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Abstract

We explore a quantum polynomial-time algorithm by Watrous for computing the
order of a solvable black-box group, and discuss applications to related group-theoretic
problems.

1 Introduction

Given a finite solvable black-box group, Watrous [1] describes an algorithm for de-
termining the order of the group in quantum polynomial time, with a modification of
Shor’s order-finding algorithm at its core. As a byproduct, the algorithm also produces
a uniform superposition of the elements of the group. About seventeen years prior to
the publication of Watrous’s paper, it had been proven by Babai and Szemerédi that
the problem of computing the order of a solvable group, in a classical setting, is of
complexity class NP even in the more specific case that the group is abelian [2]. There
is no known classical polynomial time algorithm for solving this problem, and hence
this provides further evidence of the computational advantage of quantum computers
over classical computers. It was also known that the problem solved here is low for the
complexity class PP of decision problems that are solvable to an arbitrary degree of ac-
curacy by a probabilistic Turing machine in polynomial time [3]. That is to say, gaining
the ability to instantaneously compute the order of a finite solvable black-box group
does not provide any additional advantage to an algorithm which solves a problem in
PP.

The problem of determining the order of a (solvable) group is an important one not
only because it is interesting in and of itself, but many other group-theoretic problems
can be reduced to it. For example, given a list of elements g1, . . . , gk, h in some finite
black-box group, the problem of testing whether h lies in the subgroup generated
by g1, . . . , gk reduces to the problem of computing and comparing the orders of two
subgroups. Other such problems will be discussed.

This report provides an analysis of Watrous’s algorithm, and will explain certain
details of Watrous’s paper that were assumed to be known or obvious to the reader.
As the problem at hand is of a group-theoretic nature, we begin by providing some
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definitions and elementary results of group theory for the reader who does not have a
background in this area, along with an explanation of the “black-box group” framework
in which this algorithm operates.

2 Preliminaries

A group is a set G equipped with a binary operation, which we denote here by ·,
satisfying the following axioms:

• (Closure) For all g, h ∈ G, g · h ∈ G.

• (Existence of identity) There exists 1 ∈ G such that g · 1 = 1 · g = g for all g ∈ G.

• (Existence of inverses) For each g ∈ G there exists g′ ∈ G such that g ·g′ = g′ ·g =
1.

• (Associativity) For all f, g, h ∈ G we have f · (g · h) = (f · g) · h.

It can be proven [4] that the element 1 from the first axiom is uniquely determined,
and it is known as the identity element of G. It can also be shown that for each g the
element g′ from the second axiom is uniquely determined; it is known as the inverse
of g and is denoted by g−1. If the operation · is understood from the context, then
to simplify notation we may simply write gh instead of g · h. For example, the fourth
axiom can then be written “f(gh) = (fg)h for all f, g, h ∈ G.” Using this notation, it
is conventional to denote by gn the product gg · · · g of an element g with itself n times,
and to write g0 := 1 and g−n := (g−1)n. The usual exponent laws then hold.

As an example of a group, consider the set Sn of bijections (invertible functions)
from {1, 2, . . . , n} to {1, 2, . . . , n}. By taking our binary operation to be composition of
functions (◦), Sn has the structure of a group: the identity function, which fixes each
element, is the identity element of the group, the existence of inverses is guaranteed by
definition, and composition of functions is associative. The group Sn is known as the
symmetric group on {1, 2 . . . , n}.

It is important to note that we do not impose the condition that gh = hg for all
g, h ∈ G. For example, the group Sn described above does not satisfy this, assuming
n ≥ 3: if f is the bijection with f(1) = 2, f(2) = 1,and f(k) = k for all other k,
and g is the bijection with g(1) = 3, g(3) = 1, and g(k) = k for all other k, then we
have (f ◦ g)(1) = 3 and (g ◦ f)(1) = 2, hence f ◦ g 6= g ◦ f . If a group does satisfy
this additional constraint that gh = hg for all elements g and h, then it is known as
an abelian group. For example, the set Z, equipped with the binary operation + of
addition, forms an abelian group with identity 0. By analogy to this, the operation in
an abelian group is often denoted by +, with the inverse of g denoted by −g and the
identity denoted by 0 rather than 1.

