
1

ECE1718 Project Report
Hao Jun Liu

I. INTRODUCTION

Modern architectures exploit instruction level parallelism
through mechanism such as superscalar and out of order
execution. Statistics have shown that there is on average one
control flow instruction in every five instructions. Thus, in
order for the instruction scheduler to find as many instructions
to execute, the fetching engine need to fetch enough instruc-
tions to feed the function units without knowing the exact
control flow of the program. In other word, the fetch engine
need to fetch instructions speculatively without resolving the
branches. In the case of 4-way out-of-order machine with a
window of 128 instructions, the predictor need to correctly
speculate 128/5≈26 control flow instructions, on average one
in each cycle, in order to fill up the instruction window.
Assume the prediction hit rate for a set of programs is 0.99
which is a very high prediction rate, the chance that the fetch
engine can fill up the instruction window is only 0.9926=0.77.
Therefore, branch predictions are necessary for an superscalar
OOO machine to have enough instructions for scheduling.
I implement and simulate several state of the art branch
predictors including 2BcgSkew, O-GHEL, TAGE and YAGS.
It is expected that TAGE would be the best one according to
previous work[1]. However it is also very hard to tune since
there are so many freedom in a TAGE predictor especially the
update policy. I find that TAGE is very sensitive to predictor
update policy among the four predictors. The best one in terms
of average misprediction per thousand instructions among the
four predictors is O-GHEL. The evaluation of those predictor
shows they have an average misprediction per thousands
instructions(MPKI) between 5.55 and 7.57 for the spec2k
trace provided when the simulator executes 30M instructions.
The best performance is 4.37 for O-GEHL when run all
benchmarks to complete.

II. RELATED WORK

All the predictors implemented and simulated in this project
are based on previous published works with some modifica-
tion. The 2BcgSkew predictor is based on the work of [2] and
[3]. The O-GHEL predictor is based on the work of [4] and [5].
The TAGE predictor is based on the work of [1]. The YAGS
predictor is based on the work of [6] and [7]. According to the
above works, TAGE would be the one with best performance
among four different branch predictors. My work are all based
on the above works with some modification or enhancement
which will be described in the next section.

III. METHODOLOGY

This section describes the detail predictor configurations
for 2BcgSkew, O-GHEL, TAGE and YAGS. All of the them
have a storage budget of 64KB. Global history storage is

Fig. 1. 2BcgSkew Configuration

not counted in the 64KB budget. There are minor differences
between the predictor described in previous work and my
implementation. This section gives a brief description of the
predictor implemented and focuses on the difference between.

A. 2BcgSkew

2BcgSkew is a hybrid predictor including a gSkew predictor
which has three predictor banks and a bimodal predictor. The
bimodal predictor is shared with gSkew predictor. There is a
meta predictor that selects which predictor to use. Prediction
tables are indexed using PC or a hashing function taking the
PC and global branch history as input.

1) Hardware Configuration: Fig. 1 provides the hardware
configuration for 2BcgSkew used in the simulation.

2) Update Policy:

• On a bad prediction, the three banks of the e-gskew
predictor are updated.

• On a correct prediction, only the banks participating to
the correct prediction are updated.

• The meta predictor is updated to the direction of the
correct predictor on each prediction.

B. O-GEHL

O-GEHL is a an optimized version of geometric history
length predictor. The design used in this project has 9 com-
ponents. The prediction is made by adding counter values in
all components which use different length global history in a
geometric pattern. It is build with a dynamic threshold fitting
mechanism described in [5].

1) Hardware Configuration: Fig. 2 on the next page pro-
vides the hardware configuration for O-GEHL used in the
simulation.

2) Update Policy: The O-GEHL predictor update policy is
derived from the perceptron predictor update policy. The O-
GEHL predictor is updated on the following scenarios

• On a bad prediction, all tables are updated to the direction
of final branch outcome.

• If the absolute value of the computed sum S is smaller
than a threshold θ, all tables are updated to the direction
of final branch outcome regardless of the branch predic-
tion correctness.



2

Fig. 2. O-GEHL Configuration

• The threshold θ is updated if a TC counter is saturated.
This is described in [5]. The rationale behind is different
programs have different preference of the threshold θ.

