
ON THE KHOVANOV HOMOLOGY OF AN ADEQUATE LINK
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Abstract. We use the concept of alternating planar algebra to study the Khovanov ho-
mology of adequate links.
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1. Introduction

The Adequate links was introduced by Lickorish and Thistlethwaite in [Lick] to study
the Jones Polynomial. Here we are going to use the the technique introduced in [Bur] and
[Bur1] to study the Khovanov homology of this type of links. We call this type of chain
complexes diagonal complexes. Furthermore, a coherently diagonal complex is a diagonal
complex whose partial closure is also diagonal. Complexes of this type are the objects in the
following theorem

Theorem 1. Coherently diagonal complexes form an alternating planar algebra (that is, they
are closed under “horizontal compositions” in alternating planar diagrams).

Our second theorem follows from the first; for it reduces that proof to the simple task of
verifying that the Khovanov homologies of the one-crossing tangles (!) and (") (which are
obviously alternating) are coherently diagonal:

Theorem 2. Let T be a non-split alternating 2k-boundary tangle (k > 0), then the Khovanov
homology Kh(T ) can be interpreted as a coherently diagonal complex.

In the case of alternating tangles with no boundary, i.e., in the case of alternating links,
this result reduces to Lee’s theorem on the Khovanov homology of alternating links.
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The work is organized as follows. In section 3, we review Bar-Natan local Khovanov theory
and present two additional tools for the proof of theorem 1. These tools are propositions 3.5
and 3.7. Section 4 is devoted to introduce the category Cob3

o an give a quick review of some
concepts related to alternating planar algebras. In particular we review the concepts of rota-
tion number, alternating planar diagram, associated rotation number, and basic operators.

Section 5 introduces the concepts of diagonal complexes, coherently diagonal complexes,
and their partial closures. We state here some results about the complexes obtained when
a basic operator is applied to alternating elements, leading to the prove in section ?? of
Theorem 1. Finally section ?? is dedicated to the study of non-split alternating tangles.
Here, we prove Theorem 2 and derive from it Lee theorem formulated in [Lee].

2. Acknowledgement

I wish to thank D. Bar-Natan, for many helpful conversations we had at the University
of Toronto and for allowing me to use some figures from [BN1, BN2]. I would also like to
thank N. Martin for their comments and suggestions.

3. The local Khovanov theory and the alternating planar algebras

The notation and some results appearing here are treated in more details in [BN1, BN2,
Naot]. Given a set B of 2k marked points on a circle C, a smoothing with boundary B is
a union of strings a1, ..., an embedded in the plane disk for which C is the boundary, such
that ∪n

i=1∂ai = B. These strings are either closed curves, loops, or strings whose boundaries
are points on B, strands. If B = ∅, the smoothing is a union of circles.

We denote Cob3(B), the category whose objects are smoothings with boundary B, and
whose morphisms are cobordisms between such smoothings, regarded up to boundary pre-
serving isotopy. The composition of morphisms is given by placing the second cobordism
atop the other.

Our ground ring is one in which 2−1 exists. The dotted figure is used as an ab-

breviation of 1
2

and Cob3
•/l(B) represents the category with the same objects and

morphisms as Cob3(B), whose morphisms are mod out by the local relations:

(1)

= 0, = 1, = 0,

and = + .

We will use the notation Cob3 and Cob3
•/l as a generic reference, namely, Cob3 =

⋃
B Cob3(B)

and Cob3
•/l =

⋃
B Cob3

•/l(B). If B has 2k elements, we usually write Cob3
•/l(k) instead of
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Cob3
•/l(B). If C is any category, Mat(C) will be the additive category whose object are

column vectors (formal direct sums) whose elements are formal Z-linear combinations of C.
Given two objects in this category,