A subgroup of G is a subset H of G which itself satisfies the above axioms, using
the same binary operation. Note that the identity element of H is necessarily that of
G, as it is unique in G. As an example, in the previous example of Z under +, the
set 2Z of even integers is a subgroup. The order of a group G is its cardinality |G|
as a set, i.e. the number of its elements. The order may be infinite, as in the case of
Z, but the body of this paper will deal only with finite groups. Given a subset S of
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a group G, the subgroup generated by S is the smallest subgroup of G containing S,
which we denote by 〈S〉. For S = {g1, . . . , gk}, we write 〈S〉 = 〈g1, . . . , gk〉. A group
of the form 〈g〉 is called cyclic, and consists precisely of all elements of the form gm

for integers m. For example, the subgroup 2Z of Z is cyclic, generated by 2. (As we
usually use additive notation for abelian groups, we write mg instead of gm, so in Z
we have 〈2〉 = {2n : n ∈ Z}.) For each g ∈ G, the order of g in G is the order of
the subgroup 〈g〉, and is equal to the least positive integer m such that gm = 1. An
elementary result of group theory, known as Lagrange’s theorem, states that if H is a
subgroup of a finite group G, then |H| is a divisor of |G|. It follows that the order of
each element of G divides |G|.

Let H be a subgroup of G. A left coset of H in G is a set of the form gH :=
{gh : h ∈ H} for some g ∈ G. The right cosets Hg are defined similarly. Note that
the left cosets gH are not, in general, in one-to-one correspondence with the elements
g; for example, hH = H for each h ∈ H. It can be shown that the left (or right)
cosets of H compose a partition of G into |G|/|H| parts of size |H|. (In fact, this
is generally how Lagrange’s theorem, above, is proven.) If for each g ∈ G the set
g−1Hg := {g−1hg : h ∈ H} is equal to H, we say that H is a normal subgroup of G
and write H / G. An equivalent way to phrase this is that gH = Hg for all g ∈ G.
Note that if N and H are subgroups of G such that N ⊂ H and N /G, it is immediate
from the definition that N /H. Now, suppose H is a subgroup of G, so it has |G|/|H|
cosets gH. We would like to turn the set of cosets of H into a group, using the obvious
choice of multiplication given by (g1H)(g2H) = g1g2H. However, this is not always
well-defined. It can be shown [4] that this operation is well-defined, and does indeed
turn the set of cosets of H into a group, if and only if H /G. This group is called the
factor group or quotient group G/H. Observe that the coset 1H = H serves as the
identity element of G/H.

For g, h ∈ G, the commutator of g and h is defined by [g, h] = g−1h−1gh. We define
the commutator subgroup or derived subgroup of G to be the subgroup G′ generated by
all commutators in G. To motivate this definition, observe that for g, h ∈ G, we have
[g, h] = 1 if and only if gh = hg. It follows that G′ = {1} if and only if all elements
of G commute with each other, i.e. G is abelian, so in a heuristic sense G′ provides
a measure of “how far away G is from being abelian.” It can easily be shown [4] that
G′ /G, and that G/G′ is necessarily abelian. (In fact, this latter factor group is known
as the abelianization of G.)

Define G(0) := G, and inductively define G(n) := (G(n−1))′ for all positive integers
n. Then we have a normal series

G = G(0) . G(1) . G(2) . . . .

of subgroups of G. We say that G is solvable if G(N) = {1} for some positive integer N .
1 Clearly each abelian group G is solvable, since in this case we have G(1) = G′ = {1},
and so the concept of a solvable group generalizes, in a sense, the concept of an abelian

1The concept of solvable groups originally arose in Galois theory, which was developed to the end of
answering questions about the solvability of certain polynomial equations. Each such polynomial equation
can be naturally assigned a finite group called its Galois group, and the equation is solvable by radicals if
and only if this group is solvable — hence the terminology.
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group. It can be proven that if G is solvable, then so is every subgroup and every
factor group of G.

Another characterization of solvability is as follows [4]: A finite group G is solvable
if and only if there exist elements g1, . . . , gm ∈ G such that, putting Hj = 〈g1, . . . , gj〉,
we have {1} =: H0 / H1 / . . . / Hm = G. Observe that each factor group Hj+1/Hj is
generated by the coset containing gj+1 and is therefore cyclic.

