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Outline.

Health economists frequently wish to estimate causal relationships from observational
data, for example, the effect of education on health. Such inference problems can be
very challenging, as associations in observational data typically reflect causation in either
direction, or common but possibly unobserved causes of both variables. Continuing the
example, an observed correlation between health and education does not reveal the
causal effect of education on health, as poor health could lead to lower education, and
many other variables, such as cognitive and non-cognitive aspects of personality, may
lead to changes in both health and education. Instrumental variables (IV) estimators
are commonly deployed in health economics to attempt to estimate causal relationships
when we are limited to observational data. In this chapter we discuss the use and
limitations of the instrumental variables approach.
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I Introduction.

Health economists frequently face the challenge of estimating causal relationships in the
absence of controlled experiments. For example, a long-standing issue in economics and
in other disciplines is unraveling the observed relationship between education and health.
Countless studies have documented a positive correlation between these outcomes, but
fewer have successfully addressed the causal impact of education and health. In principle,
randomized controlled trials (RCTs) could be used, but it is difficult to experimentally
manipulate levels of education. Instrumental variables methods can be used when the
real world provides some quasi-experimental variation in education. In this chapter, we
discuss the use and the limitations of the IV approach. We illustrate how IV works,
review its relationship to the experimental approach, identify the properties of good
natural experiments, and discuss the statistical properties of the IV estimator when the
natural experiment is less than ideal.

II The instrumental variables estimator.

An intuitive explanation for the univariate model.

We begin by sketching the statistical properties of the linear instrumental variables
estimator. In the interest of simplicity, we develop ideas in the univariate case, and we
suppress the constant by assuming all variables are expressed as deviations from their
respective sample means. Suppose that we wish to estimate the effect of a broadly defined
“treatment,” x, on an outcome y. Data on y and x are collected for a random sample
of n observations; yi and xi denote the values of these variables for the ith observation.
The treatment affects the outcome according to a linear regression of the form

yi = βxi + ui, (1)

where β is an unknown parameter to be estimated and ui is an unobserved error term,
interpreted as all causes of yi other than xi. Critically, we wish to interpret β as the
causal effect of x on y, so we do not impose the assumption that x and u are uncorre-
lated; u and x will be correlated if there are variables unobserved to the researcher which
cause both x and y (“omitted variables” in econometrics, or “unobserved confounders”
in some other disciplines) or if y “reverse” causes x. We can attempt to address omit-
ted variables by using standard multivariate regression specifications and adding more
independent variables to the model, but commonly, as in the education and health ex-
ample above, even very rich datasets will exclude information on countless personality,
cognitive, background, and contextual variables which may affect both the outcome and
the intensity of treatment. Moreover, controlling for additional variables does not help
resolve the “reverse” causation problem. Methods other than instrumental variables are
sometimes available—such as regression discontinuity designs, or certain longitudinal
data approaches—but we limit attention here to instrumental variables.

When a regressor is correlated with the error term u, it is said to be endogenous ;
if not it is said to be exogenous. If we use ordinary least squares (OLS) to estimate



the parameters of this equation, the OLS estimator of β, denoted β̂, will be biased and
inconsistent if x is endogenous. It can be shown that

E(β̂|x) =
Cov(x, y)

Var(x)
= β +

Cov(x, u)

Var(x)
, (2)

where E is the expectation operator, Cov(x, u) is the covariance between x and u, β is
the true value of the causal effect we wish to estimate, and Var(x) is the variance of x.
That is, the distribution of the OLS estimator is centered on the causal effect of interest
plus a term which depends on the extent to which unobserved causes of the outcome
(u) vary with the treatment (x). The problem is that without more information we will
observe y moving with x even if x has no causal effect on y either because y “reverse”
causes x, or because x and u share common causes, leading to biased and inconsistent
OLS estimates of the causal effect of interest.

The method of instrumental variables can solve the problem in some circumstances.
Suppose that we have a variable z which has the property that z affects y only because
z affects x, which in turn affects y, as illustrated in the diagram.

