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A B S T R A C T  
One of the important project resources that has been overlooked during the 

planning phases of most construction projects is site space. In some projects on-site 

space can be as crucial a resource as the traditional construction resources (time, capital, 

labor, equipment and material). In highly congested sites, space becomes a very scarce 

resource that needs to be carefully planned and efficiently utilized. On the other hand, in 

large sites having abundant space availability, the proper positioning of site facilities 

with respect to each other will greatly influence material handling and travel costs. 

In a broad sense, layout planning is concerned with the placement of temporary 

facilities (e.g. Storage areas, fabrication yards, caravans, etc…) within the boundaries of 

the construction site with the goal of attaining one or several layout objectives. Two 

layout planning approaches are commonly found in the literature; namely static layout 

planning and dynamic layout planning. A layout is termed “static” if effort put in 

planning yields only one site layout that will span the entire project duration. Creating 

layouts that change over time as construction progresses is termed dynamic layout 

planning.  

This research presents a fully automated computer system for performing the 

site layout planning task at the dynamic level.  The system integrates the powerful 

graphical capabilities of CAD systems with the intricate search and optimization 

abilities of genetic algorithms for the purpose of solving the site layout problem. 

Modeling the continuously developing construction site is made possible via dynamic 

site layout planning, thus creating several layouts that change over time as construction 

progresses. Two approaches are proposed to deal with the dynamic layout problem, 

namely the critical phase approach and the mini-min approach. These approaches aim to 

overcome the shortcomings found in the traditional dynamic layout techniques. 

The automated system is implemented via  6.0. The programmable features of 

AutoCAD™ are utilized to capture the geometrical details of the site layout and to 

represent the final solution graphically. A 4-phase project is used to demonstrate the 

system’s capabilities. A 24,000 m2 swimming pool complex under construction is 

chosen as a case study to validate the system’s performance. A comparison is performed 

between the existing layout and that produced by the system. The system-generated 

layout achieved savings of nearly 25% in total layout costs compared to the existing site 

layout. 
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1 INTRODUCTION 

1.1 BACKGROUND 

 

The effective and efficient management of construction resources is the essence 

of success for any construction project. Traditionally, researchers and industry 

professionals identify the five main construction resources to include, time, capital, 

labor, equipment and material. Recently, attention has been given to information as 

being a vital resource in construction operations.  

One of the most important construction resources that has been for long 

overlooked is space. Site space can – in some projects – be as crucial a resource as the 

traditional construction resources mentioned. In highly congested sites, space becomes a 

very scarce resource that needs to be carefully planned and efficiently utilized. On the 

other hand, in large sites having abundant space availability, the positioning of site 

facilities with respect to each other will greatly influence the efficiency of work flow.  

Regardless of site dimensions and level of congestion, the need for careful 

planning of construction site layouts is evident. In practice, the task of site layout is 

usually performed through common sense and the adoption of past layouts to present 

projects. A survey conducted in the U.K. in the late 90’s indicated that only 13% of 

contractors use computer methods or expert systems to assist in the site layout planning 

task (Markhomihelakis ,1997). 

 

1.2 PROBLEM STATEMENT 

The task of site layout consists of identifying the facilities needed to support 

construction operations, determining their size and shape and positioning them within 

the boundaries of the available on-site areas. Examples of these facilities include offices 

and tool trailers, parking lots, warehouses, batch plants, maintenance areas, fabrication 

yards or buildings, staging areas, and lay-down areas (Tommelien et al, 1992a). 

Space is considered secondary to time and money because it is more difficult to 

model and the payoffs from modeling are not readily apparent. First of all it is difficult 

to represent and reason about space. Secondly it is difficult to precisely determine the 

space required for conducting construction operations that are needed by resources such 
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as material and equipment. Third, it is difficult to value the adequacy of a space to 

accommodate a resource. Last, spatial variables are three dimensional, in contrast with 

time and money which are scalar. All too often the costs associated with handling these 

complexities are prohibitive, so model simplifications or abstractions must be 

introduced at the expense of loosing interesting detail (Tommelien & Zouein 1993). 