To apply quantum-computational techniques to group theory, we shall employ the
formalism of a black-box group; this concept was first introduced by Babai and Sze-
merédi [2] in 1984. Given a finite group G, we encode its elements as distinct binary
strings of some fixed length n, called the encoding length. Note that we necessarily
have 2n ≥ |G|, as there are only 2n binary strings of length n. Furthermore, we have
a black-box, or group oracle, which takes as input two binary strings corresponding
to elements g and h of G, and returns the binary string which represents gh at unit
cost. This is the framework as originally introduced in the context of classical cir-
cuits. We can use this framework in the context of quantum circuits by considering
each element g of G as a pure n-qubit state |g〉 via this encoding into binary strings,
and modeling the group oracle by the 2n-qubit gate UG : |g〉 |h〉 7→ |g〉 |gh〉 extended
linearly. Note that UG, as given, is actually only defined on the basis elements |g〉 |h〉
where g and h are legitimate encodings of elements of the group. However, as this
gate will in practice only be used on states which are linear combinations of these basis
elements, we can define UG so as to have some arbitrary, but predefined, behaviour
on other basis elements. For example, it could simply act as the identity on each of
those states. Defined this way, UG is indeed a unitary gate, and its inverse is given by
U−1
G : |g〉 |h〉 7→ |g〉

∣∣g−1h
〉

(with behaviour defined on “non-group” basis elements so
as to be consistent with UG). Lastly, for any subset S of G, we define the state

|S〉 :=
1√
|S|

∑
s∈S
|s〉 ,

a normalized uniform superposition of the elements of S.

3 The algorithm

To begin Watrous’s algorithm for computing the order of a finite solvable group G,
we need a particular list g1, . . . , gm of generators for G, which we obtain as follows.
Suppose we are given a group oracle for a finite black-box group G with encoding
length n, along with a set of generators for G. There is a polynomial-time classical
algorithm [5] which will construct, with high probability, elements g(j)

1 , g
(j)
2 , . . . g

(j)
k of

G for j = 0, . . . , n such that G(j) = 〈g(j)
1 , . . . g

(j)
k 〉 where k ∈ O(n). We can then

use this to test whether G is solvable, as follows. If g(n)
1 , . . . , g

(n)
k are all equal to the

identity element 1, then we have G(n) = {1} and so G is solvable. On the other hand,
assume for contradiction that G is solvable but not all of g(n)

1 , . . . , g
(n)
k are equal to 1,

i.e. G(n) 6= {1}. Since the chain G(0) . G(1) . . . . eventually has G(N) = {1} for some
N ≥ n, it follows that, for 1 ≤ i ≤ n+1, G(i) is a proper subgroup of G(i−1); otherwise,
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if G(i) = G(i−1) for some such i, we would have

G(i−1) = G(i) = G(i+1) = . . . = G(n) = . . . = G(N) = {1},

a contradiction since G(n) 6= {1}. By Lagrange’s theorem, |G(i)| divides |G(i−1)|, so
|G(i)| ≤ 2 · |G(i−1)| since |G(i)| 6= |G(i−1)|. Then we have

|G| = |G(0)| ≥ 2 · |G(1)| ≥ 4 · |G(2)| ≥ . . . ≥ 2n+1|G(n+1)| ≥ 2n+1.

But this is impossible: since each element of G is uniquely encoded as a binary string
of length n, there are at most 2n distinct elements of G. We conclude that if G is
solvable, it must be the case that all of g(n)

1 , . . . , g
(n)
k are equal to 1. Hence, given the

elements g(j)
i as above, G is solvable if and only if all of g(n)

1 , . . . , g
(n)
k are equal to 1.

Now, under the assumption that G is solvable, we relabel the elements

g
(n−1)
1 , . . . , g

(n−1)
k , g

(n−2)
1 , . . . , g

(n−2)
k , . . . , g

(0)
1 , . . . , g

(0)
k

as g1, . . . , gkn in the order given. For 1 ≤ j ≤ kn, let Hj = 〈g1, . . . , gj〉. Observe that

Hkj = 〈g(n−1)
1 , . . . , g

(n−1)
k , g

(n−2)
1 , . . . , g

(n−2)
k . . . , g

(n−j)
1 , . . . , g

(n−j)
k 〉

= 〈G(n−1) ∪G(n−2) ∪ . . . ∪G(n−j)〉
= G(n−j)

for each j = 1, . . . , n. As noted earlier, for an arbitrary group K we have K ′ / K and
that K/K ′ is abelian. Then in particular, since Hkj = G(n−j) and Hk(j+1) = G(n−j−1),
we have Hkj / Hk(j+1) with Hk(j+1)/Hkj abelian, for all j. It then follows that

{1} =: H0 / H1 / . . . / Hkn = G.