• The TC is incremented when prediction is different from
branch result and is decremented when prediction is
correct but predictor sum S is less than threshold θ.

C. TAGE

TAGE is a tagged geometric history length predictor. The
design used in this project has 8 components. The prediction
is made by an tag matched entry in the table using the longest
possible global history if the useful counter is not zero. If the
useful counter is zero, the prediction is made by the component
that use the second longest possible global history on cases
where it gives higher prediction accuracy.

1) Hardware Configuration: Fig. 3 on the following page
provides the hardware configuration for TAGE used in the
simulation.

2) Update Policy:

• On a bad prediction, provider component is updated,
a new entry using longer history is also allocated if
possible.

• On a correct prediction, provider component’s counter is
updated, provider component’s u counter is incremented.

• On a bad prediction, provider component’s u counter is
decremented.

D. YAGS

YAGS is based on bi-Mode predictor [7]. It uses a meta
predictor with two gShare-like predictor with tag.

1) Hardware Configuration: Fig. 4 on the next page pro-
vides the hardware configuration for YAGS predictor used in
the simulation.

2) Update Policy:

• Only the direction PHT chosen is updated.
• Choice PHT is not updated if it give a prediction con-

tradicting the branch outcome and direction PHT chosen
gives the correct prediction.

E. Baseline

Baseline predictor is a level two predictor with one meta
predictor, one gShare predictor and one bimodal predictor.
Each of the predictor has 64K entries and the ghsare predictor
uses a global history length of 10. It is implemented in the
simplescalar simulator suite.

IV. EVALUATION

This section presents experimental result showing the O-
GEHL predictor implemented achieves better performance
than the baseline and other implemented predictors. It also
shows that which predictor is better in terms of ideal perfor-
mance and realistic performance.

A. Experimental Methodology

The experimental data presented in this report were col-
lected using SPEC2K benchmark traces. The traces are com-
piled to executed on simplescalar PISA architecture which
is very similarly to MIPS like architecture. The metric used
is misprediction per thousand instructions. Only direction
prediction for conditional branch is considered. That is, only
conditional branch are predicted and the prediction is consid-
ered correct if the direction is correct. In order to get both a
realistic performance and an ideal performance, the traces are
first run with 30M instructions to simulate OS context switch
and then run to complete. Moreover, for the realistic run,
predictor initial state are randomized to simulate the processor
state after a context switch. The realistic results are going to
be used for performance evaluation. The ideal results is going
to be used for the branch predictor competition.

B. Results

This section includes simulation result and analysis of the
result of the predictors simulated. The last part of it is the
result for ideal simulators which run the entire SPEC2K traces
to complete.

1) 2BcgSkew: Fig. 5 on the following page shows the
misprediction rate for the baseline predictor and 2BcgSkew.
Average MPKI for 2BcgSkew is 6.99 while average MPKI
for baseline is 7.15. We can see that the performance of
2BcgSkew is a little bit better compared with the baseline
predictor. This difference is insignificant in determining which
predictor is better. By varying global history length used in
different predictor banks and using different hashing function,
I get the conclusion that the difference between the two is
largely determined by minor difference in hashing function
used in indexing the prediction table. The rational behind both
of the predictors are almost the same. Give they have same
storage budget, it does not surprise that they have very similar
performance indeed.

2) O-GEHL: Fig. 6 on the next page shows the mispre-
diction rate for the baseline predictor and O-GEHL. Average
MPKI for O-GEHL is 5.55 while average MPKI for baseline is
7.15. We can see that the performance of O-GEHL is signifi-
cantly better than the baseline predictor in terms of MPKI. The
configuration of the O-GEHL is determined through a iterative



3

Fig. 3. TAGE Configuration

Fig. 4. YAGS Configuration

Fig. 5. 2BcgSkew Performance

approach. It has been found that O-GEHL is very sensitive to
the maximum history length in situations where no dynamic
history length mechanism is used. I get the conclusion that
the performance of O-GEHL is significantly better than the
baseline predictor. I can also reproduce some of the result in
[4] and [5]. For example, without dynamic threshold fitting,
the predictor suffers poor performance for some benchmarks.