O =




O1

O2
...
On


 O1 =




O1
1

O1
2
...
O1

m


 ,

the morphisms between these objects will be matrices whose entries are formal sums of
morphisms between them. The morphisms in this additive category are added using the
usual matrix addition and the morphism composition is modeled by matrix multiplication,
i.e, given two appropriate morphisms F = (Fik) and G = (Gkj) between objects of this
category, then F ◦G is given by

F ◦G =
∑

k

FikGkj ,

Kom(C) will be the category of formal complexes over an additive category C. Kom/h(C) is
Kom(C) modulo homotopy. We also use the abbreviations Kob(k) and Kob/h(k) for denoting

Kom(Mat(Cob3
•/l(k))) and Kom/h(Mat(Cob3

•/l(k))).

Objects and morphisms of the categories Cob3, Cob3
•/l, Mat(Cob3

•/l), Kob(k), and Kob/h(k)
can be seen as examples of planar algebras, i.e., if D is a n-input planar diagram, it defines
an operation among elements of the previously mentioned collections. See [BN1] for specifics
of how D defines operations in each of these collections. In particular, if (Ωi, di) ∈ Kob(ki)
are complexes, the complex (Ω, d) = D(Ω1, . . . , Ωn) is defined by

Ωr :=
⊕

r=r1+···+rn

D(Ωr1
1 , . . . , Ωrn

n )

d|D(Ω
r1
1 ,...,Ωrn

n ) :=
n∑

i=1

(−1)
∑

j<i rjD(IΩ
r1
1

, . . . , di, . . . , IΩrn
n

),

(2)

D(Ω1, . . . , Ωn) is used here as an abbreviation of D((Ω1, d1), . . . , (Ωn, dn)).
In [BN1] the following very desirable property is also proven. The Khovanov homology is a

planar algebra morphism between the planar algebras T (s) of oriented tangles and Kob/h(k).
That is to say, for an n-input planar diagram D, and suitable tangles T1, ..., Tn, we have

(3) Kh(D(T1, ..., Tn)) = D(Kh(T1), ..., Kh(Tn)).

This last property is used in [BN2] to show a local algorithm for computing the Khovanov
homology of a link. In that paper, Bar-Natan explained how it is possible to remove the
loops in the smoothings, and some terms in the Khovanov complex Kh(Ti) associated to
the local tangles T1, ..., Tn, and then combine them together in an n-input planar diagram
D obtaining D(Kh(T1), ..., Kh(Tn)), and the Khovanov homology of the original tangle.

The elimination of loops and terms can be done thanks to the following: Lemma 4.1 and
Lemma 4.2 in [BN2]. We copy these lemmas verbatim:

Lemma 3.1. (Delooping) If an object S in Cob3
•/l contains a closed loop `, then it is isomor-

phic (in Mat(Cob3
•/l)) to the direct sum of two copies S ′{+1} and S ′{−1} of S in which ` is



4 HERNANDO BURGOS SOTO

removed, one taken with a degree shift of +1 and one with a degree shift of −1. Symbolically,
this reads © ≡ ∅{+1} ⊕ ∅{−1}.

The isomorphisms for the proof can be seen in:

(4)

+1

−1

using all the relations in (1).

Lemma 3.2. (Gaussian elimination, made abstract) If φ : b1 → b2 is an isomorphism (in
some additive category C), then the four term complex segment in Mat(C)

(5) · · · [C]


α
β




//

[
b1

D

]

φ δ
γ ε




//

[
b2

E

] (
µ ν

)

// [F ] · · ·

is isomorphic to the (direct sum) complex segment

(6) · · · [C]


0
β




//

[
b1

D

]

φ 0

0 ε− γφ−1δ




//

[
b2

E

] (
0 ν

)

// [F ] · · · .

Both these complexes are homotopy equivalent to the (simpler) complex segment

(7) · · · [C]
(β)

// [D]
(ε−γφ−1δ)

// [E]
(ν)

// [F ] · · · .