Moreover, it is easy to see that for 1 ≤ j ≤ kn we have that

Hj+1/Hj = 〈g1, . . . , gj , gj+1〉/〈g1, . . . , gj〉

is cyclic, generated by the coset gj+1〈g1, . . . , gj〉 = gj+1Hj . Recall that the objective
of the algorithm is to compute the order |G| of G. Thus far, we have efficiently found
a chain {1} = H0 / H1 / . . . / Hkn = G of subgroups of G. Suppose we knew the order
of each factor group Hj/Hj−1. Then we could immediately compute |G|, since

|G| = |Hkn|

=
|Hkn|
|Hkn−1|

|Hkn−1|
|Hkn−2|

· · · |H1|
|H0|

= |Hkn/Hkn−1| · |Hkn−1/Hkn−2| · · · |H1/H0|.

Now, as previously noted, each factor groupHj+1/Hj is cyclic, generated by gj+1Hj .
The order of Hj+1/Hj is therefore the order of gj+1Hj , hence the smallest positive
integer r such that grj+1Hj = Hj or, equivalently, such that grj+1 ∈ Hj . In general, if
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H is a subgroup of a group G and g ∈ G, we define the order of g with respect to H to
be

rH(g) := min{r ∈ Z : r > 0, gr ∈ H}.
Note that this is well-defined, since by Lagrange’s theorem we have g|G| = 1 ∈ H.
In this notation, the orders |Hj+1/Hj | we wish to compute are equal to rHj (gj+1) for
j = 0, . . . , kn−1. Watrous offers a modification of Shor’s order-finding algorithm which
will, given g ∈ G and several copies of the state

|H〉 =
1√
|H|

∑
h∈H
|h〉 ,

efficiently compute the relative order rH(g). This algorithm is then employed to cal-
culate the orders |Hj+1/Hj | = rHj (gj+1) and hence the order

|G| = |Hkn/Hkn−1| · |Hkn−1/Hkn−2| · · · |H1/H0|.

3.1 Finding orders with respect to a given subgroup

Assume that we are given a finite black-box group G of encoding length n, a fixed
element g ∈ G, an n−qubit quantum register R initialized to the state |H〉 for H a
subgroup of G, and a quantum register A with basis {0, . . . , N − 1} (where N is a
parameter) initialized to the state |0〉. The algorithm provided for finding the order
of g with respect to H is essentially a form of eigenvalue estimation. Let r = rH(g),
and consider the cosets H, gH, g2H, . . . , gr−1H. These cosets are distinct: suppose
i, j ∈ {0, . . . , r− 1} with giH = gjH, and assume without loss of generality that j ≥ i.
Then gj−iH = H, hence gj−i ∈ H. But then either j − i = 0 or r ≤ j − i by definition
of r, and since i, j ∈ {0, . . . , r − 1} we have r > j − i, hence i = j. Since these
cosets are disjoint, the corresponding states

∣∣giH〉 are orthogonal and therefore form
an orthonormal basis for a subspace W of the n−qubit Hilbert space. Now, define the
n−qubit gate Ug by linearly extending the action |s〉 7→ |gs〉 for s ∈ G; this can be
efficiently computed using the group oracle. This gate permutes the states

∣∣giH〉 since
for 0 ≤ i < r − 1 we have Ug

∣∣giH〉 =
∣∣gi+1H

〉
, and Ug

∣∣gr−1H
〉

= |grH〉 = |H〉 as
gr ∈ H. Therefore W is invariant under the action of Ug. Moreover, restricted to this
subspace, U rg acts as the identity, since

U rg
∣∣giH〉 =

∣∣grgiH〉 =
∣∣gigrH〉 =

∣∣giH〉 .
It follows immediately that the eigenvalues of Ug, as an operator on W, are of the
form e2πi

k
r for some k ∈ {0, . . . , r−1}, since the minimal polynomial of Ug must divide

xr−1. As with other examples of eigenvalue estimation, we define a controlled version
of the gate Ug by linearly extending the action |a〉 |h〉 7→ |a〉 |gah〉 for a ∈ {0, . . . , N−1}
and h ∈ G. We perform eigenvalue estimation for Ug by executing the following circuit
on the two registers:

A |0〉 QFTN • QFT−1
N

����
R |H〉 Ug
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A circuit diagram for computing rH(g)

After the first QFTN ⊗ I gate, the state of the system is

1√
N

N−1∑
a=0

|a〉 |H〉 =
1√
N |H|

N−1∑
a=0

∑
h∈H
|a〉 |h〉 .