Fig. 6. O-GEHL Performance

3) TAGE: Fig. 7 shows the misprediction rate for the
baseline predictor and TAGE. Average MPKI for TAGE is
6.12 while average MPKI for baseline is 7.15. We can see
that the performance of TAGE is significantly better than the

baseline predictor in terms of MPKI. The configuration of the
TAGE is determined through an iterative approach. It has been
found that TAGE is very sensitive to the update policy used.
However, I am not able to reproduce the result in [1] where
the TAGE is better than O-GEHL give that they have same
amount of storage. However, due to the short time frame of
this project, I cannot say that the TAGE predictor is very well
optimized. I believe there are still improvements can be done
on this predictor.

Fig. 7. TAGE Performance

4) YAGS: Fig. 8 on the next page shows the misprediction
rate for the basline predictor and YAGS. Average MPKI for
YAGS is 7.57 while average MPKI for baseline 7.15. We can
see that the performance of YAGS is little bit worse than the
baseline predictor in terms of MPKI. The configuration is
determine through an iterative approach. It has been found
that although predictor with tag can solve aliasing problem,
it also uses precious storage resources thus the performance
is not better compared with baseline and 2BcgSkew. I reach a
conclusion that YAGS has almost no advantage compared with
2BcgSkew since with amount of storage, the later one offers
better performance.

5) Putting All Together - Realistic: Fig. 9 on the following
page shows overall performance of all predictors in a realistic
situation. We can see that O-GEHL is the best one among the
four given that they all have 64KB of storage. The TAGE and
YAGS predictors use tag to reduce aliasing, but that also uses
precious storage resources. On the other hand O-GEHL and
2BcgSkew do not use tag. O-GEHL is better than TAGE while
2BcgSkew is better than YAGS in terms of MPKI.

6) Putting All Together - Ideal: Fig. 10 on the next page
shows overall performance of all predictors. We can see that
O-GEHL is still the best one among the four given that
they all have 64KB of storage. The MPKI for O-GEHL



4

Fig. 8. YAGS Performance

Fig. 9. Overall Performance Realistic

when running the trace to complete is 4.37. This number
is also meaningful in the sense that it covers the whole
execution of the benchmark and hides the learning time of
the predictor. There are two test cases mcf and twolf which
have higher MPKI compared with others. Simple statistic on
the branches shows they have more irregular branches. More
detailed analysis has to be performed to provide a solution to
improve the performance.

Fig. 10. Overall Performance Ideal

V. CONCLUSION AND FUTURE WORK

Although it is expected that TAGE should be the best one
according to previous work, the fact that it is also very hard
to tune, especially the update policy. The best one in terms

of average MPKI among the four predictors I obtained is O-
GHEL. The evaluation of those predictor shows they have an
average MPKI between 4 and 8 for the spec2k trace provided.
Due to the short time frame of this project, there are still lots of
improvement can be made. Future work including expanding
TAGE predictor to L-TAGE and optimize it. Moreover, large
predictor storage is conducive to the accuracy of the predictor.
Thus, it is possible to virtualize it thus get better performance
as in [8].

REFERENCES

[1] A. Seznec, “A case for (partially) tagged geometric history length branch
prediction,” Tech. Rep.

[2] A. Seznec and P. Michaud, “De-aliased hybrid branch predictors,” Tech.
Rep.

[3] A. Seznec, “An optimized 2bcgskew branch predictor,” Tech. Rep.
[4] A. Seznec, P. Michaud, P. Michaud, R. Uhlig, and R. Uhlig, “The o-gehl

branch predictor,” in In Proceedings of the First Workshop Championship
Branch Prediction in conjunction with MICRO-37.

[5] A. Seznec, “Analysis of the o-geometric history length branch predictor,”
in ISCA ’05: Proceedings of the 32nd annual international symposium
on Computer Architecture, pp. 394–405.

[6] C.-C. Lee, I.-C. K. Chen, and T. N. Mudge, “The bi-mode branch
predictor,” in MICRO 30: Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture, pp. 4–13.

[7] A. N. Eden and T. Mudge, “The yags branch prediction scheme,” in In
Proceedings of the 31st Annual ACM/IEEE International Symposium on
Microarchitecture, pp. 69–77.

[8] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsafi, “Predictor vir-
tualization,” in ASPLOS XIII: Proceedings of the 13th international
conference on Architectural support for programming languages and
operating systems, pp. 157–167.