[ INSERT FIGURE ABOUT HERE ]

If z affects y only through its effect on x, then we infer that x causes y from correlation
between the instrument z and the outcome of interest y. Under this assumption, the
effect of a one unit change in z on y is the product of the effect of z on x and the effect of
x on y. The observed association between z and y reveals only the product of these two
effects. We can, however, isolate the effect of x on y by dividing the observed association
between z and y by the observed association of z and x.

The derivation of the IV estimator can be shown more formally (using the method
of indirect least squares) by writing

y = βx(z, u) + u, (3)

expressing the treatment x as a function of the instrument z and the unobserved causes
of y, u. Note we have imposed the key condition that z only affects y because z affects
x. Differentiate with respect to z to find

dy

dz
= β

dx

dz
, (4)

since du/dz = 0 by assumption. Rearrange to find

β =
dy/dz

dx/dz
, (5)

which tells us that the causal effect of interest is the ratio of the effect of z on y to the
effect of z on x. If we estimate those effects using linear regressions, we find

β =
Cov(y, z)/Var(z)

Cov(x, z)/Var(z)
=

Cov(y, z)

Cov(x, z)
. (6)



Replacing the population moments in the expression above with sample moments cal-
culated from the data yields the linear IV estimator for this model, denoted β̂IV ,

β̂IV =

∑
i ziyi∑
i zixi

. (7)

Note that, in contrast to the OLS estimator, the IV estimator depends in no way
on the correlation between y and x, which is confounded by the common cause u, and
therefore does not tell us anything useful about the causal effect of x on y. Note also
that, unlike the OLS estimator, the denominator of the expression above is a covariance
rather than a variance, and it is therefore not bound away from zero. We will clearly
require that Cov(x, z) be different from zero; we will return to the problems this issue
causes below in the discussion of “weak” instruments, which arise when Cov(x, z) is not
zero but is small.

General linear model and two-stage least squares interpretation.

Now consider the general linear problem of estimating causal effects when there are k
covariates, an arbitrary number k1 of the covariates are endogenous (correlated with the
error term u), and the remainder k2 = k − k1 covariates are exogenous. Let X1i denote
the k1-vector of observations on endogenous regressors for the ith sampled unit and X2i

the vector of k2-vector of observations on the exogenous regressors, so that the model
we wish to estimate can be expressed

yi = Xiβ + ui = X1iβ1 +X2iβ2 + ui. (8)

It is possible to show that we can estimate the parameters β1 and β2 if we have l ≥ k1

variables which are correlated (in a sense defined formally below) with the endogenous
regressors X1 but have no direct effect on y after conditioning on X2, that is, these
variables only affect y because they affect the endogenous regressors X1. If we have
fewer than k1 such variables, the model is said to be underidentified, and we cannot
obtain estimates. If we have exactly l = k1 such variables, the model is said to be
exactly identified, and if we have l > k1 such variables the model is overidentified.

Let Zi = (Z1i, X2i) denote the (l + k2)-vector of observations for all exogenous vari-
ables for the ith unit. Here, Z1i is vector of observations on l variables which only affect y
because they affect X1—these variables do not appear in the equation we are attempting
to estimate (equation (8)), so they are called the excluded instruments. The vector X2i of
observations on exogenous variables in equation (8) can “act as their own instruments.”
The multivariate version of the estimator defined in equation (6) is

β̃IV = (X ′PZX)−1X ′PZy, (9)

where PZ = Z(Z ′Z)−1Z ′. It is possible to show that β̃IV may be calculated by executing
the following steps:



1. Separately for each of the endogenous regressors in X1, regress the endogenous
regressor on the complete set of exogenous variables Z. Save the set of predicted
values, X̂1.

2. Regress y on X̂1 and X2 using OLS.

The estimated coefficients in step 2 are numerically identical to β̃ defined in equation
(9). For this reason the linear IV estimator is sometimes referred to as the “two-stage
least squares” (2SLS or TSLS) estimator.

III Statistical properties of the IV estimator.

