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Abstract 

Dynamic contrast enhanced (DCE)-MRI combined with Pharmacokinetic (PK) modeling of a 

tumor tissue provides information about its perfusion and vascular permeability. These tumor 

characteristics have been shown to be related to prognostic factors and thus, their role as cancer 

biomarkers in assessing anti-angiogenic therapies is increasing. However, the quantitative 

parameters derived from PK analyses vary significantly between studies and need improvement. 

Most PK models require the intravascular contrast agent concentration as an input. This vascular 

input function (VIF) is inseparable from the signal of extravascular extracellular space due to 

heterogeneity of tumor vasculature, partial volume effect, and low resolution of DCE-MRI. 

Thus, it is approximated with an arterial input function (AIF) measured outside of the tissue of 

interest (TOI). Variations and error in calculation of AIF is one of the major sources of 

discrepancy between PK parameters reported in different studies.  
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The objective of this thesis is developing image processing techniques to identify and separate 

the VIF at the TOI, which has the potential to improve PK analysis. Such VIF could also be used 

in cases no artery is available or in animal studies where finding an artery is difficult.  

The thesis investigates feasibility of using independent component analysis for VIF calculation 

(using tissue-mimicking phantoms and animal models), and develops an adaptive complex 

independent component analysis (AC-ICA) algorithm to calculate the VIF and evaluates it using 

tissue-mimicking phantoms.  

The AC-ICA algorithm is applied to DCE-MRI of prostate cancer and its performance in PK 

analysis is compared to AIF-based analyses. Results show the AC-ICA provides more consistent 

PK parameters and better separation of normal and tumor tissues. Moreover, the proposed VIF is 

less sensitive (compared to AIF) to decreasing temporal resolution which enables imaging with 

high spatial resolution that will further improve performance of both PK analysis and AC-ICA 

algorithm.   
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Chapter 1                                                                             

Introduction and Motivation 

Advances in our understanding of cancer biology have resulted in the development of novel 

therapeutics with the capability to target diseases based on their molecular characteristics. 

Given the specificity and cost of these approaches, proper selection of patients who would 

benefit from these treatments is essential. In addition, the ability to determine the response of 

a tumor to treatment early in the course of the therapy helps adjust the course of the treatment 

[1], [2]. Currently, imaging measurements of tumor size and evaluation of serum markers 

secreted by cancer cells are the two main approaches used clinically to assess therapeutic 

response. Serum markers are non-invasive, can be repeated frequently and have low cost. 

They are used routinely to monitor several cancers such as prostate cancer (prostate specific 

antigen or PSA) [3], ovarian cancer (cancer antigen 125 or CA125) [4], and thyroid cancer 

(thyroglobulin) [5]. However, the level of tumor serum markers is not regulated by the tumor 

mass only and other normal processes also affect their level. For instance, PSA is regulated 

by androgen level confounding its use in monitoring anti-hormonal therapies [3], or 

thyroglobulin level is regulated by thyroid stimulating hormone [5]. In addition, many 

malignancies do not produce sufficient markers to be used for monitoring [1]. Consequently, 

tumor size measurement with imaging has become the standard approach to evaluate tumor 

response [1]. This response evaluation criteria in solid tumors (RECIST) [6] assumes that 

reduction in tumor size after therapy shows better prognosis than no change or increase in 

tumor size. Despite its broad adoption, this assumption is not necessarily correct [7] and has 

some limitations as some molecular targeting agents may result in improved clinical response 

while making no significant change in tumor size [8]. 

Due to the limitations of current tumor therapeutic response assessment criteria, there has 

been significant interest in functional and molecular imaging techniques. Molecular imaging 

with PET has been shown to improve therapeutic response assessment for several tumors [9]–

[12] and when combined with compartmental modeling enables studying biological changes 
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in the tumor [13]. Contrast enhanced ultrasound provides quantitative information about 

tumor vasculature [14], and dynamic contrast enhanced (DCE)-computed tomography (CT) is 

used to quantify vascular permeability and blood flow [15]. Non-contrast   -weighted or 

  -weighted MRI imaging provides information about morphological changes in the tumor or 

changes in its fluid content. Diffusion weighted MRI and perfusion weighted MRI also 

provide promising tools for response assessment [16], [17]. DCE-MRI, similar to DCE-CT, 

provides information on the vascular permeability and tumor perfusion [18] and will be used 

in this thesis to obtain quantitative information about the tumor. 

This chapter provides the introductory information and literature review on the quantification 

of DCE-MRI in assessing tumor response to therapy using pharmacokinetic analysis. It will 

first discuss tumor angiogenesis which is different from normal angiogenesis and which 

could be used as a cancer biomarker. Quantitative information about this biomarker could be 

obtained by analyzing kinetics of tracer transport in tumor vasculature (e.g. passage of a 

contrast agent bolus through the vasculature). The tracer kinetic models that are used for such 

quantification will also be explained in this chapter. The objective of this thesis which is to 

calculate the vascular input function required in tracer kinetic models, will be introduced. The 

approaches that are currently used to acquire an input function as well as the possibility of 

utilizing a data-driven technique to calculate the vascular input function will be discussed. 

Finally, a prostate cancer model, which will be used as a clinical example to assess the 

performance of our proposed method, will be introduced. 

1.1 Cancer Biomarkers 

Cancer is a disease in which abnormal cells are able to proliferate without control and have 

the potential to invade other tissues. These cancerous cells can spread to other organs through 

blood vessels and the lymphatic system. There are more than 100 types of cancers that could 

be grouped into Carcinoma, Sarcoma, Leukemia, Lymphoma and Myeloma, and central 

nervous system cancers [19]. 

The main biological capabilities that a cancer acquires in the process of developing tumors 

are sustaining proliferative signaling, evading growth suppressors, resisting cell death, 

enabling replicative immortality, inducing angiogenesis, and activating invasion and 

metastasis [20]. In addition to these cancer cell characteristics, tumors contain a collection of 

normal cells that create the “tumor microenvironment” which provide the environment for 

cells to become cancerous [21]. The tumor microenvironment includes several components 
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including blood vessels (discussed in the next section) and the extracellular matrix [22], and 

is used to measure several cancer biomarkers. 

Cancer biomarkers are substances secreted by the tumor or processes that can be used as 

indicators of presence of tumor in the body such as a molecule or an imaging metric that 

provides an objective measure of a pathological process [23]. In general, any biologically 

driven substance or molecule that could provide information about the presence or stage of 

cancer is considered as a cancer biomarker [24]. These biomarkers can be categorized based 

on the disease state (prediction, detection, diagnosis, and prognosis biomarkers), the bio-

molecules (DNA, RNA, protein, glyco biomarkers) or other criteria such as imaging 

biomarkers or pathological biomarkers.  

However, very few cancer biomarkers are sensitive or specific enough for cancer detection 

and assessing its response to therapy. There are challenges in validating these biomarkers in 

early detection, diagnosis or monitoring of the disease which prevents them from being used 

in routine clinical practices and thus more research is required to address these issues. The 

focus of this thesis is on improving the accuracy of imaging biomarkers that are based on the 

pharmacokinetics of tracers in the vascular network, and exploiting the differences between 

tumor and normal vasculature. The remainder of this subsection first briefly reviews the 

vascular network and microcirculatory system and then explains angiogenesis and the 

differences in normal and tumor angiogenesis that can be used in cancer studies.  

1.1.1 Vascular Network 

The blood circulatory system is a network of blood vessels that transports newly oxygenated 

blood as well as other nutrients to the cells that need them. As nutrients diffuse out of the 

blood into the interstitial fluid, waste diffuses back into the blood stream and is carried away.  

This blood transports waste to the liver or kidneys and moves back to the lungs to become 

oxygenated again.  

The heart, blood and the vascular network (comprised of arteries, arterioles, capillaries, 

venules and veins) form the human circulatory system. There are three major types of blood 

vessels: the arteries that carry blood away from the heart, the capillaries which enable the 

exchange of nutrients and oxygen and other chemicals between the blood and the tissue, and 

the veins that carry blood away from the capillaries and back to the heart. The transport of 
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substances between blood and tissue occurs only in the capillaries that have a thin 

endothelium and are a component of microcirculatory network.   

1.1.2 Microcirculation 

Microcirculation, whose main function is delivering oxygen and nutrients and removing 

waste, is essential to many functions of the organism. It also plays an important role in fluid 

exchange between blood and tissue, delivery of hormones to target organs, and bulk delivery 

between organs. The microcirculatory system consists of three principal sections, arterioles, 

capillaries and venules; each with unique structure and function. The arterioles are innervated 

and surrounded by smooth muscle cells and are responsible for carrying blood to the tissue 

and regulating the rate of delivery. Capillaries are not innervated and have very thin walls 

with no smooth muscle cells and are responsible for exchange between blood and tissue. The 

venules drain blood from capillaries for return to the heart.  

In addition to the blood vessels, the microcirculatory system includes the lymphatic 

capillaries and the collecting ducts. The main functions of the microcirculation are regulating 

blood flow, tissue perfusion, blood pressure, tissue fluid and body temperature, as well as 

delivery of oxygen and nutrients to the tissue and removal of carbon dioxide and other 

metabolic waste from the tissue [25]. The process of generating new blood vessels to 

maintain the circulatory system, which is essential for any new or growing organ, is called 

angiogenesis and has fundamental differences between normal and cancerous tissues. 

1.1.3 Angiogenesis 

The vascular network transports oxygen and nutrients that are essential for growth and 

survival of cells. The diffusion distance of oxygen in tissue is 100 [µm] to 200 [µm] and 

therefore cells have to be located not farther than this diffusion distance to survive. As a 

multi-cellular organism is growing it must recruit new blood vessels to support the new cells. 

Thus, the process of generating new blood vessel (angiogenesis) plays a crucial role in the 

growth of the organ. 

Angiogenesis is important for the establishment of a well organized, heterogeneous vascular 

network as an organ grows. It is also one of the main factors of wound healing and tissue 

repair. When angiogenesis is taking place in normal tissues, the start and end of angiogenesis 

are tightly regulated and controlled by several molecular and mechanical factors [26], [27]. 
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As such, the result of angiogenesis is a tissue-specific, structured, vascular tree that is 

optimized to meet the needs of the cells in the organ. Tumor angiogenesis on the other hand 

lacks most of these regulatory mechanisms and has fundamental differences with normal 

angiogenesis.  

1.1.3.1 Tumor angiogenesis 

Tumor angiogenesis was first observed around 100 years ago where several scientists such as 

Ferrara [19] and Hurwitz [20] confirmed the importance of abundant blood supply for tumor 

growth. In 1971 Folkman [28] suggested that a tumor could be starved to death if key 

molecular pathways of angiogenesis were identified. A few years later in 1978, Guliano [29] 

showed that precancerous cells acquire angiogenic capacity as they become cancerous. Since 

these findings, there have been numerous studies on identification of anti-angionegic 

mechanisms. These studies attempt to slow or stop the tumor angiogenic processes where the 

tumor either engulfs existing blood vessels to get their nutrients or generates new blood 

vessels using one of the following 3 methods:  

1- Generating new blood vessels emerging from existing blood vessels (Angiogenesis). 

2- Using bone marrow-derived endothelial progenitor cells (Vasculogenesis). 

3- Expanding the capillary wall into the lumen to split a single blood vessel into two 

blood vessels (Intussusception). 

However, tumor angiogenesis is not just a production of new blood vessels to feed growing 

tumor mass. Unlike normal angiogenesis which is tightly regulated, tumor angiogenesis 

occurs in an unregulated manner such that the resultant tumor vasculature is highly abnormal. 

One of the main characteristics of solid tumors is that they are hypoxic which reduces the 

activity of prolyl hydroxylase domain proteins (PHD) that act as oxygen sensors [30], [31]. 

This reduction in PHD affects the ubiquitination and degradation of hypoxia inducible 

transcription factor (HIF) [32] and allows the transcription of HIF-driven genes such as 

vascular endothelial growth factor (VEGF) which is a pro-angiogenic factor. Over expression 

of VEGF in tumors can also be initiated by other factors such as inflammatory cytokines, sex 

hormones, growth factors, and chemokines [33], [34]. The imbalance between the 

pro-angiogenic, such as vascular endothelial growth factor A (VEGF-A), and anti-angiogenic 

signaling in tumors causes unregulated production of new vasculature that are both 

macroscopically and microscopically abnormal. Presence of such an abnormal vascular 
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network significantly alters the way tumors grow and deal with the immune system, 

metastasize and respond to therapy. 

1.1.3.2 Microscopic Abnormalities (vessel wall) 

The mature endothelial cells (ECs) lining normal vessel walls are connected to the 

neighboring ECs with adherin junctions such as vascular endothelial (VE)-cadherin, which is 

a transmembrane receptor [35]. The proteins that connect the intracellular domain of 

VE-cadherin attached to the EC cytoskeleton also act as effectors of downstream molecular 

signaling. The downstream signaling from VEGF-VEGFR2 interactions contracts the EC 

cytoskeleton and weakens the VE-adherin junctions [35]. Thus, tumor ECs are poorly 

connected which leads to having irregular and disorganized morphology. Moreover, tumors 

express abundance of vesiculo-vascular organelles that are associated with vascular 

permeability. Tumor ECs also demonstrate a different gene expression profile compared to 

normal endothelium [36]. All of these factors contribute to the hyper-permeability of tumor 

blood vessels which allows the intravascular fluids and proteins to extravasate [37]. 

Considering that tumors lack a functional lymphatic system to clear the interstitial space, the 

extravasated substances build up and elevate the interstitial fluid pressure (IFP). This elevated 

IFP reduces the pressure gradient between the intravascular and extravascular spaces such 

that they reach equilibrium and the transvascular flow decreases. 

1.1.3.3 Macroscopic Abnormalities (Morphology) 

The macroscopic characteristics of tumor microvasculature include being dilated, tortuous, 

saccular, and having random branching and interconnections with random patterns of locally 

increased or reduced vessel density [37]–[40] (as shown in Figure  1-1 [41]). Tumor 

vasculature also expresses increased vascular shunting due to loss of vascular diameter 

control, high tendency for vessel growth and increased vascular reactivity [42], [43]. The 

heterogeneous and irregular arrangement and distribution of the blood vessels in the tumor 

leads to heterogeneity in blood flow both spatially and temporally.  

The elevated IFP and the stress from the proliferating tumor cells cause collapse of the vessel 

walls [44]. All of these factors (elevated IFP, areas of poor perfusion and vessel collapse) 

lead to having regional hypoxia in the tumor [45]. Consequently, tumor cells undergo 

epigenetic changes in hypoxic conditions and become more resistant to hypoxia than normal 

cells. These resistant to hypoxia tumor cells demonstrate characteristics of malignant tumors 
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and have greater potential to metastasize [35], [46]. Some of the macroscopic abnormalities 

of the tumor vasculature such as the vascular leakiness are quantified using medical imaging 

to generate imaging biomarkers for tumor stage or therapeutic response assessment. 

 
Figure  1-1 a) Normal vasculature of skeletal muscle that is well-organized with regular 

arrangement of the blood vessels, b) Tumor microvasculature (Sarcoma) that is incomplete, 

heterogeneous, and tortuous. Images reprinted with permission from Elsevier: Vaupel et al., 

“Tumor microenvironmental physiology and its implications for radiation oncology”, 

Seminars in radiation oncology, 14(3):198-206, © (2004). 
 

1.2 Medical Imaging Biomarkers 

Using imaging biomarkers in detection, diagnosis, staging and assessment of the therapeutic 

response of tumors is becoming important in cancer studies, particularly with the emerging 

trend towards personalized medicine. A major advantage of imaging biomarkers is that, 

unlike bio-fluids that measure information about the entire body, imaging biomarkers assess 

the exact focus of the disease. They are also generally non-invasive and allow follow up. The 

type of information that an imaging biomarker provides depends on the question it is trying to 

address, for instance therapeutic response assessment biomarkers include (but are not limited 

to) biomarkers that assess whether the drug has arrived in the target, whether it modulates its 

target, whether the dose is selected appropriately, and whether it changes tumor 

pharmacokinetics [24], [47]. 

There exist a wide variety of imaging biomarkers, where each biomarker provides 

information about a specific biological or physiological characteristic of the tumor (some of 

these biomarkers will be mentioned in section 1.2.1.2). However, there are several sources of 

uncertainty in imaging biomarkers (e.g. biological, imaging and analysis uncertainties) that 

limit their applicability and have to be resolved or optimized before using them in routine 

clinical decision making. Biological uncertainties are drug and patient dependent and thus, 

difficult to assess. Reliability and robustness of image acquisition procedures and analysis 
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tools used for quantitative measurement of the changes in the tumor as well as the clinicians 

that are interpreting the images are other sources of uncertainty in imaging biomarkers [48].   

1.2.1 Assessing tumor response to therapy 

Personalized therapy is becoming more viable as our understanding of cancer biology is 

increasing. Given the complexity and high cost of these therapies it is of upmost importance 

to identify responding and non-responding patients as early as possible in the course of the 

treatment [49]. However, there is large heterogeneity in tumors and although they present 

apparently identical clinical characteristics, tumor response to therapy is a fundamental but 

not well understood concept in clinical oncology. Currently there are two approaches that are 

used in clinical practices to assess tumor response to therapy:  

1- Measurement of markers secreted by cancer cells 

2- Tumor size measurements using medical imaging (RECIST criteria) 

Some malignant tumors produce serum molecules at a level sufficient for monitoring[3]–[5], 

however the secretion of these biomarkers is not controlled by the tumor alone and several 

other factors affect their level which limits their application for therapy monitoring [3], [5]. 

Moreover, many malignant tumors do not produce biomarkers at sufficient level  to be used 

in response assessment and thus tumor size measurement has become the main response 

assessment approach in clinical practice [1].  

1.2.1.1 RECIST criteria 

Currently the most commonly used marker for response assessment is tumor size 

measurement. The first international standards criteria based on tumor size measurement was 

published in 1979 [50], which was modified in 2000 and was called response evaluation 

criteria in solid tumor (RECIST) [51]. However, despite the advances in medical imaging, the 

definition for assessing tumor response to therapy has not changed. The RECIST criterion 

categorizes a tumor into one of the following 4 groups: 

 Complete response (CR): Disappearance of all known disease 

 Partial response (PR): At least 30% reduction in tumor size 

 Stable disease (SD): Patient does not meet criteria for CR or PR 

 Progressive disease (PD): 20% or more increase in tumor size with reference to the 

smallest size measured since the start of the treatment  
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The main assumption in using tumor size to assess tumor response to therapy is that reduction 

in tumor size after therapy indicates a better prognostic outcome than unchanged or 

increasing tumor size. This assumption is not necessarily correct as some molecular targeting 

agents may result in improved clinical response without affecting the tumor size [7], [52]. 

There are several drugs such as Sorafenib in renal cancer [53], Panitumumab in colorectal 

cancer [54], and Sunitinib in pancreatic cancer [55], that have been approved by U.S. Food 

and Drug Administration despite resulting in 10% or less change in tumor size which would 

not be approved if RECIST end points were used [52]. More importantly it may take a long 

time (several weeks or months) for the tumor size to change as a result of the therapy [56] 

which jeopardizes the ability to change or adjust the course of treatment. Moreover, the tumor 

size measurement may be inaccurate due to errors in tumor measurements, differentiation of 

tumor from the surrounding tissue, and inter-observer and intra-observer variability [52].  

1.2.1.2 Quantitative Imaging 

Due to the limitations in current therapeutic response assessment methods there has been 

significant interest in functional and molecular imaging techniques such as positron emission 

tomography with 
18

F-fluorodeoxyglucose (FDG-PET) [8] and magnetic resonance imaging 

(MRI: non-contrast, T1/T2-weighted, diffusion-weighted, perfusion-weighted and dynamic 

contrast-enhanced) [9], [18], ultrasound (US) and computed tomography (CT). Such 

biomarkers, if correlated with patient outcome, could identify the responding patient to a 

specific treatment and significantly reduce the treatment cost. There are a large number of 

quantitative imaging biomarkers that are being used in clinic or are in research stages, that 

have been found useful in cancer assessment. Some of these quantitative cancer biomarkers 

are listed below: 

 Texture analysis  in computed tomography (CT) is used for assessing tumor heterogeneity 

[57]. CT perfusion imaging is used to assess the tumor vascularity [58]. Dynamic contrast 

enhanced (DCE)-CT combined with pharmacokinetic modeling of the tumor tissue is also 

used for quantifying tumor blood flow, tumor perfusion and vascular permeability [15].    

 Positron emission tomography (PET) is widely used for metabolic assessment of cancer. 

Static FDG-PET imaging is used for measuring energy consumption in tumors and is 

used for detecting metastatic cancers [59]. Dynamic PET combined with compartmental 

modeling is also used for assessing biological changes using a tracer injection [13].  
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 Quantitative ultrasound (QUS) analyzes power distribution from the signals backscattered 

from the tissue. The spectral parameters calculated using QUS are used to characterize 

and distinguish between tumors particularly in prostate, breast and metastatic cancer in 

lymph nodes [60]. Contrast enhanced ultrasound on the other hand provides information 

about tumor vasculature such at its perfusion and vascular heterogeneity [14].  

 MRI provides anatomical, functional and molecular information to assess response to 

therapy [61]. Non-contrast   - and   -weighted MRI provide information about tissue 

morphology, fluid content and fibrosis, while dynamic contrast enhanced (DCE)-MRI 

provides information about blood flow, perfusion and vascular permeability [18]. Other 

MR imaging techniques such as diffusion weighted (DW)-MRI, perfusion weighted 

(PW)-MRI and magnetic resonance spectroscopy (MRS) also provide promising 

functional and molecular imaging biomarkers [16], [17], [62].  

The focus of this thesis is on the vascular permeability biomarkers that are extracted from 

DCE-MR imaging of the tumor tissue. 

1.2.2 Pharmacokinetic modeling 

Pharmacokinetic (PK) modeling of a tissue models the passage of a bolus of contrast agent 

through the tumor vasculature and provides quantitative information about its physiology 

such as the exchange rate of substances through the vasculature into the extravascular 

extracellular space. This quantitative information is used for detecting and diagnosing tumors 

as well as assessing their response to therapy.  

Modeling the bolus passage through vascular network can be performed using contrast 

enhanced ultrasound (CE-US), DCE-CT, DCE-MRI and dynamic PET. However, Ultrasound 

contrast agents, i.e. microbubbles, are too large to pass through the vessel walls and thus stay 

intravascular which could provide information about tumor vasculature and perfusion. In 

addition to the limit in the contrast agent dose that can be administered in DCE-CT, it 

involves ionizing radiation which leads to compromises in the image contrast (low signal to 

noise ratio), coverage volume and the number of time points in the DCE-CT series [15], [63]. 

Moreover, there is higher incidence of adverse effects of CT contrast agent compared to MRI 

[15]. These issues limit the application of DCE-CT despite the major advantage it has 

compared to MRI, i.e. linear relationship between tissue attenuation and contrast agent 
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concentration. Dynamic PET, despite having high sensitivity and specificity, uses 

radionuclides as its tracer (dose limitations) and suffers from low spatial resolution [13].     

DCE-MRI on the other hand is suitable for pharmacokinetic modeling of tumor tissues as it 

does not involve ionizing radiation, it has high spatial and temporal resolutions, and its 

contrast agent is not radioactive and is capable of crossing the vessel walls. As a result of 

these advantages, although DCE-MRI has several practical implementation vulnerabilities 

(e.g. non-linear relationship between MRI signal and contrast agent concentration, difficulty 

and error in    measurement, tissue-dependant relaxivities, water exchange and incomplete 

mixing of the extravascular compartment [15]), there has been more than 100 early-phase 

clinical trial and investigator-lead studies assessing anti-vascular therapies that used end 

points based on DCE-MRI [64].   

In DCE-MRI studies, the injected contrast agent has a low molecular weight (e.g. Magnevist, 

Onmiscan) and can diffuse through the vessel walls into the extravascular space. However, 

these contrast agent molecules are too large to the cross cell membrane and can only diffuse 

into the extravascular extracellular space (EES). The rate by which the contrast agent diffuses 

from blood plasma to the EES is determined by the blood flow, vascular permeability, and 

surface area of the vessel. PK modeling of DCE-MRI data provides quantitative information 

about these characteristics of the tumor vasculature (e.g. microvessel density and 

permeability [65], [66]) that have been shown to correlate with prognostic factors. The 

following section introduces the tracer-kinetic theory from which the pharmacokinetic 

models are derived. It will also explain some of the most common PK models that are used in 

DCE-MRI studies. 

1.3 Tracer-Kinetic Theory 

A tracer or indicator is a substance administered into a physiological system that could 

provide physiological information about the system such as Gadolinium-based MR contrast 

agents. The kinetics of an indicator in the body can be explained using the tracer-kinetic 

theory of linear and stationary systems [67]–[69]. Consider a tissue sample which has several 

inlets and outlets that transport tracers into and out of the tissue. Tissue concentration    

[mMol], is defined as the mass of indicator in the tissue divided by the volume of the tissue. 

Indicator flux,    
    

        
 , is defined as a non-negative quantity (unidirectional flux) that 

measures the amount of indicator that passes through an inlet or outlet per unit time [70]. 
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Based on the mass continuity equation (equation 1-1), the difference between the total influx 

and outflux of the contrast agent equals the rate of change of the total amount of contrast 

agent in any section of the tissue: 

        

  
          

                                                                  
        

         
         

      
(1-1) 

There are several tissue models that have been designed to model kinetics of an indicator in a 

tissue. In this section we will explain the exchange model [67] and its special forms that are 

known as Tofts-Kety models [71], [72], tissue homogeneity model [73] and the adiabatic 

approximation to tissue homogeneity model [74], and distributed parameter model [75]  

These models that are commonly used in modeling the indicator kinetics in a two-region 

system (some of these models can be generalized to multi-region systems as well) are all 

based on the mass continuity equation (equation 1-1) 

1.3.1 Two-region models 

The exchange of MR contrast agent through the capillary wall can be modeled in most cases 

using a two-region system consisting of the plasma space and the extravascular extracellular 

space (EES) as shown in Figure  1-2. Once the contrast agent arrives in the capillary via the 

influx   , its particles pass through the capillary wall into the EES (they do not cross the cell 

membrane and stay extracellular) and eventually return to the capillary bed. Such a coupling 

could be modeled with an influx from the EES into the plasma space,   , and an outflux from 

the plasma space into the EES,   . Finally the contrast agent leaves the capillary through the 

outflux   . In such a two-region system the tissue concentration   , is the sum of the 

contribution of each space: 

                      (1-2) 

where    [ml/ml] (plasma-space fraction) is the volume of distribution for    (volume of the 

plasma space) divided by the total volume of the tissue, and    is the indicator concentration 

in the plasma space (amount of indicator in the plasma space divided by its volume of 

distribution),     
  

  
  is the fraction of the tissue that is extravascular extracellular, and    is 

the indicator concentration in EES. The exchange of indicator between the capillary bed and 

the EES can be modeled using a compartment model or a plug flow model. Both models have 
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the same assumption regarding transport of indicator across the capillary wall and only differ 

in the distribution of the indicator in the tissue. 