In the construction industry, the cost of site planning is typically charged to 

project overhead and is not treated as a direct cost or reimbursable item. Also the 

competitive bidding structure of construction and the bidding firm’s need to keep 

overhead down during bidding process often gets in the way of providing project 

managers adequate staff and time to plan site layouts early (Cheng & O’Connor 1996). 

Neglecting site layout planning during the early planning stages can lead to 

unsuitable layouts that need correction. Correcting a mistake costs much more than 

preventing it in the first place. The emergence of an unsuitable layout must not always 

occur during the early phases of a project, it is during the late phases (due to the vast 

changes that have occurred) that a layout might seem incompetent of achieving the site 

requirements at that time. 

Considering the dynamic nature of construction projects and its direct reflection 

on site requirements in general further complicate the layout process. Site facilities 

constrain one another in the process of determining their final position. Gasoline or 

natural gas containers must be kept a minimum distance away from buildings or oxygen 

tanks. Physical resources (e.g., trailers) cannot occupy space that is occupied by other 

physical resources, that is they cannot overlap. Constraints themselves vary over time. 

A lay down area may provide space to store precast members while a structure is being 

erected, and space to accommodate machinery later. Interactions between resources also 

determine the quality of positions, which too can vary over time. A loader and filling 

material interact during backfilling, so they must be positioned as close as possible to 

each other to minimize travel time. Upon completion of this activity, the required 

interaction stops. The loader will probably be assigned to a different activity and thus 

relocated to function better (Zouein & Tommelien, 1999). This ever-changing nature of 

construction sites has led to the emergence of what is known as dynamic layout 

planning. This approach creates several layouts spanning the project duration so that 

each unique layout will strive to achieve the site requirements set forth during the 

layout’s life span. 
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1.3 RESEARCH OBJECTIVES 

The efforts put into this research aim to develop an automated system for 

dynamic layout planning of construction sites at the 2D level. To achieve this, the 

following sub-objectives are considered: 

1- Investigate the potential for using genetic algorithms in solving the site layout 

planning problem. The use of genetic algorithms as complex function optimizers has 

been for long acknowledged. Recently some research in the site layout planning domain 

has been focused on using these evolutionary techniques to solve the site layout 

planning problem.   

2- Formulate a CAD-based GA approach to perform the task of site layout 

planning. Due to the geometric nature of the problem at hand, the research incorporates 

a CAD input/output media to facilitate the use of the system. The approach used aims to 

integrate the powerful graphical capabilities of CAD systems with the intricate search 

and optimization abilities of genetic algorithms for the purpose of solving the site layout 

problem.  

3- Expand this approach to the dynamic site layout problem. The dynamic 

aspects of site layout planning have not been thoroughly covered in the literature. The 

CAD-based GA approach is extended to include the changes that take place in the 

construction site throughout the project lifespan.   

4- Develop an automated system for dynamic site layout planning. The research 

aims to develop an integrated software package that implements the developed dynamic 

CAD-based GA model. The CAD platform chosen is AutoCAD™ due to its widespread 

use in the construction industry in Egypt. 

5- Test and validate the system. A carefully selected case study is chosen to test 

and validate the systems’ performance.  

 

1.4 METHODOLOGY 

The proposed system primarily consists of an optimization engine and a 

geometric input / output interface. The link between the optimization engine and the 

geometrical data contained in AutoCAD™ drawings has been made possible through 

AutoCAD™ VisualBasic™ Applications. The programmable features of AutoCAD™ 

enable all site related geometrical data to be detected as an orthogonal 2-D grid. The 
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optimization engine utilizes this grid in its execution. 

To perform the optimization task, the proposed system utilizes genetic 

algorithms as the main optimization engine. Due to the non-linearity of the objective 

function to be optimized, the various constraints to be considered and dynamic nature of 

the optimization problem, traditional operations research techniques were unsuitable. 

Due to the special nature of the problem at hand, commercial GA software were not 

used. Instead, a problem dependant genetic algorithm is developed to perform the 

dynamic site layout planning task.  

 

1.5 THESIS ORGANIZATION 

This thesis is organized into 7 chapters. Chapter 2 provides a thorough review of 

previous studies related to construction site layout planning and the applications of 

genetic algorithms in construction. The research approach adopted and theoretical 

background for this study is presented in chapter 3.  