In this section we briefly describe the sampling properties of the IV estimator. Formally,
the assumptions that the excluded instruments Z1 only (after conditioning on X2) affect
the outcome y through their effect on the endogenous regressors X1 can be expressed:

plimn→∞
1

n
Z ′u = 0, (10)

where plim is the probability limit operator as the sample size n tends to infinity. The
condition that the excluded instruments must be correlated with the endogenous regres-
sors can be expressed

plimn→∞
1

n
X ′Z exists and has full rank k. (11)

Under some further regularity conditions, which we omit, it is possible to show that

plimn→∞β̃IV = β, (12)

that is, that the IV estimator is consistent under these assumptions. If the sample size
is allowed to grow arbitrarily large, the difference between the estimates and the causal
effects of interest becomes arbitrarily small. Further, the estimator is asymptotically
normal, permitting conventional inference with standard test statistics (such as z-ratios
and F-statistics). The covariance matrix can be estimated as s2(X ′PZX)−1 if the er-
rors ui are homoskedastic and serially uncorrelated, where s2 is a consistent estimate
of the variance of u; covariance estimators consistent in the presence of arbitrary het-
eroskedasticity and serial correlation are also readily available. Finally, the IV estimator
is asymptotically efficient in the class of linear estimators.

Having established that the IV estimator has desirable large sample properties, we
note that the IV estimator generally has no desirable small sample properties. It is
possible to show that in exactly identified models (models with exactly as many excluded
instruments as endogenous regressors),

E(β̃IV )→∞, (13)

that is, the estimator has no moments, its distribution has such “fat tails” that the
integral defining the expected value of the estimator does not converge. In practice this



means that we will not uncommonly get “wild” estimates many standard deviations
away from the causal effect of interest. Recall that we have k1 endogenous regressors
and l excluded instruments, and we have asserted that we require l to be at least as
large as k1. The difference (l − k1) is the number of overidentifying restrictions. It is
possible to show that the number of existing moments of β̃ is equal to the number of
overidentifying restrictions. For example, if we have one endogenous regressor and one
excluded instrument, the model is exactly identified and β̃ does not even have a mean.
If we add one more excluded instrument, we have one overidentifying restriction and β̃
has a mean but not a variance nor any higher order moment, and so on.

The IV estimator is generally biased even when at least one overidentifying restriction
exists. As the degree of overidentification rises, the bias of the IV estimator rises, and
approaches the bias of the OLS estimator as the number of overidentifying restrictions
approaches the sample size. At the same time, it is possible to show that the dispersion
of the IV estimator falls with the number of overidentifying restrictions.

Generally, researchers face a trade-off: the OLS estimator in the presence of en-
dogenous regressors is inconsistent, but is less dispersed than the IV estimator. Which
estimator is preferred depends on the trade-off the researcher is willing to make between
bias and dispersion. Adding more instruments (and thus increasing the number of overi-
dentifying restrictions) decreases the dispersion of the IV estimator, but increases its
bias.

IV Examples of instrumental variables in health re-

search.

In this section we discuss some examples of applied instrumental variables estimation
drawn from the health economics literature. We begin by considering randomized con-
trolled trials (RCTs) as a special case of IV models, and build to more complex models
for, first, imperfect RCTs and then uncontrolled experiments.

Example 1: RCT with perfect compliance.

As a trivial example of IV, consider interpreting standard analysis of an RCT with
perfect compliance as an IV estimator. Suppose that y is the outcome of interest, x is
a binary variable denoting treatment status, with xi = 1 if subject i is given the new
therapy and xi = 0 if given the standard therapy. The researcher randomly draws a
binary variable from a process independent of y (a figurative coin flip); z denotes the
outcomes of this process . The researcher then assigns treatment statuses: xi = zi. In
this scenario, z is determined independently of u, and z is perfectly correlated with x; z
thus satisfies the conditions for an instrumental variable given above. In this special case,
z completely determines x (subjects comply perfectly with their assigned treatment), so
that x cannot be correlated with u. Because x is exogenous in this case, the IV estimator
is the same as the OLS estimator.