Next, the controlled Ug gate evolves the state to

1√
N |H|

N−1∑
a=0

∑
h∈H
|a〉 |gah〉 =

1√
N

N−1∑
a=0

|a〉 |gaH〉 .

We claim that the state resulting from the application of the final QFT−1
N ⊗ I gate

is
1
N

N−1∑
a=0

N−1∑
b=0

e
−2πi
N

ab |b〉 |gaH〉 .

To see this, observe that

(QFTN ⊗ I)
1
N

N−1∑
a=0

N−1∑
b=0

e
−2πi
N

ab |b〉 |gaH〉 =
1
N

N−1∑
a=0

N−1∑
b=0

e
−2πi
N

ab(
N−1∑
y=0

1√
N
e

2πi
N
by |y〉) |gaH〉

=
1

N3/2

N−1∑
a=0

N−1∑
b=0

N−1∑
y=0

e
−2πi
N

b(y−a) |y〉 |gaH〉 .

For fixed a and y with a 6= y, the amplitude of |y〉 |gaH〉 in this state is

1
N3/2

(
N−1∑
b=0

e
2πi
N

(y−a)b

)
=

1
N3/2

(
1− e

2πi
N

(y−a)N

1− e
2πi
N

(y−a)

)

=
1

N3/2

(
1− 1

1− e
2πi
N

(y−a)

)
= 0,

whereas the amplitude of |a〉 |gaH〉 is
1

N3/2

N−1∑
b=0

e0 =
1√
N
. Then we have

1√
N

N−1∑
a=0

|a〉 |gaH〉 = (QFTN ⊗ I)
1
N

N−1∑
a=0

N−1∑
b=0

e
−2πi
N

ab |b〉 |gaH〉

and hence

(QFT−1
N ⊗ I)

1√
N

N−1∑
a=0

|a〉 |gaH〉 =
1
N

N−1∑
a=0

N−1∑
b=0

e
−2πi
N

ab |b〉 |gaH〉
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as desired.
As in other applications of eigenvalue estimation, measuring the register A yields

b ∈ {0, . . . , N − 1} such that, with high probability, b
N is a good approximation to k

r
for some k, and taking N sufficiently large we can find r with high probability using
the method of continued fractions.

Observe that, in the above method for calculating r = rH(g), we assumed that we
had access to several copies of the uniform superposition |H〉 of the elements of H. We
must therefore provide a method for efficiently constructing copies of the states |Hj〉 if
we are to use the above for computing |Hj+1/Hj | = rHj (gj+1) as we require.

3.2 Constructing uniform superpositions over subgroups

Suppose we are given a subgroup H of G and an element g ∈ G such that gH = Hg.
Then the subset 〈g〉H = {gih : i ∈ Z, h ∈ H} is a subgroup of G. To see this, we first
note that 〈g〉H contains the identity element 1 = g01. Next, let gi1h1, g

i2h2 ∈ 〈g〉H.
Since gH = Hg, it follows that h1g

i2 = gi2h3 for some h3 ∈ H, hence

(gi1h1)(gi2h2) = gi1(h1g
i2)h2

= gi1(gi2h3)h2

= gi1+i2h3h2 ∈ 〈g〉H

and so 〈g〉H is closed under the group operation. Finally, we show that 〈g〉H contains
the inverse of each of its elements. For each gih ∈ 〈g〉H, the inverse of this element is
h−1g−i since

(gih)(h−1g−i) = gi(hh−1)g−i = gig−i = 1.

Since Hg = gH, it follows that there exists h′ ∈ H such that h−1g−i = g−ih′ ∈ 〈g〉H.
Then indeed 〈g〉H is a group. Moreover, it is easy to show that H / 〈g〉H.