Chapter 4 presents functional details of the various components of the site layout 

planning system as well as details concerning their integration to perform the required 

task. Details of the physical structure of the program are provided in chapter 5 using an 

illustrated example. In chapter 6, validation of the system is performed using a 20,000 

m2 construction site as case study. Finally in chapter 7, conclusions and 

recommendations for future enhancements are presented. 
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2 LITERATURE REVIEW 

 

2.1 DEFINITION 

Many researchers have attempted to define the site layout planning process. One 

of the more crisp and generic definitions was given by Tommelien et al (1992a).  

“The task of site layout consists of identifying the facilities needed to 

support construction operations, determining their size and shape and 

positioning them within the boundaries of the available on-site areas. 

Examples of these facilities include offices and tool trailers, parking lots, 

warehouses, batch plants, maintenance areas, fabrication yards or 

buildings, staging areas, and lay-down areas.”  

2.2 APPLICATIONS IN OTHER DOMAINS 

The construction site layout problem may be considered as a sub-domain of the 

greater “Facility Layout Problem”. This problem is common in other specialization 

areas besides its use in construction engineering. Facility layout has been utilized 

extensively in the domains of industrial and electrical engineering.  

2.2.1 Industrial Engineering 

In Industrial Engineering, the facility layout problem is usually termed the plant 

layout problem. It is concerned with the arrangement of physical facilities (departments, 

machines) within a predetermined plant area. This arrangement is performed so as to 

minimize the total material handling costs between departments within the plant 

(Rosenblant, 1986). 

2.2.2 Electrical Engineering 

In electrical Engineering the facility layout problem is utilized in the physical 

design of VLSI (very large scale integrated) microchips in a task named “macro-cell 

layout generation”. In this task the circuit is partitioned and the components are grouped 

into functional units, the macro cells. These cells can be described as rectangular blocks 

with terminals (pins) along their borders. These terminals have to be connected by 

signal nets, along which power or signals (e.g. clock ticks) are transmitted between the 
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various units of the chip. A net can connect two or more terminals, and some nets must 

be routed to pads at the outer border of the layout, since they are involved in the I/O of 

the chip. The goal to attain in the layout process is the minimization of the total chip 

area which is greatly influenced by the area between the cells occupied by the signal net 

wiring (Schnecke & Vornberger, 1997). 

 

2.3 PROBLEM APPROACHES 

In the field of construction engineering, researchers have chosen various 

approaches to deal with the layout planning problem. These approaches differ from one 

another in the level of detail they provide and the extent to which they yield a well 

round solution to the rather sophisticated problem of layout planning. The three 

approaches are briefly described in the following section. 

2.3.1 Static Layout Planning 

Most construction resources require space on site. This is the case for materials 

and equipment, support facilities (e.g., trailers or parking lots), and demarcated areas 

(e.g., law down areas, roads, or work space), but also for obstacles (trees or existing 

buildings). Allocating site space to resources so that they can be accessible and 

functional during construction is a problem known as layout planning Zouein & 

Tommelien (1999). A layout is termed “static” if effort put in planning yields only one 

site layout that will span the entire project duration.  

In almost all static layout planning models, assignment of temporary facilities 

takes place such that: 

1- Temporary facilities are assigned within the site boundaries. 

2- Temporary facilities are assigned in positions that attain a certain or several 

objectives 

3- Temporary Facilities are assigned in such a manner that specific geometrical 

constraints are attained. 

Usually this layout will become obsolete after any significant progress in the 

project, as the needs of construction sites change considerably from time to another 

throughout different phases of construction.  

Early research in the area of site layout planning was limited to static layout 

problems. Performing the more sophisticated “dynamic layout planning” was hindered 
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by the high computational capabilities that was unavailable in the late 80’s and early 

90’s. Researchers acknowledged their models’ limitations and recommended future 

research to consider the more generic “dynamic layout problem” (Tommelien et al. 

1992b, Cheng & O’Connor 1996, Li & Love 1998, Elbeltagi,1999). 