Example 2: RCT with imperfect compliance.

Now consider a common problem with RCTs: suppose some subjects who are assigned
to receive the standard therapy nevertheless take the new therapy; others assigned to
receive the new therapy actually take the standard therapy. Generally, the difference
in sample means across the treatment and control groups reflects both the causal effect
of treatment and non-random selection into treatment, so we cannot use it to estimate
the treatment effect. Assuming that assignment affects the treatment decisions of at
least some people, treatment is not randomized because of the non-compliers, but it is
quasi-randomized in the sense that some of the variation in treatment status is a result
of the coin toss. In the case with no other covariates, it is possible to show that the IV
estimator defined in equation (6) takes the form

β̂IV =
ȳz=1 − ȳz=0

x̄z=1 − x̄z=0

, (14)

where ȳz=i denotes the sample mean of the outcome y in the subpopulation for which
assigned treatment status was i. The numerator is the difference in the average outcome
between those assigned to the new therapy and those assigned to receive the standard
therapy, regardless of realized treatment status. This is the key object in “intention to
treat” analysis common in the medical literature. The denominator is the difference in
the proportion who receive the new therapy across those assigned to new therapy and
those assigned to the standard therapy. Note that the denominator is equal to one if
compliance is perfect.

Example 3: The causes of the cholera outbreaks in Victorian era
London.

Even if one cannot run a RCT, the real world sometimes provides a mechanism that
comes close to the experimental ideal. Perhaps the earliest IV application was that by
John Snow, an epidemiologist who was interested in the causes of the cholera outbreaks
that afflicted residents of London, England in the 1800s. Snow’s hypothesis, which was
not widely accepted at the time, was that cholera is a waterborne pathogen. In particu-
lar, Snow suspected that cholera was transmitted via contaminated drinking water. He
noticed that one supplier of London’s drinking water provided water contaminated by
raw sewage, while another supplier provided relatively clean water. The reason was that
these suppliers sourced their water from different points along the Thames River, one
downstream of the city’s sewer discharge and one upstream. Hence the first condition for
a good IV was satisfied: the identity of water supplier (z) resulted in marked variation in
the quality of water consumed by households (x). Moreover, the source of water supply
appeared to be independent of u, the other sources of the incidence of cholera. This
was important because the quality of the water piped to households, while an impor-
tant determinant of the quality of water consumed by households (x), was not the only
determinant. The level of hygiene and cleanliness also played a role and this varied by
household socio-economic status. However, Snow observed that both suppliers served



a wide cross section of Londoners, rich and poor alike. Thus Snow’s instrument z was
independent of u, the other determinants of y. A comparison of the rates of cholera of
households that were supplied by the two water providers provided convincing evidence
in support of Snow’s hypothesis.

Example 4: Efficacy of health care treatments without experi-
mental randomization.

Several studies have compared the effectiveness of different types of health care used
to treat particular health conditions. Conventional approaches must contend with the
possibility that more severely compromised patients may be steered to one treatment
over another. IV methods present a way forward when there is a mechanism that causes
exogenous variation in the treatment received.

Some analysts have used the “differential distance” to travel to obtain a particular
therapy to treat a given health condition. Differential distance is the distance from the
patient’s residence to the nearest healthcare facility providing the treatment of interest
minus the distance from the patient’s residence to the nearest facility that provides any
form of care to treat the condition. The idea is that, particularly for urgent problems such
as acute myocardial infarction, the patient receives treatment from the nearest facility,
regardless of illness severity. If the nearest facility happens to provide the treatment of
interest (i.e., zero differential distance) then the patient is more likely to receive it. The
longer is differential distance, the less likely the patient will receive the treatment of
interest. Differential distance is an invalid instrument if particularly ill patients relocate
to be close to facilities that provide the treatment of interest.