Here C, D, E and F are arbitrary columns of objects in C and all Greek letters (other
than φ) represent arbitrary matrices of morphisms in C (having the appropriate dimensions,
domains and ranges); all matrices appearing in these complexes are block-matrices with blocks
as specified. b1 and b2 are billed here as individual objects of C, but they can equally well be
taken to be columns of objects provided (the morphism matrix) φ remains invertible.

It will be useful for our purpose to enunciate also the following lemma which is easily
demonstrable using the obvious morphism of complexes.

Lemma 3.3. If B is an object of Mat(C) involved in a chain complex Ω, then it is possible to
interchange the position of two elements bi, bj of B obtaining a homotopy equivalent complex.
This interchange also changes the position of the i-th and j-th rows of the morphism pointing
at B and the i-th and j-th columns of the morphism coming from B. In other words, the
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three term complex segment in Mat(C)

(8) · · ·



a1
...

an







α11 . . . α1n
...

...
αi1 . . . αin
...

...
αj1 . . . αjn
...

...
αm1 . . . αmn




//




b1
...
bi
...
bj
...

bm







β11 . . . β1i . . . β1j . . . β1m
...

...
...

...
βp1 . . . βpi . . . βpj . . . βpm




//




c1
...
cp


 · · ·

is isomorphic to

(9) · · ·



a1
...

an







α11 . . . α1n
...

...
αj1 . . . αjn
...

...
αi1 . . . αin
...

...
αm1 . . . αmn




//




b1
...
bj
...
bi
...

bm







β11 . . . β1j . . . β1i . . . β1m
...

...
...

...
βp1 . . . βpj . . . βpi . . . βpm




//




c1
...
cp


 · · ·

where every Latin and Greek letter represents respectively a smoothing or a cobordism.

From the three previous lemmas we infer that the Khovanov complex of a tangle is homo-
topy equivalent to a chain of complex without loops in the smoothings, and in which every
differential is a non-invertible cobordism. In other words, if (Ω, d) is a complex in Cob3

•/l, we
can use lemmas 3.1, 3.2 and 3.3, and obtain a homotopy equivalent chain complex (Ω′, d′)
with no loop in its smoothings and no invertible cobordism in its differentials. We say that
(Ω′, d′) is a reduced complex of (Ω, d) .

For our purposes, it will be useful to recall here the concept of bounded chain complex.
See [Wei]. A chain complex

Ω : · · ·Ωr dr
// Ωr+1 · · ·

is called bounded if almost all the Ωr are zero. If Ωro 6= 0, ΩrM 6= 0 and Ωr = 0 unless
r0 ≤ r ≤ rM , we say that (Ω, d) has amplitude in [r0, rM ].
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Definition 3.4. Let (Ω, d) be a bounded chain complex in Kob with amplitude in [r0, rM ].

Let Ωr =




σr
1
...

σr
nr


 be the vector in the complex (Ω, d) with homological degree r. Thus

the set Sr formed by the elements of this vector has cardinal nr. Assume that the cardinal
of S =

⋃rM

r=r0
Sr is N , that is to say, there are in total N smoothings in the complex.

A numeration of (Ω, d) is a map g : S −→ {1, ..., N} defined in this way: g(σr0
1 ) = 1;

g(σr+1
1 ) = g(σr

nr
) + 1, if r0 ≤ r < rM ; and g(σr

i+1) = g(σr
i ) + 1, if 1 ≤ i < nt. This numerates

the smoothings in (Ω, d), and we can rewrite σr
i as σg(σr

i ).

Given a complex (Ω, d) then the component of d connecting σj and σi is denoted dij. It
is clear from the definition of a numeration in (Ω, d) that if i ≤ j, then dij : σj → σi is the
zero cobordism. The Figure 1 displays an example of a complex with its numeration.

0

0

- 0

-

-

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 1. A numeration in a complex, the doted circles around the smoothings represent the

discs in which the smoothings are embedded. The subindex in each smoothing is the number

assigned to this smoothing by the numeration.

