuotX×S/S(E) the base change

SectX×S(P(E))×QuotX×S/S(E) U ↪→ U

is an open immersion. To see this, we observe that for quotient π∗UE �M on X × U , there exists
an open subscheme V of X × U , such that M is locally free (we say that being locally free is an
open condition for coherent sheaves). A proof of this can be found in [?]. We denote the closed
complement by Z = X ×U \ V . Recall that the canonical projection is denoted by q : X ×U → U .
The image q(Z) ⊂ U is closed, since X is proper. We have an open subscheme U ′ = U \ q(Z). By
construction, the restriction M |X×U ′ is locally free. Since the rank of a vector bundle is locally
constant we may replace U ′ be the union of connected components where M is of rank 1. The
resulting open subscheme U ′ ⊂ U is equivalent to the fibre product SectX×S(P(E)) ×QuotX×S/S(E)

U ⊂ U .

We have to show that open immersions of targets induce open immersions of spaces of sections.
This is a consequence of properness of X.

Lemma 6.23. Let Y ↪→ Z be an open immersion of schemes over X × S, then the induced map
SectX×S(Y )→ SectX×S(Z) is also an open immersion.

Proof. It suffices to prove that for every U → S and a map U → SectX×S(Z) the base change
SectX×S(Y )×SectX×S(Z) U ↪→ U is an open immersion. A map U → SectX×S(Z) corresponds to a
section X × U → Z ×S U . Since X is proper, the subset U ′ = U \ (q(Z \ Y )) is the maximal open
subscheme, such that we have a factorisation X × U ′ → Y ×S U . This concludes the proof.

The case of closed immersions is slightly more subtle, and ultimately relies on Serre duality for
X.

Lemma 6.24. Let Y ↪→ Z be a closed immersion of finite presentation of sheaves over X × S,
then the induced map SectX×S(Y )→ SectX×S(Z) is also a closed immersion.

Proof. We have to show that for every cartesian diagram

P //

��

U

��

SectX×S(Y ) // SectX×S(Z),

where U is an affine R-scheme, the base change P → U is a closed immersion. The map U →
SectX×S(Z) corresponds to a section s : X × U → Z. Let W be the base change Y ×Z (X × U).
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We have a closed immersion of finite presentation W ↪→ X ×U . For every affine R-scheme U ′ with
a morphism U ′ → U , we have that P (U ′) is the subset of SectX×S(Z), consisting of morphisms
factoring through Y . Hence we have P (U ′) = SectX×U (W )(U ′), i.e., SectX×U (W ) ∼= P . Since
W ↪→ X × U is a closed subscheme of finite presentation, there is a morphism of vector bundles
f : E → E′, such that W = f−1(0). Particularly, we see that we have

SectX×U (W ) ∼= SectX×U (E)×SectX×U (E′) U,

where U × SectX×U (E′) corresponds to the section given by the zero section

0E′ : X × U → E′.

The map SectX×U (E) → SectX×U (E′) is certainly a closed immersion, hence the base change
SectX×U (W ) → U is a closed immersion too. Technically we’re using that a closed immersion of
vector bundles E ↪→ E′ induces a closed immersion of spaces of sections. However, inspecting the
proof of Lemma 6.21, it is easy to show that this holds, since an inclusion of sheaves E1 ↪→ E2

induces a surjection E′∨ ⊗ ωX � E∨ ⊗ ωX . The induced map of first cohomology groups is also a
surjection, since a coherent sheaf on a curve has vanishing second cohomology groups. This yields
a surjection of algebras

SymH1(X × U,E′∨ ⊗ ωX) � SymH1(X × U,E∨ ⊗ ωX),

thus a closed immersion of affine schemes.

We will now explain the link with proving representability of the map BunG(X) → Bunn(X).
This requires one more definition.

Definition 6.25. For a G-torsor Y → U , and a sheaf Z with a G-action, we denote by Y ×G Z
the sheaf (Y × Z)/G→ U over U .

One checks easily that Y ×G Z → U is étale locally equivalent to U × Z (since G-torsors are
étale locally trivial).

Lemma 6.26. Let G ↪→ H be an embedding of smooth affine group k-schemes. For an affine
k-scheme S we have a cartesian diagram

SectX×S(E ×H H/G) //

��

S

��

BunG(X) // BunH(X).

Sketch. 32 The embedding G ↪→ H allows us to describe the map BunG(X)→ BunH(X) as sending
a G-torsor E to EH = E ×G H. In particular we have have a commutative diagram

E //

""

EH

��

X × S,

32Volunteers for turning this into a proof as an exercise?
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where the map E ↪→ EH is actually a closed immersion. For each fibre it specifies a element in H/G
(after choosing a trivialization of the H-torsor). Hence, the data of the above diagram is equivalent
to a map X × S → EH ×H H/G.

Using this lemma, the Proposition 6.22 implies Theorem 6.19.

Proof of Theorem 6.19. The quotient H/G is quasi-projective.33 One can show that for any H-
bundle E on an affine scheme, E×HH/G is quasi-projective too, since the embedding into projective
space is given by a G-equivariant ample line bundle. In this case, we obtain by virtue of Proposition
6.22 that SectX×S(E ×H H/G) is a quasi-projective scheme.

7 Smooth algebraic stacks

A smooth variety is intuitively speaking very close to a complex manifold. The tangent space
of a smooth variety reflects the local geometry. This section is devoted to the smooth algebraic
stacks. We will see that the natural analogue of the tangent space at a point is actually a complex.
Similar, the sheaf of tangent vector fields for varieties, has to be substituted by the tangent complex.
After having studied the basic properties of smooth algebraic stacks, we will attempt to give a
definition of this object. On the way there we encounter higher descent conditions, which will make
a reappearance in the study of gerbes.

7.1 Smooth morphisms

The following definition can often be used as a template to define properties of algebraic stacks.

Definition 7.1. An algebraic R-stack F : Affop
R → Gpd is called smooth, if there exists an atlas

p : U → F , such that U is a smooth R-scheme.

An important example is given by classifying stacks of G-torsors.