Other analysts have exploited the marked geographic or inter-provider variations
in medical practice patterns that appear to be unrelated to medical need or patient
preferences. These variations were first noted by Glover; he highlighted the striking
geographic differences in the rate of tonsillectomy among British school districts. The
literature, however, is most closely associated with the small-area variations research
of Jack Wennberg. Brookhart, Rassen and Schneeweiss review the ways in which ana-
lysts have used these variations to implement IV estimation of comparative treatment
effectiveness. They note that to successfully implement IV, the practice variations must
be independent of u, the unmodeled factors that affect patient health outcomes. These
include the background characteristics of the patients themselves. It cannot be the case,
for instance, that patients with particularly high values of u gravitate towards providers
who tend to use the treatment under study. Moreover, practice style must affect health
outcomes only through its influence on the treatment under study. Thus, providers who
preferentially use one treatment must be of comparable quality and skill to those who
preferentially use another treatment.

A third source of exogenous variation is changes over time in the availability of
treatments. For instance, a new drug may become approved for use, or, conversely,
a drug may be withdrawn from the market for safety reasons. Access to a treatment
might also be temporarily impeded. For example, Evans and Lien use the disruption in



the availability of public transit due to a bus strike to assess the impact of the use of
prenatal care on birth outcomes. They focused on individuals for whom the disruption
in bus service would impede access to prenatal care: pregnant black inner-city women.
Analyses of this sort require a comparison of outcomes between two periods of time. To
implement IV, the expected value of u must be the same in both periods. As Brookhart
and colleagues note, to ensure that this condition holds, IVs based on calendar time
are most reasonable in situations where a dramatic change in treatments occurs over a
relatively short period of time.

Example 5: Effect of education on health.

Return to the motivating example in the opening paragraph: we wish to estimate the
causal effect of an additional year of education on some measure of health status. Cor-
relations or partial correlations between health and education do not reveal this causal
effect because many personal and contextual characteristics (such as intelligence, consci-
entiousness, and family wealth) cause both health and education and are unobservable
to the researcher, and because poor health while young may “reverse” cause poor educa-
tional outcomes. That is, the effect of education on health is hard to estimate because of
confounding on unobservables and because of “reverse” causation. Neither conventional
regression models such as OLS or logit nor matching estimators recover the causal effect
of interest, and controlled experimentation on educational outcomes is restricted by both
cost and ethical concerns.

In an influential study, UCLA economist Adriana Lleras-Muney employs an instru-
mental variables strategy to address this problem. She estimates regressions in which
mortality is the health outcome of interest. Using large samples from the U.S. census,
she matches cohorts to the number of years of compulsory schooling specific to each
combination of state government and year. Years of compulsory schooling act as instru-
mental variables: it is plausible that the only reason a change in years of compulsory
schooling affects health is because (for some students) changes in years of compulsory
schooling affects realized years of schooling. Intuitively, Lleras-Muney asks, “Is an adult
who was required by law to take more schooling healthier, on average, than a statistically
identical adult required to take less schooling?” Her estimates suggest that an additional
year of schooling causes as much as a 1.7 year increase in life expectancy at age 35.

V Problems with instrumental variables estimation.

In theory, it is easy to write down conditions (10) and (11) and work out that an
estimator satisfying these conditions can recover causal effects from observational data.
In practice, finding variables which satisfy those conditions can be very difficult or
impossible. Worse, it turns out that even small deviations from those conditions can
yield estimators with extremely poor properties.

The most difficult problem to overcome is instruments which are themselves en-
dogenous, that is, correlated with the error term in the equation of interest, violating



condition (10). It is possible to show that the IV estimator is inconsistent when the
instruments are endogenous. Intuitively, if our condition that the only reason y varies
with z is because z causes x fails, then observing that z and y move together is not
evidence that x causes y.