Proposition 3.5. Let (Ψ, e) and (Φ, f) be chain complexes in Kob, Let (Φ, f) be a bounded
complex in [t0, tM ], and D an appropriate 2-input planar arc diagram. Let φ1, . . . , φN be a
numeration of (Φ, f) Then D(Ψ, Φ) is homotopy equivalent to a chain complex (Ω, d) with
the following properties:

(1) Every vector Ωr is of the form

Ωr =
⊕

t0 ≤ t ≤ tM
s = r − t

D(Ψs, Φt)

can be regarded as a block column matrix




Ωr
1
...

Ωr
N


 in which each block Ωr

i = D(Ψs, φi),

where φi is a smoothing in Φt.
(2) The differential matrixes dr can be seen as lower block triangular matrices with blocks

dr
ij : Ωr

j −→ Ωr+1
i .
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Proof. The first of these statements follows immediately from the definition of D(Ψ, Φ),
equations (2). Obviously, if s ≤ s0 or s ≥ sM we consider Ψs = 0.

For the second statement we see that given r = s + t, the matrix dr is defined by the
second of the equations (2), and is given by

(10) d|D(Ψs,Φt) = D(e, IΦt) + (−1)sD(IΨs , f).

This matrix can be see as a block matrix in which each block dr
ij is a morphism of the

form dr
ii : D(Ψs, φi) −→ D(Ψs+1, φi), and any other block is a morphism of the form dr

ij :

D(Ψs, φj) −→ D(Ψs+1, φi) with i 6= j. We conclude from this that D(e, IΦt) in the right side
of equation (10) is concentrated in the diagonal of blocks. It is clear that the blocks over the
diagonal are zero, since they are part of ±D(IΨs , f) in the right side of equation (10) and if
i < j, fij : φj → φi is the zero cobordism. ¤

Remark 3.6. The blocks Ωr
i = D(Ψs, φi) in Ωr, and the blocks dr

ii : D(Ψs, φi) −→
D(Ψs+1, φi) in the diagonal of dr (here s = r − t and φi is an smoothing in Φt), deter-
mine the complex

D(Ψ, φi) = · · ·Ωr
ii

dr
// Ωr+1

ii · · ·

¤

D

DD1 2

We illustrate the previous proposition with an example. Let D
be the binary operator defined from the planar arc diagram of the
right. If we place the complex

Ψ =

-

-1 0 1

in the first entry of D and

Φ =

0 1

(2)(1)
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in the second entry. Once we have embedded these complexes in D, we obtain a new complex:

D(Ψ, Φ) =

-1 0 1 2

0

0

d
-1

d
0

d
1

The differentials in this complex can be seen as block-lower-triangular matrices, as they are
displayed in Figure 2.

d−1 =

0

0

0

d0 =

0

0

0

d1 =

0 0 0

Figure 2. The differentials in the complex D(Ψ, Φ). The blocks in the diagonal are the

differentials dr
ii : D(Ψs, φi) → D(Ψs+1, φi). the elements in the blocks below the diagonals

could have a sign shift. The blocks above the diagonal are blocks of zeros.

Proposition 3.7. Assume that the three differential matrices in the four term complex seg-
ment (5) of lemma 3.2 are block-lower-triangular matrices. After applying gauss elimination,
the resulting three differential matrices in the four term complex segment (7) are also block-
lower-triangular matrices. Furthermore, the lowest right block of the three initial differential
matrices remained unchanged after the Gauss elimination.
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Proof. It is clear that if

(
α
β

)
,

(
φ δ
γ ε

)
, and

(
µ ν

)
are block-lower-triangular

matrices, so they are β, ε, and ν. Therefore, it is clear that after Gauss elimination, the
first and the third of the differential matrices in the form term complex (7) are block-lower-
triangular matrices with the same initial lowest-right block.