Now, for such H and g with gH = Hg, and given r = rH(g) along with a sufficiently
large number of copies of the state |H〉, Watrous provides an algorithm for construct-
ing several copies of the state |〈g〉H〉. In particular, this can be used to inductively
construct the states |Hj〉, as follows. Observe that for each j, since

〈g1, . . . , gj〉 = Hj / Hj+1 = 〈g1, . . . , gj+1〉

we have that gj+1Hj = Hjgj+1 and so Hj+1 = 〈gj+1〉Hj , so given rHj (gj+1) and enough
copies of |Hj〉 we can use the new method to construct several copies of |Hj+1〉, with
which we can compute rHj+1(gj+2) using the previous algorithm, and so on. We can
easily construct as many copies of the state |H0〉 = |1〉 as we would like, so if we
construct enough of these and compute the order rH0(g1) at the outset, we can thereby
compute all of the orders |Hj+1/Hj | = rHj (gj+1) which we require. The new algorithm
proceeds as follows:

Assume that we have registers R1, . . . ,Rl initialized to the state |H〉, and registers
A1, . . . ,Al each with the basis {0, . . . , r − 1}. For each i ∈ {1, . . . , l}, execute the
circuit
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Ai |0〉 QFTr • QFTr ����
Ri |H〉 Ug

which, by a straightforward computation, brings the state of the pair (Ai,Ri) to

1
r

r−1∑
ai=0

r−1∑
bi=0

e
2πi
r
aibi |bi〉 |gaiH〉

prior to measurement. Let bi be the result of the measurement of Ai. Denoting the
new state of Ri by |ψi〉, we have

|ψi〉 =
1√
r

r−1∑
ai=0

e
2πi
r
aibi |gaiH〉 .

For each i, the probability that bi is coprime to r is equal to ϕ(r)
r , where ϕ is the Euler

totient function which returns the number of positive integers that are less than and
coprime to its argument. By a result from classical number theory [7], there exists a
positive constant δ such that ϕ(r)

r > δ
log log r , and thus we can take l ∈ O(log log r) so

that, with high probability, there is some k ∈ {0, . . . , r−1} such that bk is coprime to r.
We proceed to use |ψk〉 to convert the other states |ψi〉 into |〈g〉H〉. Let i ∈ {0, . . . , r−1}
with i 6= k. Since bk is coprime to r, there exist integers x, y such that xbk + yr = 1.
Let c = xbi, and reversibly multiply the contents of Rk by f c where f is the group
element contained in Ri. Before this multiplication, the state of the pair (Ri,Rk) is

|ψi〉 |ψk〉 =
1√
r

r−1∑
ai=0

e
2πi
r
aibi |gaiH〉 |ψk〉

=
1√
r|H|

r−1∑
ai=0

∑
h∈H

e
2πi
r
aibi |gaih〉 |ψk〉

and hence, after the multiplication, the state of the pair is

1√
r|H|

r−1∑
ai=0

∑
h∈H

e
2πi
r
aibi |gaih〉U(gaih)c |ψk〉 =

1√
r|H|

r−1∑
ai=0

∑
h∈H

e
2πi
r
aibi |gaih〉 (Ugaih)c |ψk〉

(Recall that, for t ∈ G, the gate Ut acts by left-multiplying by t.) Since gH = Hg, for
each h ∈ H there exists h′ ∈ H such that gaih = h′gai . Then
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Ugaih |ψk〉 =
1√
r

r−1∑
ak=0

e
2πi
r
akbk |gaihgakH〉

=
1√
r

r−1∑
ak=0

e
2πi
r
akbk

∣∣gaigakh′H〉
=

1√
r

r−1∑
ak=0

e
2πi
r
akbk

∣∣gai+akH〉
=

1√
r

r−1∑
ak=0

e
2πi
r

(ak−ai)bk |gakH〉

= e
−2πi
r

aibk |ψk〉 .

Then the state of the pair is

1√
r|H|

r−1∑
ai=0

∑
h∈H

e
2πi
r
aibi |gaih〉 e

−2πi
r

aibkc |ψk〉 =
1√
r|H|

r−1∑
ai=0

∑
h∈H

e
2πi
r
aibi |gaih〉 e

−2πi
r

aibixbk |ψk〉

=
1√
r|H|

r−1∑
ai=0

∑
h∈H

e
2πi
r
aibi |gaih〉 e

−2πi
r

aibi(1−yr) |ψk〉

=
1√
r|H|

r−1∑
ai=0

∑
h∈H

e
2πi
r
aibi |gaih〉 e

−2πi
r

aibi) |ψk〉

=
1√
r|H|

r−1∑
ai=0

∑
h∈H
|gaih〉 |ψk〉

= |〈g〉H〉 |ψk〉

Repeating this for each i 6= k, the result is l − 1 copies of the state |〈g〉H〉 as
desired. By preparing a sufficient number of copies of the initial state |H0〉, using these
algorithms allows for the order of G to be efficiently computed as described.