Example 7.2. Let G be a smooth affine R-scheme. The algebraic stack BG of Definition 5.9 is
smooth.

Proof. We have seen in Theorem 5.21 that an atlas for BG is given by SpecR→ BG, given by the
trivial G-torsor on SpecR. Since the identity map SpecR → SpecR is smooth, we see that BG is
a smooth algebraic R-stack.

It turns out that if F is a smooth algebraic stack, then every atlas of F is smooth.

Lemma 7.3. Let F be a smooth algebraic stack and q : V → F an atlas. Then, V is smooth.

Proof. Consider the cartesian square

U ×F V
p′

//

q′

��

V

q

��

U
p

// F.

33See http://math.uchicago.edu/~jpwang/writings/Quotient.pdf for a proof of this classical result, using sheaf-
theoretic language.
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By assumption, the maps p and q are smooth, representable, and surjective. Since this is a base
change invariant notion, p′ and q′ are smooth and representable as well. In particular, U ×F V is
an algebraic space, and the map p′ : U ×F V → V is smooth and representable. By Definition 4.29,
we see that there exists an atlas W → U ×F V , such that each of the affine schemes Wi is smooth.
Without loss of generality we may assume that W and V are affine. We then see that we have a
surjective smooth map of affine schemes W → V , where W is R-smooth, since there is a smooth
morphism W → U , and U is R-smooth. Representing V as SpecR[t1, . . . , tn]/(f1, . . . , fm), and W
as SpecR[t1, . . . , tn; s1, . . . , sn′ ]/(f1, . . . , fm; g1, . . . , gm′), and applying the chain rule to

U
f

//

h
##

V

g

��

SpecR,

we see that the Jacobi matrices satisfy ∂h = ∂g · ∂f . Therefore, ∂h being surjective implies that
∂g is surjective too.

The lemma shows that the following statements are equivalent.

(a) The algebraic R-stack F is smooth.

(b) There exists an atlas U → F , such that U is smooth over R.

(c) For every atlas U → F , U is smooth over R.

Instead of smoothness, we could have worked with a different property, for example being locally
of finite presentation, a locally complete intersection, or Cohen-Macaulay, etc.

Remark 7.4. Let P be a property of affine schemes, such that for a surjective smooth morphism
V → U of affine R-schemes, the scheme V has property P , if and only if U has property P . Then,
we say that an algebraic R-stack F has property P , if and only if there exists an atlas

∐
i∈I Ui → F ,

such that each Ui has property P . Equivalently, one could demand that for every atlas
∐
i∈I Ui → F ,

the scheme U has property P .

Theorem 7.5. Let F be an algebraic R-stack, which is locally of finite presentation. It is smooth,
if and only is for every square-zero extension of affine schemes U → V (see Definition 4.24), and
commutative diagram

U //

��

F

��

V // G

there exists an étale covering V ′ → V , such that we have a dashed arrow

U ′ //

��

F

��

V ′ //

>>

G,

where U ′ = V ′ ×V U .
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We devote the rest of this subsection to the proof of this theorem. For future reference it will be
useful to have the notion of formally smooth morphisms for stacks (for the case of affine schemes
see Definition 4.24).

Definition 7.6. We say that a morphism of stacks F
f−→ G we say that f is formally smooth, if

for every square-zero extension of affine schemes U → V , and every commutative square

U //

��

F

��

V //

>>

G,

there exists an étale covering V ′ → V , we have a dashed arrow rendering the diagram

U ′ //

��

F

��

V ′ //

>>

G,

commutative, where U ′ = U ×V V ′.

We can now give the proof of Theorem 7.5.

Proof of Theorem 7.5. The proof relies on the so-called topological invariance property of étale
morphisms, which is proven in [Mil80, Thm. 3.23]. It states that for a square-zero extension
U → V , the functor

(V ′ → V ) 7→ (V ′ ×V U → U)

provides an equivalence between étale V -schemes and étale U -schemes. The intuitive content is that
étale morphisms correspond to local diffeomorphims for manifolds, hence should not be sensitive to
nilpotent thickenings.

Let X → F be an atlas for F , we also choose an atlas Y for the algebraic space X ×F U . We
have a commutative diagram

X ×F U //

��

X

��

U //

��

F

��

V // SpecR.

The map X ×F U → U is a smooth morphism of schemes. In particular, there exists an étale
covering U ′ → U , such that we have a section (Proposition 4.27)

X ×F U

��

U ′

::

// U.
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By the topological invariance of étale morphisms, we know that there is an étale covering V ′ → V ,
and an isomorphism U ′ ∼= V ′ ×V U . This allows us to draw the commutative diagram

Y

��

X ×F U //

��

X

��

U ′

��

>>

::

// U //

��

F

��

V ′ // V // SpecR.

Composing a few arrows, we obtain

U ′ //

��

X

��

F

��

V ′ //

>>

77

SpecR

by applying the lifting criterion for the smooth morphism of schemes X → SpecR.

Let us demonstrate the usefulness of this criterion for smoothness, by applying it to the stack
Bun1(X) = Pic(X).

Example 7.7. The stack of line bundles on a curve Pic(X) = Bun1(X) is smooth.

Proof. Let i : U → V be a square-zero extension of affine k-schemes. We let U = SpecB, and
V = SpecA, and A → B the corresponding ring homomorphism. Its kernel will be denoted by I.
The set of isomorphism classes of line bundles on X × V is given by H1(X × S,O×X×V ). We have
a short exact sequence of sheaves

0→ π∗I
1+?−−→ O×X×V → i∗O×X×U → 0,

where we use that I2 = 0, in order to get a well-defined map x 7→ 1 + x, from π∗I to OX×V . The
corresponding long exact sequence of sheaf cohomology groups contains the portion

H1(X × V,O×X×V )→ H1(X × U,O×X×U )→ H2(X × V, π∗I) = 0,

where we use that X is a scheme of dimension 1, and V is affine, to conclude that the second
cohomology group above is zero. Therefore, we see that every line bundle on X × U can be
extended to a line bundle on X × V .
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This result (and in a way also its proof) also hold for Bunn, and even BunG. One can show by
similar means that the deformation theory of bundles on a curve is always unobstructed. The exact
sequence of abelian groups, used in the proof for Pic(X) has to be replaced by an exact sequence
of pointed, non-abelian cohomology sets

H1(X × V,G(OX×V ))→ H1(X × U,G(OX×U ))→ H2(X × V, g ⊗k π∗I) = 0,

where g denotes the Lie algebra of G.