 
Figure  1-2 The schematic of a generic two region exchange system showing the influxes, 

outfluxes and the different spaces  

1.3.1.1 Exchange Model 

In exchange models each space is assumed to be a compartment. In a compartment (Figure 

 1-3b) it is assumed that as the indicator arrives in the compartment (capillary) it 

instantaneously mixes with the blood plasma and produces a homogeneous mixture. Thus, the 

concentrations at all outlets are    or in other words            where     
  

        
  is the 

plasma flow, and           , where    is the product of permeability (  
  

          ) and 

surface area (  
   

  
 ) of the capillary wall. Substituting these fluxes in the mass continuity 

equation (equation 1-1) for the capillary compartment we have: 

  

   

  
                             (1-3) 

A two compartment exchange model assumes that both the plasma and the EES are 

compartments [67]. Applying the mass conservation equation to this system (Figure  1-4a), 

the following two equations (1-4 and 1-5) are derived that govern the exchange of contrast 

agent between the plasma space and the EES: 

  

   

  
                                     (1-4) 

  

   
  

                    (1-5) 
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1.3.1.2 Tissue Homogeneity (TH) Model 

Tissue homogeneity (TH) models [73] assume the plasma space is a plug flow system which 

is shown in Figure  1-3c. In a plug flow system it is assumed that all particles in the fluid have 

the same velocity in the direction parallel to the capillary (axial direction) and have zero 

velocity in the perpendicular direction (radial direction). Thus, the concentration does not 

change perpendicular to the capillary (radial) and can be expressed as a one-dimensional 

axial variation. If we consider an infinitesimal segment    of the capillary at location   along 

the capillary, the concentration is         and could be assumed to be constant for the entire 

infinitesimal segment   . Thus the outflux from the segment is              and the influx 

is                , the outflux through the capillary wall is                  (  [m] is 

the capillary length), the total concentration of the segment is            , the volume of the 

segment is       , and the surface area is      . Thus, the indicator mass balance equation 

at point   is: 

  

 

   

  
         

   

  
       

  

 
        (1-6) 

 

 
Figure  1-3 a) Schematic of an arbitrary capillary bed containing plasma with concentration 

     , which has an influx, an outflux and a leakage outflux through the capillary wall. b) 

Schematic of a compartment model and, c) Schematic of a plug flow model having leakage 

through the wall with rate constant PS (permeability surface area product). 

A two space tissue homogeneity system assumes the plasma space to be a plug flow system 

and the EES to be a compartment (Figure  1-4b). Thus, the mass conservation equation for 

EES is the same as the exchange model (equation 1-5). The total influx from the EES into the 

capillary            is distributed equally along the capillary wall. Thus, the influx from 

EES for a section    of the capillary at location   is               . Substituting these 
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terms in the mass conservation equation for location   in the continuum limit     , we 

have the following governing equations (1-7 and 1-8) for the tissue homogeneity model: 

  

 

   

  
         

   

  
       

  

 
        

  

 
      (1-7) 

  

   
  

                    (1-8) 

In these equations note that       is the average concentration of the capillary and         is 

the concentration in a infinitesimal segment of the capillary at location  . 

Figure  1-4 Schematic of a) the two compartment exchange model, b) the tissue homogeneity 

model and, c) the distributed-parameter model.  

 

1.3.1.3 Adiabatic approximation to tissue homogeneity (AATH) 

The adiabatic approximation to the tissue homogeneity model was introduced by 

St. Lawrence [74] and has become the most widely used model that provides a separate 

estimate to the    and   . Similar to TH model, the AATH model assumes a plug flow for 

the capillary bed and a compartment model for the EES. However it assumes that the 

capillary wall is impermeable and the EES receives influx with clearance rate     from the 

venous end of the capillary where   [%] is the extraction fraction (Figure  1-5a). The mass 

conservation equations for this system are: 

  

 

   

  
         

   

  
      (1-9) 

  

   
  

                        (1-10) 
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1.3.1.4 The distributed parameter model 

The distributed parameter model that was introduced by Sangren and Sheppart [75] assumes 

the capillary bed as a plug flow and the EES as a series of infinitesimal compartments where 

each compartment can only exchange with its nearby locations in the capillary bed (Figure 

 1-4c). The EES does not allow transport of the particles parallel to the capillary from one 

compartment to the other and thus they cannot be transported from arterial end to the venous 

end in the EES. The mass conservation equation for plasma space and EES are given in 

equations 1-11 and 1-12 respectively: 

  

 

   

  
         

   

  
       

  

 
        

  

 
        (1-11) 

  

 

   
  

      
  

 
        

  

 
        (1-12) 

 

 

Figure  1-5 Schematic of a) adiabatic approximation to tissue homogeneity (AATH) model 

and, b) the Tofts-Kety model in which the contrast agent is being exchanged between the 

plasma space and the EES with rate constants        and    . 

1.3.1.5 Tofts-Kety model 

The Tofts-Kety [71], [72] model is a special form of the two compartment exchange model 

and was initially designed for tissues with negligible tracer concentration in the plasma space. 

Similar to the two space exchange model, Tofts-Kety model (Figure  1-5b) assumes having 

two spaces (Plasma and EES) that exchange the tracer with rate constants that are defined by 

the permeability surface area (  ) of the capillary and the plasma flow (  ). It also assumes 

instantaneous mixing of the tracer in each space and assumes having one arterial inlet into 

and one venous outlet from the capillary while the EES only exchanges with the capillary 
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bed. The “Tofts-Kety” model is the weakly vascularized limit (    ) of exchange model. 

Applying this condition to equation 1-4 we have:   

                                   (1-13) 

Thus,       in Tofts-Kety model is: 

      
  

     
      

  

     
      (1-14) 

Substituting equation 1-14 in equation 1-5 we have: 

  

   
  

      

  

     
              (1-15) 

Defining the rate constant of tracer transport from plasma space to the EES as            

(        
 

   
 ) and the rate constant of tracer transport from the EES to the plasma space as 

    
   

  
 (     

 

   
 ), where   

  

     
 is the extraction fraction, the Tofts-Kety model 

equations can be written as: 

              

  

   
  

                        

(1-16) 

Unlike the exchange models, the flow (  ) and permeability surface area product (  ) cannot 

be quantified independently and the model parameters reflect a mixed effect of both 

parameters.  

In many tissues and particularly in tumors, the assumption that the plasma space is negligible 

is not valid and thus the Tofts-Kety model is modified to include this term. This model which 

is the highly perfused limit (    ) of the exchange model is called the “extended 

Tofts-Kety” model. Under high flow condition the blood plasma can be considered as a 

single pool with equal arterial and venous concentrations, and the transport of the tracer out 

of the plasma space through the capillary wall is slow enough not to change the intravascular 

concentration (
   

  
     ). Substituting this condition (

   

  
     ) in equation 1-4 we have:  
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                                   (1-17) 

which is the same as equation1-13 of Tofts-Kety model and thus the model equation 

derivation for extended Tofts-Kety model would be the same as the Tofts-Kety model. Thus 

the extended Tofts-Kety model equations are:  

                      

  

   
  

                        

(1-18) 

The Tofts-Kety model and the extended Tofts-Kety model are the most commonly used PK 

models in tumor characterization [76]–[80] and are recommended in consensuses [81]. Thus, 

in this thesis we have chosen these two models to study the tracer kinetics in tumors. 

1.3.2 Vascular Input Function (VIF) 

In order to solve the differential equations in any of the introduced tracer-kinetic models and 

calculate their model parameters,    or   , has to be known. These model equations are 

derived for individual capillaries while the spatial resolution in DCE imaging is such that 

each voxel covers an area comprised of several capillaries and extravascular space (the 

in-plane resolution is between 170 [µm] to 680 [µm] in our physical phantom, and is 

1.8 [mm] in our prostate DCE-MRI). Consequently, solving these model equations for 

individual capillaries is impossible with the current imaging technology and thus, these 

equations are solved for every voxel and their calculated parameters represent the average 

value of the parameter in the voxel.  

However, in order to solve these model equations at voxel level the contrast agent 

concentration in the intravascular space,    or   , is still required. Since there is only one 

measurement for signal of each voxel at each time point, the intravascular signal (vascular 

concentration or vascular input function) is combined with the EES signal and cannot be 

measured directly. Thus, it is approximated using an arterial input function [82]–[85] which 

is calculated outside of the tissue of interest (TOI). There are several methods to approximate 

the arterial input function (AIF) such as the following methods: 
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 Adjacent Artery: it is common to use the contrast agent concentration in an artery that is 

anatomically adjacent to the tumor [82], [86]. Such a signal is calculated using either the 

magnitude or phase of the MR signal in the artery [87]. 

 Theoretical AIF: this AIF usually takes the form of a bi-exponential curve [83], [88], 

[89] and its parameters are measured experimentally [90]. 

 Population-averaged AIF: such an AIF is usually measured experimentally through 

blood sampling or high temporal resolution imaging at a major artery for several subjects 

and then using the average of the measurement as the AIF for new subjects [84]. 

 Reference-tissue based AIF: this method attempts to estimate AIF from contrast agent 

concentration in a normal tissue with known physiological properties (from 

literature) [85]. 

 Reference tissue with blood vessel: in this method a local blood vessel (if such vessel 

exists) is used to calculate the physiological properties of the normal tissue (rather than 

using the literature values) [91]. 

 Dual bolus AIF: in this method a low dose bolus is first injected and AIF is measured in 

a major artery with high temporal resolution. Such an AIF has sufficient temporal 

resolution to capture the first pass of the bolus and the MR signal does not saturate in the 

artery due to high contrast agent concentration. Once the AIF is measured, the main bolus 

is injected and the tissue is imaged with relaxed temporal resolution [92].  

In pharmacokinetic analysis of tumor tissues the concentration in the whole tumor region is 

considered as either extravascular (Tofts-Kety model) or a parameter is introduced (extended 

Tofts-Kety model) to account for the fraction that is intravascular (blood plasma volume per 

unit volume of tissue,   ). In addition, in many tumors a feeding artery for the tumor in the 

imaging field of view does not exist which makes PK analysis difficult and inaccurate if not 

impossible. Some assumptions in the choice of these AIFs are: 

1- The chosen artery (for AIF measurement) is feeding the tumor 

2- No other artery is supplying blood and consequently contrast agent to the tumor 

3- There is no delay, i.e. contrast agent arrives in the artery and the tumor at the same 

time or an unknown ( ) is added to the system to account for the delay.  

These unknown parameters produce systemic errors and make solving the system of 

equations complex and sensitive to noise, such that although introducing extra parameters 

make the model more realistic, due to increased complexity and instability of the system, the 
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performance of different models are similar and there is no optimal number of model 

parameters [93]. Thus, more sophisticated techniques are required to calculate this input 

function. In this thesis we propose using data-driven techniques to calculate this input 

function at the tissue of interest rather than approximating it outside of the tissue. We call this 

input function the vascular input function (VIF) as it represents the contrast agent 

concentration in the tumor vasculature. 

1.3.3 Data-driven VIF 

The main objective of this thesis is to identify and separate the contrast agent concentration in 

the intravascular space of the tissue of interest in order to use it as the VIF in PK modeling. 

However, this signal is mixed with signal of the EES and thus sophisticated signal processing 

techniques are required for such separation. There exist several data-driven signal separation 

techniques such as principal component analysis (PCA) [94], non-negative matrix 

factorization (NMF) [95], factor analysis of dynamic structures (FADS) [96], and 

independent component analysis (ICA) [97], that have been applied to dynamic contrast 

enhanced series to separate their underlying structures. These methods, which make no prior 

assumption about the physiology of the underlying structure and treat the time-series data as 

random variables, have been shown to segment them efficiently [97].  

As mentioned in the previous section the contrast agent concentration in each MR voxel is 

the sum of the amount of contrast agent that is intravascular and the amount that is in EES 

(linear mixture of the signal in the two spaces). In addition, these two spaces (intravascular 

space and the EES) are anatomically separate and independent (spatially independent). These 

characteristics of DCE-MRI data satisfy the assumptions for spatial independent component 

analysis (ICA) and thus it can be used to separate the intravascular and EES signals in 

DCE-MRI. Our proposed VIF calculation algorithm is based on spatial independent 

component analysis (ICA) which assumes the underlying structure are spatially independent 

and are mixed linearly. 

1.3.3.1 Spatial Independent component Analysis (ICA)-Based VIF 

Independent component analysis (ICA) is a statistical signal processing algorithm that 

attempts to split a dataset into its underlying features, assuming these features are statistically 

independent and without assuming any knowledge of their mixing processes [98]. In this 

thesis we will use capital bold letter for 2-D matrices, lowercase bold letters for column 
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vectors, capital or lowercase letters (not bold) for scalars and, bold italic letters for functions. 

Having a linear mixture of the features, the spatial ICA model is expressed as:  

     (1-19) 

where               
  represents the time-series dataset (DCE-MRI time-series data in 

our case) such that    represents the MRI image of the tissue acquired at time-point  ,   is the 

number of time points in the DCE-MRI sequence,                 is a matrix containing 

the   structures that are known as independent components or ICs               and 

       is the mixing matrix. Having the observed mixed signal  , the spatial ICA 

algorithm attempts to estimate the underlying features (independent components) S, and the 

mixing matrix A. This is achieved by finding an unmixing matrix         and estimating 

the IC matrix                 (rows of Y are statistically independent) such that [98]: 

     (1-20) 

Two independent component analysis (ICA)-based methods are proposed in this thesis to 

measure the contrast agent concentration in the tumor (VIF) and separate it from the 

extravascular signal of the tumor. Such a separation does not require an artery, accounts for 

variability between subjects and simplifies the PK modeling since some of the unknown 

parameters are eliminated. ICA has been applied to AIF measurement in brain perfusion 

studies [99], [100] in which, due to the presence of the blood brain barrier, there is no 

extravascular contrast enhancement. Measuring VIF in tumors differs from this as the 

objective is to separate two enhancing spaces (intravascular and extravascular) whose signals 

overlap due to partial volume effect and low resolution of the images. This makes the 

problem more challenging and has not been addressed before.  

As mentioned earlier, several imaging modalities such as DCE-CT and DCE-MRI are used to 

image the tumor tissue and perform pharmacokinetic modeling. The focus of this thesis is on 

pharmacokinetic modeling of the tumor tissues using magnetic resonance imaging (MRI) 

which is briefly explained in the next section. 

1.4 Magnetic Resonance Imaging 

Certain materials, when placed in a magnetic field exhibit resonant characteristic and can 

absorb and reradiate electromagnetic radiation that has a specific frequency. This reradiated 

signal which is in the form of radio frequency signal (RF) is determined by the specific 

physical and chemical characteristics of the material. In magnetic resonance imaging this 
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reradiated RF signal also carries additional information about the location of the tissue within 

the human body (using the magnetic field gradients).  The intensity of each voxel in an MR 

image is determined by the intensity of the RF signal of its corresponding tissue which is in 

turn determined by the three main characteristics of the tissue: nuclear density, longitudinal 

relaxation time (  ), and transverse relaxation time (  ).   

The nuclei of the materials that participate in MR process must have magnetic moment which 

is determined by their neutron-proton composition. In medical magnetic resonance imaging 

Hydrogen is the principle imaging element as it has a large magnetic moment and is abundant 

in the tissues as part of water molecules. When these paramagnetic nuclei are placed in a 

strong magnetic field (  ), their magnetic moment is aligned parallel or anti-parallel to the 

main magnetic field (  ), and precess at an angular frequency (  ) that is proportional to   . 

Magnetic field gradients are also used to select the imaging plane and also spatially encode 

each voxel in this plane. An RF pulse (  ) disrupts alignment of the moment with the main 

magnetic field and the return of these disrupted moments to equilibrium is governed by Bloch 

equations through the parameters   ,   ,   
  (which depends on the    inhomogeneity), and 

spin density.  

1.4.1 Dynamic contrast Enhanced MRI 

An MRI pulse sequence is a sequence of RF pulses that are applied during MR imaging. 

Various characteristics of the tissue such as   ,   ,   
  or spin density could be emphasized 

using specific pulse sequences. If a pulse sequence is designed for the    of the tissue, its 

image would be called a   -weighted image in which tissues with a shorter    value appears 

brighter as they return to equilibrium faster than the tissues with longer    value.  

Dynamic contrast enhanced (DCE)-MR imaging involves an intravenous injection of a bolus 

of a low molecular weight contrast agent, e.g., Gadolinium (Gd)-DTPA, followed by repeated 

  -weighted imaging of the tissue of interest to track the passage of the bolus through its 

vasculature. The spoiled gradient recalled (SPGR) pulse sequence is used for DCE-MR 

imaging in this thesis whose signal intensity in a voxel without any contrast agent is 

expressed as: 

          
             

                 
         

    (1-21) 
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where    is the measured signal intensity at the voxel,   is the scanner gain,   is the proton 

density,   is the flip angle,    is the echo time,    is the repetition time,   
  is the transverse 

relaxation and    is the longitudinal relaxation of the tissue. The spoiled SPGR is used for 

DCE-MR imaging as it has a short TR and thus can image the tissue with high temporal 

resolution.  As the contrast agent arrives in the tissue, it changes the magnetic characteristics 

of the tissue, i.e. the transverse and longitudinal relaxation times, and hence changes its signal 

intensity. The relationships between relaxation times before and after arrival of the contrast 

agent,   [mMol], are [101]:  

 

  
 

 

   
     

 

  
  

 

   
      (1-22) 

where     and    
  are the longitudinal and transverse relaxations respectively with no 

contrast agent.    and   
  are the longitudinal and transverse relaxations respectively after the 

contrast agent enters the voxel and R1  
 

      
  and R2 [

 

      
] are the longitudinal and 

transverse relaxivities of the contrast agent.  

This thesis proposed data-driven algorithms for VIF calculation in DCE-MRI in tumors to be 

used in PK analysis instead of an AIF. The proposed algorithms are evaluated using 

phantoms and in-vivo studies as explained in the next section. 

1.5 Evaluation of VIF calculation algorithms 

Two ICA-based VIF calculation algorithms are developed in this thesis: i) Magnitude ICA 

(Mag-ICA) in chapter 3, and ii) Adaptive complex ICA (AC-ICA) in chapter 4. The accuracy 

of each algorithm in identifying and separating the intravascular contrast agent concentration 

is evaluated in there corresponding chapters using numerical and physical phantoms as well 

as in-vivo tumor models.  

The Mag-ICA algorithm (chapter 3) is first introduced and its performance is evaluated using 

numerical and physical tissue-mimicking phantom where the actual intravascular signal is 

known (“ground truth” is available). It is then applied to in-vivo VX2 tumors in rabbit thigh 

muscles and its accuracy is evaluated spatially using contrast enhanced ultrasound (CE-US) 

images of the tumor. Ultrasound contrast agent, i.e. microbubbles, stay intravascular and thus 

their images represent the tumor vasculature (CE-US will be described in more detail in 

section 2.3.3). The accuracy of the separated intravascular signal of VX2 tumors in temporal 
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domain is also evaluated using contrast enhancement of a blood vessel feeding the tumor. 

These studies demonstrate the feasibility of VIF calculation using Mag-ICA and highlight the 

major issues with the algorithm that need to be resolved.  

The AC-ICA algorithm is the improved version of the Mag-ICA and is developed to address 

its main issues, which are using the magnitude of the MRI data and also using a fixed non-

linearity function in its ICA algorithm, and is presented in chapter 4. Similar to the Mag-ICA 

algorithm, the performance of the AC-ICA algorithm is evaluated using the numerical and 

physical phantoms and is compared to the performance of the Mag-ICA algorithm. A 

normalization step for the calculated VIF is also introduced in chapter 5 which normalized 

the curves (AIF and VIF) with respect to their area under the curve. The impact of this step 

on the PK analysis is evaluated using the numerical phantom and prostate DCE-MRI.  

DCE-MRI datasets of prostate cancer patients are used in this thesis (explained in the next 

section) to assess the performance of the proposed data-driven VIFs and compare their PK 

parameters to the parameters that are achieved using current methods which use an AIF in 

their PK analysis. Prostate cancer is selected as there is a large artery in its DCE-MR imaging 

field of view (femoral artery) which can be used to measure an AIF and thus enables 

comparison between our data-driven estimate and an established “gold” standard. Moreover, 

there have been several studies on calculating the PK parameters of prostate tissue using 

currently available techniques in the literature which can be used to assess the performance of 

our method. Thus; in the remainder of this chapter, a brief review of prostate anatomy, 

prostate cancer and prostate cancer diagnosis methods is provided. 

1.5.1 Prostate Anatomy 

The prostate gland is a small, muscular, rounded organ with a diameter of about 4 cm that is 

located in the pelvis and as shown in Figure  1-6a is surrounded posteriorly by the rectum and 

superiorly by the bladder. The prostate gland encircles the proximal portion of the urethra  

and is comprised of branching glands with ducts that are lined by secretory epithelial and 

basal cells [102]. The majority of the gland is comprised of the secretory epithelial cells 

which produce prostate specific antigen (PSA). The basal cells contain the stem cell 

population for the epithelial prostate cells.  

The prostate gland consists of three zones (Figure  1-6b): the peripheral zone, the central zone 

and the transitional zone. The peripheral zone, where more than 70% of prostate cancers 
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originate, is located along the posterior edge and apex of the prostate gland [103]. The 

transitional and central zones, which are often referred to as the central gland, are located in 

the center-to-superior aspect of the prostate and surround the urethra [104] . 

The blood supply of the prostate gland is via branches of the inferior vesical and middle 

rectal arteries and it drains through the prostatic venous plexus which is between the prostate 

capsule and the fibrous sheath [105]. The lymph vessels from the prostate drain into the 

internal iliac nodes, and the nerve supply of the prostate is from the inferior hypogastric 

plexuses [105]. 

 
Figure  1-6 a) a) The anatomy of the prostate [106]: the prostate gland which is about 3-5 [cm] 

in diameter and is located anterior to the rectum and inferior to the bladder with urethra 

passing through it. Image reprinted with permission from Elsevier: Coakley et al., 

“Radiologic Radiologic anatomy of the prostate gland: A clinical approach”, Radiologic 

Clinics of North America 38(1): 15-30, © (2000). b) Zonal anatomy of prostate: the prostate 

is composed of three zones: transitional, central and peripheral zones. The peripheral zone is 

located along the posterior edge and apex of the prostate gland and the transitional and 

central zones are located in the center-to-superior aspect of the prostate and surround the 

urethra. Image inspired by Snell [105]. 

 

1.5.2 Prostate cancer 

Prostate cancer, with a worldwide incidence rate of 25.3 per 100,000, is the second most 

common type of cancer in men after lung cancer [107]. The mortality rate of prostate cancer 

is 8.1 per 100,000 and mainly affects men at older ages [108]. Some of the risk factors for 

prostate cancer are age (older men have higher risk) [109], genetic factors (higher risk of 

prostate cancer was shown in men with affected relatives) [110], environmental risk factors 

such as smoking, alcohol consumption, cadmium exposure, ionizing radiation, etc. [111]. 

Prostate cancer is a glandular malignant neoplasia of secretory or luminal cells. Prostate 

cancer has different types that are all considered to originate from prostate acini. The 

variability in prostate cancers can be explained by the number of different intermediate cells 
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that can evolve into malignant cells and are observed between the prostate acini and the final 

secretory cells [107].  

1.5.3 Screening and Diagnosis 

The most common symptom of abnormality in the prostate is obstruction in bladder outlet 

which is more often a sign of BPH (benign prostatic hyperplasia) than prostate cancer. Other 

symptoms of prostate cancer are perineal pain, impotence and hematuria. If any of these 

symptoms are present, the patient is examined for prostate cancer by one or a combination of 

the following methods [112]: 

Digital Rectal Examination (DRE): The doctor puts a finger into the rectum to examine the 

prostate gland to feel tenderness or problems such as enlargement, hardness or growths. This 

method has poor sensitivity and specificity where only 30% of the cancers detected by DRE 

are organ confined and potentially curable [112]. 

Prostate Specific Antigen (PSA) test: PSA is a glycoprotein enzyme that is secreted by the 

epithelial cells of the prostate gland and is elevated in presence of prostate cancer and other 

abnormalities. PSA has a high false positive rate with only 30% of the patients with elevated 

PSA being confirmed for prostate cancer after biopsy [113]. 

Transrectal Ultrasound (TRUS): An ultrasound technique that is used to view the prostate 

and its surrounding tissues in which the prostate cancer appears as a hypoechoic nodule. 

However small tumors are usually not visible where only 10-15% of the cancers detected by 

TRUS are not palpable and 75% of these patients will have high PSA levels [114]. 

Multi-parametric MR imaging: The anatomical and functional information that MRI 

provides can be used for prostate cancer detection and diagnosis. A combination of 

anatomical   -weighted MR imaging and several functional imaging techniques such as 

dynamic contrast enhanced (DCE)-MRI, diffusion weighted (DW)-MRI and MR 

spectroscopic (MRS) imaging are usually used. Although these multi-parametric MR imaging 

techniques contribute to prostate cancer diagnosis, their results in detection, localization, and 

staging of the cancer vary significantly between studies and need to be improved [115] 

Prostate Biopsy: Prostate cancer diagnosis requires histological confirmation which is 

usually done through TRUS-guided biopsy in which the samples are obtained systematically 
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from different areas of the prostate (three samples from each side of the peripheral zone and 

sometimes two cores from the transition zone are also obtained) [116]. 

1.5.3.1 Grading Prostate Cancer 

Solid tumors are considered to be formed in a multi-step process where successive genetic 

events occur to transform a cell from healthy to malignant. The genetic and epigenetic 

phenomena that occur in prostate cancer are not well understood and thus all prostatic 

epithelial dysplasia and atypia are considered “prostatic intraepithelial neoplasia (PIN)”.  

There are three different grades of PIN (low, moderate and severe), where moderate and 

severe PIN lesions are seen adjacent to prostate adenocarcinonas and high grade PIN lesions 

are often seen in multi-focal cancers. Autopsy studies suggest that PIN precedes prostate 

cancer development by at least 10 years [116].  

Over 95% of prostate cancers are adenocarcinomas that arise from prostatic epithelial cells. 

Many studies have suggested the importance of the degree of histological differentiation of 

prostate adenocarcinona. The most widely internationally accepted grading system for 

prostate adenocarcinoma differentiation is the Gleason score (Figure  1-7), which is based on 

progressive loss of the gland pattern and increased peritumoral stroma invasion [117].  

 
Figure  1-7 Drawing of histological patterns of prostate adenocarcinoma showing the degree 

of glandular differentiation (image adapted from Gleason [118]). The 5 different pattern of 

Gleason scoring system as shown in this figure are 1- single, well formed, closely packed, 

separate, round glands that resemble normal prostate tissue, 2- single, separate, less uniform,  

large glands separated with stroma up to one gland diameter, 3- glands are still separate and 

recognizable but are irregular with variable size and have darker cells (in high magnification 

some of these cells have left the gland and are beginning to invade surrounding tissue), 4- 

there are few recognizable glands (fused papillary glands with solid patterns) and a large 

number of cells are invading surrounding tissue, 5- few or no recognizable glands, masses 

with comedo pattern and there are often sheets of tumor cells throughout the surrounding 

tissue [119]. 
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In the Gleason scoring system the prostate tumor is scored in two levels to account for its 

heterogeneity where the primary and secondary patterns of the tumor are each given a score 

of 1 to 5 (shown in Figure  1-7) and the Gleason grade of the tumor is the resultant two-digit 

score for example 3+4=7. Despite the limitations of this grading system it has shown 

excellent reproducibility and reliability [107]. 

1.6 Outline of the thesis 

The main goal of this thesis is to develop a data-driven technique using independent 

component analysis, to identify and separate the intravascular component in DCE-MR images 

of tumors. The intravascular component is then used to generate a local vascular input 

function (VIF) for pharmacokinetic analysis of the tumor. Such a VIF that is measured 

locally at the tissue of interest has the potential to provide more accurate PK parameters 

compared to the conventional methods that use an arterial input function (AIF) in their 

analysis. In addition it could be used in cases where measuring an AIF is not feasible or is 

difficult such as PK analysis in small animals. The method could also potentially be used to 

relax the high temporal resolution acquisition (needed for accurate AIF measurement) and 

increase the spatial resolution of the acquired images.  

1.6.1 The specific aims of this thesis 

1- Studying the feasibility of using independent component analysis in indentifying and 

separating the VIF (considering the VIF is mixed with the signal from extravascular 

space due to partial volume effect and the low temporal resolution of the DCE-MRI 

data). This aim is assessed using numerical and physical phantom studies as well as 

using co-registered DCE-MRI and contrast enhanced ultrasound images of VX2 

tumor in rabbits. 