2.3.2 Dynamic Layout Planning 

Creating layouts that change over time as construction progresses is termed 

dynamic layout planning. The needs of construction sites change considerably from 

time to another throughout different phases of construction.  

1- As the project grows, more area is occupied by permanent facilities leaving 

less space to position supporting facilities. 

2- The types and quantities of material being delivered to the site change 

considerably throughout the project. Thus, the areas needed for their storage change 

accordingly. (Zouein & Tommelien, 1999) 

3- In most projects, the demand for heavy equipment and on-site administrative 

support facilities changes as construction progresses. This causes significant changes 

from time to another in both the required site space to support these facilities and the 

presumptive position of each relative to the others.  

4- Access roads that are available during one stage of construction may not 

necessarily be available during another stage.  

The need for a dynamic model to represent site requirements is clearly 

understood. Applications in construction engineering nonetheless lagged behind their 

counterparts in other fields such as industrial engineering. For instance, Rosenblant 

(1986) presented a mathematical model for dynamic plant layout where an optimization 

technique named “dynamic programming” was utilized to mimic the dynamism of the 

layout process. Tommelien & Zouein (1993) presented one of the earliest dynamic 

models for construction site layout planning. A number of studies have followed since 

then (Zouein & Tommelien 1999, Elbeltagi et al 2001). 

Zouein & Tommelien (1999) presented a very comprehensive model for 

dynamic layout planning for construction sites. They laid the basis for researches to 

come. Some of the fundamental concepts introduced that constitute the basis of dynamic 

modeling of construction sites are: 

i) Primary Time Frames (PTF’s): They are the smallest time intervals 

demarcated by the arrival or departure of site facilities. (i.e. during a PTF 
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no facility arrives or leaves the site). By definition, PTF’s include only 

those facilities that coexist on site in that time frame.  

ii) Dynamic layout objective function: In addition to the tradition minimum 

travel distance / cost objective, the relative cost of relocating a facility is 

included in the objective function.  

iii) Constraints: Were grouped into Hard and Soft constraints. Hard 

constraints include non-overlap, minimum / maximum, orientation, 

parallel / perpendicular and in-zone constraints.  

The model they formulated utilized simple linear programming in solving the 

layout problem.  

Researchers in the area of dynamic layout of construction sites have 

acknowledged the incompetence of dynamic modeling in solving all problems. 

Dynamic layout can only assign a set of facilities that occupy the site during a certain 

time period on a predetermined site area. If during any time frame there is no feasible 

solution, the planner must either alter his schedule or reconsider the area assigned to 

facilities. The more generic approach of “Space Scheduling” addresses problems of 

these kind.  

2.3.3 Space Scheduling 

The first to acknowledge the broader approach of space scheduling in 

construction were Tommelien & Zouein (1993). They defined space scheduling as “The 

bi-directional interaction between scheduling and layout construction or improvement.” 

The research they conducted in 1993 admitted to the need of formulating a space 

scheduling model if comprehensive modeling was to be performed.  Their research 

stated that “schedule changes are crucial for coming up with feasible layouts when 

insufficient space is available to accommodate all resources on site for any time 

interval.”  

It was not until 2001, when Zouein & Tommelien formulated an improvement 

algorithm for limited space scheduling. This work was a continuation of the dynamic 

layout planning solution method they presented in 1999. Their space scheduling model 

came into action when it was impossible to construct a feasible layout for any time 

interval. The model proposed two strategies to overcome this situation: 
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Figure 2-1 Difference between space scheduling and dynamic layout planning 
(Tommelien & Zouein, 1993) 

Strategy A: Delays an activity in the problematic time interval. Activities are 

selected in order of decreasing total float. 

Strategy B: Lowers resource level of activity and therefore lengthens its 

duration. Activities are selected in order of decreasing total float. 

To conclude, space scheduling can be considered to be a form of constrained 

resource leveling, with the resource being site space. 

2.4 METHOD OF FACILITY ASSIGNMENT 

Another main difference between site layout planning models, is in the manner 

the facilities are assigned on site. Two distinct assignment methods can be 

characterized, namely facility to location assignment and facility to site assignment. 