7.2 The cotangent complex

7.2.1 Dual numbers and the tangent space

This paragraph should be labelled as being very heuristic. We focus on conveying ideas and won’t
be bothered with making everything completely rigorous, although it certainly could be done.

For a field k, we define the algebra of dual numbers k[ε] to be the k-algebra k[t]/(t2). We have
seen in Lemma 4.23 that for a variety X, the set X(k[ε]) corresponds to the the disjoint union of
tangent spaces TxX at the k-points x ∈ X(k). The existence of this vector space structure can be
explained in purely formal terms.

Lemma 7.8. Let k[ε1, ε2] be the k-algebra k[t1, t2]/(t21, t
2
2, t1t2). We have a natural k-algebra ho-

momorphism
+] : k[ε]→ k[ε1, ε2],

characterised by ε 7→ ε1 + ε2, and for each λ ∈ k a map m]
λ : k[ε] → k[ε], sending ε to λε. With

respect to the identification of the fibre X(k[ε]) ×X(k) {x} with the tangent space TxX of Lemma
4.23, addition and multiplication by λ ∈ k are given by the maps

X(k[ε1])×X(k) X(k[ε2])
'−→ X(k[ε1, ε2])

+]−−→ X(k[ε]),

and X(k[ε])
m]λ−−→ X(k[ε]).

The proof of this lemma is an easy exercise, provided that, we clarify the isomorphismX(k[ε1])×X(k)

X(k[ε2])
'−→ X(k[ε1, ε2]). This amounts to the assertion that

Spec k //

��

Spec k[ε2]

��

Spec k[ε1] // Spec k[ε1, ε2]

is a pushout diagram. More concretely, we have to identify the set X(k[ε1, ε2]) with the set of pairs
of tangent vectors, based at the same k-point X(k[ε])×X(k) X(k[ε]).

Indeed, choosing a presentation of X as affine variety SpecZ[t1, . . . , tn]/(f1, . . . , fm), as in
Lemma 4.23, we see by the same means as in the proof of Lemma 4.23 that a ring homomor-
phism Z[t1, . . . , tn]/(f1, . . . , fm)→ k[ε1, ε2], corresponds to the choice of two elements in the kernel

of the Jacobi matrix
(
∂fi
∂tj

)
(x), evaluated at the corresponding k-point.
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Remark 7.9. The object Spec k[ε] → Spec k is a co-k-vector space object in the category of mor-
phisms in Sh(Aff). In particular, for every F ∈ Sh(Aff), and fixed morphism Spec k → F , the set
of commutative diagrams

Spec k

��

// F

Spec k[ε]

;;

is naturally endowed with the structure of a vector space.

At least from the point of view of this course it is natural to ask what happens if we allow F
to be a stack. Evidently, the collection of commutative diagrams as above forms a groupoid in this
case. The structure on k[ε] induces on this groupoid a ”vector space structure”. The right notion
in this case is given by strict Picard groupoids.

Definition 7.10. A k-vector space object P in the strict 1-category (obtained by discarding 2-
morphisms) of groupoids is called a strict Picard groupoid.

For the sake of clarity we unravel the definition of a Picard groupoid a bit more. We have an
addition map

+: P × P → P,

and for each λ ∈ k a multiplication by λ map

mλ : P → P,

such that the following diagrams are strictly commutative:

P × P × P
(+,idP )

//

(idP ,+)

��

P × P

+

��

P × P +
// P,

encoding associativity,

P × P
(p2,p1)

//

+
$$

P × P

+

��

P,

corresponding to (strict) commutativity,

P

mλ+µ
""

(mλ,mµ)
// P × P

+

��

P,
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as well as

P × P
(mλ,mλ)

//

idP×P

��

P × P

+

��

P
mλ // P,

tantamount to distributivity, and we also need the condition m1 = idP ; moreover we require an
object 0 ∈ P , such that x 7→ x+ 0 is the identity functor.

Example 7.11. Let C• = [V−1
d−→ V0] be a length 2 cochain complex of vector spaces. There exists

a canonical Picard groupoid PC• , with set of objects V0, and HomPC• (x, y) being equivalent to the
set of v ∈ V−1, such that y = x+ f(v).

This is the linear analogue of the quotient groupoid construction of Example 3.13. Indeed, we
may think of the vector space V−1 as acting on the vector space V0, by means of the linear map
f : V−1 → V0.

Lemma 7.12. Every strict Picard groupoid P is equivalent to PC• , for some cochain complex C•.

A morphism of complexes C•
f−→ D• induces an equivalence of groupoids PC• → PD• , if and only

if f is a quasi-isomorphism, i.e., if Hi(f) is an isomorphism for all i.

Proof. The strict nature of the definition of a strict Picard groupoid, implies that the set of objects
ObjP = V0 is endowed with the structure of a vector space. Similarly, one checks that V−1 =

AutP (0) inherits the structure of a vector space. Let C• = [V−1
0−→ V0], we then have a natural

functor PC• → P , which is the identity on objects. It is essentially surjective by construction,
and easily shown to be fully faithful, thus it is an equivalence of groupoids. This proves the first
assertion.

Similarly, given a cochain complex C• = [V−1
f−→ V0], we easily see by definition by AutP (0) =

ker f = H−1(C•), while the set of isomorphism classes is given by H0(C•) = coker f . This shows
that PC• → D• is fully faithful and essentially surjective (i.e., an equivalence) if and only if it
induces an isomorphism on H−1 and H0. Since all other cohomology groups of a length 2 cochain
complex, concentrated in degrees [−1, 0], are zero, this is the case if and only if C• → D• is a
quasi-isomorphism.