For most problems finding variables which only affect the outcome of interest because
they affect the endogenous regressors is challenging. Consider, for example, one of
the key problems in the social determinants of health literature: estimating the causal
effect of personal income on health. We require a variable which affects health solely
through its effect on income. It is unlikely that any personal characteristic satisfies
that condition: personal characteristics such as education, smoking status, or cognitive
ability all affect income, but all potentially affect health conditional on income, so none
are valid instruments. Regional characteristics such as the unemployment rate may
affect income, but may also affect health through other channels, such as provision of
local public goods or through sorting of people across states. Researchers therefore need
to be creative in finding valid instruments: one study, for instance, uses lottery winnings
as an exogenous source of income to assess the effect of income on the health of lottery
players. In other applications, valid instruments may simply not be available.

It may seem that variables which are almost, but not quite, exogenous may yield
reasonable estimates, provided that we have a large sample and can thus rely on the
consistency property of the IV estimator. In particular, if we inspect the formula for the
probability limit of the univariate IV estimator presented above, we find

plimn→∞β̂IV =
Cov(y, z)

Cov(z, x)
= β +

Cov(z, u)

Cov(z, x)
, (15)

as long as Cov(z, u) is close to zero, then the ratio of Cov(z, u) to Cov(z, x) should itself
be close to zero. This intuition is correct provided that Cov(z, x) is sufficiently large.
If, however, there is only weak correlation between z and x then even small violations
of exogeneity lead to very poorly behaved estimates. The reason is that Cov(z, u) is
divided by a number close to zero, which has the effect of amplifying Cov(z, u). The
result is that the IV estimator β̂IV can be centered on a value wildly different than the
true value of β, even as the sample size grows arbitrarily large. A low level of correlation
between the instruments and treatment is known as the “weak instrument problem.”

What is more, even if the instruments are exogenous, if the instruments are weak
the IV estimator will tend to be badly biased in finite samples and, perhaps worse, the
usual estimator of the covariance matrix, and test statistics based upon that matrix, will
be biased, leading to severe size and power distortions. The bias stems from the fact
that the IV estimator is in fact the ratio of two estimators—the numerator being the
estimator of the effect of z on y and the denominator the estimator of the effect of z on
x. In large samples, these estimators converge to their population quantities. In finite
samples, however, sampling error in the two estimators can cause the ratio to behave
erratically. The weaker the instruments, the greater is the sampling error.

In short, instruments with poor properties—either endogenous or weak—may be
“cures worse than the disease.” The good news is that in overidentified models it is
possible to construct test statistics against the null that the instruments are exogenous,



and it is always possible to test the strength of the instruments. We do not review the
literature on specification tests in instrumental variable models here. The interested
reader is referred to Chapter 7.9 on IV methods.

VI Heterogeneous causal effects.

Over the past two decades the IV literature has focused on the following issue: if different
entities or “units” (people, firms, hospitals, etc) experience different causal effects as a
result of the same treatment, how are we to interpret IV estimates? It turns out that
when treatment effects are heterogeneous, identification of causal effects using IV can
be challenging.

Consider a slight modification to equation equation (1),

yi = βixi + ui, (16)

which differs from (1) only in that the slope coefficient βi may vary arbitrarily across
units. In the interest of simplicity, again suppose xi is a binary indicator of whether unit
i received treatment.

In this model, it is incoherent to refer to “the” causal effect of x on y, as each unit
generally experiences a different causal effect. Estimation of counterfactual outcomes
in this model is also more complicated than in model (1). When treatment effects are
constant, we can use the outcomes of untreated units to infer the counterfactual outcomes
of those that were treated (and vice versa). This is not generally possible when causal
effects vary across i. We can therefore not hope to estimate the effect of treatment for
any given unit. We can only attempt to estimate features of the distribution of the
causal effect, βi, such as the population average treatment effect, E(βi), or the average
treatment effect for those who actually received the treatment, E(βi|xi = 1).