To prove that the same happens with the second block, we observe that if

(
φ δ
γ ε

)
is

a block-lower-triangular matrices then

(
φ δ
γ ε

)
=




φ δ1 0
γ1 ε1 0
γ2 ε2 ε3


; where δ =

(
δ1 0

)
,

γ =

(
γ1

γ2

)
, and ε =

(
ε1 0
ε2 ε3

)
. Each 0 in the previous matrices is actually a block of

zeros.
An immediate consequence of the previous paragraph is that the second differential matrix

in the four term complex segment (7) is given by

ε− γφ−1δ =

(
ε1 − γ1φ

−1δ1 0
ε2 − γ2φ

−1δ1 ε3

)
.

This completes the proof. ¤

4. Adequate links

We introduce an alternating orientation in the objects of Cob3
•/l(k). This orientation in-

duces an orientation in the cobordisms of this category. These oriented k-strand smoothings
and cobordisms form the objects and morphisms in a new category. The composition be-
tween cobordisms in this oriented category is defined in the standard way, and it is regarded
as a graded category, in the sense of [BN1, Section 6]. We subject out the cobordisms in
this oriented category to the relations in (1) and denote it as Cob3

o(k). Now we can fol-
low [BN1] and define sequentially the categories, Mat(Cob3

o(k)), Kom(Mat(Cob3
o(k))) and

Kom/h(Mat(Cob3
o(k))). This last two categories are what we denote Kobo(k), and Kobo/h.

As usual, we use Kobo, and Kobo/h, to denote
⋃

k Kobo(k) and
⋃

k Kobo/h(k) respectively.

b

We denote the class of oriented smoothings as So. An al-
ternatively oriented d-input planar diagram, see [Bur], pro-
vides a good tool for the horizontal composition of objects
in So, Cob3

o, Mat(Cob3
o(k)), Kobo, and Kobo/h. The orienta-

tion in the diagrams can be provided as in the figure at the
right. For making this text a little more self-contained, we
are going to recall briefly some concepts presented before in
[Bur]. Given oriented smoothings σ1, ..., σd, a suitable alter-
nating d-input planar diagram D to compose them has the
property that the i-th input disc has as many boundary points as σi. Moreover placing σi

in the i-th input disc, The orientation (the coloring) of σi and D match.

Given an open strand α of an alternating oriented smoothing σ, possibly with loops, enu-
merate the boundary points of σ in such a way that α can be denoted by (0, i). The rotation
number of (0, i), R(α), is i−k

2k
. If α is a loop, R(α) = 1 if α is oriented counterclockwise, and
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R(α) = −1 if α is oriented clockwise. The rotation number of σ is the sum of the rotation
numbers of its strings. See figure 3 We are going to use this alternating diagrams to compute

2

 0

1

3

4

5

R(α) = 1−3
6

Figure 3. α = (0, 1), R(α) = −2
6 = −1

3 . The rotation number of the complete resolution is 0

non-split alternating tangles, and we want to preserve the non-split property of the tangle.
Hence, it will be better if we use d-input type A diagrams.

A d-input type-A diagram has an even number of strings ending in
each of its boundary components, and every string that begins in the
external boundary ends in a boundary of an internal disk. We can
classify the strings as: curls, if they have its ends in the same input
disc; interconnecting arcs, if its ends are in different input discs,
and boundary arcs, if they have one end in an input disc and the
other in the external boundary of the output disc. The arcs and the
boundaries of the discs divide the surface of the diagram into disjoint
regions. Some arcs and regions will be useful in the following definitions and propositions.

Definition 4.1. We assign the following numbers to every d-input planar diagram D:

• iD: number of interconnecting arcs and curls, i.e., the number of non-boundary arcs.
• wD: number of negative internal regions. That is, in the checkerboard coloring, the

white regions whose boundary does not meet the external boundary of D.
• RD: the rotation associated number, which is given by the formula

RD =
1

2
(1 + iD − d)− wD

.