One way of interpreting this lemma is as saying that the 2-category of Picard groupoids is
equivalent to the 2-category of cochain complexes, supported in degrees [−1, 0], localised in a 2-
categorical sense at quasi-isomorphisms. Recall that localising in the 1-categorical sense truncates
the crucial structures given by 2-morphisms in the 2-category of Picard groupoids. This is one
of the many reasons why the derived category is sometimes too crude for applications which is
sensitive to this higher data.

The nomenclature suggests that there is also a notion of Picard groupoids, without any strictness
assumptions. We will not go into the details of their definition, which only requires the axioms of
an abelian group to hold up to a coherent system of invertible 2-morphisms. However, we remark
that Lemma 7.12 can be generalised to the non-strict setting. The place of cochain complexes
concentrated in degrees [−1, 0] is in this case taken by spectra E with homotopy groups πi(E)
concentrated in degrees [0, 1]. The ostensible difference in the support of the degrees corresponds
to the fact that spectra are really analogous to chain complexes, and not cochain complexes, and
is therefore just a consequence of the distinction between homological and cohomological gradings.
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Definition 7.13. Let F be an algebraic stack, and Spec k
x−→ F a k-point. The cochain com-

plex (well-defined up to quasi-isomorphism) corresponding to the Picard groupoid of commutative
diagrams

Spec k

��

// F

Spec k[ε]

;;

is called the tangent complex of F at x, and will be denoted by (TxX)•.

We would like to construct a sheafy version of the tangent complex, i.e. a complex of sheaves on
F , which could be understood as the natural analogue of the sheaf of tangent vectors on a variety.
We have not yet discussed the how to define quasi-coherent sheaves on algebraic stacks. We will
therefore return to this interesting question at a later point.

Example 7.14. Let G be a smooth affine group k-scheme. We denote by BG the classifying stacks
of Definition 5.9. We denote the Lie algebra of G by g. Let X be a smooth scheme with an action
by G.

(a) For the k-point Spec k
x−→ BG given by the standard atlas of BG, we have that T •xBG is

quasi-isomorphic to the complex [g→ 0].

(b) More generally, if x : Spec k → X is a k-point of X, then we have the infinitesial action
g → TxX, given by deriving the action of G, at x ∈ X. The complex T •x [X/G] is quasi-
isomorphic to [g→ TxX].

Proof. Exercise.34

The description of the tangent complex T •xBG as [g → 0], allows us to take a glimpse at the
exciting and recent area of shifted symplectic structures [PTVV11].

Remark 7.15. Let G be a reductive group scheme, k of characteristic zero, for example G = GLn.
There exists a non-degenerate symmetric pairing b : g×g→ k, which induces an equivalence g∨ ∼= g.
In particular, we obtain an equivalence

[g→ 0]∨[−2] ∼= [g→ 0].

The dual of the tangent complex at x should be the cotangent at x. This equivalence between tangent
complex and cotangent complex is actually the shadow of a much finer structure, which is a so-called
2-shifted symplectic structure on BG. See [PTVV11, p. 26] for details.

7.2.2 Kähler differentials and basic deformation theory

In this section we attempt to obtain a more conceptual understanding of formal smoothness for a
morphism of affine schemes. We will use this to obtain a cue for how the case of algebraic stacks
should be treated.

Let A� B be a square-zero extension, corresponding to the ideal I ∈ A. Since we have I2 = 0,
and B ∼= A/I, there is a canonical B-module structure on I. Vice versa, given a B-module M , we

34Volunteers?
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have a square-zero extension B[M ] � B, where B[M ] = B⊕M , where the ring structure on B[M ]
is defined as (b,m) · (b′,m′) = (bb′, b′m + bm′). Not every square-zero extension is of this shape,
consider for instance Z/p2Z � Z/pZ. The following lemma amounts to an easy computation.

Lemma 7.16. Let R → S be a ring homomorphism. Two dashed arrows as in the commutative
diagram

B Soo

��

A

OO

R

OO

oo

differ by an R-linear derivation S →M = ker(A� B).

There is an S-module Ω1
S/R, receiving the universal R-linear derivation. I.e., there is a derivation

d : S → Ω1
X ,

which is R-linear, and satisfies that for every R-linear derivation S →M , there exists a unique map
of S-modules Ω1

X →M , such that the diagram

S
d //

  

Ω1
X

��

M

commutes. We call Ω1
X the sheaf of Kähler differentials. It is an easy exercise to construct the S-

module Ω1
X as a quotient of S, by dividing by the submodule constructed by imposing the conditions

of an R-linear derivation.
Lemma 7.16 can therefore be restated as saying that the set of these dashed arrows (if non-

empty) is a torsor over HomB(Ω1
X ⊗S B,M). Hence, it implies directly that SpecS → SpecR is

formally unramified, if and only if Hom(Ω1
S/R ⊗S B,M) = 0 for all B-modules M . Particularly,

choosing B = S, we see that this implies Ω1
S/R = 0 by Yoneda’s lemma.

This connects to our previous discussion of tangent spaces in the following way. The space of
dashed arrows

k Soo

~~

k[ε]

OO

k,

OO

oo

which corresponds to the fibre of (SpecS)(k[ε])→ (SpecS)(k), at a chosen k-point x ∈ (SpecS)(k).
By the discussion above we see that it is also equivalent to Homk(ΩS/k ⊗S k, k) = (Ω1

S/k)∨, which
agrees with the expected picture that ΩS/k ⊗S k is the fibre of the cotangent space at x, and its
k-linear dual is the tangent space at x.

7.2.3 The cotangent sheaf for smooth Deligne-Mumford stacks

In this subsection we fix a smooth Deligne-Mumford R-stack F , and define for every affine scheme

mapping into it SpecB = U
f−→ F , a module, formally denoted by f∗Ω1

F/R. The constructed module
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will have the property that the set of dashed arrows in

SpecB //

��

F

��

SpecA //

99

SpecR

is equivalent to HomB(f∗ΩF/R,M), where M = ker(A� B).
At this point it is not yet possible for us to define of Ω1

F/R as a quasi-coherent sheaf on the
Deligne-Mumford stack F itself, but we will see in the last section that the above collection of
pullbacks f∗Ω1

F/R amounts to exactly such an object.35

We choose an atlas p : X → F , such that p is an étale representable morphism, and X is a
scheme, given by a disjoint union of smooth affine R-schemes.