4 Applications

As previously mentioned, several group-theoretic problems can be reduced to comput-
ing orders of subgroups, given a list of generators. We describe a few such problems
here.

1. (Membership testing.) Suppose we are given g1, . . . , gk, h ∈ G where 〈g1, . . . , gk, h〉
is solvable. (This latter condition holds, for example, if G itself is solvable.) We
can use Watrous’s algorithm to determine whether h ∈ 〈g1, . . . , gk〉 in quantum
polynomial time: h ∈ 〈g1, . . . , gk〉 if and only if 〈g1, . . . , gk〉 = 〈g1, . . . , gk, h〉,
which is equivalent to |〈g1, . . . , gk〉| = |〈g1, . . . , gk, h〉|. Therefore, computing and
comparing the orders of these two subgroups will permit us to verify the mem-
bership.
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2. (Subgroup testing.) Suppose we are given g1, . . . , gk, h1, . . . , hl ∈ G such that both
〈g1, . . . , gk〉 and 〈h1, . . . , hl〉 are solvable. We can efficiently determine whether
〈g1, . . . , gk〉 is a subgroup of 〈h1, . . . , hl〉 by testing whether all gi are members of
〈h1, . . . , hl〉, using the method of membership testing above. Observe that this
also allows us to determine whether 〈g1, . . . , gk〉 = 〈h1, . . . , hl〉 by testing whether
each is a subgroup of the other.

3. (Normality testing.) Given g1, . . . , gk, h1, . . . , hl ∈ G such that both 〈g1, . . . , gk〉
and 〈h1, . . . , hl〉 are solvable, we can test whether 〈g1, . . . , gk〉 / 〈h1, . . . , hl〉 by
checking whether 〈g1, . . . , gk〉 is a subgroup of 〈h1, . . . , hl〉, then testing whether
h−1
j gihj ∈ 〈g1, . . . , gk〉 for all i ∈ {1, . . . , k} and j ∈ {1, . . . , l}.

4. (Homomorphisms.) Let G and H be groups. The direct product of G and H
is the cartesian product G × H, equipped with the group operation given by
(g1, h1)(g2, h2) = (g1g2, h1h2), and a function φ : G → H is a homomorphism
if φ(st) = φ(s)φ(t) for all s, t ∈ G. Suppose that G = 〈g1, . . . , gk〉 and H are
solvable, and we are given a function φ̂ : {g1, . . . , gk} → H which can be efficiently
computed. It can be shown [6] that φ̂ extends to a homomorphism φ : G → H
if and only if the subgroup 〈(g1, φ̂(g1)), . . . , (gk, φ̂(gk))〉 of G ×H is of the same
order as G, and this can be tested in quantum polynomial time since both of
these groups are solvable.

5. (Verification of kernels.) Let φ : G → H be a homomorphism. The kernel of
φ is defined by kerφ = {g ∈ G : φ(g) = 1}, and is a normal subgroup of G.
Assume we are given solvable G and H, and a method for efficiently computing
such φ. Given a subgroup N of G defined by a list of generators n1, . . . , nk, it
can be shown [6] that N = kerφ if and only if φ(ni) = 1 for each i and |N | =
|G|/|〈φ(n1), . . . , φ(nk)〉|. These orders can be computed in quantum polynomial
time using Watrous’s algorithm.

5 Conclusion

Watrous has given a quantum algorithm for computing the order of a finite solvable
black-box group, producing a uniform superposition over its elements as a byproduct,
in polynomial time. Furthermore, this algorithm can be used to solve several other
group-theoretic problems that reduce to computing orders of certain groups. Watrous
mentions two other problems for solvable black-box groups for which, at the time
of publication, no polynomial-time algorithms were known. The Group Intersection
problem is to determine, given elements g1, . . . , gk and h1, . . . , hl of a solvable black-
box group G, whether 〈g1, . . . , gk〉 and 〈h1, . . . , hl〉 have any elements in common other
than 1. Similarly, the Coset Intersection problem is to determine whether a given
coset of 〈g1, . . . , gk〉 has nonempty intersection with 〈h1, . . . , hl〉. A recent paper by
Fenner and Zhang [8] shows the existence of quantum polynomial-time algorithms for
these two problems, provided that the underlying solvable groups satisfy an additional
“smoothness” criterion. Other directions for research include discovering methods for
similar problems in non-solvable groups, possibly by extending known methods for
solvable groups to certain larger classes of groups.
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