Proposition 4.2. Given the smoothings σ1, ..., σd and a suitable d-input planar diagram D,
where every smoothing can be placed, the rotation number of D(σ1, ..., σd) is:

(11) R(D(σ1, ..., σd)) = RD +
d∑

i=1

R(σi)

Definition 4.3. An alternating planar algebra is a triplet {P ,D,O} in which P , D, and O
have the same properties as in the definition of a planar algebra but with the collection D
containing only A-type planar diagrams.

Diagrams with only one or two input discs deserves special attention. Operators defined
from diagram like these are very important for our purposes since some of them are considered
as the generators of the entire collection of operators in a connected alternating planar
algebra.
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(a) (b)

Figure 4. Examples of basic planar diagrams

Definition 4.4. A basic planar diagram is a 1-input alternating planar diagram with a curl
in it, or a 2-input alternating planar diagram with only one interconnecting arc. A basic
operator is one defined from a basic planar diagram. A negative unary basic operator is one
defined from a basic 1-input diagram where the curl completes a negative loop. A positive
unary basic operator is one defined from a basic 1-input diagram where the curl completes
a positive loop. A binary operator is one defined from a basic 2-input planar diagram.

Proposition 4.5. The rotation associated number of a planar diagram belongs to 1
2
Z and

the case when we have a basic planar diagram it is given as follows:

• If D is a negative unary basic operator, RD = −1
2• If D is a binary basic operator, RD = 0

• If D is a positive unary basic operator, RD = 1
2

Proposition 4.6. Any operator D in an alternatively oriented planar algebra is the finite
composition of basic operators.

5. Connecting in a wrong way

Once we have applied lemma 3.1 to an element of Kobo, we obtain a complex (Ω, d), which
preserves some properties of the former one, but with a change in the rotation number of
the element σ{qσ}, in which we have applied the delooping. In fact, the smoothing has been
replaced in the complex by a couple whose rotation number has changed either by -1 or by
+1. This shift in the rotation number could be even greater if we continue removing loops
in the same smoothing. From lemma 3.1, we know that there is also a change in the grading
shift of the smoothings. So it would be a good idea to define a concept that states a relation
between the rotation number of σ and its grading shift qσ.

Definition 5.1. Let (Ω, d) be a class-representative of Kobo/h, and let σi{qi} be a shifted

degree object in Ωr, then its degree-shifted rotation number is R(σi{qi}) = R(σi) + qi

Definition 5.2. A diagonal complex is a degree-preserving differential chain complex (Ω, d)

· · ·Ωr dr
// Ωr+1 · · ·

in Kobo, satisfying that for each homological degree r and each shifted degree object σi{qi}
in Ωr, we have that 2r − R(σi{qi}) = CΩ, where CΩ is a constant that we call rotation
constant of (Ω, d).

Here we have some examples of diagonal complexes in Kobo.
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Example 5.3. As in [BN2], a dotted line represent a dotted curtain, and K stands for the
saddle H −→ 1

(1)

Ω1 = {−2} {−1}-L .

This is the Khovanov homology of the negative crossing ", now with orientation in
the smoothings. Remember that the first term has homological degree -1. In this
example the rotation number in the first term is −1

2
and in the second term it is 1

2
.

Observe that in each case, the difference between 2 times the homological degree r
and the shifted rotation number is 1

2
.

{1}

{-2}

0

{-1}

{4}

{3}

{3}{2}

+ -

-- -

0

-

{0}

0 1 2 3 4
r

-3 -1 1 3 5
R

Figure 5. A diagonal complex.

(2) In Figure 5, the number below each smoothing is the grading shift of the smoothing.
The upper line below the complex represents the homological degree r, and the lower
one represents the degree-shifted rotation number. For instance, the rotation number
in the first smoothing with homological degree 1 has rotation number 0 and a grading
shift by -1. In the second smoothing of the same vector, the rotation number is -1
and its grading shift is 0, so both term has the same degree-shifted rotation number.
We see in this example, that for each r we have that 2r−R = 3, so this is a diagonal
complex.