We assume that there exists an extension to a commutative diagram

X

p

��

SpecB

g

99

f
//

��

F

��

SpecA //

9999

SpecR,

which is étale locally on SpecB always the case. Since p is étale, we have a bijection between
dashed and dotted arrows in the above diagram. In particular, we may define f∗Ω1

F/R in this case

as g∗Ω1
X/R. One can then show that the latter is independent of the choice of g, and faithfully flat

descent theory yields a well-defined sheaf f∗Ω1
F/R.

7.2.4 Towards the cotangent complex for smooth algebraic stacks

In this last paragraph we remark on the ingredients of defining the cotangent complex for smooth
stacks. An excellent source to learn about are the notes of Sam Raskin in the aforementioned
seminar by Gaitsgory36.

Deligne-Mumford stacks only have zero-dimensional stabilizer groups. Therefore we don’t expect
the cotangent sheaf to exhibit stacky phenomena. This is also visible from Example 7.14, where we
have seen that the tangent complex of BG was given by [g→ 0]. Hence, a zero-dimensional smooth
group G will yield a zero tangent complex.

As in Example 7.14, we expect the cotangent complex to be a length 2 complex, concentrated
in degrees 0 and 1. For every atlas p : U → F (hence p is a smooth map) of a smooth algebraic stack
F , we will construct a complex p∗L•F/R, called the pullback of the cotangent complex. As in the
previous section, one could use a descent construction, to construct f∗L•F/R for every map U → F ,
where U is affine. However, this is a finical procedure. The complexes will only be independent

35In line with the theme of this course this hints at the fact that we will resolve the problem of not having an
obvious notion of quasi-coherent sheaves on a stack, by turning the question into its answer. The above picture will
then turn into a complete tautology.

36http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Sept22(Dmodstack1).pdf
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of the resulting choices up to quasi-isomorphism. In general it is impossible to glue objects in the
derived category of chain complexes, defined by crude localisation. Instead one needs to work with a
higher categorical enhancement. For length 2 complexes it suffices to work with 2-categories, in fact
the 2-category of Picard groupoids does the trick. Just like the glueing of vector bundles involves
checking cocycle conditions on triple fibre products X×Y X×Y X, glueing Picard groupoids makes
use of higher cocycle conditions on X ×Y X ×Y X ×Y X.

Definition 7.17. (a) For an atlas p : X → F we define a quasi-coherent sheaf Ω1
X/F on X as

follows. Let Ω1
X×FX/X be the cokernel of the natural map p′∗Ω1

X → Ω1
X×FX . One could then

show that this object descends along X ×F X → X, but there’s a cheap trick to avoid this
verification: the diagonal ∆X/F : X → X ×F X is a section of the natural projection, we
simply define Ω1

X/F as ∆∗X/FΩ1
X×FX/X .

(b) We define a length 2 complex (supported in degrees [0, 1]) on X as follows

p∗LF/R = [Ω1
X → Ω1

X/F ].

The motivation behind this definition is that for F a scheme, the above complex is quasi-
isomorphic to ker(Ω1

X → Ω1
X/F ) = Ω1

F .

The following statement is an interesting exercise.37

Lemma 7.18. For a commutative diagram of atlases

X
f
//

p
  

Y

q

��

F

we have a quasi-isomorphism f∗q∗LF/R ' p∗LF/R.

8 Quasi-coherent sheaves

8.1 Quasi-coherent sheaves on prestacks

We have already seen the cotangent sheaf Ω1
X of a Deligne-Mumford stack F as a natural example

of a quasi-coherent sheaf on a stack. Since we were lacking the concept of a sheaf on a stack we
couldn’t define Ω1

F itself, but only the pullbacks f∗Ω1
X for all morphisms f : U → F , where U is

an affine scheme. In this section we introduce quasi-coherent sheaves on an algebraic stack F as
a compatible system of R-modules M , for each SpecR → F . Hence, in retrospect we obtain a
well-defined cotangent sheaf Ω1

F for any Deligne-Mumford stack F . This definition makes sense for
an arbitrary prestack F , and this extra generality turns out to be more than just an exercise in
abstraction, as demonstrated by the fact that the category quasi-coherent sheaves on so-called de
Rham spaces, which are not algebraic, are equivalent to categories of D-modules on varieties.38

37Volunteers?
38See http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf for a proof

of this statement.
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8.1.1 A stacky definition of quasi-coherent sheaves

A quasi-coherent sheaf on an affine scheme SpecR is an R-module. In Definition 3.23 we introduced

a stack M̃od : Affop → Gpd, which sends a ring R to a groupoid equivalent to the groupoid of R-
modules. In particular, we have that the groupoid of R-modules is up to equivalence given by the

groupoid of morphisms SpecR→ M̃od.

Definition 8.1 (Provisional definition). Let F be a prestack, we define a quasi-coherent sheaf on

F to be a morphism F → M̃od. The groupoid of such morphisms will be denoted by QCoh(F )×.

By virtue of the Yoneda Lemma a quasi-coherent sheaf on an affine scheme U ∼= SpecR corre-
sponds indeed to an R-module. How should we imagine a quasi-coherent sheaf on a general prestack
F? The following lemma gives a tautological, but useful answer to this question.

Lemma 8.2. If F ∈ PrSt(Aff) is equivalent to a colimit of affine schemes colimi∈I SpecRi, where
I is a category indexing the colimit, then

QCoh(F )× ∼= lim
i∈I

M̃od(Ri).

In particular, a quasi-coherent sheaf on F consists of a collection of Ri-modules Mi for each i ∈ I,
as well as isomorphisms

φij : Mj
'−→Mi ⊗Ri Rj ,

for each morphism j → i in I, such that we have that φ
i

id−→i
: Mi

'−→ Mi ⊗Ri Ri is the canonical

isomorphism, and for each commuting triangle

k //

��

j

��

i.

a cocycle identity expressed by the commutative square

Mj ⊗Rj Rk
' //

'
��

(Mi ⊗Ri Rj)⊗Rj Rk

'
��

Mk
' // Mi ⊗Ri Rk.