2- Developing an ICA-based VIF separation algorithm using the complex-valued MRI 

signal and an adaptive formulation to model the wide range of VIF signals which 

differ from one study to another due to heterogeneity in tumor structure and the site 

and type of the tumor. The algorithm is developed (chapter 4) and its performance 

was assessed using numerical and physical tissue-mimicking phantoms. 

3- Assessing the impact that using the proposed local VIF has on the pharmacokinetic 

parameters using a cohort of 28 prostate cancer DCE-MRI datasets, compared to 

conventional methods that use an AIF in their analysis. 
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1.6.2 Structure of the thesis 

The remaining content of this thesis is structured as follows:  

 The second chapter provides detail for: the design of the numerical phantom and the 

method of generating corresponding DCE-MRI data; the physical tissue-mimicking 

DCE-MRI phantom that is used in the analysis; the VX2 tumor model in rabbits 

(imaged with both DCE-MRI and CE-US); and the DCE-MRI data of the prostate 

cancer patients that are used in evaluating the methods and assessing their 

performance. 

 Chapter three presents the classical ICA-based VIF calculation algorithm that is used 

to assess the feasibility of using ICA for VIF calculation (Mag-ICA). The results of 

applying this algorithm, which uses a fixed non-linearity function in its ICA 

implementation and is applied to the magnitude of the MRI data, to the numerical and 

physical phantoms as well as the VX2 tumor model are also presented. 

 Chapter four provides the derivation of the proposed adaptive complex ICA 

(AC-ICA) algorithm for VIF calculation. It also presents the results of applying the 

developed AC-ICA algorithm, which uses an adaptive non-linearity function in its 

ICA implementation and is applied to the complex-valued MRI data, to the numerical 

and physical phantoms and assesses its performance. 

 Chapter five explains the steps that have to be taken to convert the separated 

intravascular signal into contrast agent concentration and the normalization step that is 

required for PK analysis. It also applies the developed AC-ICA algorithm to DCE-MRI 

data of a cohort of 27 prostate cancer patients (28 datasets with one patient being 

imaged twice) and compares their pharmacokinetic parameters to those of 

conventional PK analysis methods using femoral artery as their AIF. 

 In chapter six the conclusions of this thesis as well as the remaining challenges that 

have to be addressed and the future work that have to be performed to fully understand 

and assess the performance of the proposed local VIF in PK analysis are explained.  
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Chapter 2                                                                                    

DCE-MRI Data Acquisition 

The previous chapter provided the background information and performed the literature 

review on cancer biomarkers and how tumor angiogenesis could be used to provide such 

biomarkers. It discussed extracting quantitative information about tumors through medical 

imaging combined with tracer-kinetic modeling which required an AIF. It also explained the 

need for measuring contrast agent concentration in the vasculature and calculating a local 

VIF to be used in tracer-kinetic modeling of the tissue rather than using an AIF. The 

DCE-MRI data that are used in this thesis are separately presented in this chapter to avoid 

repetition as each dataset is used in more than one chapter (e.g. the numerical phantom is 

used in chapters 3, 4 and 5). This chapter provides details of the numerical tissue-mimicking 

phantom, the physical tissue-mimicking phantom, the rabbit VX2 tumor model and the 

DCE-MRI and contrast enhanced ultrasound imaging protocols used, and the DCE-MRI 

images of prostate cancer that are used in the thesis to assess the performance of the two VIF 

calculation algorithms.  

2.1 Numerical phantom 

A simulation study was conducted to simulate DCE-MR images of a leaky phantom using a 

combination of finite element analysis (FEA) and classical description of MRI physics by 

means of Bloch equations. The numerical phantom was designed such that it simulated our 

physical tissue-mimicking phantom (explained in section 2.2). This numerical phantom is 

used in assessing the feasibility of separating the intravascular signal using Mag-ICA 

algorithm (chapter 3) and in assessing the performance of the proposed adaptive complex 

ICA (AC-ICA) algorithm in VIF calculation (chapter 4). It is also used in investigating the 

effects of normalizing VIF with respect to its area under the curve (AUC) in chapter 5. 
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2.1.1 Contrast agent concentration modeling 

The Comsol Multiphysics (Comsol Inc., Burlington, USA) finite element analysis (FEA) 

software was used to construct the simulated phantom that is shown in Figure  2-1. This 

phantom was comprised of a grid of 10×10 leaky tubes that run in parallel through a chamber 

of agar gel (0.5% agar gel). The tubes had an internal diameter of 200 [μm], wall thickness of 

30 [μm], and center to center spacing of 300 [μm]. To model our physical phantoms some of 

the tubes were removed to simulate the blocked or damaged tubes as shown in Figure 

 2-1a and c. The study simulated the passage of a bolus of contrast agent through the tubes and 

its leakage from the tubes into the agar gel over time. The spacing and diameter of the tubes 

were selected such that the vascular fraction of the phantom was 3.8% so that it simulated the 

vascular volume fraction of tumor tissue [120]. 

 

 
 

             

 

    

(a) (b) (c) 

Figure  2-1 a) 3D view of the numerical phantom showing the imaging plane that is located 

halfway through the phantom in x-direction and lies in the yz-plane b) the xz-plane showing 

the tubes are parallel in the gel. c) The view of the phantom from zy-plane that lies in the MR 

imaging plane showing the arrangement of the tubes as well as the blocked tubes. 

The contrast agent distribution of the phantom was simulated for an imaging plane half way 

through the length of the chamber, transverse to the phantom as depicted in Figure  2-1a. A 

cross-section showing the orientation of the tubes in the imaging plane is shown in Figure 

 2-1c. A 3D simulation was first performed to model the contrast agent concentration inside 

the tubes at the imaging plane. The contrast agent is injected to the tubes at the edge tubes 

located on the     plane. The flow rate and contrast concentration of the simulated bolus 
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was selected such that the concentration-time curve of the tubes in the imaging plane was the 

same as our physical phantom studies.  

Once the contrast agent concentration of the tubes at the imaging plane was determined, a 2D 

numerical study was used to simulate the leakage of the contrast agent through the tubes at 

the imaging plane. As the contrast agent arrived in the transverse plane it diffused into the 

surrounding gel. A range of different diffusion coefficients were assigned to the gel, the tubes 

and tube walls to account for variability of diffusion throughout the gel and generate a 

heterogeneous leakage space. As such, the imaging plane was split into 2555 subdomains as 

shown in Figure  2-2a with different diffusion coefficients. The subdomains were fine near the 

tubes at there is more dynamic changes in these areas and were courser far from the tubes. 

The reason for using different subdomain sizes was to enable accurate calculation of the 

contrast agent distribution close to the tubes without having memory problem in performing 

the FEA. A single subdomain was used for inside of each tube as they were assigned the 

highest diffusion value and the contrast agent distributed in them very quickly. Once the 

phantom was built, the standard triangular meshing system of Comsol Multiphysics software 

was used to generate a mesh on the phantom to identify the elements in FEA.       

It was assumed that the diffusion coefficient of the gel had a uniform distribution with mean 

value of 2.08×10
-4

  
   

 
  [121] and standard deviation of 1×10

-5
  

   

 
 . The subdomains 

corresponding to the inside of the tubes were given the highest diffusion coefficients (1×10
-3

 

 
   

 
 ), which is close to the self-diffusion coefficient of water [122] as they were simulating 

the water flowing through the tubes, and the subdomains corresponding to the walls of the 

tubes were assigned the lowest diffusion coefficients (2×10
-5

±10
-6

  
   

 
 ). The subdomains 

around one of the tubes showing the inner circle of the tube, the tube wall and the 

surrounding gel subdomains are also illustrated in Figure  2-2a. The relationship between this 

model (which was built using diffusion coefficients) and the pharmacokinetic parameters of 

the Tofts-Kety model is given in appendix I. 

The simulation was performed for 6.48 [min] with a temporal resolution of 3.3 [s] which was 

chosen according to our physical phantom study. The contrast agent distribution at time 

2.5 [min] after injection of the contrast agent is shown in Figure  2-2b which shows the 

heterogeneous distribution of contrast agent in the phantom. 
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Figure  2-2 a) The FE subdomains of the phantom in the imaging plane. There are 2555 

subdomains in this plane with different diffusion coefficients. As shown in the enlarged 

region of the phantom, the tubes, their walls and their surrounding gel areas are separated 

and proper diffusion coefficients are assigned to the subdomains of each region. b) The 

contrast agent distribution in the imaging plane, at t=2.5 [min] after injection of the contrast 

agent. This figure shows the heterogeneous distribution of the contrast agent in the 

phantom. 

2.1.2 Generating DCE-MRI data (Bloch equation) 

It was assumed that water was flowing through the tubes and a bolus of gadolinium 

(Gd)-DTPA contrast agent was added to the flowing water. The geometry and contrast 

concentration of the tubes and the agar gel that were calculated in the FEA were fed to the 

MRI simulation software, and 120 frames were simulated to generate the DCE-MRI dataset. 

This section provides an overview of the 2D MRI simulator that solved the Bloch equation at 

each voxel. It was developed based on the SIMRI project which was generated to simulate 

MR images [123]. The developed simulator started with assigning proton density  , 

longitudinal relaxation    and transverse relaxation    to each voxel; these parameters are 

necessary for computing local spin magnetization. It was assumed that each voxel was 

comprised of 2 isochromates [124] corresponding to the tube and gel compartments. 

The proton density of each isochromate at each voxel was calculated by taking the percentage 

of the voxel that belonged to the tubes/gel, which was available from the FEA step, 

multiplied by the proton density of water/gel. The pre-contrast    relaxations (   ) of water 

and 0.5% agar gel were set to 3000 [ms] and 2100 [ms] respectively. The pre-contrast    

relaxations (   ) of the water and gel were set to 250 [ms] and 65 [ms] respectively [123], 

[125]. The post-contrast    and    values were calculated using the following 

equations [101]: 
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where R1=4.5  
 

      
  and R2=5.5  

 

      
  are the longitudinal and transverse relaxivities of 

contrast agent respectively, and   [mMol] is the contrast agent concentration in water or gel 

that was calculated in the FEA step for each voxel at each frame of the dynamic sequence. 

The use of 2 isochromates in each voxel facilitated a realistic simulation of the cases where 

there were two different materials in the voxel. It also allowed for simulation of intra-voxel 

de-phasing of spins in the voxel due to magnetic field inhomogeneity. 

The dynamic contrast-enhanced MRI simulation was performed assuming a    magnetic 

field of 1.5 [T] with 1 [ppm] inhomogeneity using a single coil RF pulse. 2D spoiled gradient 

recalled (SPGR) sequence of 120 frames (temporal resolution = 3.3 [s]) were simulated. 

Other imaging parameters of the MRI simulation were: TR = 12.5 [ms], TE = 2.9 [ms], 

FA (flip angle) = 20
o
, Band Width (BW) = 15.63 [kHz], Nx/Ny = 128/128, 

Field-of-View (FOV) = 19.2 [mm], Slice Thickness = 5 [mm]. Gaussian noise was added to 

the k-space data and its standard deviation was selected such that an SNR of 20 was achieved 

in the image space.  

The simulated DCE-MRI data was reconstructed at four different resolutions. The high 

resolution dataset had in-plane resolution of 150 [μm]. In other datasets the high frequency 

elements in k-space were removed and low resolution datasets with in-plane resolutions of 

300 [μm], 600 [μm] and 800 [μm] were constructed. A sample frame of each dataset at 

time=2.5 [min] after injection of the contrast agent is shown in Figure  2-3. These simulated 

DCE-MRI datasets were used to assess the performance of the Mag-ICA (chapter 3) and 

AC-ICA (chapter 4) VIF calculation algorithms. The use of DCE-MRI data with different 

resolutions was also used to assess the robustness of the two algorithms in separating the 

intravascular signal, particularly in low resolutions that are commonly encountered in clinic.  

 
Figure  2-3 A sample frame of the simulated dataset (at t = 2.5 [min] after contrast agent 

injection) for in-plane resolution of a) 150 [μm], b) 300 [μm] c) 600 [μm], and d) 800 [μm]. 
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Since ICA is a stochastic process, it is important to assess the reproducibility of the 

intravascular time-intensity curve calculation process. Therefore, to assess the reproducibility 

of the AC-ICA and Mag-ICA results, the DCE-MRI dataset at each resolution was generated 

10 times. Although these datasets were generated with the same imaging, geometry, and 

physical parameters, they differed in distribution of    inhomogeneity that was added to the 

main magnetic field as a random Gaussian signal (1 [ppm] inhomogeneity) and the Gaussian 

noise (SNR=20) that was added to the k-space data. The Gaussian noise was added to the 

simulated k-space data where standard deviation of noise was selected such that the SNR in 

image space was 20 (SNR=20). 

2.2 Physical Phantom  

We used a physical phantom
1
 that was constructed to mimic the behavior of contrast agent in 

tumor microvasculature [126]. The phantom served as a platform to evaluate the two 

ICA-based VIF calculation algorithms. The phantom design was such that the true 

intravascular signal (VIF) was available to assess the performance of the two ICA-based 

algorithms. This physical phantom was used in assessing the feasibility of separating the 

intravascular signal using Mag-ICA algorithm (chapter 3) and in assessing the performance 

of the AC-ICA algorithm in VIF calculation (chapter 4). 

2.2.1 Phantom design 

The MR compatible phantom (Figure  2-4a) which was similar to the simulation phantom, 

was comprised of a grid of 10x10 dialysis tubing (Diapes PES-150, Baxter) embedded into a 

chamber of agar gel (0.5 wt%, Sigma-Aldrich Canada Ltd., Canada) [126]. The contrast agent 

could flow through the dialysis tubing that had inner diameter of 200 [μm], wall thickness of 

30 [μm] and were aligned parallel to each other in a square grid with center to center spacing 

of 300 [μm] over an approximately 5 [cm] distance [126]. The pore size of the dialysis tubing 

ranged from 89 [nm] to 972 [nm] which enabled the low-molecular weight Gd-DTPA 

contrast agent to diffuse out of the tubes and into the surrounding gel. In this configuration, 

the dialysis tubing represented the leaky microvascular compartment of tissue, and the agar 

gel represented the extravascular component.  

                                                           
1
 The physical phantom was built and its DCE-MR images were acquired by Ian Pang from Dr. Rajiv 

Chopra’s Laboratory. 
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Figure  2-4. a) Photograph of the physical phantom used in this study. Imaging was performed 

across the dashed line in the middle of the phantom, in a plane perpendicular to view that is 

shown in the photo. b) Schematic of the tissue-mimicking phantom set up. Water was flowing 

at a constant rate (0.047  
  

 
 ) from the holding tank to the emptying tank. The contrast agent 

was injected into the inflow line and the phantom was imaged at the imaging plane that 

included the phantom as well as the inflow and outflow lines as shown in the figure. c) A 

sample MR image of the full imaging field of view (FOV) at time = 1.8 [min] after injection 

of the contrast agent that shows the inflow line, the outflow line, the entire phantom at 

imaging plane and the field of view around the tubes that was used in ICA analysis 
  

A fixed-height reservoir of water was used to produce a constant flow through the phantom at 

a rate of 0.047  
  

 
  at an input pressure of ~35.6 [mmHg] which achieved a flow velocity 

within physiological range of arterioles [127]. An automatic syringe pump (Harvard Pump 11 

Plus, Harvard Apparatus, Holliston, USA) was used to inject a bolus of gadolinium 

(Gd)-DTPA contrast agent into the flow line in order to achieve a constant injection rate and 

volume. Once the bolus reached the chamber that contained the gel, it was capable of leaking 

from the tubes into the gel. MR images were obtained transverse to the tubes during the 

passage of the respective contrast agents. The inflow effects in the phantom are negligible as 

explained in detail in appendix II. In order to measure the contrast agent concentration inside 

the tubes, the inflow line of the flow into and outflow line of the flow out of the chamber 

were oriented such that they passed through the imaging plane as shown in Figure  2-4b and 
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Figure  2-4c. The MR signal of the inflow line was used as the actual tubes’ signal (with a 

delay of 6.6 [s]) and was used to validate the calculated intravascular time-intensity curve. 

2.2.2 DCE-MR Imaging 

DCE-MR imaging was performed at a transverse plane in the middle of the phantom as 

shown in Figure  2-4a. Dynamic contrast enhanced MR imaging was performed using a 2D 

fast spoiled gradient recalled (fSPGR) sequence with the following imaging parameters: 

TR = 12.5 [ms], TE = 2.9 [ms], Flip Angle = 20
o
, BW= 15.63 [kHz], 

Nx/Ny/NEX = 256/256/1, FOV = 45 [mm], Slice Thickness = 5 [mm]. A total of 120 images 

were acquired over about 6.48 [min] with a temporal resolution of 3.3 [s] and no delay 

between acquisitions. A sample frame of the DCE-MRI sequence (at time=1.8 [min]) 

showing the tubes and phantom (full field of view), the ROI that was used for ICA analysis as 

well as the inflow and outflow lines are shown in Figure  2-4c.  

As in the simulation study, the data was reconstructed in different resolutions to assess the 

performance and robustness of the Mag-ICA and the AC-ICA algorithms and to compare the 

VIF curve estimated using ICA-based algorithms with the actual time-intensity curve of the 

tubes (measured at the inflow line). The image reconstruction was performed at 5 different 

in-plane resolutions of 170 [μm], 225 [µm], 340 [μm], 450 [μm] and 680 [μm]. The low 

resolution datasets were generated by removing (zero-padding) the high frequency terms of 

the acquired high resolution DCE-MRI data in k-space. A sample frame of each dataset at 

time=1.8 [min] after injection of the contrast agent, is shown in Fig.  2-5a to Fig.  2-5e. In 

order to assess the reproducibility of the intravascular time-intensity curve calculation 

processes, for both AC-ICA and Mag-ICA algorithms, two phantoms with identical 

specifications were built and DCE-MR imaging with the same imaging parameters was 

performed on both phantoms. 

 
Fig.  2-5 A sample frame of the DCE-MRI dataset of the physical phantom (at 

time = 1.8 [min] after injection of the contrast agent) for in-plane resolution of a) 170 [μm], 

b) 225 [μm], c) 340 [μm], d) 450 [μm], and e) 680 [μm]. 
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2.3 In vivo VX2 tumor 

In addition to the numerical and physical phantom studies, we performed an in vivo study 

using VX2 tumors in thigh muscle of rabbits
2
. These in vivo tumors were used in assessing 

the feasibility of separating the intravascular signal using ICA (chapter 3). 

2.3.1 VX2 tumor in Rabbits 

Approval was obtained from local Animal Care Committee at Sunnybrook Health Sciences 

Centre for this study, which was performed in four New Zealand white rabbits (3-4.5 [kg]) 

(Charles River Laboratories, Wilmington, MA) [128]. Tumors were initiated in both thighs of 

the rabbits through intramuscular implantation of VX2 cells as explained in [129]. Fresh 

tumor was initially harvested within 30 minutes after sacrificing a live carrier and was 

cryopreserved for subsequent multiple transplantations. For each transplantation, the 

cryopreserved tumor was brought to room temperature and then grounded and homogenized.  

Viability of cells was estimated by Trypan Blue exclusion and the number of cells in 

suspension was counted under a microscope. The tumors were implanted into each animal by 

using approximately 0.15mL of tumor suspension (4 x 10
6 

cells) injected slowly via an 

18-gauge needle into musculature of the rabbit thigh. Imaging was performed approximately 

13 days after implantation to enable tumors to grow to a desired volume of 1.5 [cm
3
]. Rabbits 

were anaesthetized with an intramuscular injection of ketamine (50  
  

  
 ) and xylazine 

(10  
  

  
 ). Anesthesia was maintained during imaging using inhalation of isoflurane (3-4%). 

The animals were sacrificed after imaging by intracardiac injection (Euthanyl
TM

). Imaging 

was performed with the rabbits in the lateral decubitus position, using an apparatus developed 

for co-registered ultrasound (US) and MR imaging, described previously [128], [130], [131].  

Briefly, US imaging was first performed to obtain 20 axial images (2 [mm] apart). Out of the 

twenty imaging planes, two suitable imaging planes were selected where a combination of 

tissues (tumor tissue, muscle, fat and vessels) were visible. After US imaging, the rabbits 

were transferred in the co-registration apparatus to a 1.5 [T] MRI (Signa, GE Healthcare, 

USA) and MR images were obtained in the same orientation and locations as the US data. 

The selection of the two imaging planes was enforced by the co-registration system 

                                                           
2
 The implantation of VX2 tumors in thigh muscle of rabbits and their DCE-MRI and CE-US imaging 

  were performed by Chaitanya Chandrana, John M. Hudson and Peter Bevan at Dr. Rajiv Chopra’s 

Laboratory. 
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developed in [128]. Since the ultrasound and MR acquisitions were not performed 

simultaneously, the setup had two fiducials that were used to co-register the contrast 

enhanced ultrasound (explained in section 2.3.3) and DCE-MR images of each tumor. 

To synchronize contrast injections for different modalities the following steps were taken:  

1- Contrast agents were injected 15 seconds after the start of data collection. 

2- The contrast injection volumes, flush rate and flush volume were kept the same (using 

injection pumps) to ensure that the rabbit’s physiological reactions due to external 

injections were consistent.  

Additional parameters used for MR and US contrast imaging are detailed in [128].  The thigh 

muscles of four rabbits with implanted tumors were imaged with both MR and US, and 

contrast kinetics were studied in two imaging planes.  

2.3.2 DCE-MR imaging 

The in vivo DCE-MR imaging was performed at 1.5 [T] MR system (Signa, GE Healthcare, 

USA) using a 5-inch surface RF receive coil. A total of 150 images were acquired using an 

axial 2D FSPGR sequence with TR = 5.3 [ms], TE = 1.5 [ms], Flip Angle = 30
o
, 

Nx/Ny/NE = 128/128/4, BW = 15.63 [kHz], slice thickness = 4 [mm], FOV = 15 [cm]. The 

DCE-MRI datasets had in-plane-resolution of 1100 [µm] and temporal resolution of 2.7 [s] 

and Gd DTPA-BMA (Omniscan, GE Healthcare, USA) was used as the contrast agent. A 

sample MR image of the full field of view that was imaged, showing the rabbit thigh and the 

tumor that was implanted as well as the water bath that contained the fiducial markers (used 

for US-MR co-registration) is demonstrated in Figure  2-6a. A large artery was also identified 

in this dataset whose signal enhancement was used as the actual AIF of the animal and was 

used to evaluate the performance of the Mag-ICA method (such an artery was not present in 

other datasets). The reduced field of view of MR image showing the tumor region is provided 

in Figure  2-6b. 



40 
 

 
Figure  2-6  The DCE-MRI and CE-US data that was acquired in vivo. a) This image shows 

the full field of view of axial MR image of the thigh of the tumor-bearing rabbit with the 

co-registered ultrasound image superimposed (inside the dashed line). This image also shows 

the artery that was identified in the imaging plane. The time-intensity curve of this artery was 

used as the actual AIF in our analysis to evaluate separation results of Mag-ICA algorithm. 

Moreover, some of the imaging specifications such as the location of the 2 RF coils that were 

used for MR imaging and the location of US transducer as well as the water bath are shown 

in this figure. b) The co-registered images of the rabbit thigh (an area around the tumor) in 

DCE-MRI and c) in CE-US. It can be seen in these images that the contrast enhanced US and 

dynamic contrast enhanced MRI modalities are complementary to each other. MR shows the 

soft tissue more clearly while US shows a well defined vascular network. This figure shows 

the US and MR datasets were correctly acquired in the plane and the co-registration process 

was able to align them with good accuracy. 

  

2.3.3 Contrast Enhanced ultrasound (CE-US) imaging 

Diagnostic ultrasound imaging enables visualization and assessment of physiological 

structures with real-time images. Conventional ultrasound techniques such as Doppler 
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ultrasound can be used to assess blood flow. However, they are not sensitive enough to 

visualize small blood vessels and are useful only for assessing large blood vessels with fast 

flowing blood (e.g. carotid arteries, leg veins, portal vein). Thus, these techniques cannot be 

used for tissue perfusion studies [132], [133]. 

Contrast enhanced ultrasound (CE-US) on the other hand, which uses microbubbles 

(1-10 [µm] in diameter) [134] as contrast agent and employs specialized imaging techniques, 

is capable of showing small blood vessels and can be used for studying tissue perfusion. The 

contrast agent enhances the signal from the blood and the specialized imaging techniques 

suppress the signal from the background tissue. Microbubble contrast agents are comprised of 

small bubbles of gas in a supporting shell [132]. These microbubbles are small enough to 

pass through small blood vessels and are large enough to stay intravascular (unlike DCE-MRI 

contrast agents that leak through the tumor vasculature). Thus, the signal in CE-US arises 

only from the microbubbles inside the vasculature and there is no extravascular signal.  

Although CE-US can be used to obtain quantitative perfusion information, it provides no 

information about permeability [135]. In addition, due to the differences in the kinetics of the 

CE-US and DCE-MRI contrast agents (e.g. different clearance mechanisms, no contrast agent 

leakage in US, etc.) and the technical difficulties in obtaining images of the same FOV in 

both modalities, the intravascular signal obtained from CE-US cannot be used in 

pharmacokinetic modeling of tumors with DCE-MRI. However, CE-US can be used to 

visualize the tumor vasculature with high accuracy. In this study we have used CE-US 

images to evaluate our estimation of the intravascular space in the spatial domain.  

Ultrasound imaging in this study was performed using an iU22 ultrasound system (Philips 

Medical Systems, Bothell, WA,) with a linear array transducer (L9-3, 3-9 [MHz] bandwidth) 

operating in a mode that provides anatomic and contrast-specific images. Definity (Lantheus 

Medical Imaging, MA, USA) microbubbles were used as the contrast agent. A low 

mechanical index (MI) of 0.05 was chosen to minimize microbubble disruption in contrast 

imaging. To achieve an adequate temporal resolution for tracking the contrast agent, a frame 

rate of 8-10 [Hz] was used and the imaging was performed for 3 [min] in all studies. The 

CE-US dataset was acquired with temporal resolution of 100-125 [µs] and the pixel size of 

the images was 136 [µm] in both axial and lateral directions [128]. 

The VX2 tumors in rabbits were imaged with DCE-MRI and CE-US for all 4 rabbits (two 

planes were imaged for each tumor) and the images of the two modalities were co-registered 
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[128]. Figure  2-6a shows the full field of view for co-registered ultrasound and MR images of 

one of the rabbits. The reduced field of view comparisons of different acquisitions (MRI and 

US) showing the VX2 tumor are shown in Figure  2-6b and Figure  2-6c respectively. 

2.4 Prostate MR imaging 

Multi-parametric MR images of a cohort of 27 prostate cancer patients were acquired
3
 and 

are used to assess the performance of the VIF calculation algorithm (AC-ICA). The proposed 

AC-ICA algorithm was used to calculate VIF and pharmacokinetic analysis was performed 

on the prostate DCE-MRI datasets. The results were comparing to using an AIF measured at 

the femoral artery in the pharmacokinetic analysis (chapter 5).   

2.4.1 Multi-parametric MR Imaging 

Magnetic resonance imaging of prostate was first performed in mid 1980s and has since 

become a mature imaging modality for prostate cancer diagnosis [136][137]. To use MRI in 

prostate cancer diagnosis both anatomical and functional information that this modality 

provides have to be used. The combination of anatomical   -weighted MR imaging and 

several functional imaging techniques such as DCE-MRI, apparent diffusion coefficient 

(derived from diffusion weighted MRI) and MR spectroscopic (MRS) imaging are usually 

used to increase accuracy in prostate cancer diagnosis. Although these multiparametric MR 

imaging techniques contribute to prostate cancer diagnosis, their results in detection, 

localization, and staging of the cancer vary significantly between studies and need to be 

improved [115]. The   -weighted MRI, apparent diffusion coefficient and DCE-MRI that are 

used in the thesis will be introduced briefly in this section. A sample frame of DCE-MR 

images of one of the prostate cancer patient is shown in Figure  2-7 along with its   -weighted 

image and apparent diffusion coefficient (ADC) map generated using its diffusion weighted 

MR images. 