Now, we can establish a parallel between what we did with alternating elements in M(o)
k

and diagonal complexes in Kobo in such a way that we can obtain similar results as those
obtained in section 4 of [Bur].
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5.1. Applying unary operators. The reduced complexes in Kom(Mat(Cob3
o)) can be in-

serted in appropriate unary basic planar diagrams, and then apply lemmas 3.1, 3.2, and 3.3
to obtain again a reduced complex in Kobo. This process can be summarized in the following
steps:

(1) placing of the complex in the corresponding input disc of the d-input planar arc
diagram by using equations (2),

(2) removing the loops obtained by applying lemma 3.1, i.e, replacing each of them by a
copy of ∅{+1} ⊕ ∅{−1}, and

(3) applying lemma 3.3 and gaussian elimination (lemma 3.2), and removing in this way
each invertible differential in the complex.

Definition 5.4. Let (Ω, d) be a chain complex in Kom(Mat(Cob3
o(k))), then a partial closure

of (Ω, d) is a chain complex of the form Dl ◦ · · · ◦ D1(Ω) where 0 ≤ l < k and every Di

(1 ≤ i ≤ l) is a unary basic operator

We have diagonal complexes whose partial closures are again diagonal com-
plexes. For instance, embedding Ω1 of the example 5.3 in a unary basic
planar diagram U1 as the one on the right which has an associated rotation
number RU1 = 1

2
, produces the chain complex.

U1(Ω1) =

[
{−2}

] [
{−1}

]
-

[L]

∼
[

{−2}
]




{−2}

{0}




-







The last complex is the result of applying lemma 3.1. Applying now lemma 3.2 we obtain a
homotopy equivalent complex

U1(Ω1) ∼ 0

[
{0}

]
-[0]

which is also a diagonal complex, but now with rotation constant zero.

Definition 5.5. Let (Ω, d) be a bounded diagonal complex in Kobo with rotation constant
CR. We say that (Ω, d) is coherently diagonal if for any appropriated unary operator with
associated rotation number RU , the closure U(Ω, d) has a reduced form which is a diagonal
complex with rotation constant CR −RU .

We denote asD(k) the collection of all coherently diagonal complexes in Kom(Mat(Cob3
o(k))),

and as usual, we write D to denote
⋃

kD(k). It is easy to prove that any coherently diagonal
complex satisfies that:

(1) after delooping any of the positive loops obtained in any of its partial closure, by
using lemma 3.2, the negative shifted-degree term can be eliminated.
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(2) after delooping any of the negative loops obtained in any of its partial closure, by
using lemma 3.2, the positive shifted-degree term can be eliminated.

Since the computation of any other of its partial closures produces
other diagonal complex, the complex Ω1 of the example 5.3 is an element
of D(2). Another example of coherently diagonal complex is the complex
Ω2 of the same example. This last complex has CR = 3. All of its partial
closures U(Ω2) are diagonal complexes with rotation constant given by
CR − RU . Here, we only calculate the one produced by inserting the
element in the closure disc U , with RU = −1

2
, that appears on the right.

It will be easy for the reader to compute the other partial closures. Inserting Ω2 in U
produces the complex of Figure 6, which is also a diagonal complex, but with a loop in some

{1}

{-2}

0

{-1}

{4}

{3}

{3}{2}

+ -

-- -

0

-

{0}

0 1 2 3 4
r

R -7

2

-3

2

1

2

5

2

9

2

Figure 6. A diagonal complex inserted in a negative unary basic diagram U .

of its smoothings. Observe that the rotation number of the smoothings have decreased in 1
2

after having been inserted in a negative unary basic diagram.
After applying lemmas 3.1 and 3.2, we obtain the complex in Figure which is also a diagonal
complex, but now with rotation constant 7

2
.
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