Proof. The first assertion follows from the universal property of colimits. For any prestack F we
have that

HomPrSt(Aff)(colim
i∈I

Ui, F ) ∼= lim
i∈I

HomPrSt(Aff)(Ui, F ).

The second assertion is a restatement of the explicit model for limits in 2-categories, which we
discussed in ??.

As a direct consequence, one obtains the following statement.
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Corollary 8.3. Let X be a scheme, and (SpecRi)i∈I a Zariski open covering of X be affine
schemes, for each tuple of indices (i0, . . . , ik−1), we let (SpecRi0,...,ik−1,i)i∈Ii0,...,ik−1

be a Zariski

open covering of affine schemes of the intersection SpecRi0 ∩ · · · ∩ SpecRk−1. Then the datum of
a quasi-coherent sheaf on X is equivalent to giving a compatible system of Ri0...ik -modules for each
tuple of indices.

We demonstrate the computational value of this principle with an example of a prestack which
we will take up again in Paragraph 8.2, in a more general context. At first we have to introduce
some notation.

Definition 8.4. An abstract group G induces a group-valued sheaf
∐
g∈G SpecR on AffR, which

we denote by the same letter. We denote by BGtriv the prestack which assigns to every U ∈ AffR
the full subgroupoid of trivial G-torsors of BG(U).

It turns out that the natural map BGtriv → BG realises BG as the stackification of BGtriv, as
we will discuss in Paragraph 8.2. We will now use Lemma 8.2 to compute QCoh(BGtriv).

Lemma 8.5. For an abstract group G, and a ring R we denote by BGtriv : Affop
R → Gpd the

prestack of Definition 8.4. Let RepG(R) be the category of G-representations on R-modules. Then
we have an equivalence QCoh(BGtriv)× ∼= RepG(R)×.

We will deduce this from the following lemma.

Lemma 8.6. Consider the category I = [•/G]. We claim that

BGtriv ∼= colim
I

SpecR,

where each g ∈ G is sent to the identity idSpecR.

Proof. As a groupoid we have that BGtriv(SpecS) = [(SpecR)(S)/G], where G acts trivially. We
have to show that BGtriv satisfies the universal property of the colimit for the I-indexed constant
system (SpecR)i∈I . Indeed, if (F )i∈I is another constant I-indexed system of prestacks, and

(SpecR)i∈I
(fi)i∈I−−−−→ (F )i∈I is a natural transformation between them, this amounts to choosing

x ∈ F (R), as well as an isomorphism ψg ∈ AutF (R)(x) for every g ∈ G, such that ψgh = ψgψh.
This defines a natural map [SpecR(S)/G] → F (S), by composing a given SpecS → SpecR with
x : SpecR → F , and sending the isomorphism of [SpecR(S)/G] corresponding to g ∈ G, to the
automorphism of the composition SpecS → SpecR→ F , induced by ψg.

Proof of Lemma 8.5. We have seen in Lemma 8.6 thatBGtriv can be written as a colimit colimI SpecR.
According to Lemma 8.2 this implies that QCoh(BGtriv)× is equivalent to the category of pairs

(M, (φg)g∈G), where M is an R-module, and for each g ∈ G we have an isomorphism φg : M
'−→

M ⊗R R, such that φ1 = idM , and for each identity gh = k we have a commutative square

M ⊗R R
h //

g−1

��

(M ⊗R R)⊗R R

��

M
k // M ⊗R R.

Composing the isomorphism corresponding to g with the canonical equivalence of R-modules given

by M ⊗R R
'−→M , we obtain a G-action on M .
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Every prestack can be expressed as a colimit in a tautological manner.

Lemma 8.7. For a prestack F : Aff → Gpd we denote by Aff /F the category of morphisms U → F ,
where U is an affine scheme. The Yoneda Lemma, and the universal property of colimits yields a
canonical map

colim
U∈Aff /F

U → F,

which is an equivalence of prestacks.

Proof. Exercise.39

Hence we obtain the following corollary of Lemma 8.2, which will be the model for the definition
of category of quasi-coherent sheaves on a prestack.

Corollary 8.8. The groupoid of quasi-coherent sheaves on a prestack F is equivalent to

QCoh(F )× ∼= lim
SpecR∈(Aff /F )op

M̃od(R).

8.1.2 The category of quasi-coherent sheaves as a limit

The downside of the treatment of the last section is that it only describes quasi-coherent sheaves,
and isomorphisms between quasi-coherent sheaves. In order to include general morphisms, we give
the following definition.

Definition 8.9. The category of quasi-coherent sheaves QCoh(F ) is defined to be the limit

lim
SpecR∈Aff /F

Mod(R),

in the 2-category of categories (here we employ the stricitfication procedure of Definition ??, to get
a well-defined limit).

Using the explicit model for limits in 2-categories we see that the datum of a quasi-coherent
sheaf on F amounts to an Ri-module Mi for every morphism SpecRi → F , such that for a diagram

SpecR1
//

%%

SpecR0

��

F,

we have an equivalence φ01 : M0 ⊗R0
R1
∼= M1, such that for idR0

: R0 → R0 the isomorphism φ00

is the tautological one, and for a commutative diagram

SpecR2

%%

// SpecR1
//

��

SpecR0

yy
F ,

39Volunteers?
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we have a commutative square

M1 ⊗R1
R2

' //

'
��

(M0 ⊗R0
R1)⊗R1

R2

'
��

M2
' // M0 ⊗R0 R2.

We want the category of quasi-coherent sheaves on SpecR to be equivalent to the category of
R-modules.

Lemma 8.10. We have an equivalence of categories QCoh(SpecR) ∼= Mod(R).

Proof. The indexing category (Aff / SpecR) has a final object SpecR→ SpecR, hence the limit is
equivalent to QCoh(SpecR).