2.4.1.1   -weighted MRI 

The   -weighted MR imaging which uses a long echo time (  ) and a long repetition time 

(  ), depicts the differences in the spin-spin relaxation times of various tissues.   -weighted 

images of the prostate are acquired with high spatial resolution and can clearly differentiate 

                                                           
3
 The Multi-parametric MR imaging of the prostate cancer patients were performed at Sunnybrook 

Health Sciences Centre and were provided by Dr. Masoom A. Haider. 
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the peripheral zone from the central and transition zones particularly in young subjects [138]. 

In these images that are used to visualize the prostate anatomy, prostate tumor in the 

peripheral zone (PZ) appears as a hypointense region surrounded by high intensity normal PZ 

tissue (Figure  2-7b). The degree of signal loss changes with Gleason score (lower intensity 

for higher Gleason score tumors) and the density of the tumor [139]. The tumors in central 

and transitional zones are usually difficult to detect, however regions of homogeneously low 

signal intensity with ill-defined edges or with invasion into the urethra might be cancerous 

[140]. The main issue of   -weigthed MRI is that low signal intensity regions do not always 

represent cancer and can be due to benign abnormalities (e.g. prostatitis and scar) [141]. 

 
Figure  2-7 a) Full field of view of the DCE-MR images which shows the prostate region used 

in ICA analyses (yellow box), b) the   -weighted image, c) the ADC map, and d) the prostate 

in the DCE-MR image of the prostate. The cancer in the peripheral zone of the prostate which 

appears as a hypo-intense region in   -weighted image and ADC map is identified with red 

arrows. 

 

2.4.1.2 Apparent Diffusion Coefficient 

Diffusion weighted (DW)-MR imaging applies a motion encoding gradient which causes 

phase shift in moving protons and generates an image that depends on the direction and 

amplitude of these movements. The MR signal attenuation that is caused by the motion 

depends on the motion encoding gradient (b-value) which expresses the amount of diffusion 

weighting and the apparent diffusion coefficient (ADC) of the tissue which reflects the 

motion of water molecules during the applied pulse [142]. The ADC map (Figure  2-7c) that is 
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generated using two or more DW images with different b-values, reflects both the capillary 

perfusion and the diffusion characteristics of the tissue [143].  

Apparent diffusion coefficient calculation [144] requires at least two diffusion weighted 

images of the tissue with different diffusion gradient b-values. The signal intensity of a tissue 

decays exponentially as the b-value is increased. This relationship is given with equation 2-1: 

    
                (2-1) 

where     
 is the signal intensity at b-value of   (    ) and     is the signal intensity at 

b-value of   (   ). Having     
 and     from two DW-MR images, the ADC can be 

calculated as: 

     
 

  
   

    

   
  (2-2) 

Prostate cancer destroys the tubular structure of the prostate and also has a higher cellular 

density which results in lower diffusion of molecules and hence lower ADC (particularly in 

PZ) compared to healthy prostate tissue [145]. However, due to the dependence of ADC to 

imaging sequence and parameters, there are discrepancies between the reported values for 

prostate cancer in different studies. Moreover, there is inter-subject and intra-subject overlap 

between ADC values of healthy and cancerous prostate tissues which limits its diagnostic 

capability [146].  

2.4.1.3 Dynamic Contrast Enhanced (DCE)-MRI 

Dynamic contrast enhanced (DCE)-MR imaging involves an intravenous injection of a bolus 

of low molecular weight contrast agent, e.g. Gadolinium (Gd)-DTPA, followed by repeated 

  -weighted MR imaging of the prostate area to monitor the passage of the bolus through the 

prostate vasculature (Figure  2-7d). The signal intensity change in the DCE-MR images is due 

to several factors such as the native    of the tissue, contrast agent concentration, imaging 

parameters and the behavior of the contrast agent in the physiology [147].  

The dynamic DCE-MRI sequence can be used to extract qualitative information (e.g. shape 

of the signal intensity-time curve), semi-quantitative information (e.g. washout rate of the 

contrast agent), or quantitative information (e.g. contrast agent exchange rate between 

intravascular and extravascular extracellular spaces) about contrast agent kinetics as it passes 

through prostate tissue. Such information can be utilized in prostate cancer detection, 

diagnosis and localization [115]. However, there are several shortcomings in analyzing the 
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DCE-MR images of prostate such as differentiating the PZ cancer from highly vascular BPH 

in transitional zone or prostatitis in PZ, lack of standardized approaches for calibration, and 

analysis and lack of consensus in acquisition protocols [148]. The focus of this thesis is on 

quantitative analysis of the contrast agent kinetics in the prostate vasculature and aims at 

improving these methods. 

2.4.2 Patient population 

A total of 28 MRI datasets (27 patients with one patient being imaged twice), where both the 

magnitude and the phase images were available in their DCE-MRI sequence, were included 

in this study. The patients had elevated PSA readings and some of them had undergone 

TRUS-guided biopsy before imaging or were biopsied after imaging was performed. Details 

of the patient age, PSA reading and biopsy results (tumor location and Gleason score) are 

summarized in Table  2-1. 

 

Table  2-1 Summary of patient and tumor characteristics of MRI datasets (PZ refers to the 

peripheral zone, and CZ refers to the central zone). 

Parameter Number Location 

Number of patients 27 - 

Number of datasets (n) 28 - 

Number of patients biopsied 27 - 

Number of Gleason 6 (3+3) cases 11 4 PZ, 7 CZ 

Number of Gleason 7 (3+4) cases 1 PZ 

Number of Gleason 7 (3+4) cases 4 PZ 

Number of negative biopsy cases 12 - 

Parameter Mean Range 

Age [years] 66 46-78 

PSA  
  

 
  9.32 [0.9-21.44] 

 

2.4.3 DCE-MR imaging 

MR imaging was performed on a 3T Achieva Philips scanner (Philips Medical Systems). A 

set of images were acquired to localize the prostate followed by several image sets to depict 

the prostate anatomy and enable PK parameter calculation. Anatomical images were obtained 

using   -weighted spin echo (SE) sequence acquired in sagittal, axial and coronal planes. The 
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  -weighted imaging was followed by axial diffusion weighted imaging (DWI) with two 

diffusion gradient b-values of      
 

     and         
 

    . These DW images were 

used to generate maps of apparent diffusion coefficient (ADC). Diffusion weighted imaging 

was followed by acquiring multiple flip angle   -weighted images with two flip angles of 

      and        that were used to generate the pre-contrast   -maps of the prostate 

tissue. The final step of the MR imaging was DCE-MR imaging which was performed using 

3D SPGR sequence where the contrast agent, Magnevist (Gd-DTPA), was injected 

intravenously with a dose of 4  
    

  
 .  

The   -weighted, DW and   -weighted (multiple flip angle and DCE) MR images were 

acquired over field of views of 15 [cm], 24 [cm] and 20 [cm] respectively. For each MR 

sequence a total of 20 axial planes through the prostate were imaged with a slice thickness of 

3.5 [mm] and spacing of 3.5 [mm] between slices. The DCE-MR imaging was performed for 

approximately 6 [min] (with a temporal resolution of approximately 4.8 [s]) where 75 frames 

were acquired. Imaging parameters details for each MR sequence are given in Table  2-2.  

 

Table  2-2 Details of MRI sequences that are used in   -weighted, DW and   -weighted MR 

imaging of the prostate tissue.  

Sequence 
TR/TE 

[ms] 

Flip 

Angle 

[degrees] 

b-value 

 
 

     
FOV 

[cm] 

Slice 

thickness

[cm] 

Reconstructed 

Matrix 

T2w-axial 6800/120 90 - 15 15 3.5 224 224 

T2w-sagittal 3000/120 90 - 15 15 3.5 224 224 

T2w-coronal 3000/120 90 - 15 15 3.5 224 224 

DWI 4120/60 90 0 & 1000 24 24 3.5 144 144 

Multi-FA 

(SPGR) 
10/1.81 5 & 15 - 20 20 3.5 112 112 

DCE-MRI  

(3D-SPGR) 
3.91/1.81 8 - 20 20 3.5 112 112 
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2.5 Summary 

This chapter presented details of the following datasets: 

1- The numerical phantom that was designed (both dynamic contrast agent concentration 

modeling and MR image simulation) 

2- The physical tissue-mimicking phantom and its DCE-MR imaging 

3- The rabbit VX2 tumor model and its imaging with both DCE-MRI and contrast 

enhanced ultrasound, that are used for evaluating the VIF calculated using the 

Mag-ICA algorithm 

4- The MRI data of prostate cancer patients that are used in the thesis to assess the 

performance of the AC-ICA algorithm for VIF calculation. 

The next chapter (chapter 3) presents the Mag-ICA algorithm for calculating the VIF which 

uses a fixed non-linearity function in its ICA implementation and is applied to the magnitude 

of the MR images. Chapter 3 also presents the results of applying the Mag-ICA algorithm to 

DCE-MR images of the numerical phantom, physical phantom, and VX2 tumor model in 

rabbits. It will also discuss the results and their problems, and explains the reasons that a 

more sophisticated VIF calculation algorithm was required for analyzing clinical DCE-MRI 

data which led to the development of the AC-ICA algorithm (chapter 4). 
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Chapter 3                                                                                

Feasibility of VIF Calculation Using ICA
4
 

The details of the numerical phantom that was constructed and simulation of its DCE-MRI 

images, the physical tissue-mimicking phantom and its DCE-MR imaging, the rabbit VX2 

tumor model and its imaging with both DCE-MRI and contrast enhanced ultrasound, and the 

DCE-MRI data of prostate cancer that are used in the thesis to assess the performance of the 

VIF calculation algorithms were presented in the previous chapter (Chapter 2). In this chapter 

the feasibility of calculating VIF using ICA is studied. An ICA-based VIF calculation 

algorithm (Mag-ICA) is first introduced in this chapter that has a fixed non-linearity function 

in its ICA implementation and uses the magnitude of DCE-MR images. This algorithm is 

then applied to DCE-MR images of the numerical phantom, physical phantom, and rabbit 

VX2 tumor model and the results are presented. This chapter also discusses the results of 

Mag-ICA (in the discussions section) and explains (in summary section) the need for a more 

sophisticated VIF calculation algorithm for analyzing clinical DCE-MRI data which led to 

the development of the AC-ICA algorithm (chapter 4). 

3.1 ICA model for MRI data 

Each voxel in an MR image is partially occupied by blood vessels or the intravascular space 

and the rest is occupied by the extravascular structures. Thus, the MR signal in each voxel is 

the sum of the signal that is generated in the intravascular space and the signal from the 

extravascular space. The low molecular weight contrast agents used in DCE-MRI studies do 

                                                           

4 The material presented in this chapter is reproduced from the following publication: 

[1] Hatef Mehrabian et al., “Arterial input function calculation in dynamic contrast-enhanced MRI: 

an in vivo validation study using co-registered contrast-enhanced ultrasound imaging”, European 

Radiology 22 (8), pp. 1735-1747, (2012). 

ICA implementation of Mag-ICA algorithm was also presented and explained in more detail in the 

following publication:  

[2] Hatef Mehrabian et al.,“A constrained independent component analysis technique for artery-

vein separation of two-photon laser scanning microscopy images of the cerebral microvasculature”, 

Medical Image Analysis, 16 (1) , pp. 239-251, (2012). 
  

http://www.springer.com/medicine/radiology/journal/330
http://www.springer.com/medicine/radiology/journal/330
http://www.elsevier.com/wps/find/journaldescription.cws_home/620983/description#description
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not enter the cells, hence the signal can be assumed to be generated in the intravascular and 

the extravascular extracellular spaces (EES). This linear mixing of the intravascular and EES 

signals to form the MR image led us to investigate the possibility of unmixing or separating 

these signals using a blind source separation (BSS) algorithm known as independent 

component analysis (ICA). ICA has been applied to AIF measurement in brain perfusion 

studies [149], however this is a less complex problem than the one we address in this study as 

the presence of the blood brain barrier minimizes the extravascular contrast enhancement. 

The separation of intravascular and extravascular components in tumor studies using ICA has 

not been addressed before. 

3.1.1 Spatial Independent component analysis 

Spatial Independent component analysis (ICA) is a statistical signal processing algorithm that 

attempts to split a dataset into its underlying features, assuming these features are statistically 

independent and without assuming any knowledge of the mixing coefficients [98]. When the 

features are mixed linearly, the spatial ICA model is expressed as:  

     (3-1) 

where               
  represents the time-series dataset which in this study is the 

magnitude of the DCE-MRI data of a tumor or a tissue-mimicking phantom (observed 

mixtures) and   is the number of time point in the DCE-MRI sequence,                 

is a matrix containing the   underlying structures that are known as spatially independent 

components or ICs               and in this study these are the images representing the 

intravascular and extravascular extracellular spaces of the tumor tissue. Although we assume 

that there are only 2 spaces in our model (intravascular and extravascular extracellular), since 

ICA makes no assumption about the spatial distribution of these spaces, it might split each 

space into several components. In practice more than 2 ICs are required to achieve accurate 

separation, i.e. each space (intravascular or extravascular) might be represented with more 

than one IC.        is the mixing matrix whose columns represent the contrast uptake 

curves of the intravascular and extravascular extracellular compartments. Having the 

observed mixed signal  , the ICA algorithm attempts to estimate the underlying features 

(independent components)   and the mixing matrix   assuming that rows of   are statistically 

spatially independent. This is achieved by finding an unmixing matrix         and 

estimating the IC matrix                 such that: 
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     (3-2) 

where the rows of   are statistically spatially independent and have zero mean, unit variance 

(        ) and,      is the expectation operator. The IC’s can be recovered up to a scaling 

and permutation [98]. 

3.1.2 Magnitude ICA (Mag-ICA) 

According to the central limit theorem, the distribution of a sum of independent random 

variables with finite support probability density functions (pdf) tends towards a Gaussian 

distribution [150]. Thus, by maximizing the non-Gaussianity of the estimated components, 

the independent components can be identified. In an information theoretic framework, one 

way of measuring non-Gaussianity of a real-valued random variable     is to measure its 

Negentropy [98] given by: 

                              (3-3) 

where                     is the differential entropy of  ,       is the probability 

density function (pdf),        is a Gaussian random variable with the same variance as  , and 

       is the natural logarithm. Since the probability distributions of the ICs are not known, it 

is common in ICA algorithms to maximize the Negentropy by maximizing the following 

equation [97], [151]: 

                                       
 
 (3-4) 

where   is a column of the unmixing matrix,      , and      is a non-quadratic 

non-linearity function. The proposed Mag-ICA algorithm used the third moment of   as its 

contrast function,        .  

Considering the fact that the second term in equation 3-4 is constant, maximizing Negentropy 

is equivalent to maximizing the following equation with respect to   (subject to the 

constraint      ) [97], [151]: 

                           (3-5) 
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This constrained optimization which is maximizing the absolute value of skewness on unit 

sphere for Mag-ICA algorithm was solved using a quasi-Newton method. The Lagrangian 

function for this optimization is [97]: 

                                                 (3-6) 

where   is the Lagrange multiplier. The fixed point update for  , at iteration  , derived from 

equation 3-6 is as follows [97]: 

             
              

       (3-7) 

where    and     are the first derivative and the second derivative of   respectively.  

3.1.3 ICA implementation and VIF identification 

Dimensionality reduction was performed on the DCE-MRI data as a pre-processing step in 

order to reduce noise. This step was performed on each dataset through singular value 

decomposition (SVD) of the covariance matrix of the data and only the eigenvalues that were 

larger than 0.1% of the largest eigenvalue (significant eigenvalues) were kept which 

translated into keeping approximately 99.9% of the information in the dataset. The data was 

then Whitened by making its rows zero-mean and unit variance [151]. The ICA algorithm (as 

explained in the previous section) was applied to the dataset after dimensionality reduction 

and Whitening. The number of extracted independent components (IC) was equal to the 

number of significant eigenvalues which were kept at the dimensionality reduction step. The 

intravascular components were selected heuristically such that the curve or curves that had 

uniform pre-contrast uptake phase, an uptake phase in which the intensity increased rapidly 

and a washout phase in which the intensity dropped to less than 60% of the peak value after 

the peak were selected as the intravascular components (if more than one IC satisfied this 

criterion, they were combined using the method that is explained in section 5.1.1). This 

heuristic criterion was selected as we observed throughout our study that the time-intensity 

curves of the components that behaved like an intravascular signal dropped to less that 60% 

of their peak value.  

The intravascular component MR signal has to be converted into contrast agent concentration 

to represent the VIF and be used in pharmacokinetic modeling. This step will be explained in 

chapter 5 where PK modeling will be performed on DCE-MR images of prostate cancer 
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patients. The next section presents the results of applying Mag-ICA algorithm to several 

DCE-MRI datasets.  

3.2 Mag-ICA separation results 

The Mag-ICA algorithm for VIF calculation was applied to the numerical phantom and to the 

physical tissue-mimicking phantom to separate the signal of the tubes, which represented the 

intravascular signal, from the DCE-MR images. This algorithm was also applied to the in 

vivo DCE-MRI of VX2 tumors in rabbit thigh muscle and the intravascular signal was 

separated. The Mag-ICA algorithm was implemented in MATLAB (The MathWorks Inc., 

Natick, USA) software and was applied to the DCE-MRI datasets on a Pentium IV PC with 

3.00 GHz Core2 CPU and 3 GB of RAM. 

3.2.1 Numerical phantom 

The Mag-ICA algorithm was applied to all simulated datasets (four different resolutions) and 

the signal from inside the tubes (intravascular signal) was extracted. The number of the 

eigenvalues that were kept for analysis after dimensionality reduction (section 3.1.3) ranged 

between 5 and 8 which is the maximum number of IC’s that could be estimated. In all cases, 

all IC’s were estimated and the IC that corresponded to the tubes’ signal was selected 

heuristically. In brief, the IC that had a uniform pre-contrast uptake followed by a rapid 

contrast uptake and also a rapid washout of the contrast agent to less than 60% of the peak 

signal intensity within 3 [min] of bolus injection was selected as the tubes’ signal. The 3 

[min] threshold is selected here for the numerical phantom, however it has to be determined if 

DCE-MRI of other tissues or phantoms are being analyzed.  

Figure  3-1 illustrates the Mag-ICA intravascular signal separation algorithm and the heuristic 

intravascular component identification for the numerical phantom. This figure shows the 

results of applying Mag-ICA algorithm to DCE-MR images of the numerical phantom 

reconstructed with in-plane resolution of 300 [µm]. Mag-ICA algorithm was applied after 

dimensionality reduction and Whitening, and all independent components (n = 5 in this case) 

were extracted. Figure  3-1 shows the extracted ICs in both spatial and temporal domains. In 

this particular dataset the component number one (IC 1) was selected as the intravascular IC 

according to the heuristic criterion. 
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Figure  3-2 shows the results of applying the Mag-ICA algorithm to the simulated DCE-MR 

images of different resolutions. The intravascular component images for all datasets (4 

different resolutions) are shown in Figure  3-2a-d. Figure  3-2e shows the intravascular time-

intensity curve of the 4 datasets. These curves represent the average signal intensity over time 

of all the voxels that are separated by Mag-ICA as the intravascular space (tubes). Figure 

 3-2e also shows the actual intravascular time-intensity curve which was used in the 

 
Figure  3-1 The results of applying Mag-ICA algorithm to DCE-MR images of numerical 

phantom with in-plane resolution of 300 [µm]. The figure shows the 5 spatially independent 

component images (5 eigenvalues were kept in the dimensionality reduction step) on the left 

column, and their corresponding temporal components on the right column (these curves are 

normalized with respect to their maximum values and their baseline value is removed). The 

only temporal curve that had the pre-contrast uptake and washout phases and in the washout 

phase its value dropped to 60% of the peak value within 3 [min] was component number 1 

(IC 1). Thus, this component was selected as the intravascular component and its 

time-intensity curve was used as the VIF. 
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simulation of DCE-MRI data as well as the raw data curve calculated by averaging the signal 

across the full FOV of the MRI images (without post processing) over time. The time-

intensity curves are normalized with respect to their maximum and the baseline signal 

intensity is set to zero in order to enable comparison. Although the separated tubes’ signals 

for different resolutions look very different spatially, their time-intensity curves are similar 

and have the same arrival times as the actual tubes signal. 

 

e  
Figure  3-2 The separated tubes’ image and the time-intensity curve of the tubes calculated 

using Mag-ICA for each of the four simulated DCE-MRI datasets. Tubes’ images for 

datasets with in-plane resolutions of a) 150 [μm], b) 300 [μm], c) 600 [μm], d) 800 [μm]. e) 

this plot shows the calculated time-intensity curves of the tubes corresponding to the 4 

simulated datasets, the actual time-intensity curve of the tubes (Actual Curve) and the curve 

corresponding to the mean across the entire raw (not analyzed) images over time (Raw 

Data). 

 

For each in-plane resolution, 10 DCE-MRI data sets of the phantom were simulated with 

SNR=20 and the Mag-ICA algorithm was applied to all datasets. Table  3-1 reports the root 

mean square error (RMSE) between the estimated time-intensity curves of the tubes obtained 

using Mag-ICA algorithm and the actual curve for all 4 datasets. Table  3-1 also reports the 

correlation coefficient between the estimated and actual time-intensity curves of the tubes. 

These values are calculated using the results of applying Mag-ICA to the 10 different 
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implementations of the phantom for each resolution which differed in the added noise 

(SNR = 20) and    inhomogeneity (1 [ppm]). 

Table  3-1 The root mean square error (RMSE) and correlation coefficient between the 

estimated tubes’ time-intensity curves and the actual curve for 4 dataset in numerical 

phantom for Mag-ICA algorithm. These values are calculated using the results of applying 

Mag-ICA to 10 different implementations of the phantom for each resolution. (RMSE and 

correlation coefficients are calculated after setting the baseline values of the curves to zero 

and normalizing them with respect to their maximum value). 

In-plane Resolution 150μm 300μm 600μm 800μm 

                               Root Mean Square Error (RMSE) 

Mag- ICA 0.11± 0.03 0.20±0.01 0.31±0.08 0.36±0.04 

 Correlation Coefficient 

Mag-ICA 0.96±0.02 0.92±0.01 0.77±0.09 0.69±0.06 

 

 

3.2.2 Physical tissue-mimicking phantom  

The Mag-ICA algorithm was also applied to DCE-MRI images of the physical 

tissue-mimicking phantom. Similar to the simulation study, dimensionality reduction and 

Whitening was performed first, which resulted in keeping 5 to 8 significant eigenvalues. 

Figure  3-3 illustrates the Mag-ICA separation procedure and the heuristic intravascular 

component identification for the physical phantom with in-plane resolution of 170 [µm]. 

Mag-ICA was applied after dimensionality reduction and Whitening, and all independent 

components (n = 6 in this case) were extracted. Figure  3-3 shows the extracted independent 

components in both spatial and temporal domains. In this particular dataset the component 

number one (IC 1) was selected as the intravascular component according to the heuristic 

criterion. 
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Figure  3-3 The results of applying Mag-ICA algorithm to DCE-MRI of the physical phantom 

with in-plane resolution of 170 [µm]. The figure shows the 6 spatially independent 

component images (6 eigenvalues were kept in the dimensionality reduction step) on the left 

column, and their corresponding temporal curves on the right column (these curves are 

normalized with respect to their maximum values and their baseline values are set to zero). 

The only curve that had the pre-contrast uptake and washout phases and, in the washout 

phase its value dropped to 60% of the peak value after 3 [min] was component number 1 

(IC 1). Thus, this component was selected as the intravascular component and its 

time-intensity curve was used as the VIF. 

 

The phantom data was reconstructed in 5 different in-plane resolutions and separation of the 

tubes’ signal was performed on all 5 datasets and the results are shown in Figure  3-4. The IC 

images corresponding to the tubes’ signal of the 5 datasets are shown in Figure  3-4a-e. The 

time-intensity curves of the 5 datasets as well as the actual time-intensity curve of the tubes 

that was measured at the inflow line and the curve measured at the outflow line of the 

phantom as well as the raw data curve calculated by averaging the signal across the full FOV 
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of the MRI images (without post-processing) over time are shown in Figure  3-4f. The 

baseline values of the time-intensity curves of all datasets were set to zero and they were 

normalized with respect to their maximum values. In order to account for their delays in the 

arrival times of the curves the time-intensity curves of the inflow and outflow lines were 

shifted to have the same onset time as the ICA curve. Similar to the numerical study, the 

separated tubes’ signals for different resolutions look very different spatially; however their 

time-intensity curves are similar and are close to the time-intensity curve measured at the 

inflow and outflow lines. 

 

f  
Figure  3-4 The separated tubes’ image and the time-intensity curve of the tubes calculated 

using Mag-ICA for each of the five DCE-MRI datasets for the physical tissue-mimicking 

phantom. Tubes’ images for datasets with in-plane resolutions of a) 170 [μm], b) 225 [μm], 

c) 340 [μm], d) 450 [μm] and e) 680 [μm]. e) This plot shows the calculated time-intensity 

curves of the tubes corresponding to the 5 datasets, the actual time-intensity curve of the 

tubes (inflow line), the time-intensity curve of the tubes at the outflow line, and the curve 

corresponding to the mean across the entire raw (not analyzed) images over time (Raw Data). 

  

Two physical phantoms were built and DCE-MRI imaging was performed on both phantoms 

to assess the reproducibility of the results for Mag-ICA intravascular time-intensity curve 

calculation algorithm. Table  3-2 reports the root mean square error (RMSE) between the 

estimated and the actual time-intensity curves of the tubes (inflow) for all 5 datasets of both 

phantoms. This table also reports the correlation coefficient between the estimated and actual 

time-intensity curves of the tubes for Mag-ICA algorithm in all 5 in-plane resolutions. 
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Table  3-2 The root mean square error (RMSE) and the correlation coefficient between the 

estimated and actual time-intensity curves of the tubes (inflow) for all 5 datasets of both 

physical phantoms using Mag-ICA Algorithm (RMSE and correlation coefficients are 

calculated after setting the baseline of the curves to zero and normalizing them). 

In-plane 

Resolution 
170μm 225µm 340μm 450μm 680μm 

 Root Mean Square Error (RMSE) 

Mag- ICA 0.20±0.04 0.18±0.01 0.20±0.03 0.21±0.02 0.30±0.05 

 Correlation Coefficient 

Mag-ICA 0.88±0.05 0.91±0.02 0.89±0.01 0.88±0.02 0.78±0.08 

 

3.2.3 In vivo VX2 tumor (Rabbit) 

The final step in assessing the performance of the Mag-ICA algorithm was applying it to 

DCE-MRI of VX2 tumors in thigh muscle of rabbits and separating their intravascular signal. 

The Mag-ICA algorithm was applied to the dataset after dimensionality reduction, where 

about 5 to 8 eigenvalues were kept, and then Whitening, and all independent components 

were extracted. In order to illustrate the Mag-ICA separation procedure and the heuristic 

intravascular component identification, Figure  3-5 shows the results of applying Mag-ICA to 

DCE-MR images of a sample slice in one of the VX2 tumors (the dataset was shown and 

explained in detail in chapter 2). Mag-ICA was applied after dimensionality reduction and 

Whitening, and all independent components (n = 8 in this case) were extracted. Figure  3-5 

shows the extracted independent components in both spatial and temporal domains. In this 

particular dataset the component number one (IC 1) was selected as the intravascular 

component according to the heuristic criterion. 