Without loss of generality, write βi = β̄ + εi, where β̄ is the population mean effect
and εi is a zero-mean idiosyncratic effect specific to unit i. Substituting into (16), we
find

yi = β̄xi + [xiεi + ui]. (17)

Expressed this way, we see that the error term contains two components: unobserved
causes of the outcome specific to unit i, ui, and the interaction between treatment
status and unit i’s return to treatment. If both ui and εi are uncorrelated with xi, OLS
estimation is consistent for the average treatment effect, β̄. However, even when ui is
uncorrelated with xi, correlation between εi and treatment status creates an endogeneity
problem and OLS does not recover the average treatment effect. In this case, “essential
heterogeneity” is said to exist. Essential heterogeneity commonly occurs in observational
studies of treatment efficacy when individuals with the most to gain from taking a
particular treatment are more likely to receive that treatment. Essential heterogeneity
can also exist in RCTs with imperfect compliance. This occurs if subjects are able to:
1) determine the treatment to which they have been assigned, 2) predict better than
chance which treatment will benefit them most, and 3) if advantageous, switch therapies.



Condition 1) occurs if subjects are not blinded or if they are blinded, subjects can infer
treatment status from side effects, or other physiological clues. The extent to which
condition 3) holds depends on the context. Subjects assigned to the new therapy who
wish to use the standard therapy can presumably obtain the standard therapy outside
the trial. Conversely, subjects assigned to the standard therapy who wish to use the
new therapy might be able to obtain the new therapy from friends enrolled in the trial.

Estimation using instrumental variables is complicated by essential heterogeneity.
The instrument must be correlated with treatment status: it must move some people into
or out of treatment. Even if all of the conditions defined in section 2 hold, the properties
of the IV estimator depend on which people get moved into or out of treatment when
treatment effects vary across people. Consider again example 2 in section 2 above, an
RCT with imperfect compliance. Under a condition called monotonicity, which requires
that there be no “defiers”—people who only receive treatment if they are assigned not
to receive treatment or vice versa, it is possible to show that the IV estimator converges
to the average causal effect of treatment of compliers, that is subjects who use the
treatment that they were assigned to. This is called the “local average treatment effect”
(LATE) arising from this treatment.

Intuitively, some people will always take the new treatment and others will always
take the standard treatment, regardless of assignment. The experiment does not change
these people’s behavior and therefore the experiment generates no information about
the causal effects of treatment for these people. The IV estimator depends solely on
the outcomes of subjects whose treatment status was experimentally manipulated; the
estimator tells us the average effect only for that (unobservable) subpopulation. If the
instrument takes many values instead of just two, it is possible to show that (under
monotonicity) the IV estimator converges to a difficult-to-interpret weighted average of
local treatment effects, in which units for which treatment status is most responsive to
variation in the instruments receive the highest weights.

In addition to complicating the interpretation of conventional IV estimates, hetero-
geneous causal effects complicates specification testing. Most tests of the assumption
that the instruments are exogenous are based on stability of the estimates as different
sets of instruments are used to construct the estimator. Under homogeneous responses,
all of these estimates converge to the causal effect. When effects are heterogeneous,
different instruments recover different weighted averages of local effects, and will differ
even if the classical conditions (10) and (11) hold, so rejection of the null can no longer
be interpreted as evidence that the instruments are endogenous.

Example: Re-interpreting an estimate of the effect of education
on health.

Consider again example 5, above, of research using instrumental variables on the effect of
education on health. We earlier interpreted Lleras-Muney’s estimates as suggesting that
an additional year of education causes an increase in life expectancy of 1.7 years at age
35. Lleras-Muney’s estimates are based on variation in compulsory schooling laws, so



she interprets her IV estimates as: among the subpopulation who only receive additional
education if and only if they are forced to do so by law, an additional year of education
increases life expectancy by 1.7 years at age 35. This subpopulation may experience
substantially different health returns to education than other people who choose to
go on to receive more than the legally-mandated minimum schooling. Thus, Lleras-
Muney’s local average effect may not reflect the health returns to education for other
groups. However, Lleras-Muney’s estimates may be more relevant than results from a
hypothetical RCT randomizing education if policy questions hinge on effects experienced
by people whose educational outcomes are affected by changes in compulsory schooling
laws, as the RCT would recover population average effects rather than effects for the
subpopulation affected by policy changes.
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