8.1.3 Stackification and quasi-coherent sheaves

Let (C, T ) be a site. A morphism of presheaves F → F ] is called a sheafification, if it is injective,
and surjective in the sense of sheaves, i.e., for every x ∈ F ](U) there exists an {Ui → U}i∈I , such
that x|Ui lies in the image of F (Ui)→ F ](Ui). If this is the case, one has for an arbitrary sheaf G
that Hom(F ], G) ∼= Hom(F,G). By virtue of the Yoneda Lemma we have that F ] is unique up to
a unique isomorphism. Just like presheaves can be sheafified, stacks can be stackified.

Definition 8.11. A morphism of prestacks F → F ] on a site (C, T ) is called a stackification, if F ]

is a stack, and for each U ∈ C the morphism of groupoids F (U)→ F ](U) is surjective in the sense
of stacks, i.e. for each x ∈ F ](U), there exists an {Ui → U}i∈I , such that x|Ui lies in the essential
image of F (Ui) → F ](Ui), and for each pair of objects x, y ∈ F (U) we have that the induced map
of presheaves of isomorphisms on C/U HomF (x, y)→ HomF ](x, y) is a sheafification.

An example of a stackification is given by the map BGtriv → BG.

Lemma 8.12. The map BGtriv → BG is a stackification.

The stackfication satisfies a universal property.

Lemma 8.13. If F → F ] is a stackification then for any stack G ∈ StT (C) we have a canonical
equivalence Hom(F ], G) ∼= Hom(F,G).

In particular we see from the Yoneda Lemma that a stackification is unique in a 2-categorical

manner. Since we have a stack of quasi-coherent sheaves, i.e. M̃od, we see directly that the groupoid
of quasi-coherent sheaves is not affected by stackification.

Corollary 8.14. If F → F ] is a stackification then QCoh(F ])× ∼= QCoh(F )×.

Proof. The equivalence Hom(F ], M̃od) ∼= Hom(F, M̃od) implies that QCoh(F ]) ∼= QCoh(F ).

This suggests that the same statement should be true for categories of quasi-coherent sheaves.

Lemma 8.15. For a stackification F → F ] of a prestack F we have an equivalence QCoh(F ]) ∼=
QCoh(F ), given by pullback along the map F → F ].

83



Proof. Exercise.40

Since the map BGtriv → BG is a stackification, we see obtain an explicit description of the
category of quasi-coherent sheaves on the stack BG.

Corollary 8.16. For an abstract group G, and a ring R we denote by BG : Affop
R → Gpd the

prestack of Definition 5.9. Let RepG(R) be the category of G-representations on R-modules. Then
we have an equivalence QCoh(BG)× ∼= RepG(R)×.

8.2 BG and G-representations

We will refine the previous example of a category of quasi-coherent sheaves. Recall from the
discussion around Definition 5.4 that for an affine group R-scheme G, the ring of regular functions
Γ(G) has the structure of a Hopf R-algebra, i.e., we have a comultplication map m] : Γ(G) →
Γ(G) ⊗R Γ(G) satisfying the categorical analogues of the comonoid axioms (also have a co-unit
map, and co-inverse map). A regular G-representation is a Γ(G)-comodule M , i.e. an R-module
together with a comultiplication map

a] : M →M ⊗R Γ(G),

such that the diagram

M
a] //

a]

��

M ⊗R Γ(G)

idM ⊗m]

��

M ⊗R Γ(G)
a]⊗idΓ(G)

// M ⊗R Γ(G)⊗R Γ(G)

commutes. There is also the so-called co-unit axiom, corresponding to commutativity of

M
m] //

idM
$$

M ⊗ Γ(G)

e]

��

M

We denote the category of regular G-representations by RepG.

Lemma 8.17. The category QCoh(BG) is equivalent to the category RepG of regular G-representations,
i.e., the category of Γ(G)-comodules.

We will give a proof in the next paragraph, after having discussed a theorem in category theory.

8.2.1 The Barr-Beck Theorem

We fix a category C, a comonad on C is an endofunctor T : C → C, together with a natural
transformation u] : T → idC (co-unit), and m] : T → T ◦T (comultiplication). Moreover we stipulate

40Volunteers?
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that the following diagrams commute:

T
m] //

m]

��

T ◦ T

u]◦idT
��

T ◦ T idT ◦u] // T,

and

T
m] //

m]

��

T ◦ T

m]◦idT
��

T ◦ T idT ◦m]// T ◦ T ◦ T.
This is equivalent to the following definition.

Definition 8.18. For a category C we have a monoidal category of endofunctors Fun(C,C), with
monoidal structure given by composition of functors. A comonad in C is a coalgebra object in this
category.

A comodule for a comonad consists of an object M ∈ C, and a map a] : M → TM , such that
the diagrams

M
a] //

idM !!

TM

u]

��

M,

and

M
a] //

a]

��

TM

m]

��

TM
a] // T 2M

commute. In the literature, comodules over a comonad T are referred to as T -algebras. We will
not apply this nomenclature. Equivalently, we may define comodules for a comonad in categorical
jargon as follows.

Definition 8.19. The category Fun(C,C) acts on C (by applying a functor F to an object X ∈ C).
A comodule in C of a co-algebra object T in Fun(C,C) (hence a comand) is called a comodule of T .
We denote the category of T -comodules by ModT (C).

The definition of comonads and comodules is reminiscent of Hopf algebras and comodules.

Example 8.20. Let G be an affine group R-scheme, i.e., Γ(G) is a Hopf R-algebra. Then the
functor −⊗R Γ(G) : Mod(R) → Mod(R) has the structure of a comonad. We have an equivalence
Mod−⊗RΓ(G)(Mod(R)) ∼= RepG.

Coming from the abstract side of things, pairs of adjoint functors are a source for comonads
(and the dual concept, so-called cocomonads41).

41Often also abbreviated as monads
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Lemma 8.21. Let L : D → C be a functor which has a right adjoint R: C → D. Then, the
composition LR ∈ Fun(C,C) has the structure of a comonad, induced by the co-unit of the adjunction
LR → idC (coming from the identity map R → R by adjunction), and the map LR = L(idC)R →
L(RL)R = LRLR, using the unit idC → RL (derived from the identity map L → L via the
adjunction).