Figure  3-6a shows a sample frame of the DCE-MR images of the tumor (raw data), along 

with its identified intravascular component using Mag-ICA algorithm. It shows the 

corresponding co-registered CE-US image as well, which has been averaged over time to 

reduce noise and to show the areas that are enhancing. Figure  3-6a also shows the normalized 

time-intensity curves of the identified intravascular component, DCE-MRI signal of the 

artery that was detected in the imaging plane (the delay in its arrival time was removed to 

enable comparison of the curves), and the enhancement curve from the CE-US data. The 
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pre-contrast signal intensities of all curves are removed and the MRI curves are normalized 

with respect to their area under the curve to enable comparison of their respective 

enhancement. The CE-US curve had a different shape after peak and lasted for only 3 [min], 

thus it was scaled to have the same peak as the intravascular MR curve. The same curves and 

images are shown for the second slice of the tumor in Figure  3-6b. For both slices the actual 

AIF (measured at the artery) and the intravascular time-intensity curve of the tumor obtained 

using Mag-ICA are highly correlated and the p-values, assessing how well the ICA curves fit 

the actual AIF are less than 0.05 (Table  3-3). 

 
Figure  3-5 The results of applying Mag-ICA algorithm to DCE-MR images of a VX2 tumor 

in thigh muscle of a rabbit. The figure shows the 8 spatially independent component images 

(8 eigenvalues were kept in the dimensionality reduction step) on the left column, and the 

corresponding temporal curves on the right column (the curves are normalized with respect 

to their maximum values and their baseline values are set to zero). The only curve that had 

the pre-contrast uptake and washout phases, and in the washout phase its value dropped to 

60% of the peak value after 4.5 [min] was IC 1 and was selected as the intravascular 

component. 
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Figure  3-6 Results of applying Mag-ICA algorithm to the DCE-MRI data of the tumor 

shown in Figure  2-6 and Figure  3-5 in a) Slice 1 and b) Slice 2 of the tumor. This figure 

shows a sample frame of the raw data (Raw), the intravascular component (MR) that was 

separated using Mag-ICA in the spatial domain and the corresponding contrast enhanced 

ultrasound (CE-US) image for both slices. The US image is averaged over time thus the 

noise is suppressed and the regions that have higher signal intensity (brighter regions) 

correspond to the areas that have more blood vessels. The plots show the normalized time-

intensity curves of the intravascular space obtained by Mag-ICA, the actual AIF measured 

at the artery that is close to the tumor and the contrast enhancement of the tumor in the 

ultrasound dataset for both slices. The MRI curves are normalized with respect to their area 

under the curve and their pre-contrast enhancements are removed to enable comparison. The 

US curve is scaled to have the same maximum value as the MRI curve of the artery. The 

intravascular MR images are thresholded by removing the pixels that enhance less that 50% 

of the maximum intensity value to better visualize the enhancing areas.  

 

Mag-ICA algorithm was applied to all eight datasets (4 tumors and 2 slices for each tumor). 

For seven datasets the method succeeded in identifying and separating the intravascular 

component. It failed in one of the datasets where the DCE-MR imaging protocol was adjusted 

to a lower signal to noise ratio (SNR) in an attempt to acquire images at a higher rate 
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(NEX=1, temporal resolution=0.9 [s]). Figure  3-7 shows the performance of the method on 5 

other datasets (other than the 2 datasets that were shown in Figure  3-6). This figure shows the 

co-registered contrast ultrasound image of the tumor and Mag-ICA intravascular component. 

 

Table  3-3 The correlation coefficient between the normalized intravascular time-intensity 

curve extracted by Mag-ICA and the normalized AIF measured from the artery that is located 

near the tumor (actual AIF) and the p-values, assessing how well the Mag-ICA curves fit the 

actual AIF for both planes of the tumor. 

 Correlation coefficient p-value 

Tumor 1, Slice A 0.92 0.04 

Tumor 1, Slice B 0.96 0.03 

  

Table  3-4 reports the onset time (the time point at which contrast agent arrives in the tumor) 

and the peak time (the time point at which signal intensity reaches its maximum value) of 

ultrasound and intravascular MR time-intensity curve for both imaging slices of all eight in 

vivo dataset shown in Figure  3-7 (there was no visible artery in MRI slices of other datasets 

to be compared with the intravascular enhancement of the tumor and thus no correlation 

coefficients or p-values could be calculated). 

 

Table  3-4 The onset time (the time point at which contrast agent arrives in the tumor) and the 

peak time (the time point at which signal intensity reaches its maximum) of ultrasound and 

intravascular MR time-intensity curve for both imaging slices of all four tumors 

 
Onset Time [min] Peak Time [min] 

 
Intravascular MR Ultrasound Intravascular MR Ultrasound 

Tumor 1, Slice 1 0.32 0.41 0.65 0.55 

Tumor 1, Slice 2 0.37 0.38 0.60 0.51 

Tumor 2, Slice 1 0.50 0.57 0.89 0.80 

Tumor 2, Slice 2 0.43 0.55 0.75 0.75 

Tumor 3, Slice 1 0.31 0.38 0.54 0.54 

Tumor 3, Slice 2 0.31 0.38 0.54 0.54 

Tumor 4, Slice 1 0.39 0.39 0.56 0.52 

Tumor 4, Slice 2 Failed 
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Figure  3-7 Results of applying the proposed separation method to 5 other DCE-MRI datasets.  

For each dataset a sample frame of the raw data (Raw) and the intravascular component 

image (MR) that was identified and separated using Mag-ICA algorithm are shown. In 

addition, the corresponding ultrasound image (US) of each dataset that shows the 

intravascular components of the tissue (the US data is averaged over time to reduce noise and 

clearly show the regions that enhance) is shown. The method was applied to the 8 available 

tumor datasets. In 7 out of 8 datasets the method succeeded in identifying and separating the 

intravascular space form the dataset. Results for 5 datasets (other than the two datasets that 

were shown in Figure  3-6) are shown in this figure. The intravascular MR images are 

thresholded by removing the pixels that enhanced less that 50% of the maximum intensity 

value to better visualize the enhancing areas. This figure shows the reproducibility of the 

algorithm in calculating the VIF in vivo. In the dataset that the method failed to calculate VIF 

the imaging parameters were modified to achieve higher temporal resolution which resulted 

in poor image quality (low SNR). 
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3.3 Discussions 

In a pharmacokinetic model, the determination of vascular parameters relies on accurate 

measurement of the contrast agent concentration in the plasma volume (AIF or VIF) [152]. 

However; measuring such a signal in the tumor is usually impossible. Currently an AIF is 

approximated outside the tumor which may result in inaccurate PK parameters and makes the 

governing equation complicated. Current AIF measurement techniques have several 

disadvantages. In many tumors a feeding artery for the tumor in the imaging field of view 

does not exist which makes PK analysis difficult and inaccurate if not impossible. A 

theoretical AIF assumes a predefined bi-exponential form for the AIF which is not 

necessarily correct and does not account for variability between individuals. A population-

averaged AIF also does not account for variability between patients and heterogeneity of the 

tumor vasculature. A reference-tissue based technique requires knowing the PK parameters of 

normal tissues surrounding the tumor and a dual bolus AIF requires injecting an extra 

contrast agent bolus.      

 The proposed Mag-ICA separation algorithm provided promising results in identifying and 

separating the intravascular signal in DCE-MRI. The initial results obtained in the numerical 

and physical tissue-mimicking phantoms demonstrated the ability of Mag-ICA in separating 

the signal from within the tubes (Figure  3-2 and Figure  3-4). They also showed the robustness 

of the method in dealing with low-resolution DCE-MRI data where these compartments 

could not be physically separated by voxel boundaries. As shown in Figure  3-2, Figure  3-4, 

Table  3-1 and Table  3-2 the results of performing the separation on datasets with different 

resolutions were similar and were relatively close to the actual intravascular (tubes) signal. 

However as the voxel size was increased (decreasing the resolution), the time-intensity 

curves began to deviate from the actual curve (delayed peak and longer tail).   

Similar results were achieved in vivo, where the Mag-ICA algorithm was able to produce 

intravascular images of tumors that had good resemblance to the contrast enhanced 

ultrasound images (actual intravascular image). A large artery close to the tumor was also 

identified in the imaging field of view and was used to evaluate the separation results of our 

algorithm temporally. This artery was oriented such that it was parallel to the imaging plane. 

It also extended towards the tumor, as can be seen in figure 3-6, which suggested that it was 

probably feeding the tumor. These characteristics made this artery a good candidate to be 

used as the actual AIF signal (such an artery was not present in other datasets). 
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The accuracy of the proposed method was demonstrated by comparing its separated 

intravascular time-intensity curves with an arterial enhancement (DCE-MRI) from an artery 

close to the tumor and with its corresponding CE-US contrast enhancement curve as shown in 

Figure  3-6 and reported in Table  3-3. All three curves show a similar arrival time and peak 

time of enhancement, and the actual AIF (measure in the artery) and Mag-ICA curve show 

similar washout of contrast agent, as would be expected. Also expected is the different rate of 

decay of the DCE-MRI signals compared to the ultrasound curve, likely due to the different 

clearance mechanisms (US contrast agent is cleared through longs while MR contrast agent is 

cleared through kidneys) and clearance rates (US contrast agent gets clear faster than MR 

contrast agent) for the contrast agents as well as their physiological half lives (in healthy 

subjects elimination half-life of Magnevist which is the MR contrast agent used in our in-vivo 

studies is 1.6 [hours] while elimination half-life of definity microbubbles that is the contrast 

agent we sued in CE-US studies is 1.3 [min]). 

Figure  3-7 and Table  3-4 show the results of applying the separation to all datasets. There 

were eight rabbit tumor datasets available (four rabbits and two slices for each one) and the 

method succeeded in separating the two spaces in seven datasets. The dataset that the method 

failed had a higher temporal resolution and thus a much lower signal to noise ratio (SNR) 

compared to the other seven datasets (3.4 times lower SNR). Therefore, the image quality of 

the failed dataset was much lower than the other datasets and the method was not able to 

separate the vasculature.  

In conclusion, the Mag-ICA algorithm appears to be capable of separating the intravascular 

spaces in in vivo datasets. The Mag-ICA intravascular curve is very similar to the AIF that 

was measured in the artery that was located near the tumor. The in vivo intravascular 

component images were also very similar to the tumor vasculature imaged using CE-US. The 

phantom and in vivo studies show that the ICA-based algorithm have the potential to improve 

the calculation of the AIF, which is required for PK modeling.  

In this chapter we used the MR signal intensity to assess the performance of the separation 

algorithm. However, in order for the intravascular time-intensity curve to be used in PK 

modeling, it has to be converted into contrast agent concentration. This is not a trivial step as 

ICA suffers from an intrinsic arbitrary scaling and since it is a data-driven algorithm it might 

split the intravascular component into several components. The steps required for conversion 
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of MR signal intensity to contrast agent concentration will be explained in chapter 5 where 

the ICA-based VIF will be applied to DCE-MRI sequences of prostate cancer patients. 

3.4 Summary 

This chapter introduced Mag-ICA algorithm and demonstrated its potential in identifying and 

separating the intravascular signal in DCE-MRI by applying it to numerical and physical 

tissue-mimicking phantoms as well as in vivo rabbit tumor models. Such a data-driven local 

VIF may improve the results of conventional PK analysis as it allows for an arterial input 

function to be estimated automatically from the tumor. This shows the potential of this 

approach in cancer imaging, where it is impossible to find an ROI that identifies and 

separates the intravascular signal and there might not exist an artery in the imaging field of 

view. However, the Mag-ICA algorithm has several shortcomings as it used the magnitude of 

MR images which violates the main assumption (linear mixing of the components) in ICA 

and also used a fixed non-linearity function in the implementation of ICA which does not 

account for inter-subject and intra-subject variability in the spatial distribution of the 

vasculature. 

A more rigorous way of addressing these problems is to analyze the complex-valued MRI 

data rather than the magnitude data and also to estimate the probability distribution of the 

intravascular signal adaptively as the ICA components are being extracted. These issues led 

to the development of an adaptive complex ICA (AC-ICA) algorithm (presented in chapter 4) 

that used the complex-valued MRI data where the linear mixture assumption of ICA was 

satisfied and also determined the ICA non-linearity function based on the distribution of the 

vasculature through an expectation maximization (EM) procedure by performing online 

density estimation at each iteration. The performance of the AC-ICA algorithm was evaluated 

using simulation and physical tissue-mimicking phantoms that were used in this chapter and 

is presented in the next chapter (chapter 4).  
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Chapter 4                                                                                 

Vascular Input Function (VIF) Calculation in 

Complex-Valued DCE-MRI
5
 

The previous chapter introduced the Mag-ICA algorithm and presented the results of 

applying the algorithm to DCE-MR images of the numerical phantom, the physical 

tissue-mimicking phantom, and the rabbit VX2 tumor model which showed its potential in 

separating the intravascular component. Chapter 3 also briefly introduced the shortcomings of 

the Mag-ICA algorithm which led to the development of AC-ICA algorithm. Chapter 4 first 

discusses the limitations of Mag-ICA algorithm in detail and then introduces the AC-ICA 

algorithm and provides details of its derivation. It also presents the results of applying the 

AC-ICA algorithm to DCE-MR images of the numerical phantom and the physical 

tissue-mimicking phantom, and compares these results to those of Mag-ICA algorithm to 

highlight the superior performance of the AC-ICA algorithm (discussions section). The AC-

ICA algorithm will be used in the next chapter for PK analysis of prostate DCE-MRI.  

4.1 Limitations of Mag-ICA algorithm     

Chapter 3 introduced the Mag-ICA algorithm which used the magnitude of the MRI data 

(which is common in DCE-MRI studies) and an ICA algorithm with a fixed non-linearity 

function (which is common in ICA studies). This method was shown to have good 

performance in calculating the intravascular time-intensity curve and separating it from the 

DCE-MRI data and its results were evaluated using tissue-mimicking phantoms and contrast 

enhanced ultrasound imaging of the tumor vasculature in vivo. However, the Mag-ICA 

algorithm has two main shortcomings:  

                                                           

5 The material presented in this chapter is reproduced from the following publication: 

[3] Hatef Mehrabian et al., “Calculation of intravascular signal in dynamic contrast enhanced MRI 

using adaptive complex independent component analysis”, IEEE Transactions on Medical 

Imaging, 32(4), pp. 699-710, (2013). 

http://www.ieee-tmi.org/
http://www.ieee-tmi.org/
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1- Using the magnitude of the MR signal (i.e. it violates the linear mixture assumption of 

ICA).  

2- Using a fixed non-linearity function in its ICA implementation (i.e. it assumes the 

probability density function of the intravascular signal has a fixed shape).  

To address these shortcomings an adaptive complex ICA (AC-ICA) algorithm is developed 

and evaluated in this chapter. 

4.1.1 Magnitude vs. Complex-valued ICA  

In practice, the main limitation of the Mag-ICA algorithm arises from violation of the ICA 

assumption that the intravascular and extravascular signals are linearly combined to form the 

images. There are different tissue types in each MR voxel and their signals contribute to its 

average MR signal. Even within a single tissue type in a voxel, there will be a small range of 

magnetic field strengths due to varying molecular environment of spins and proximity to 

other tissue types. Thus, their magnetization vectors might not be in-phase. Thus, the 

magnitude of the sum of the signals of these two spaces would not be equal to the sum of the 

magnitudes of their signals. In other words, assuming the MR signal of a voxel ( ) is the sum 

of its complex-valued intravascular (       
      

 ) and extravascular (       
      

 ) 

components (where   and   superscripts represent the real and imaginary parts of the signal), 

the magnitude of the MR signal of the voxel is:          
     

        
     

       . The 

Mag-ICA algorithm attempts to separate the intravascular component from this magnitude 

signal,    , which is not equal to the sum of the magnitudes of the intravascular and 

extravascular components (               ), and thus violates the linear mixing 

assumption in ICA (unless these two signals are in-phase). This intra-voxel de-phasing can be 

reduced by shortening the echo time (TE) and we used a short TE to minimize it (TE = 

2.9 [ms] in numerical and physical phantoms and TE = 1.5 [ms] in rabbit VX2 tumors).  

4.1.2 Density estimation 

In addition to using the magnitude of MRI data, in the Mag-ICA algorithm the probability 

distribution functions of the intravascular and extravascular extracellular spaces are not 

estimated and, as is common in ICA algorithms, a fixed non-linearity function is used 

instead. Using a fixed non-linearity function assumes a pre-defined shape for the probability 

distribution of the intravascular component spatially (such information is not available in 



68 
 

practice) and also does not account for the inter- and intra-subject variability between the 

spatial distributions of the tumor vasculature. We examined several ICA non-linearity 

functions for Mag-ICA and selected the third moment of a random variable as it performed 

better in separating the intravascular component of DCE-MRI sequences.  

A more rigorous way of addressing these problems would be to estimate the probability 

distribution of the intravascular signal and to use the complex-valued MRI data. The 

proposed adaptive complex ICA (AC-ICA) method which will be explained in this chapter 

determines the ICA non-linearity function based on the distribution of the vasculature 

through an expectation maximization (EM) procedure by performing online density 

estimation at each iteration on the complex-valued MRI data. 

4.2 Adaptive complex independent component analysis 

An adaptive complex independent component analysis (AC-ICA) algorithm was developed in 

this thesis for VIF calculation which used the complex-valued DCE-MRI data and performed 

density estimation at each iteration. This section first introduces ICA for complex-valued 

signals and then explains the generalized Gaussian distribution model that was used to derive 

the non-linearity of the AC-ICA algorithm. The derivation of the AC-ICA algorithm through 

density estimation at each iteration using an expectation maximization framework is then 

presented. 

4.2.1 Complex ICA 

As mentioned in previous chapter, spatial ICA is a statistical signal processing algorithm that 

attempts to unmix a dataset into its underlying features, assuming they are statistically 

spatially independent and without any prior information about the features or their mixing 

processes [98]. The spatial ICA model for a linear mixture is: 

     (4-1) 

where        is the mixing matrix,               
  is the complex-valued DCE-MRI 

dataset,   is the number of frames,                 is a matrix containing the   spatially 

independent components               and in this study these are the images representing 

the intravascular space and EES. As explained in the previous chapter, although we assume 

there are only 2 spaces in our model (intravascular space and EES), since ICA makes no 

assumption about the spatial distribution of these spaces, it might split each space into several 
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components. Having the observed mixture signals  , the spatial ICA algorithm attempts to 

estimate the IC matrix   and the mixing matrix  . This is achieved by finding an unmixing 

matrix         and estimating the IC matrix                 such that: 

     (4-2) 

where the rows of   are statistically spatially independent and have zero mean, unit variance 

(i.e.         , where   is the Hermitian transform) and,      is the expectation operator. 

The IC’s can be recovered up to a scaling and permutation [98].  

The Negentropy for a complex-valued random variable is defined using the joint distribution 

of its real and imaginary parts, i.e.          [153]: 

             
              

        
            (4-3) 

where    and    are the real and imaginary parts of  ,                            is 

the bi-variate differential entropy, and        is the natural logarithm. The complex 

Negentropy is always non-negative, and for a fixed covariance of         , the bi-variate 

differential entropy has its largest value for         
        

  .  

Estimating the Negentropy in equation 4-3 is difficult and thus, it is common to use the 

following equation for approximating Negentropy: 

                                       
 
 (4-4) 

where      , and                in which      is called the contrast function and      

is the non-linearity function for ICA. The optimal contrast function in information theoretic 

sense satisfies                     . Considering the fact that the second term in 

equation 4-4 is constant, maximizing Negentropy is equivalent to maximizing the following 

equation with respect to   (subject to the constraint      ) [153]: 

                            (4-5) 

This constrained optimization can be solved using a quasi-Newton method [153]. The 

Lagrangian function for this optimization problem is: 

                               (4-6) 
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where   is the Lagrange multiplier. Using the complex Newton update rule defined in [154], 

the optimization update rule becomes [153]: 

               
  

   
       (4-7) 

where    and    are the complex Hessian and the complex gradient matrices of   

respectively. The fixed point update rule for   was derived from equation 4-7 in [153] as the 

following equation: 

             
        

      

                           
         

       

                                                 
         

      
  

(4-8) 

where   ,    and     are the complex conjugate, the first derivative and the second derivative 

of   respectively. 

4.2.2 Phase shifting of DCE-MRI data for ICA 

Assume a 2-dimensional matrix         , where    represents the number of rows and    

represents the number of columns of  , is being used as the input to Fourier Transform (FT) 

to generate the MRI data. FT assumes that the zero frequency point is the initial point of the 

signal located at the first row and the first column of  . However, in MRI data acquisition in 

k-space, the zero frequency point is stored at the center of the k-space (located at the row 

     and column     ) and then higher frequency elements are stored around this center 

point which is not the arrangement that is expected by Fourier Transform.  

This rearrangement of the k-space values corresponds to displacement of data located at row 

  and column   with      rows and       columns in k-space, respectively. This is 

equivalent to a phase shift of                                      in image space which 

translates to a sign alteration of every other point. This phase shift has to be corrected by 

changing the sign of every other point in complex DCE-MRI data.  The phase shift has no 

effect when using the magnitude of the MRI data but affects the analysis when the complex 

data is being used. If this phase shift is not corrected prior to the application of ICA, then the 

values of neighboring voxels cancel out, in particular when computing the mean and the 

covariance of the signal. 
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4.2.3 Generalized Gaussian distribution 

The optimal non-Gaussianity in an information theoretic framework is the logarithm of the 

joint probability density function of the source that is being estimated, i.e.             

              . However, the joint probability density of the source is not known in ICA 

and thus has to be estimated. We used the generalized Gaussian distribution (GGD), which 

covers a wide range of distributions [155] and has been used in modeling various physical 

phenomena [156]–[158], to model the spatial distribution of the sources (intravascular space 

and EES) in the implementation of AC-ICA algorithm. The GGD model is given as: 

         
 

        
     

    

  
  (4-9) 

 where      is the gamma function defined as                 
 

 
 and   and   are the 

model parameters. GGD was introduced in [155] as a non-linearity function for ICA. We 

have observed that distributions of the real and imaginary parts of the MR images of each 

compartment (source) fit well into the GGD formulation. There is no theoretical proof for the 

fact that MR data fit well into GGD model. However, given the wide range of distributions 

that GGD model covers (shown in the examples in Figure  4-1), using the combination of a 

number of GGDs is capable of modeling most functions.  

 

Figure  4-1 Two different families of generalized Gaussian distributions where in each plot   

is kept constant (      in left plot and     in the right plot) and   is changed.  
 

We investigated this in various MR images and observed that GGD is a good approximation 

to our distribution of MRI signal in spatial domain. As an example, the histogram of an MR 

image of the physical phantom where a high resolution image of the phantom was acquired 

prior to administration of contrast agent (only water was flowing through the tubes) is given 

in Figure  4-2. These histograms (histogram of the real and imaginary parts of the image) 
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show the distributions fit well to the GGD model. Similar distributions were observed using 

the numerical phantom data as well (not shown) however, we selected this example to show 

the MR signal distributions using actual MRI data.  

 

Figure  4-2 A high resolution MR image of the tubes was acquired prior to administration of 

the contrast agent. The histograms of the real (left) and imaginary (right) parts of this tubes’ 

image are shown here. It can be seen from these images that the distribution (histogram) of 

the tubes’ image can be approximated using GGD model. 

 

Thus, assuming the linear mixture model holds for the MRI data in the complex domain, we 

modeled the MR image as a sum of a number of functions with GGD distributions. Using an 

expectation maximization framework (explained in the next section) the parameters of these 

GGD distributions were found at each iteration and the GGD distribution with the highest 

membership probability was used to derive the non-linearity in our AC-ICA algorithm. 

Substituting the parameters       of the selected GGD distribution in equation 4-9 and using 

the relationship between the ICA non-linearity and the pdf of the sources, i.e.          

              , the ICA non-linearity function was defined as equation 4-10:  

      
 

 
 
   

 (4-10) 

4.2.4 Expectation maximization 

We developed an expectation maximization framework to calculate the parameters of the 

probability distribution of the sources by modeling the probability density function (pdf) of 

the estimated component as a mixture of a number of GGDs at each iteration. Assuming the 

pdf of the estimated component   at each iteration, i.e.       , is comprised of   random 

variables with GGD distributions of the form            
  

          
     

     

  
  

 , and 

each GGD contributes to formation of the pdf of   with a membership probability   we have: 
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 (4-11) 

where                                          is the parameter space.        is 

a probability density function, thus: 

                    
  

              

 

     

    

 

   

           
  

   (4-12) 

           is also a probability density function, therefore                , and thus: 

        
  

   

 

   

   (4-13) 

and since    are probabilities they are non-negative (    ). The maximum Log-likelihood 

estimate can be formulated as: 

                  

 

   

                   

 

   

 

   

 

                                                                    

 

   

 

   

 

(4-14) 

where   represents the number of samples in  . The maximum likelihood estimation is 

formulated as:  

         
 

         (4-15) 

defining                      results in the following conditional probabilities that are 

called membership probabilities: 

       
      

        
   

     (4-16) 

using Jensen’s inequalities [159], i.e.       
 
          

  

  

 
    , the Log-likelihood at 

each iteration     can be expressed as: 
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(4-17) 

where         is the lower bound for the Log-likelihood function. To calculate the maximum 

Log-likelihood estimator we need to maximize its lower bound,        , iteratively. 

                            

 

   

 

   

                          

 

   

 

   

 (4-18) 

The second term of the right hand side of equation 4-18 is a constant as it is calculated from 

the old values. Thus, the maximization problem is simplified to: 

      
 

             
        

                     

 

   

 

   

  (4-19) 

The probabilities        can be calculated at each iteration     using equation 4-20: 

          
  
          

      
    

   
          

      
     

   

                         

 

   

   (4-20) 

Setting the derivative of         with respect to    equal to zero we have: 

       

   
        

                     

   
  

 

   

 (4-21) 

which results in the following expression for    
   

 at each iteration: 

  
     

  
                  

  
   

  
   

 
 

   
    

 (4-22) 

Setting the derivative of         with respect to    equal to zero we have: 

       

   
        

                     

   

 

   

   (4-23) 

this equation results in equation 4-24 to calculate   
   

 at each iteration: 

 

  
   

   
 

  
   

  
 

  
   

            

 

   

           

 

   

 
    

  
   

 

  
   

    
    

  
   

    (4-24) 
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where                     , is the polygamma function. This equation can be solved 

using any optimization algorithm. We used the fzero function of MATLAB (The MathWorks 

Inc., Natick, USA) software to find the value of   
   

 at each iteration. These three equations 

(equation 4-20, equation 4-22 and equation 4-24) were solved at each iteration and the 

parameter set                              were calculated for each GGD distribution. 

The GGD that had the highest membership probability (        ) was selected as the pdf of 

the source and its parameters were used in the ICA algorithm.   

4.2.5 AC-ICA implementation and VIF identification 

Dimensionality reduction and Whitening were performed as pre-processing steps in order to 

reduce noise and make the signal zero mean and unit variance (similar to the Mag-ICA 

algorithm). Singular value decomposition (SVD) was performed on the dataset and the 

significant eigenvalues (the eigenvalues that were bigger than 0.1% of the largest eigenvalue) 

that accounted for 99.9% of the information in the dataset were kept. AC-ICA was applied to 

the dataset after dimensionality reduction and Whitening, and the number of extracted 

independent components (IC) was equal to the number of significant eigenvalues which were 

kept at the dimensionality reduction step. The intravascular components were selected 

heuristically such that the curves that had a uniform pre-contrast uptake phase, an uptake 

phase in which the intensity increased rapidly and a washout phase in which the intensity 

dropped to less than 60% of the peak value were selected as the intravascular components.  

4.3 AC-ICA separation results 

The AC-ICA algorithm for separating the intravascular component was first applied to the 

numerical phantom (described in chapter 2) to separate the signal of the tubes, which 

represented the intravascular space, from the simulated DCE-MR images of the phantom. 

4.3.1 Numerical phantom 

The adaptive complex ICA (AC-ICA) for intravascular time-intensity curve calculation was 

applied to all simulated datasets (four different resolutions) and the signal from inside the 

tubes (intravascular signal) was extracted. Dimensionality reduction was performed on each 

dataset through singular value decomposition (SVD) of the covariance matrix of the data. The 

number of the eigenvalues that were kept for analysis ranged between 8 and 15 which is the 
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maximum number of IC’s that could be estimated. The data was then Whitened to make it 

zero mean and unit variance. In all cases, all IC’s were estimated and the IC (or ICs) that 

corresponded to the tubes’ signal was selected using the heuristic criterion. In brief the IC 

that had a uniform pre-contrast uptake followed by a rapid contrast uptake and also a rapid 

washout of the contrast agent to less than 60% of the peak signal intensity within 3 [min] of 

injection of the bolus was selected as the tubes’ signal. 

In Figure  4-3 the results of applying AC-ICA to the simulated complex-valued DCE-MRI 

data are illustrated (compare to Figure  3-2 at page 54 which showed these results for 

Mag-ICA algorithm). The extracted IC images of tubes for all 4 resolutions are shown in 

Figure  4-3a-d. The time-intensity curves of the tubes for all four simulated datasets are shown 

in Figure  4-3e. These curves represent the average signal intensity over time of all the voxels 

that are separated by ICA as the intravascular space (tubes). Figure  4-3e also shows the actual 

intravascular time-intensity curves as well as the raw data curve calculated by averaging the 

signal across the raw MRI images. The time-intensity curves are normalized with respect to 

their maximum and their pre-contrast signal intensities are set to zero to enable comparison. 

 

e  
Figure  4-3 The separated tubes’ image and the time-intensity curve of the tubes calculated 

using AC-ICA for the four simulated DCE-MRI datasets. Tubes images for datasets with 

in-plane resolutions of a) 150 [μm], b) 300 [μm], c) 600 [μm], d) 800 [μm]. e) Calculated 

time-intensity curves of the tubes corresponding to the 4 simulated datasets, the actual 

time-intensity curve of the tubes (Actual Curve) and the curve corresponding to the mean 

across the entire raw (not analyzed) images over time (Raw Data). 
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The IC images extracted using AC-ICA had complex values and thus each voxel is 

represented with a two dimensional vector (magnitude and phase) while each voxel in the 

images shown in Figure  4-3a-d is represented with a one dimensional value (image signal 

intensity). This conversion was required for visualization purposes and was performed by 

assigning negative sign to magnitude of the values of the voxels with                

and assigning positive sign to magnitude of the values of the voxel with           or 

          . This method of visualizing the images provides consistent results with the 

Mag-ICA analysis where we had both negative and positive signal intensity values. 

For each in-plane resolution, 10 DCE-MRI data sets of the phantom were simulated with 

SNR=20 and the AC-ICA algorithm was applied to all datasets. Table  4-1 reports the root 

mean square error (RMSE) between the estimated time-intensity curves of the tubes obtained 

using AC-ICA algorithm and the actual curve for all 4 in-plane resolutions. Table  4-1 also 

reports the correlation coefficient between the estimated and actual time-intensity curves of 

the tubes for AC-ICA algorithm. These values are calculated using the results of applying 

Mag-ICA to the 10 different implementations of the phantom for each resolution (compare to 

Table  3-1 at page 55 which reported these results for Mag-ICA algorithm). 

Table  4-1 The root mean square error (RMSE) and correlation coefficient between the 

estimated tubes’ time-intensity curves and the actual curve for 4 resolutions in numerical 

phantom for AC-ICA algorithm. These values were calculated using the results of applying 

Mag-ICA to the 10 different implementations of the phantom for each resolution (these 

values were calculated after removing pre-contrast concentrations and normalizing the 

curves). 

In-plane Resolution 150μm 300μm 600μm 800μm 

                               Root Mean Square Error (RMSE) 

AC- ICA 0.04± 0.01 0.04±0.01 0.07±0.01 0.08±0.01 

 Correlation Coefficient 

AC-ICA 0.99±0.001 0.99±0.001 0.97±0.01 0.96±0.01 
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4.3.2 Physical Phantom  

The AC-ICA algorithm was also applied to DCE-MRI images of the physical 

tissue-mimicking phantom. Similar to the simulation study, dimensionality reduction was 

performed first where eigenvalues that were larger that 0.1% of the largest eigenvalue were 

kept and the data was Whitened. The phantom data was reconstructed in 5 different in-plane 

resolutions and the AC-ICA algorithm was applied to all 5 datasets. Figure  4-4 shows the 

results of applying AC-ICA algorithm to the DCE-MRI data of the physical phantom 

(compare to Figure  3-4 at page 57 which showed these results for Mag-ICA algorithm). The 

IC images corresponding to the tubes’ signal of the 5 datasets are shown in Figure  4-4a-e. 

The time-intensity curves of the 5 datasets as well as the actual time-intensity curve of the 

tubes that was measured at the inflow line of the phantom, the time-intensity curve at the 

outflow line and the raw data curve calculated by averaging the signal across the raw MRI 

images over time are shown in Figure  4-4f. The baseline values of the enhancement curves of 

all datasets were set to zero and they were normalized with respect to their maximum values.  

 

f  
Figure  4-4 The separated tubes image and the intravascular time-intensity curve of the tubes 

calculated using AC-ICA for each of the five DCE-MRI datasets of the physical 

tissue-mimicking phantom. Tubes’ images for datasets with in-plane resolutions of a) 

170 [μm], b) 225 [μm], c) 340 [μm], d) 450 [μm], and e) 680 [μm]. e) Calculated 

time-intensity curves of the tubes corresponding to the 5 datasets, the actual time-intensity 

curve of the tubes (inflow line), the curve of the tubes at the outflow line, and the curve 

corresponding to mean across the raw (not analyzed) MR images over time (Raw Data). 
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Two physical phantoms were built and DCE-MRI imaging was performed on both phantoms 

to assess the reproducibility of the results for the intravascular time-intensity curve 

calculation algorithms. Table  4-2 reports the root mean square error (RMSE) between the 

estimated and the actual time-intensity curves of the tubes (inflow) for all 5 datasets of both 

phantoms. This table also reports the correlation coefficient between the estimated and actual 

time-intensity curves of the tubes for AC-ICA algorithm in all 5 in-plane resolutions 

(compare to Table  3-2 at page 58 which reported these results for Mag-ICA algorithm). 

 

Table  4-2 The root mean square error (RMSE) and the correlation coefficient between the 

estimated and actual time-intensity curves of the tubes (inflow) for all 5 datasets of both 

physical phantoms using AC-ICA algorithm (RMSE and correlation coefficients are 

calculated after setting the baseline values of the curves to zero and normalizing them). 

In-plane 

Resolution 
170μm 225µm 340μm 450μm 680μm 

 Root Mean Square Error (RMSE) 

AC- ICA 0.07±0.01 0.09±0.02 0.08±0.03 0.08±0.01 0.11±0.03 

 Correlation Coefficient 

AC-ICA 0.97±0.004 0.96±0.02 0.97±0.01 0.97±0.02 0.95±0.03 

  

4.4 Discussions 

A fundamental step in PK modeling is determining the intravascular contrast agent 

concentration which is usually approximated using an arterial input function (AIF). In this 

thesis we developed two ICA-based methods for identifying and separating the intravascular 

component of the tissue of interest in DCE-MRI. The previous chapter presented the results 

of applying the Mag-ICA algorithm to DCE-MRI data. Although the output of MR imaging 

is complex-valued, only the magnitude of the data was used in Mag-ICA algorithm (as is 

common in most DCE-MRI studies) and the phase information was not utilized. This 

introduced a fundamental challenge in ICA analysis as the linear mixture assumption of ICA 

was violated. This problem was addressed by using short echo time (TE) which minimizes 

intra-voxel de-phasing. The Mag-ICA algorithm also used a fixed non-linearity function in its 

ICA implementation. Such a separation algorithm does not take into account the variability in 
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the distribution of tissue vasculature. The separated intravascular image and time-intensity 

curves were evaluated using actual time-intensity curves in numerical and physical phantoms 

as well as using intravascular contrast ultrasound measurements in in vivo animal models.  

To address these shortcomings of Mag-ICA algorithm, an adaptive complex ICA (AC-ICA) 

algorithm was developed that used the complex-valued MRI data and also used an adaptive 

non-linearity function in its ICA implementation. The adaptive non-linearity function was 

determined by assuming the probability distribution of MRI data takes the form of a mixture 

of generalized Gaussian distributions (GGD) whose parameters were estimated using an 

expectation maximization (EM) approach at each iteration.   

The AC-ICA algorithm was applied to the DCE-MRI data of the simulated and physical 

tissue-mimicking phantoms and the tubes’ time-intensity signal was estimated. Comparing 

these results to the results that were presented in the previous chapter for Mag-ICA algorithm 

demonstrate the superior performance of the AC-ICA algorithm. Both physical and 

simulation data were reconstructed in different resolutions to assess the robustness of the 

algorithm and its capability in separating signal of the tubes in low resolution data that are 

more common in clinical practice.  

Comparing the separation results of simulation study presented in Figure  4-3 and Table  4-1 

for AC-ICA with those of Mag-ICA in Figure 3-2 and Table 3-1 both AC-ICA and Mag-ICA 

algorithms were capable of separating time-intensity curve of the tubes with high accuracy 

for high resolution data in both spatial and temporal domains. However, as the voxel size 

increased (lower resolution), the AC-ICA demonstrated higher accuracy and robustness 

compared to Mag-ICA in dealing with datasets with a wide range of in-plane resolutions. 

There were small differences between the time-intensity curves of the tubes calculated using 

AC-ICA for different resolutions while Mag-ICA curves changed significantly and its 

time-intensity curves were not good for the lower resolutions. Note that in lower resolutions 

although the tubes could not be visualized in the spatial domain, however; their time-intensity 

curves were calculated with good accuracy using AC-ICA algorithm.    

Similar results were obtained in the DCE-MRI data of the physical phantom as shown in 

Figure  4-4, Figure  3-4 and also reported in Table  4-2 and Table  3-2. The tubes were separated 

accurately in both spatial and temporal domains for the high resolution data using both Mag-

ICA and AC-ICA algorithms. As the pixel size increased, it became more difficult to 

visualize the tube in the IC images such that in the two lowest resolutions it was impossible 
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to see them separately from the leakage. However, the time-intensity curve of the tubes was 

estimated with high accuracy for all resolutions in AC-ICA algorithm. Similar to the 

simulation studies, the AC-ICA demonstrated better accuracy in dealing with lower 

resolution data and there were smaller differences between time-intensity curves of the tubes 

at varying resolutions compared to the Mag-ICA algorithm.  

There was an aura in the physical phantom images outside of the tubes which was due to a 

fabrication artifact. A few of the tubes were broken during the phantom construction process 

and the contrast agent was capable of leaving these broken tubes more easily. The results 

show that this aura was smaller in the tubes image of the AC-ICA algorithm (particularly in 

the high-resolution images) compared to the Mag-ICA results which shows that AC-ICA is 

capable of separating the intravascular space more accurately. There are two reasons for 

superior performance of AC-ICA: 

1- The ICA non-linearity function was derived at every iteration to match the 

probability distribution of the tubes’ signal 

2- Unlike the Mag-ICA algorithm, the linear mixture assumption of ICA was not 

violated in AC-ICA and thus intra-voxel de-phasing (spins inside each voxel are not 

necessarily in-phase) and partial volume effect did not play as significant role as they 

did in Mag-ICA.   

Combination of both of the above mentioned changes led to better performance of the 

AC-ICA algorithm. However, the intra-voxel de-phasing was minimized in the Mag-ICA 

algorithm by using a short TE and thus, the use of the adaptive non-linearity function had the 

most significant effect in the results. 

In this chapter and also chapter 3, the MR signal intensity was used to identify and separate 

the intravascular component and assess the performance of the AC-ICA and Mag-ICA 

algorithms. However, PK analysis requires the intravascular time-intensity signal to be 

converted into contrast agent concentration. As mentioned in chapter 3, this is not a trivial 

step as ICA suffers from an intrinsic arbitrary scaling problem and also since it is a 

data-driven algorithm it might split the intravascular component into several components. 

The steps required for generating a single intravascular signal from the potentially multiple 

intravascular ICs are explained in chapter 5, where the ICA-based VIF will be applied to 
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DCE-MRI sequences of prostate cancer patients. The steps required for conversion of this 

intravascular MR signal intensity to contrast agent concentration are provided in appendix III. 

4.5 Summary 

This chapter presented the AC-ICA algorithm and results of applying the AC-ICA algorithm 

to the numerical and physical tissue-mimicking phantoms and compared them to the 

separation results achieved by Mag-ICA algorithm (chapter 3). The results presented in these 

two chapters (chapter 3 and chapter 4) showed that although the tubes were not visible in the 

IC images of low resolution datasets (in both simulation and experiment), the intravascular 

time-intensity curves in low resolution datasets were very close to the high resolution ones 

particularly when using AC-ICA algorithm. This demonstrates that ICA-based calculation of 

the intravascular time-intensity curve has the potential to be used in clinical studies, where 

the resolution of DCE-MRI data is very low. The AC-ICA algorithm provided more accurate 

results compared to Mag-ICA, which suggests that complex-valued (magnitude and phase) 

DCE-MRI data should be used to calculate the intravascular time-intensity curve in the 

tumor. This could lead to more accurate PK analysis and better understanding of the tumor 

response to therapy. 

Chapter 5 applies the VIF of the AC-ICA algorithm to DCE-MRI data of a cohort of 27 

prostate cancer patients (28 datasets with one patient being imaged twice). The separation 

results presented so far were on the MRI signal intensity while PK analysis requires these 

results to be converted into contrast agent concentration. This step is explained in detail in the 

next chapter and appendix III, and the PK parameters achieved using the proposed VIF 

calculation algorithms will be compared to the PK parameters calculated using the contrast 

agent concentration over time in the femoral as the AIF.  
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Chapter 5                                                                                

Prostate Cancer Assessment 

The previous chapter introduced the AC-ICA algorithm for separating the intravascular 

component in DCE-MRI. It also presented the results of applying the AC-ICA algorithm to 

the numerical and physical tissue-mimicking phantoms and compared its separation result to 

those of the Mag-ICA algorithm (presented in chapter 3). Comparing the results of chapters 3 

and 4 demonstrated that the AC-ICA algorithm provides a better separation of the 

intravascular component and hence is used in this chapter for PK analysis.  

Chapter 5 presents the steps required for combining the intravascular ICs (in case more than 

one IC is identified as intravascular) to generate a single intravascular signal and converting 

this signal into contrast agent concentration to generate the VIF. Chapter 5 also applies the 

VIF separation algorithm to DCE-MR images of a cohort of 27 prostate cancer patients (28 

datasets with one patient being imaged twice) and performs PK analysis on each dataset. 

These PK parameters are then compared to PK parameters calculated using the signal of a 

large artery (femoral artery) as the AIF. This chapter also explains the need for normalization 

of the VIF and AIF curves to enable comparison between the PK parameters of two methods. 

The final section of chapter 5 examines the performance of the VIF-based PK parameters 

when low temporal resolution DCE-MR images are acquired and compares them to AIF-

based parameters. 

5.1 Vascular Input Function 

Identifying and separating the signal of the intravascular space and calculating the vascular 

input function (VIF) includes the following steps: 

1- Applying the ICA-based separation algorithms to the DCE-MRI data 

2- Converting the intravascular ICs into contrast agent concentration 
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3- Normalizing the concentration-time curve to minimize errors due to manual ROI 

selection and enable comparison of the parameters of different methods. 

Applying ICA-based algorithms to the DCE-MRI data and separating the intravascular 

component (step 1) was explained in the previous chapters and in this chapter steps 2 and 3 

will be explained in detail. 

5.1.1 Converting ICA-based VIF to Concentration 

The intravascular image and its corresponding time-intensity curve that are calculated using 

ICA-based algorithms have to be converted into contrast agent concentration before being 

used in PK analysis. The steps required to convert DCE-MRI signal acquired by spoiled 

gradient recalled (SPGR) pulse sequence are explained in detail in appendix III. As explained 

in this appendix, in order to convert the signal intensity of a voxel at time      into its 

contrast agent concentration, both the pre-contrast signal intensity and the MR signal 

intensity at       are required. This section provides details of preparing the AC-ICA results 

for conversion into contrast agent concentration. 

As ICA is a data-driven algorithm which does not make any assumption about the physiology 

of the data it is processing, some structures, e.g. intravascular space, might split into several 

ICs. These ICs have to be first combined to represent the entire intravascular signal. We can 

rewrite equation 4-1 in expanded form as follows: 

 

  

 
    

           
        

           

 
 
 
 
 
 
 

  

 
   

   

 
   

   

 
     

 
 
 
 
 
 

 (5-1) 

where    is a column of mixing matrix  , and   is the number of ICs that are identified as 

intravascular. The time series data corresponding to the intravascular signal,    , can be 

written as: 

                            
 
    

      
         

      
    (5-2) 
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where       is the intravascular portion of the DCE-MRI dataset at time    (    ). The 

change in the intravascular signal due to contrast agent arrival and passage through the 

intravascular space between     and       is: 

                     (5-3) 

by adding         to the DCE-MRI image corresponding to     (which is   ) we could 

generate a DCE-MRI time-series data in which the only enhancement is due to the contrast 

agent arrival and passage through the intravascular space. The signal intensity is the 

magnitude of the complex-valued MRI signal and thus we have: 

             

                      

(5-4) 

Once         and          are calculated, the intravascular concentration is calculated as 

explained in appendix III.  

5.1.2   Normalization of VIF 

Most studies analyze the relative values of PK parameters (particularly       ), which is 

useful but limits the application of PK analysis. Absolute values of the PK parameters enable 

better understanding of treatment response or monitoring the progression of the disease, e.g. 

in active surveillance patients. There might also be a relationship between tumor grade and 

different PK parameters which cannot be studied in a patient population if the absolute values 

of parameters are not known. However, due to the arbitrary scaling of the VIF (or AIF) 

between subjects, absolute values cannot be obtained. The scaling of the VIF (or AIF) varies 

depending on the manual ROI that is drawn around a large artery or the ROI that is being 

used for VIF (or AIF) estimation. It is common to normalize the VIF (or AIF) by dividing it 

by the number of voxels in the ROI which is operator-dependant and varies between 

measurements. For instance if the manually identified ROI is close to the vessel wall (large 

partial volume effect) in one subject and close to the center of the artery (smaller partial 

volume effect) in another patient, the AIFs would have different scaling which introduces 

variation in the calculated PK parameters. Such normalization becomes more problematic 

when VIFs are being used as the region used for ICA analysis may vary significantly.  
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Although it is not practical to calculate the absolute scaling of the VIF (or AIF), if they were 

scaled similarly, the absolute values of their corresponding PK parameters could be compared 

between subjects. We propose normalizing the VIF (or AIF) with respect to their area under 

the curve (AUC) as the total blood that passes through the tissue for a specific imaging 

interval (between the arrival of the contrast agent and the time point of the last frame), is 

independent of AIF or VIF that is being used. Appendix IV shows that if two VIFs satisfy the 

model equations for a specific tissue type, their areas under the curve (AUC) have to be 

equal. Such normalization in addition to allowing comparison between AIF-based and 

VIF-based PK parameters, provides more consistent PK results inter-subject if the dose per 

kilogram-of-body-weight of injected contrast agent is kept constant between patients. 

5.2 VIF calculation: Numerical Phantom 

The AC-ICA algorithm was applied to the DCE-MR images of the numerical phantom and 

the intravascular ICs were identified heuristically in chapter 4. These MR images were then 

converted into contrast agent concentration using the standard approach for SPGR images 

explained in section 5.1 and appendix III, and the results are shown in Figure  5-1 for different 

resolutions. Figure  5-1a shows the VIF curves calculated for each resolution, averaged over 

10 different simulated datasets for that resolution. As can be seen in this figure the amplitude 

of the curves change at different resolutions and there is underestimation of the contrast agent 

concentration for low resolution datasets (due to partial volume effect). This figure also 

shows underestimation of the VIF curve for the highest resolution dataset which is probably 

due to the fact that AC-ICA was capable of separating the tube walls from the center of the 

tubes and only the component corresponding to the center of the tubes was used as the VIF.  

 
Figure  5-1 a) The VIF curves (contrast agent concentration in tubes) for the simulated 

DCE-MRI dataset with the 4 different resolutions (each curve is the average of VIF 

calculation for 10 simulated phantoms), b) the normalized VIF curves calculated for 

numerical phantom at different resolutions. 
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As can be seen in this figure, there is high variance between curves and partial volume effect 

is being handled differently among these datasets as the in-plane resolution changes, which 

makes them difficult to be used as the VIF in subsequent PK analyses. In order to address this 

problem a normalization procedure was introduced in previous section in which the VIF 

curve was normalized with respect to its area under the curve (AUC). The VIF curves (shown 

in Figure  5-1a) after applying the normalization step are shown in Figure  5-1b. As can be 

seen the average VIF curves for each resolution after normalization have the same amplitude 

and are very similar (Figure  5-1b). This demonstrates the reproducibility of the calculated 

VIF (normalized) in different resolutions particularly in low resolution datasets that are 

commonly encountered in clinical studies.   

5.3 VIF calculation: Prostate  

The field of view (FOV) in prostate DCE-MRI contains several structures (e.g. prostate, 

rectum, bladder, femoral and iliac arteries, etc.) and each structure has its own bolus passage 

profile (different arrival times, different times to peak, etc.). Thus, applying ICA to the full 

DCE-MRI field of view separates these structures and their corresponding vascular input 

function. Such a separation results in an IC corresponding to the VIF of the prostate tissue, an 

IC corresponding to the AIF measured at the arteries and several other ICs corresponding to 

other structures with significant vascular signal. Figure  5-2 shows the results of applying 

AC-ICA to a sample slice of the DCE-MRI of one of the prostate cancer patients. The figure 

shows the full DCE-MRI field of view, and the ICs corresponding to the arteries and prostate 

gland separated using AC-ICA algorithm. Figure  5-2d shows the contrast agent concentration 

over time for the femoral artery (shown with blue arrow) using the AC-ICA results and using 

manual AIF calculation. In order to generate these curves an ROI was first drawn around the 

femoral artery and was used in calculating both curves. For manual AIF calculation the full 

DCE-MRI of the prostate was first converted into contrast agent concentration and then the 

concentration of the ROI over time was calculated. For the ICA-based AIF, the AC-ICA 

algorithm was first applied to the full field of view of prostate DCE-MRI (IC image of 

arteries is shown Figure  5-2b). Then, the signal enhancement of the IC corresponding to the 

arteries was converted into contrast agent concentration and the concentration of the femoral 

artery ROI was calculated over time and is shown in Figure  5-2d. As expected, in presence of 

an artery the AC-ICA algorithm provided an AIF curve very close to the one that would be 

measured using manual techniques that are currently used (this example was given to 

illustrate the performance of the proposed algorithm when there is an artery in FOV).    
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Figure  5-2 a) The full DCE-MRI field of view for a sample dataset. The independent 

components corresponding to b) the prostate vasculature, and c) the major arteries, identified 

by the AC-ICA algorithm (the color bars in b and c show the signal intensity of the separated 

IC and have arbitrary units). d) The AIF calculated using the AC-ICA results as well as 

manual AIF measured at the femoral artery. For manual AIF calculation the full DCE-MRI 

data was first converted into contrast agent concentration and then the concentration of the 

ROI over time was calculated. For the ICA-based AIF, the AC-ICA algorithm was first 

applied to the full field of view of prostate DCE-MRI. Then, the signal enhancement of the 

IC corresponding to the arteries was converted into contrast agent concentration and the 

concentration of the femoral artery ROI was calculated over time. 

However, using the full FOV for AC-ICA is time consuming and also affects the prostate 

vasculature pdf estimation as there is a large number of voxels with zero or near zero 

concentrations in its IC image. Using such a large FOV might affect ICA separation 

performance as the averaging steps are on a very large FOV and thus small changes in the 

signal might be ignored. In order to achieve more accurate results and fast implementation a 

rectangular region of interest was selected around the prostate tissue and AC-ICA was 

applied to this region rather than the entire prostate gland (yellow box in Figure  5-3a).  

Each prostate DCE-MRI dataset contained 20 slices. The slices in which the prostate was 

visible were first identified and a rectangular region of interest was selected around the 

prostate gland. The AC-ICA algorithm was then applied to each individual slice and the 

intravascular component was separated. The separated intravascular component for a sample 

prostate dataset in spatial and temporal domains is shown in Figure  5-3b-c 
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Figure  5-3 a) The full DCE-MRI field of view for a sample dataset. The independent 

component corresponding to the prostate vasculature separated by the AC-ICA algorithm in 

b) spatial domain (color-bar shows the average signal intensity of the separated IC spatially 

which has an arbitrary unit due to scaling ambiguity of ICA), and c) temporal domain. 

 

Once the intravascular component was identified and separated, the signal intensity in each 

voxel of the intravascular DCE-MRI sequence (generated by removing the contrast agent 

enhancement in the extravascular space), was converted into contrast agent concentration. 

Once each intravascular frame was converted into contrast agent concentration it was 

averaged over the entire image (its total contrast agent concentration was divided by the 

number of its voxels) to generate the VIF curve. The results of this conversion (for the slice 

shown in Figure  5-3) in temporal domain (representing the VIF curve) and in spatial domain 

(representing the prostate vasculature) are shown in Figure  5-4. 

 
Figure  5-4 a) The VIF curve generated by averaging the contrast agent concentration of each 

frame in the intravascular space, b) the intravascular space in spatial domain showing the 

intravascular contrast agent concentration in every voxel of the prostate tissue (color-bar 

shows the fraction of each voxel that is intravascular). 
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The VIF curves for 6 sample patients (one slice per patient) are shown in Figure  5-5 (first 

column). The scale of such a VIF curve depends on the size of the ROI that was initially 

selected for ICA analysis and thus is operator-dependent. Moreover, the region that the 

prostate occupies in each slice is highly variable and thus the size of the ICA region can 

change significantly between slices and also between different subjects. These issues make 

the calculated PK parameters highly dependent on the manually selected ROI.  

As explained in the normalization section 5.1, if two VIFs satisfy the governing equations of 

the two-compartment Tofts-Kety model, their AUC have to be equal. In order to resolve the 

issue of VIF dependence on the ROI and also the problems that were explained in the 

previous section (section 5.2) which demonstrated the dependence of the VIF on the imaging 

resolution, the VIF was normalized with its AUC as shown in Figure  5-5 (third column).  

In the prostate DCE-MRI study we also measured an AIF for each dataset by selecting a 

region close to the center of the femoral artery that was visible in the images (blue arrow in 

Figure  5-3a) and converted its signal intensity into contrast agent concentration over time 

(second column in Figure  5-5). The AIF was measured on the middle slice of the 3D MRI 

volume to minimize the inflow effects. The effect of the manually selected ROI in artery is 

not as significant as the ICA-based VIFs. However, the voxels that were closer to the artery 

wall had lower signal intensity (due to partial volume effect) compared to the voxels at the 

center. Thus, if the ROI in the artery was selected close to the vessel wall, its AIF would have 

lower amplitude compared to the AIF measured using a ROI close to the center of the vessel. 

Thus, we normalized the AIF with respect to its AUC (third column in Figure  5-5). Such 

normalization of the AIF and VIF curves, in addition to addressing the above mentioned 

problems of each method, enabled comparing the PK parameters obtained using AIF with the 

parameters obtained using VIF.  