Proof. Exercise.42

Adjunctions are not only the source of comonads, but also of comodules.

Lemma 8.22. Let L and R be the functors of Lemma 8.21, then for every X ∈ D, the image
LX ∈ C has the structure of an LR-comodule. The map a] : LX → LRLX is induced by the unit
idC → RL. Hence, we have a natural factorisation

D
L //

L̃ $$

C

ModLR(C).

OO

Proof. Exercise.43

The functor L̃ : D→ ModLR(C) can be shown to be an equivalence, if a few technical conditions
are satisfied.

Theorem 8.23 (Easy Barr-Beck). The functor L̃ : D→ ModLR(C) is an equivalence if the following
conditions hold:

- the categories C and D have equalizers,

- the functor L preserves equalizers,

- the functors L and R are conservative, i.e. a morphism X
f−→ Y in D is an isomorphism if

and only if R(f) is an isomorphism.

Proof. Using the assumptions we will define an inverse functor R̃ : ModT (C) → D. This relies on
an observation, which we will establish in Lemma 8.24 below. Namely that for every M ∈ D we
have an equalizer diagram

M → RLM ⇒ RLRLM.

Taking this statement for granted, we define R̃(M) as the equalizer of RM ⇒ RLRM . Since L
preserves equalizers, and assuming that M = LN we obtain an equalizer diagram

R̃LN → RLN ⇒ RLRLN,

the universal property of equalizers yields therefore a natural equivalence R̃L̃N ∼= N .
Vice versa, we see that L̃R̃M is equal to the equalizer (since L preserves equalizers)

LR̃M → LRM ⇒ LRLRM,

42Volunteers?
43Volunteers?

86



and it suffices to show that M → LRM ⇒ LRLRM is also an equalizer diagram. We apply R to
this diagram and obtain

RM → RL(RM) ⇒ RLRL(RM),

which is an equalizer as mentioned above. Since R is a right adjoint, it preserves limits, hence
M → LRM ⇒ LRLRM is an equalizer diagram too, since we assumed R to be conservative.

It remains to prove the lemma which was used in the proof of the Barr-Beck Theorem.

Lemma 8.24. If L and R are functors satisfying the same assumptions as in Theorem 8.23, then
we have for every M ∈ D that

M → RLM ⇒ RLRLM

is an equalizer diagram.

Proof. Let us denote the equalizer of RLM ⇒ RLRLM by M ′. The universal property of equalizers
yields a canonical map M →M ′, we will verify that it is an isomorphism. In fact, we will show that
LM → LM ′ is an isomorphism. Since L is conservative, this is sufficient to deduce the assertion.

Applying the functor L to the above equalizer diagram we obtain an equalizer diagram

LM ′ → LRLM ⇒ LRLRLM,

since L preserves limits. We claim that

LM → LRLM ⇒ LRLRLM

is also an equalizer diagram, which then shows that the natural map LM → LM ′ is an isomorphism,
and hence concludes the proof by the discussion above. To see that this assertion holds, we observe
that the unit LR→ idC gives rise to a splitting of the fork-shaped diagram

LM // LRLM //
//oo
LRLRLM.oo

However, every split fork is an equalizer diagram, since the splitting can be used to verify the
universal property.

A direct comparison of the proofs of Theorem 8.23 with Theorem 2.25 shows that the Barr-Beck
Theorem functions as an abstract descent result. We invite the reader to further contemplate this
analogy and to deduce faithfully flat descent from the Barr-Beck Theorem.

8.2.2 Quasi-coherent sheaves on BG: the proof

It remains to prove that QCoh(BG) ∼= RepG, for a faithfully flat group R-scheme G. In order to do
this, we will construct a right adjoint functor p∗ for the pullback p∗ : QCoh(BG)→ QCoh(SpecR) ∼=
Mod(R), where p : SpecR → BG is the canonical map. We will then show that the conditions of
the Barr-Beck Theorem 8.23 are satisfied, and conclude the proof by verifying that the comonad
given by the adjunction is equivalent to − ⊗R Γ(G), which we studied in Example 8.20. Since
Mod−⊗RΓ(G)(Mod(R)), this concludes the proof that QCoh(BG) ∼= RepG.

Lemma 8.25. Let p : F → G be an affine and flat morphism of prestacks, then the functor
p∗ : QCoh(G)→ QCoh(F ) has a right adjoint p∗ : QCoh(F )→ QCoh(G), which is conservative.
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Sketch. We will deduce this from the base change identity for flat morphisms of affine schemes. At
first we construct the functor p∗. For every M ∈ QCoh(F ), corresponding to a compatible system
of pullbacks f∗M , given for every f : V → F we have to define g∗p∗M , for every g : U → G. Since
p : F → G is an affine morphism of prestacks we can form the fibre product

V //

pU

��

F

��

U
g
// G,

and define g∗p∗M as (pU )∗f
∗M . For U ′ → U , we obtain two pullback squares

V ′ //

pU′

��

V //

pU

��

F

��

U ′
g′
// U

g
// G,

hence base change for the first square yields a natural isomorphism

(g′)∗(pU )∗(f
∗M) ∼= (pU ′)∗(f ◦ f ′)∗M.

Since pushforward along maps of affine schemes is a conservative functor (it corresponds to restric-
tion of scalars along a ring homomorphism R→ S), we see that p∗ is conservative as well.

The next lemma is only a restatement of the definition of a faithfully flat morphism.

Lemma 8.26. If p : F → G is a representable and faithfully flat morphism of prestacks, then the
functor p∗ preserves equalizers and is conservative.

The only assertion left to check is that p∗p∗ is equivalent to − ⊗R Γ(G). The definition of the

functor p∗ reveals that for every f : U → SpecR, we send f∗M to π∗π
∗M , where π : Ũ → U is the

canonical projection of the fibre product U ×BG U → U . We have seen however that Ũ ∼= U ×G,
since a map U → BG, factoring through SpecR → BG classifies the trivial torsor on U . Hence,
π∗π

∗M is equivalent to M ⊗ Γ(G).
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