The rationale behind comparing the PK parameters calculated using VIF and AIF was that 

both curves were assumed to satisfy the governing equation of the two-compartmental 

exchange model (Tofts-Kety models). Thus, as shown in normalization section, these curves 

had to have equal AUC and the differences in their PK parameters (Results section) arised 

from their error in estimating the actual VIF of each voxel.  Note that the PK parameters of 

the two curves (AIF and VIF) could not be compared before normalization as the AUC of 

VIFs that are shown in first column of Figure  5-5 were much smaller than the AUC of the 

AIFs shown in second column of Figure  5-5 and thus their PK parameters had different 
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scaling. Even while comparing the PK parameters calculated for the same VIF (or VIF) 

calculation method, the PK parameters of different patients had larger variation if these 

curves were not normalized as reported in Table  5-1 and Table  5-3. 

 
Figure  5-5 The VIF (first column) and AIF (second column) before normalization for a 

sample slice of 6 patients. The corresponding normalized VIF and normalized AIF (third 

column) and the vascular map corresponding of the VIF curves (fourth column). 
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5.4 PK analysis results 

The Tofts-Kety model and the extended Tofts-Kety model are the most commonly used PK 

models in tumor characterization [76]–[80] and thus in this thesis these two models were 

used. As mentioned in chapter 1, the governing equations of the Tofts-Kety model which is 

the weakly vascularized limit of a two compartment exchange model are:  

              

  

   
  

                        

(5-5) 

and the governing equations of the extended Tofts-Kety model which is the highly perfused 

limit of the two compartment exchange model are: 

                      

  

   
  

                        

(5-6) 

To solve these equations and calculate the PK parameters, the term       which is the tissue 

concentration was available from the DCE-MR images of the tissue and the term       was 

provided using a VIF (or AIF) calculation method. In extended Tofts-Kety model it is 

assumed the plasma concentration (  ) is equal to the arterial concentration (  ) as it is 

entering the tissue (     ). Pharmacokinetic parameters were calculated for each voxel of 

the prostate gland in all patients, via solving the Tofts-Kety model equations and extended 

Tofts-Kety model equations using both the AC-ICA based VIF and AIF from the femoral 

artery. The analysis for extended Tofts-Kety model was performed in two different methods: 

1- Using the prostate vasculature map that was estimated by AC-ICA algorithm as the    

parameter and subtracting the         term from the DCE-MRI data and then using 

the Tofts-Kety model and the AC-ICA based VIF to calculate the remaining two 

parameters (       and   ). 

2- Using the ICA-based VIF and solving the model parameters for all 3 model 

parameters        ,    and,   ).   
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5.4.1 Normal Peripheral Zone Tissue  

In order to assess the performance using VIF calculated using the AC-ICA algorithm in PK 

analysis, an ROI was identified on the normal peripheral zone (PZ) tissue of the prostate 

gland. A normal PZ tissue appears as a high intensity region on the peripheral zone of the 

prostate (Figure  5-6a) and was identified using the   -weighted images of the prostate (in 

cases such a tissue could be identified). PK parameters reflect the intrinsic characteristics of 

the tissue (permeability and perfusion) and thus, should have the same values for normal PZ 

tissue in different patients, and the smaller the variations of the PK parameters for this tissue 

type, the better the performance of the PK analysis method. The PK parameters of the normal 

PZ tissue obtained using the VIF were compared to the PK parameters obtained using the 

AIF between patients to assess the performance of the method in 28 DCE-MRI datasets of 

prostate cancer patients. 

 
Figure  5-6 a) The   -weighted image of the sample prostate that was shown in Figure  5-3 

where the tumor in the central gland is visible as a hypo-intense region (show by the red 

arrow). An ROI in the normal PZ tissue is also shown in green (hyper-intense region in PZ). 

b) ADC map of the same slice showing the tumor in central zone as a hypo-intense region.  

 

5.4.2 Tofts-Kety Model Results 

The ICA-based VIF and AIF from femoral artery were first used in Tofts-Kety model which 

has two model parameters (       and   ) and ignores the contribution of the vascular 

compartment (  ) in tissue concentration. The two model parameters were calculated for 

every voxel in the prostate region for all DCE-MRI datasets. For each 3D DCE-MRI dataset 

the analysis was performed on the slices that were identified as having the tumor or a 

suspicious lesion. Figure  5-7 shows the        map calculated using the VIF and the AIF for 

the 6 patients whose VIFs were shown in Figure  5-5. As can be seen in this figure, in both 

VIF-based and AIF-based        maps, the voxels of the normal PZ tissue have small values. 
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In addition, in both methods the tumor or suspicious lesion is identifiable and its voxels have 

high        values. Thus, the performance of the methods in detecting the suspicious region is 

similar. This figure also shows the   -weighted MR image and ADC map of the prostate slice 

to be used for tumor and normal PZ tissue detection.  

 
Figure  5-7 This figure shows the ADC map (first column), and   -weighted MR image of the 

slices that were shown in Figure  5-5 which were used for tumor detection. The corresponding 

       maps calculated for Tofts-Kety model using the normalized VIF (third column) and 

normalized AIF (fourth column) are also shown.  

   

The        value of the normal PZ tissue is a characteristic of this tissue type and has to have 

the same value in different patients, independent of the analysis technique. The variations in 

the        values reported for this tissue in different studies might be due to errors in 

modeling and analysis as well as errors in the AIF used for PK analysis. Thus, the method 
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that provides a smaller variation in the value of this parameter is considered to be performing 

better. We selected an ROI on the normal PZ tissue of the prostate in all patients where such 

a region was visible. The number of normal PZ voxels in each patient varied from 20 to 300 

voxels. To avoid the bias from the patients with larger number of voxels in summary statistic 

and also considering that the pooled distribution of all PZ voxels was positively skewed (was 

not Gaussian), the means of the        value for each patient were used to assess the 

variations. Using the mean value, each patient was represented with one value in the 

distribution and according to central limit theorem their distribution would be Gaussian 

(distribution of the sample means is Gaussian). The mean and standard deviation of these 

values were then calculated and reported in Table  5-1 using AIF- and VIF-based methods.   

The table also reports the mean and standard deviation of the        value for normal PZ 

tissue using AIF and VIF without normalization. These results show that normalizing the 

curves provides smaller variation in the        value of the normal PZ tissue. These values 

were calculated for the entire patient population with normal PZ tissue which included 20 

datasets (in 10 patients there was no visible normal PZ tissue). 

 

Table  5-1 The mean and standard deviation of the        value calculated from the 

distribution of the mean values for each patients for normal PZ tissue(the mean value for each 

patient was calculated by averaging the        values of all normal PZ voxels in that patient).  

The        values were calculated for Tofts-Kety model using VIF (normalized and not 

normalized) and AIF (normalized and not normalized) for normal PZ tissue (for 20 patients). 

Method Tissue Type 
VIF (AC-ICA) 

[min
-1

] 

AIF (femoral artery) 

[min
-1

] 

With 

Normalization 
Normal PZ 0.26 ±0.07 0.33 ±0.19 

Without 

Normalization 
Normal PZ 1.28±0.58 0.35±0.42 

   

Figure  5-8a presents the box-plot of the distribution of        values for the normal PZ region 

that was identified for each patient. The box-plot shows the median (horizontal line) and the 

25 percentile to 75 percentile range (box) for all slices in each patient in which a normal PZ 

region was identified (for both the VIF-based and AIF-based        maps). As can be seen in 

this figure the        maps calculated using the AC-ICA based VIF provided smaller 
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variation in the        values of the normal PZ tissue compared to using the AIF. Figure  5-8b 

shows the box-plot of the        parameter for the tumor or suspicious region for the VIF and 

AIF-based methods for each patient (the values of all slices containing tumor were 

considered in the plots). Comparing these box-plots with those showing the        values for 

normal PZ tissue (note the difference in the scales used in these plot which are chosen such 

that each plot shows the variations of        parameters for its corresponding tissue type) 

shows there is clear separation between the normal and tumor tissues. 

 
Figure  5-8 Box-plot of the        value distribution for Tofts-Kety model. The box-plot 

shows the median (horizontal line) and the 25 percentile to 75 percentile range (box) for the 

VIF-based and AIF-based        maps for a) normal PZ region (in patients that a normal PZ 

region was identified), and b) tumor or suspicious region for all slices in each patient. 

 

Table  5-2 reports the median and 25 percentile and 75 percentile range for the normal PZ 

tissue and the tumor or suspicious regions that were identified in prostate for all patients. The 

mean and standard deviation was not used here as both distributions were positively skewed. 

These ranges show that both methods provided a clear separation between the normal PZ and 

tumor region when the VIF (or AIF) curves were normalized. However, there was large 
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overlap between their distributions without normalization. These values will be compared to 

several values reported in the literature in the next section.  

 

Table  5-2 The median and inter-quartile ranges of the        value calculated using pooled 

distribution (using all patients) of all voxels in normal PZ and Tumor regions (both 

distributions were positively skewed). The         values were calculated for Tofts-Kety 

model using VIF (normalized and not normalized) and AIF (normalized and not normalized) 

for the normal PZ tissue (for 20 patients) and tumor or suspicious tissue (for 28 datasets). 

Method Tissue Type 
VIF (AC-ICA)   

[min
-1

] 

AIF (femoral 

artery) [min
-1

] 

With 

Normalization 

Normal PZ 0.16 [0.07  0.27] 0.16 [0.07 0.32] 

Tumor 1.25 [0.82  2.31] 1.69 [0.95  3.24] 

Without 

Normalization 

Normal PZ 0.60 [0.25  1.48] 0.07 [0.03  0.24] 

Tumor 4.81 [2.32  9.18] 0.48 [0.22  1.41] 

 

5.4.3 Extended Tofts-Kety Model 

The extended Tofts-Kety model that has three parameters (      ,    and   ) was also used 

for calculating the PK parameters using both the VIF and the AIF. The parameter calculation 

using AIF was performed similar to the Tofts-Kety model analysis by fitting the contrast 

agent concentration curve of the tissue to the model equations and solving for the three model 

parameters. The VIF-based parameters were calculated with two different methods: 

1- Using the ICA-derived vascular map as the    parameter and subtracting the         

term from the contrast agent concentration of the tissue and then fitting this new tissue 

concentration curve to the Tofts-Kety model equations and calculating the remaining 

two PK parameters (       and   ) . This method is called method1 or m1 in the 

tables and figures of this chapter.   

2- Fitting the tissue concentration curve to the extended Tofts-Kety model equations and 

calculating the three model parameters. This method is called method2 or m2 in the 

tables and figures of this chapter. 
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Figure  5-9 shows the        map calculated using the VIF (both methods) and the AIF for the 

patients that were shown in Figure  5-7. As can be seen in these figures, similar to the 

Tofts-Kety model, the VIF-based and AIF-based        maps of the normal PZ tissue had 

small values and the tumor or suspicious lesions had large values. Thus, the performances of 

the methods in detecting the suspicious region were similar. 

 
Figure  5-9 The ADC map (first column), and   -weighted MR image of the slices that were 

shown in Figure  5-5 which were used for tumor detection. The corresponding        maps 

calculated for extended Tofts-Kety model using the normalized VIF and using ICA-derived 

   map (third column), the normalized VIF and fitting for all 3 PK parameters of extended 

Tofts-Kety model (fourth column), and normalized AIF (fifth column). 

 

The    maps calculated for each method (three parameter fitting with VIF,    from AC-ICA 

and two parameter fitting with VIF, and three parameter fitting with AIF) are shown in Figure 
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 5-10 for the 6 sample datasets. The similarity between the    map calculated directly from 

ICA and the    map that resulted from curve fitting in PK analysis proves that: 

1- The component that was separated by ICA and was considered as the intravascular 

component is actually the intravascular component 

2- The    map can be directly obtained using AC-ICA and no PK modeling is required. 

Moreover, having the    map before PK analysis makes the curve fitting simpler and the 

system of equations more stable.  

 
Figure  5-10 The    maps for the 6 sample patients shown in Figure  5-5, calculated for 

extended Tofts-Kety model using the normalized VIF and using ICA-derived vascular map as 

   (first row), the normalized VIF and fitting for all 3 PK parameters of extended Tofts-Kety 

model (second row), and normalized AIF (third row). 

 

Similar to the Tofts-Kety model section (Figure  5-8 and Table  5-1), the mean and standard 

deviation of the        values for normal PZ tissue (distribution of the mean values), using 

the extended Tofts-Kety model, are reported in Table  5-3 for all three PK analysis methods. 

Similar to Figure  5-8 and Table  5-1, these values were calculated for the entire patient 

population with normal PZ tissue (20 datasets). This table also reports the        value for 

normal PZ tissue using the VIF (both method) and AIF without normalization which shows 

that normalization provides a smaller variation in the        value of the normal PZ tissue. 
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Table  5-3 The mean and standard deviation of the        value calculated from the 

distribution of the mean values for each patients for normal PZ regions (the mean value for 

each patient was calculated by averaging        values of all normal PZ tissue voxels in that 

patient).  The        values were calculated for extended Tofts-Kety model using VIF 

(normalized and not normalized) and AIF (normalized and not normalized) for the normal PZ 

tissue (for 20 patients). 

Method 
Tissue 

Type 

VIF (AC-ICA) 

Method 1 [min
-1

] 

VIF (AC-ICA) 

Method 2 [min
-1

] 

AIF (femoral 

artery) [min
-1

] 

With 

Normalization 
Normal PZ 0.21±0.05 0.23±0.06 0.26±0.11 

Without 

Normalization 
Normal PZ 1.09±0.53 1.19±0.55 0.29±0.34 

 

Figure  5-11a presents the box-plot of the        values for the normal PZ region that was 

identified for each patient. The box-plot shows the median (horizontal line) and the 25 

percentile to 75 percentile range (box) for all the slices in each patient that a normal PZ 

region was identified (for the two VIF-based and the AIF-based        maps). As can be seen 

in this figure, the        maps that were calculated using the VIF resulted in smaller variation 

in the        values of the normal PZ tissue compared to the maps calculated using the AIF. 

Comparing the results of the two VIF-based methods shows that their performances in 

calculating the        value of the normal PZ tissue were similar. Figure  5-11b show the 

box-plot of the        parameter for the tumor or suspicious region for the two methods based 

on AC-ICA and the AIF-based method for each patient (the values of all slices that contained 

the tumor were considered in generating these plots). Comparing these box-plots with the 

box-plots showing the distribution of the        value for normal PZ tissue shows that there is 

a clear separation between the two tissues (note the differences in the scales of these plots). 

Table  5-4 reports the median and inter-quartile range of the        obtained for the tumor and 

normal PZ tissues for the AC-ICA based methods as well as the AIF-based PK parameters for 

extended Tofts-Kety model (both with and without normalization). It also reports a few of the 

       values that are reported in the literature and shows that the AC-ICA based methods 

provide a better separation of the normal PZ and tumor tissues. 
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Table  5-4 The median and inter-quartile ranges of the        value calculated using pooled 

distribution (using all patients) of all voxels in normal PZ and tumor regions (both 

distributions were positively skewed). The         values were calculated for extended 

Tofts-Kety model using VIF (normalized and not normalized) and AIF (normalized and not 

normalized) for the normal PZ tissue (for 20 patients) and tumor/suspicious tissue (for 27 

patients). The table also reports several prostate        values reported in the literature. 

Method 
Tissue 

Type 

VIF (AC-ICA)   

Method 1   [min
-1

] 

VIF (AC-ICA)   

Method 2   [min
-1

] 

AIF (femoral 

artery) [min
-1

] 

With 
Normal PZ 0.13 [0.07  0.22] 0.14 [0.07 0.25] 0.15 [0.07  0.28] 

Normalization 
Tumor 0.59 [0.40  0.88] 0.97 [0.64  1.51] 0.97 [0.61  1.47] 

Without 
Normal PZ 0.51 [0.22  1.29] 0.56 [0.23  1.36] 0.07 [0.02  0.20] 

Normalization 
Tumor 2.29 [1.01  4.28] 3.30 [1.44  6.14] 0.31 [0.15  0.78] 

Moradi [160] 

Normal PZ - - 0.07±0.047 

Tumor - - 0.148±0.071 

Langer [161] 

Normal PZ - - 0.29 [0.09 0.87] 

Tumor - - 0.36 [0.16 1.28] 

Ocak [162] 

Normal PZ - - 0.23±0.25 

Tumor - - 0.47±0.57 

Korporral 

[163] 

Normal PZ - - 0.10 [0.04 0.21] 

Tumor - - 0.44 [0.25 0.75] 

Li [164] 

Normal PZ - - 0.09±0.07 

Tumor - - 0.32±0.23 

 



102 
 

 
Figure  5-11 Box-plot of the        value distribution for extended Tofts-Kety model. The 

box-plot shows the median (horizontal line), and the 25 percentile to 75 percentile range 

(box) for the VIF-based        maps using extended Tofts-Kety model for both methods 

(using ICA-derived vascular map as   , and using ICA-derived VIF and curve fitting for all 3 

parameters) and, AIF-based        maps for a) normal PZ region (in patients that a normal 

PZ region was identified), and b) tumor or suspicious region for all slices in each patient. 
 

5.5 Temporal resolution 

The effects of decreasing the temporal resolution on the PK parameters of each method are 

studied in this section. AIF-based methods are very sensitive to temporal resolution since a 

low temporal resolution DCE-MRI dataset might not capture the full temporal profile of the 

AIF in a blood vessel. In humans the difference between the peak for first pass of the contrast 

agent and the peak of its recirculation is about 0.5 [min]. Thus, a very high temporal 

resolution is required to measure the AIF accurately. However in the ICA-based methods, 

since the VIF is being calculated in the tissue of interest (which does not have a large artery), 

the contrast agent is dispersed and has a wider profile (as it arrives in the tissue through 

several paths and blood flow is slower in smaller vessels). Thus, decreasing the temporal 

resolution in VIF-based analyses should not have as significant effect as it has on the AIF 
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based methods. Being able to decrease the temporal resolution enables acquiring images with 

high spatial resolution which further improves accuracy of VIF calculation and PK analysis.  

Figure  5-12 shows the        maps for 3 sample patients corresponding to high and low 

temporal resolution datasets for the Tofts-Kety model (using the AIF-based and VIF-based 

methods), and the extended Tofts-Kety model (using the AIF-based and two VIF-based 

methods). For high temporal resolution data, the entire DCE-MRI data having all time points 

was used. The low resolution data was generated by removing every other frame in the 

datasets which reduced the temporal resolution to its half without any effect on the spatial 

resolution. The subtraction images generated by subtracting the        map of the low 

temporal resolution dataset from that of the high temporal resolution dataset and computing 

the absolute of their difference are also shown in Figure  5-12. The model used here is not a 

realistic approximation to the DCE-MRI data with low temporal resolution. However, it is 

used as an initial attempt to assess the effects of changing temporal resolution on PK 

parameters. We expect to obtain similar results in realistic cases of decreasing temporal 

resolution which require additional data acquisition that was not performed in this thesis.  
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Figure  5-12 The        map of 3 sample prostate datasets. For each patient the first row 

shows the        map of high temporal resolution data, the second row shows the         map 

of low temporal resolution data, and the third row show the absolute difference between the 

high temporal resolution and low temporal resolution        maps. The        maps and 

difference maps were calculated for the extended Tofts-Kety model using: the VIF using the 

ICA-derived vascular map as    (first column), the VIF and curve fitting for all 3 model 

parameters (second column), and the AIF (third column). The maps were also calculated for 

Tofts-Kety model using: the VIF (fourth column) and the AIF (fifth column). 

 

Table  5-5 reports the percentage difference between the high and low resolution        maps 

for 8 sample datasets (including the 3 datasets that were shown in Figure  5-5) for the entire 

prostate region and the tumor region. It can be seen in Table  5-5 and Figure  5-12 (particularly 

in the subtraction images) that the VIF based methods were more robust to decreasing the 
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temporal resolution and resulted in significantly smaller changes in the PK parameters. 

Moreover, the largest changes in the AIF based methods occurred in the tumor region (which 

is the primary target in PK analysis), while the VIF based images result in smaller change in 

the        values of the tumor region compared to the entire prostate.  

 

Table  5-5 The percentage change (mean and standard deviation) in        parameter due to 

decreasing temporal resolution by factor of 2, for the tumor and entire prostate gland 

(calculated for 8 prostate cancer patients). The differences were calculated for extended 

Tofts-Kety model using AIF and the two VIF-based methods as well as for Tofts-Kety model 

using both AIF and VIF. 

 Extended Tofts-Kety Model (%) Tofts-Kety Model (%) 

Patient ROI 
VIF  

(AC-ICA) 

Method 1 

VIF  

(AC-ICA) 

Method 2 

AIF  

(femoral 

artery)  

VIF  

(AC-ICA) 

 

AIF  

(femoral 

artery) 

P1 
Tumor 10±14 13±20 22±41 18±37 16±34 

Prostate 7±13 15±24 16±54 12±22 12±19 

P2 
Tumor 4±4 6±7 10±7 5±5 18±19 

Prostate 5±7 8±13 12±7 7±10 13±16 

P3 
Tumor 5±6 11±22 30±34 11±25 6±6 

Prostate 6±10 10±16 24±22 9±16 10±13 

P4 
Tumor 7±7 12±15 21±26 11±17 27±59 

Prostate 9±13 15±22 20±26 13±19 26±60 

P5 
Tumor 7±5 8±7 22±27 7±7 14±17 

Prostate 8±11 12±16 19±25 11±14 14±44 

P6 
Tumor 7±8 13±17 21±25 10±12 11±10 

Prostate 7±11 11±16 13±19 9±13 11±14 

P7 
Tumor 7±12 14±23 21±30 12±19 15±14 

Prostate 8±11 10±16 14±22 9±16 14±38 

P8 
Tumor 5±7 14±21 14±17 11±12 21±25 

Prostate 5±9 12±20 14±18 8±10 13±17 
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5.6 Discussions 

This chapter presented the results of applying the proposed VIF calculation algorithm 

(AC-ICA) to PK analysis of prostate tissue and compared its results to the commonly used 

AIF-based method. A normalization step was also introduced in this chapter that normalized 

the VIF (or AIF) curves with respect to their area under the curve (AUC). It was shown in the 

normalization section and appendix IV that if two VIFs (or AIFs) satisfied the Tofts-Kety 

model equations for a specific tissue type (e.g. normal PZ tissue), their AUC are equal. In 

addition to enabling comparison between the        values of VIF-based and AIF-based PK 

analyses, the normalization also resulted in more consistent        value for the normal PZ 

tissue (as reported in Table  5-1 and Table  5-3). It also provided better separation of the        

values of normal PZ tissue and tumor tissue as reported in Table  5-2 and Table  5-4 (the 

inter-quartile ranges were better separated). 

The        value is a characteristic of the tissue, as it represents its vascular permeability and 

perfusion, and should be the same regardless of the VIF (or AIF) calculation method being 

used. Thus, both AIF-based and VIF-based methods should result in similar        values for 

the normal PZ tissue, and the method that results in smaller variation in the        value of 

the normal PZ tissue in different subjects has better performance. Table  5-1 and Table  5-3 

show that after normalization the mean        value of the AIF-based and VIF-based 

methods (in Tofts-Kety and extended Tofts-Kety models) were close to each other which 

shows both methods were calculating the same value for the normal PZ tissue (these mean 

values corresponded to two different samples of the same population as assessed by ANOVA 

analysis). However, the VIF-based methods provided smaller variation (smaller standard 

deviation) compared to the AIF-based method and thus, was working better in both Tofts-

Kety and extended Tofts-Kety models.  

There was not a significant difference between the         values calculated by the two 

VIF-based methods in extended Tofts-Kety model which only differed in the calculation of 

the    map. Moreover, comparing the    maps (Figure  5-10) calculated in the extended 

Tofts-Kety model by the AIF-based and VIF-based (method 2) analyses with the    map that 

was obtained from the AC-ICA algorithm (method 1 in VIF-based extended Tofts-Kety 

model), there were not significant differences between these maps. These results showed that 

the vascular map obtained by AC-ICA algorithm represented the intravascular space of the 

prostate tissue. Thus, the vascular map of the tissue that could be useful, for instance in 
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assessing tumor response to anti-angiogenic therapies, can be calculated using AC-ICA 

algorithm without the need for modeling or even converting the MR signal intensity into 

contrast agent concentration which are time consuming steps and are prone to error.     

There was clear separation between the        value of normal PZ tissue and the tumor tissue 

as reported in Table  5-2 and Table  5-4 and also shown in Figure  5-8 and Figure  5-11. 

Comparing these results to the results that have been previously reported in the literature on 

the normal PZ tissue and tumor        distributions; the results reported here using both 

normalized VIF and normalized AIF provided better separation of the two tissues which 

demonstrates the better performance of our method. Moreover, comparing the results 

obtained using the normalized AIF compared to the PK parameters using AIF without 

normalization and the values that were reported in literature, normalization of the AIF with 

respect to its AUC resulted in better separation between the normal PZ and tumor tissues. 

However, no specific trend in the        values or correlation between the        values and 

the Gleason score were observed in these datasets. One potential reason for this would be the 

presence of several tumor types (different in both tumor location and Gleason score) in the 

datasets and not having a large number of datasets with a specific tumor type. Further study 

and a larger patient population would be required to study such correlations. 

Finally, we studied the effects of changing the temporal resolution on the performance of the 

proposed VIF-based PK parameters and compared them to the results of AIF-based methods. 

It has been reported in the literature that if an AIF derived from a high temporal resolution 

dataset is used and the temporal-resolution of the tissue curve is reduced by a factor of 3, the 

change in the PK parameters is only about 4% [165]. However, measuring the AIF from a 

low temporal resolution dataset has significant effect on the PK parameters since the AIF has 

a narrow FWHM (full width at half maximum) having only a few data points in the main 

(first pass) part of the curve, and thus under-sampling may result in large changes in the AIF. 

AIF is also sensitive to in-flow effects and saturation of MR signal due to high contrast agent 

concentration in the artery. VIF on the other hand is calculated in the tissue which has 

significantly lower concentration and thus signal saturation is not an issue, and there is 

significantly lower blood flow and thus in-flow effects are smaller. Furthermore, the contrast 

agent bolus gets dispersed and has a wider FWHM consisting of larger number of time points 

in its main region as it travels from the artery into the tissue through several paths and it is 

being measured in smaller blood vessels with low blood flow.  
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Consequently, decreasing the temporal resolution in VIF-based analyses should result in 

smaller change in the PK parameters compared to AIF-based analyses. The results shown in 

Figure  5-12 and reported in Table  5-5 show that decreasing the temporal resolution to its half 

(removing every other frame in DCE-MRI dataset), resulted in much smaller change in PK 

parameters of VIF-based method compared to AIF-based parameters. On average the 

percentage changes in VIF-based methods were about 3 times smaller than the AIF-based 

method. In addition, the AIF-based method resulted in a higher change in PK parameters in 

the tumor region compared to the entire prostate while the VIF-based method resulted in 

similar changes in both regions. This could be attributed to the fact that VIF was calculated 

locally and was biased towards the more vascular regions of the prostate region (which is the 

tumor region), and thus should provide better estimate to the intravascular signal of these 

regions. 

The main advantage of being able to decrease the temporal resolution without losing much 

accuracy in PK analysis is that it enables acquiring data with higher spatial resolution. 

Having higher spatial resolution, in addition to decreasing partial volume effect and 

increasing the accuracy of PK analysis, increases the accuracy of the VIF calculation 

algorithm as the intravascular and extravascular spaces are better separated (the effects of 

different spatial resolutions were shown in the previous chapters using numerical and 

physical tissue-mimicking phantoms).  In this thesis we only assessed the changes in the 

prostate PK parameters as the temporal resolution was reduced. Assessing the effects of the 

higher spatial resolution, which is made possible by decreasing the temporal resolution, on 

the PK parameters and the VIF curves requires additional data acquisition and was not 

performed here.  

5.7 Summary 

In this chapter the steps required for converting the AC-ICA results, which is in MR signal 

intensity, into VIF curves, which is in contrast agent concentration, were explained. A 

normalization step was also introduced and explained using both numerical phantom and 

prostate tissues. The performance of the proposed VIF on PK analysis of DCE-MR images of 

a cohort of 27 prostate cancer patients (28 datasets) was also assessed and compared to a 

commonly used AIF-based PK analysis. It was shown that the VIF-based method was 

capable of providing more consistent (smaller variation) PK parameters for the normal PZ 

tissue in both Tofts-Kety and extended Tofts-Kety models. There was better separation of the 
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       values of normal PZ tissue and tumor using the normalized VIF-based method 

compared to several previous studies. Finally, the effects of reducing the temporal resolution 

on the PK parameters was studied and it was shown that the proposed VIF-based method 

(compared to AIF-based methods) was less sensitive to decreasing temporal resolution which 

enables acquiring images with higher spatial and lower temporal resolutions. These results 

show that the proposed algorithm could replace AIF-based analyses and is capable of 

providing better or equivalent results. The algorithm could also be used for PK analysis in 

cases an AIF cannot be measured such as small animal studies (where it is difficult to find an 

artery or very high temporal resolution is required for AIF measurement).  

The next chapter presents the summary and conclusions of this thesis and details the 

advantages and disadvantages of the proposed method. It will also present the future 

directions that could be followed to analyze and validate the aspects of the proposed VIF 

calculation algorithm and its corresponding PK analysis that were not addressed in thesis and 

also its potential applications. 
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Chapter 6                                                                             

Conclusions and Future Directions 

The proposed ICA-based VIF calculation algorithm (AC-ICA) was applied to DCE-MR 

images of prostate cancer patients and PK analysis was performed in the previous chapter. 

The performance of the algorithm was evaluated via comparing its results to the PK 

parameters calculated using contrast enhancement in the femoral artery as the AIF. It was 

shown that the proposed VIF could be used for PK analysis and resulted in acceptable PK 

parameters. Moreover, the VIF-based analysis provided more consistent values for normal PZ 

tissue which showed it has a better performance compared to AIF-based analysis. These 

results showed that the VIF-based analysis, in addition to enabling PK analysis when there is 

no AIF to be used (e.g. in animal studies), could replace AIF-based methods and provides 

better or equivalent results even in cases an AIF can be measured. 

This chapter provides a summary of the work that was presented throughout the thesis and 

presents the concluding remarks. It will also discuss the future directions that need to be 

followed in order to fully characterize and evaluate the proposed algorithm and its potential 

applications.  

6.1 Motivation  

As our understanding of cancer biology increases and treatment options improve, 

personalized therapy becomes more feasible. These therapies are very specific and usually 

expensive, thus selecting the patients that would benefit from them and also assessment of 

their therapeutic response is important. Currently, the main approach used for assessing 

therapeutic response is tumor size measurement which might not necessarily represent the 

actual response, e.g. in anti-angiogenic therapies. Thus, there is increasing interest in 

developing novel metrics using functional imaging techniques and the focus of this thesis was 

on quantification of dynamic contrast enhanced MR images of tumor tissues. 

DCE-MR imaging combined with pharmacokinetic (PK) analysis of a tumor provides 

quantitative information about tumor perfusion and vascular permeability. Such information 
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has been found to be related to prognostic factors such as tumor grade and thus, its role in 

assessing anti-angiogenic and anti-vascular therapies is increasing. Most PK models require 

measurement of the contrast agent concentration in the vasculature as an input. However, this 

vascular input function (VIF) is inseparable from the signal in the extravascular extracellular 

space (EES). Hence, it is approximated outside of the tissue of interest, e.g. in an adjacent 

artery, in a reference tissue (muscle), or using a population-averaged signal. The main 

objective of this thesis was to develop and evaluate a novel algorithm for calculating the local 

VIF at the tissue of interest and separating it from the signal of the EES. Such a VIF has the 

potential to increase accuracy of PK analysis and also could be used when an artery for AIF 

measurement is not available or other AIF approximation techniques cannot be used. 

6.2 Mag-ICA algorithm 

The first objective of this thesis was assessing the feasibility of using data-driven techniques, 

in particular independent component analysis (ICA), for calculating a local VIF by separating 

the contrast agent concentration in the vascular space of the tissue from its EES 

concentration.  

In order to achieve this goal the Mag-ICA algorithm was developed (chapter 3) that applied 

an ICA algorithm to the magnitude of the DCE-MRI signal, with the third moment as its 

non-linearity function. This chapter showed that ICA was capable of performing such a 

separation and the performance of the algorithm was evaluated using numerical and physical 

tissue-mimicking phantom as well as in vivo VX2 tumors in thigh muscle of rabbits.  

In the numerical study the actual intravascular signal (which was known from our 

simulations), and in the physical phantom study the signal in the in-flow line was used to 

assess the performance of the algorithm. In the in vivo study, the spatial distribution of the 

separated intravascular component was compared to the in vivo contrast enhanced ultrasound 

(CE-US) images of the tumor. US contrast agent, i.e. microbubbles, stay intravascular and 

thus, their signal represent the actual intravascular space and was used to evaluate the 

separated intravascular signal spatially. The temporal enhancement curve of the intravascular 

signal was evaluated using the signal of an artery that was close to the tumor. 

These results showed the feasibility of using ICA for local VIF calculation. However, there 

were several issues with using the Mag-ICA algorithm as follows: 

1- Using the magnitude of MR signal violates the linear mixture assumption of ICA 
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2- Using a fixed non-linearity function in ICA disregards the variability between the 

vasculature of different tumors. 

Thus, a more sophisticated ICA-based separation algorithm (AC-ICA) was developed and 

was evaluated in chapter 4. 

6.3 AC-ICA algorithm 

An adaptive complex independent component analysis (AC-ICA) algorithm was developed in 

chapter 4 to address the issues of Mag-ICA algorithm. This algorithm used the 

complex-valued MR signal to satisfy the linear mixture assumption of ICA. It also estimated 

the spatial distribution of the tumor vasculature at every iteration of the ICA algorithm and 

derived the ICA non-linearity function from the estimated distribution. The distribution of the 

tumor vasculature was estimated using a linear combination of 3 to 5 generalized Gaussian 

distributions (GGD). The shape parameters of these GGDs were calculated at each iteration 

through an expectation maximization framework and the GGD with highest membership 

probability was used to derive the ICA non-linearity. 

The performance of this algorithm was evaluated using numerical and physical 

tissue-mimicking phantoms. It was demonstrated in chapter 4 that, compared to Mag-ICA, 

the AC-ICA algorithm performed better in separating the intravascular space, and generated 

reproducible results, particularly when dealing with low resolution DCE-MRI datasets. 

The separated intravascular signal had to be converted into contrast agent concentration to be 

used in pharmacokinetic (PK) analysis which was presented in chapter 5 along with the 

results of using the proposed VIF in PK analysis of a cohort of 28 DCE-MRI datasets of 

prostate cancer patients. 

6.4 Pharmacokinetic analysis 

The shape of the time-intensity curves of the intravascular space, calculated using the 

AC-ICA algorithm, were similar for datasets with different resolutions (as shown in chapter 

4). However, when these signals were converted into contrast agent concentration, we 

observed arbitrary scaling of these curves (shown in chapter 5). A normalization step was 

introduced in this chapter that normalized the VIF curves with respect to their area under the 

curve (AUC). This normalization step, in addition to resolving the scaling issue, resulted in 
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more consistent        values and also enabled comparison of AIF-based and VIF-based PK 

parameters. 

The AC-ICA algorithm was applied to DCE-MR images of 27 prostate cancer patients (28 

datasets with one patient being imaged twice) and PK analysis was performed using both 

Tofts-Kety and extended Tofts-Kety models. The PK analysis using extended Tofts-Kety 

model was performed using two methods: 

1- Method 1 (m1): the vascular map from AC-ICA was used as the    map, and the 

        term was subtracted from the DCE data. The Tofts-Kety model was then used 

to calculate the remaining two model parameters 

2- Method 2 (m2): all three parameters of the extended Tofts-Kety model were 

calculated directly by curve fitting using the VIF and tissue curves. 

 A large artery was also visible in the field of view of the prostate MR images. The 

concentration-time curve of this artery (Femoral artery) was measured and PK analysis was 

performed using this AIF signal for both Tofts-Kety model and extended Tofts-Kety model. 

The results were compared to the results of VIF-based analyses. 

Chapter 5 showed that both AIF-based and VIF-based PK analyses resulted in the same 

average        value for normal peripheral zone (PZ) tissue calculated by averaging this 

parameter across all the datasets that such a tissue was present (20 datasets). It also showed 

that the VIF-based methods resulted in smaller variation (the variation of VIF-based methods 

were approximately half of AIF-based methods) in this parameter indicating the better 

performance of the VIF-based methods (Table  5-1 and Table  5-3). It was also shown that the 

       values that were calculated after normalizing the VIF (or AIF) curves resulted in better 

separation between the normal PZ tissue and tumor tissue compared to not-normalized curves 

and also compared to values reported in the literature (Table  5-2 and Table  5-4).  

The similarity between the    maps calculated using extended Tofts-Kety model and also the 

   map derived directly from AC-ICA, as well as the similarity between the parameters that 

were reported for the two VIF-based methods showed that the ICA-derived    map 

represented the actual vascular map. Thus, there is no need for modeling to calculate this map 

which is used in cancer studies as it could be derived from AC-ICA algorithm. 
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Finally, the effects of decreasing temporal resolution were studied on the performance of both 

AIF-based and VIF-based methods. The local VIF has a much wider temporal distribution 

compared to AIF and thus, it was expected to be less sensitive to missing a few frames in its 

main (FWHM) portion. The VIF is also less sensitive to in-flow effects as it is measured in 

smaller vessels where the blood flow is slower and also does not suffer from saturation of 

MR signal due to low contrast agent concentration in every tissue voxel.  

The results showed that the VIF-based methods were less sensitive to decreasing the temporal 

resolution of DCE-MRI data. Thus, it is possible to acquire data with lower temporal 

resolution and increase the spatial resolution. Increasing the spatial resolution in addition to 

improving the PK analysis results, improves the accuracy of the AC-ICA algorithm, which 

could also add to the accuracy of PK parameters.  

6.5 Future Directions 

This thesis presented a local VIF calculation algorithm and assessed several aspects of it for 

PK analysis. However, there exist several aspects of the proposed VIF that need to be studied 

before it could be used in clinical settings or could replace AIF-based analysis. A number of 

these future directions are given in this section. 

6.5.1 Tumor PK assessment 

In chapter 5 we studied the performance of the proposed VIF-based analysis on normal PZ 

tissue in prostate and compared it to the AIF-based PK analysis. However, we were unable to 

study its performance on tumor tissues using our datasets. Our patient population included 

different tumor types and tumor locations such that there was not a specific tumor type and 

location with large enough number of subjects to study the effects of VIF. As the main goal 

of PK analysis is to study tumors, it is important to conduct numerical and physical 

tissue-mimicking phantom studies that model prostate tissue and prostate tumor, as well as 

clinical studies having a larger number of patients with the same tumor type to assess the 

effects of VIF on PK parameters of the tumor. It is also important to correlate these findings 

with histology as the ground truth which was not available in our study.  

6.5.2 Reproducibility study 

Given that the largest differences between the PK parameters of VIF-based and AIF-based 

studies were in the tumor area, it is important to study the accuracy and reproducibility of 
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these parameters in the tumor region. Since the VIF is calculated locally and considering the 

fact that it is biased towards the vascular enhancement of the highly vascular regions in the 

tissue (which is usually the tumor tissue), it has smaller difference with the actual vascular 

enhancement of the tumor compared to AIF. Thus, VIF-based PK parameters should be more 

accurate in tumor region compared to AIF-based parameters. Performing such studies 

requires more datasets with imaging a patient in several visits which was not possible with 

our current dataset.    

6.5.3 Active surveillance 

A major application of PK analysis is in active surveillance studies where the prostate tumor 

is not treated until it reaches a stage that is life-threatening or would have a significant impact 

on patient life. The tumor is routinely monitored and its stage is assessed using imaging and 

biopsy in these studies. Absolute values of PK parameters would be very useful if these 

parameters could be calculated accurately and such that it could be compared between visits 

of the patient. Having a local VIF has the potential to be less operator-dependent and might 

provide more reliable information about the tumor.  

6.5.4 Machine learning  

Multi-parametric MR imaging of prostate cancer combines the information obtained from 

several functional and anatomical MR images of the tissue to detect and diagnose the tumor. 

Recently, machine learning and classification algorithms have been used to obtain maximal 

information about the tumor which has resulted in very high specificity and sensitivity 

compared to any single imaging method. Thus, it is important to investigate the effects of 

using the VIF-based PK parameters in such algorithms and assess their performance, and 

compare them to the performance of the existing analysis methods in prostate and other 

organs.  

Additionally, we introduced a heuristic criterion for selecting the intravascular components 

after applying ICA to the data. This step prevented the algorithm from being fully automatic, 

and also required examining a few datasets to find the time point that the intravascular signal 

enhancement dropped to 60% of its peak (3 [min] for phantoms and 4.5 [min] for in vivo 

studies). These parameters can be calculated using machine learning algorithm where for 

each tissue type a number of datasets are used for training and learning the selection criterion, 

and then used for any new dataset.   
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6.5.5 Animal studies 

A major application of the proposed VIF calculation is in animal tumor studies where a large 

artery is difficult to find or a very high temporal resolution imaging is needed to capture the 

first pass of contrast agent bolus (particularly in small animals such as rats). The proposed 

algorithm could also be used in PK analysis of the organs such as breast in which an artery is 

not usually available. 

6.5.6 Impacts of different spatial and temporal resolutions 

In chapter 5 we showed that VIF-based PK analysis is less sensitive to decreasing temporal 

resolution. This enables acquiring MRI data with higher spatial resolution which should 

provide more accurate PK parameters, and also more accurate VIF curve as the intravascular 

and extravascular spaces are better separated. Moreover, it is important to assess the lowest 

temporal resolution that could be used and still be able to calculate the VIF using ICA and 

also obtain accurate PK parameters. These effects could be studies using numerical models of 

the tumor and also conducting clinical studies with higher spatial resolutions. 

6.5.7 Adaptive Mag-ICA 

In chapter 4 we demonstrated that Mag-ICA was capable of separating the intravascular 

space but the accuracy of separation was much higher using AC-ICA. One of the 

shortcomings of Mag-ICA algorithm (compared to AC-ICA algorithm) was using the 

magnitude of DCE-MRI data which violates the linear mixing assumption in ICA. This effect 

was minimized by using a short echo time (  ) which reduces the intra-voxel de-phasing and 

consequently the effects of violating the linear mixture assumption. However, the main 

difference between the two algorithms was the use of a flexible non-linearity function in the 

ICA implementation of AC-ICA algorithm. Using a flexible non-linearity function in the 

Mag-ICA algorithm might improve its results and make it applicable to low resolution 

clinical datasets. This is an important future direction as most of the currently available 

DCE-MRI datasets do not have the phase information and thus the AC-ICA algorithm cannot 

be applied to them. Adapting the algorithm to work with magnitude of MRI data enables the 

large number of datasets that are already available in clinics to be analyzed, which could 

answer many of the above mentioned research questions. A good candidate for the adaptive 

non-linearity function for Mag-ICA is the Rician distribution which has a proper shape for 

VIF estimation and has several shape parameters that could be used for adapting it to the 

distribution of the desired MRI signal distribution. Note that keeping the phase information 
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does not add any extra steps to the acquisition process however such information has to be 

saved at the time of imaging and cannot be retrieved afterwards.   

6.6 Conclusions 

Pharmacokinetic modeling of tumor tissue provides information about its perfusion and 

vascular permeability that can be used for cancer detection and diagnosis. PK analysis 

requires measuring the intravascular contrast agent concentration which is not possible using 

the current analysis techniques. Thus, this signal is approximated in a large artery using an 

AIF. However, using an AIF in addition to requiring a high temporal resolution DCE-MRI 

data, might lead to error in the calculated PK parameters. Calculating the intravascular 

contrast agent concentration at the tissue of interest has the potential to improve PK analysis 

results. This thesis proposed two data-driven techniques based on independent component 

analysis (ICA) to separate the intravascular contrast agent concentration and calculate the 

vascular input function (VIF) to be used in PK analysis.  

The performances of these two algorithms (Mag-ICA and AC-ICA) were evaluated using 

numerical and physical phantoms. They were also evaluated using VX2 tumor in rabbits (for 

Mag-ICA) and prostate cancer (for AC-ICA). The results showed that both algorithms were 

capable of separating the intravascular signal, however the AC-ICA algorithm provided more 

accurate VIF curves and was used in subsequent PK analyses.   

PK analysis of the prostate DCE-MRI using AC-ICA algorithm resulted in similar results to 

the PK analysis using the signal of the Femoral artery as the AIF, which shows the VIF could 

be used in cases an AIF cannot be measured (e.g. small animal studies). Moreover, the 

VIF-based PK parameters resulted in smaller variation in the normal PZ tissue showing its 

better performance. Finally, the sensitivity of the VIF-based and AIF-based PK analyses to 

decreasing temporal resolution was studied, where VIF-based parameters showed smaller 

sensitivity to this parameter which enables imaging with higher spatial resolution to improve 

PK analysis results.    
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Appendix I 

Relationship between Numerical Phantom and PK 

Parameters 

In the Tofts-Kety PK model it is assumed that the distribution of the contrast agent is due to 

diffusion of the solute through a semi-permeable membrane (blood vessel wall). However in 

calculating the        parameter in the model several simplifications are made. In our 

numerical study we modeled the leaking process using diffusion, and added a range of 

diffusion values to the voxels of the images to account for a more general and realistic case. 

This model provided high variability in the perfusion parameter of the data to account for 

more complex situations of having different tissue types. We did not use        directly as it 

would simplify the simulations, however the derivation of        parameter from the 

diffusion parameter that was used is given below: 

Consider a cylindrical tube (blood vessel) as shown in Figure I-1. Based on the mass 

continuity equation the difference between the total influx and outflux of the contrast agent 

equals the rate of change in the total amount of contrast agent in any section of the tube: 

       

  
          

                                                              
        

         
         

      

(I-1) 

where   is the contrast agent concentration and   is the contrast agent flux. We can write the 

following equation for the segment of the tube (at location  ) that is shown in Figure I-1: 
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(I-2) 

where   is the cross section of the vessel,    is the flow of the solute through the tube,     is 

the thickness of the segment,     is the contrast agent concentration inside the tube, and    is 

the flux of contrast agent through the tube’s wall.  

On the other hand according to Fick’s Law of diffusion we have: 

     
       

  
 

                                          

    

 

                 

   
 

(I-3) 

where   is the surface area of the tube wall (for the entire tube),   is the length of the tube, 

    is the thickness of the tube wall,    is the contrast agent concentration outside of the tube 

close to the tube wall, and    is the diffusion coefficient through the pores of tube wall, thus: 

    

        

  
     

                 

  
   

    

 

                 

   
 (I-4) 

Some of the simplifying assumptions in compartmental Tofts-Kety model are: 

1-    is constant and is not a function of   and  , or            

2- As the contrast agent arrives, it instantaneously gets mixed and provides a well mixed 

solute, thus    inside the tube (including at the outlet) is not a function of  , or 

             . Thus, the concentration change along the tube is the difference 

between the   that enters the tube (  ) and the   that exits the tube (  ). 

Assuming that there is no contrast agent outside the tube at time zero we can ignore the 

        term. Using these assumptions we can rewrite the equation I-4 as: 

     

 

      

  
      

             

 
 

  

   

    

 
      (I-5) 
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dropping the term 
   

 
, the above equation can be simplified to: 

  

      

  
                   

 

   
      (I-6) 

This equation is similar to the governing equation of Tofts-Kety compartmental model which 

is given as [70]: 

  

      

  
                         (I-7) 

where    is the permeability surface area product. Comparing these two equations we have:  

     

 

   
 (I-8) 

The        parameter in this Tofts-Kety model is given as: 

         

  

     
 (I-9) 

Thus, the        parameter in terms of the diffusion coefficient in our simulation would be: 

         

   

         
 (I-10) 

 

Figure I-1 A cylindrical blood vessel of length   and cross section area of   through which 

blood flows with flow rate   . 
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Appendix II 

Inflow Effects in the Physical Tissue-Mimicking Phantom 

The flow rate in the tubes of the physical tissue-mimicking phantom was very low 

(0.047  
  

 
 ) which is in the same range as arterioles. Thus, the flow artifact in the physical 

tissue-mimicking phantom is negligible (less than 1%). The following gives a quantitative 

analysis of the flow artifact in our physical phantom (based on the analysis given by Peeters 

et al. [166]) which shows it was less than 1%:  

If there is no flow, for a    weighted SPGR sequence, assume that      is the longitudinal 

magnetization at       (just before excitation). The magnetization at           can 

be written as (just before excitation): 

                               (II-1) 

where                ,   is the flip angle, and    is the thermal equilibrium 

magnetization. When there is flow perpendicular to the imaging plane, we assume a 

compartmental model of the slice where we have 2 populations of spins: 

1- Fresh spins flowing into the slice (    ) 

2- Spins that remain in the slice between two excitations (       ) 

The fraction of the fresh spins in the voxel that arrive during one repetition time (  ) interval 

is given as: 

     
 

 
       

       

   

 (II-2) 

where   is the slice thickness and      is the flow velocity. The longitudinal magnetization at 

time           could be written as: 



136 
 

                                                      (II-3) 

where       is the longitudinal magnetization of the fresh spins entering the slice at time 

     . In the case of our experiments we have: 

Diameter of each tube           , thus the cross section of a tube is:  

     
 

 
 
 

                          

We had 100 tubes in the phantom, thus the total cross section is:  

                     

The flow rate is             
  

 
 , thus the velocity of the flow is: 

  
    

 
         

 

 
        

  

 
  

The slice thickness in DCE-MRI data of our physical tissue-mimicking phantom was 

         and             , thus the fresh spin fraction is: 

     
 

 
             

         

 

      (II-3) 

The fraction of the fresh spins in the voxel is less than four percent (f(n)<0.04), thus it is 

negligible in our experiments. 
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Appendix III 

Converting MR Signal Intensity to Contrast Agent 

Concentration 

Dynamic contrast enhanced (DCE)-MR imaging involves intravenous injection of a bolus of 

low molecular weight contrast agent, e.g., Gadolinium (Gd)-DTPA, followed by repeated 

  -weighted imaging of the tissue to track the passage of the bolus through its vasculature. 

The spoiled gradient recalled (SPGR) pulse sequence is used for DCE-MR imaging whose 

signal intensity in a voxel without any contrast agent is expressed as: 

             
             

                 
         

    (III-1) 

where       is the signal intensity measured in the voxel at     (pre-contrast),   is the 

scanner gain,   is the proton density,   is the flip angle,    is the echo time,    is the 

repetition time,   
  is the transverse relaxation time, and    is the longitudinal relaxation time 

of the tissue. As the contrast agent arrives in the tissue, it changes magnetic characteristics of 

the tissue and hence changes its signal intensity which will be explained in the next 

subsection. 

Converting MR signal intensity to Contrast Concentration 

Once the gadolinium-based (e.g. Magnevist) contrast agent enters the voxel it alters the 

transverse and longitudinal relaxation times which can be explained by the following [101]: 

 

  
 

 

   
        

 

  
  

 

   
         (III-2) 
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where     and    
  are the longitudinal and transverse relaxations times with no contrast agent 

respectively.    and   
  are the longitudinal and transverse relaxations times after the contrast 

agent enters the voxel.         
 

    
   and         

 

    
   are the longitudinal and 

transverse relaxivities of the contrast agent (which is Magnevist in our prostate cancer 

studies) at main magnetic field strength of         , and      is the contrast agent 

concentration in the voxel at time  . The MR signal intensity of the voxel at     , after 

administration of contrast agent, is given by: 

              

          
 
   

          

              
 
   

          

        
 

   
 

           

(III-3) 

In order to calculate the contrast agent concentration in the voxel at each time point the term 

    has to be calculated first (next section). Then, the right and left hand sides of equation 

III-3 are divided by the right and left hand sides of equation III-1 respectively, and the 

resultant equation is solved for the only unknown (note that the term    
  cancels out when 

dividing the two equations) in the equation which is      .  

Pre-contrast T1-mapping (Multiple Flip Angles) 

The native    value (   ) of the tissue (also known as   -map) is needed to convert the MR 

signal intensity to contrast agent concentration. Rapid and accurate measurement of this 

parameter is challenging, however there are several methods for calculating   -map such as 

1) multiple inversion time (  ) method using inversion recovery spin echo (IR-SE) imaging 

[167], and 2) multiple flip angle method using spoiled gradient recalled-echo (SPGR) 

imaging [168]. In this thesis the latter approach was used. 

In multiple flip-angle imaging method a set of two or more pre-contrast SPGR images are 

acquired with variable flip angles [168] and are used to calculate the   -map. The advantages 

of this method over the multiple inversion time method are low power deposition, and low 

spatial distortion. Moreover, the accuracy of multiple flip angle method  has been shown to 

be similar to multiple inversion time method, and more importantly has significant reduction 
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in imaging time [168]. Another advantage of this method is that it provides   -map using the 

same imaging parameters that are used in DCE-MRI acquisition.  

The signal intensity of SPGR imaging is used for   -map analysis (neglecting the   
  effects): 

               
             

                  
 (III-4) 

where      . Having several measurements for each voxel in the image (one measurement 

for each flip angle), the above equation is solved for the value of     (the parameters   and 

   are known and    is constant). 

In order to solve for     in equation III-4,    is assumed to be the flip angle that is applied by 

the scanner (  
       

) which might not be the same as the flip angle that is seen by the tissue 

at a given spatial coordinate (  
      ). This causes error in the calculated     value which has 

to be corrected. Fennessy et al. [169] introduced a flip angle correction method for   -map 

calculation of prostate tissue using the known     value of the pelvic muscle. The method 

substitutes the   
       in equation III-4 with    

       
 (  

          
       

) where   is the 

correction factor. The correction factor is calculated by fitting the pelvic muscle data whose 

    is known (e.g. 1420 [ms] at 3 [T]) with free parameters   and    using equation III-4 

[169]. Once   is calculated, the corrected flip angle is used in equation III-4 for each voxel of 

the prostate tissue to generate its   -map. 
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Appendix IV 

Vascular Input Function (VIF) Normalization 

A normalization step was introduced in chapter 5 of the thesis which was derived based on 

the fact that if two VIFs satisfy the tofts-Kety model equations for a specific tissue type, their 

areas under the curve (AUC) have to be equal. This appendix proves this assumption: 

The Tofts-Kety model equation (equation 1-16) can be reformulated as: 

      

  
             

      

  
      (IV-1) 

If we calculate the integral of both sides of equation IV-1 with respect to time we have: 

 
      

  

 

 

             

 

 

  
      

  
     

 

 

 (IV-2) 

The above equation can be simplified as: 

                   

 

 

 
 

  
      

 

 

  (IV-3) 

where   is the time point for the last acquired DCE-MRI frame. As both       and       are 

zero before the arrival of contrast agent in the prostate tissue, we assume that time zero (  

 ) is the time at which contrast agent arrives in the prostate tissue. The AUC of the VIF is:  

      

 

 

 
 

      
       

 

  
      

 

 

  (IV-4) 

The PK parameters are characteristics of the tissue and       is derived directly from MRI 

measurements, thus they do not depend on the VIF calculation method. Thus, if two VIFs 

satisfy equation 1-16, their AUC has to be equal. These results are shown for Tofts-Kety 

model but they hold for other models as well. 