Facility to location, assigns a set of predefined facilities to a set of predefined 

locations such that #of locations ≥  # of facilities. On the other hand, facility to site 

assignment, assigns a set of predefined facilities to the entire space available on site. 

Facility to location assignment neglects one very important aspect, that of size. All 

locations are assumed to be able to fit all facilities. This assumption is weakened by the 

discrepancies found between the sizes of most construction site facilities. Facility to site 

assignment is considered more generic as it assumes that the planner has not yet settled 

on  the feasible locations for facility placement. Also, during this type of assignment, 

many spatial constraints must be satisfied which poses an extra computational burden 

on the model. In brief, facility to site assignment is considered the more generic case of 

facility assignment. 

2.5 PROBLEM SOLVING TECHNIQUES 

Researchers have utilized many problem solving techniques in layout planning 

ranging from purely mathematical models to knowledge based systems. Artificial 
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intelligence and evolutionary algorithms have also been used in problem solving. Up till 

now, researchers have not acknowledged a specific problem solving technique to be 

more suitable than another. Techniques used can be broadly divided into two categories, 

namely heuristical techniques and mathematical techniques.   

2.5.1 Heuristics & Expert Systems 

Early research in the area of layout planning was focused more heavily on 

systems that provide guidelines or heuristics for assisting managers in layout planning. 

Systems of this type are more dependant on manual rather that automated design 

(Tommelien et al. 1992a).  

One of the early innovative expert systems for construction site layout planning 

was the SightPlan model presented by Tommelien et al. (1992b). SightPlan was a model 

that mimics how people lay out construction sites and encodes the domain knowledge 

they apply in this process. The model was implemented using common lisp. 

SightPlan’s knowledge was modeled after two power plant project case studies. 

Input required to the system include: 

1- Major permanent facilities on site with their dimensions. 

2- Access roads with their dimensions and location. 

3- Dimensions of temporary facilities. 

4- Constraints on the location of temporary facilities relative to permanent facilities. 

5- Zones that partition the site into smaller areas.  

One of the interesting findings during knowledge acquisition was that the A/E 

and the construction manager each laid out part of the facilities on the case study 

project, with the A/E layout preceding the CM layout.  

It is the investigator’s opinion that the system is highly case specific due to the 

model’s narrow scope of case studies used in excerpting knowledge. The model is 

mostly applicable for industrial projects having under-constrained layouts.  

 

Cheng & O’Connor (1996) developed an automated site layout system for 

temporary facilities. Their system ArcSite integrated a database management system 

(DBMS) and geographic information system (GIS). The main objective of the system is 

to automate the planning tasks required for facility layout. This is performed through 

the identification of areas suitable for assigning facilities in order to minimize 

construction conflicts and improve project efficiency. The following four sub- 
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objectives were achieved by developing the system: 

1- Obtain the knowledge and procedures that project managers use in laying out 

site facilities. 

2- Model the experts’ knowledge and experience of site planning and express it in a 

systematic form. 

3- Define the dominant variables and develop an evaluation method to identify the 

suitable location for the facility. 

4- Develop a GIS based site layout system to replace manual methods. 

The ArcSite system is different in the fact that it performs the site layout 

planning process taking into account the possibility of incorporating temporary facilities 

(TF) inside constructed permanent facilities (PF). The procedures developed in the 

research to a acquire and represent site layout knowledge is classified into three phases:  

1- Compiling the experts’ knowledge and experience for site layout. 

2- Interpreting the knowledge into the knowledge base. 

3- Translating the knowledge base into the ArcSite implementation forms. 

 

 

Figure 2-2 Procedure of knowledge acquisition and representation  
Cheng & O’Connor (1996) 

 

Knowledge representation is complied into five categories of constraints: 

1- Spatial: Calculates the area required for the facility 

2- Distance: Defines the facility’s priority and proximity to the work sites. 

3- Adjacency: Identifies if the facility is located next to the construction area, 

another facility, access roads or gates. 

4- Position: Position of the facility relative to any other facilities. 
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5- Accessibility: Defines the accessibility of the area where the facility is located. 

The system is implemented using 4 main software components:  

1- CAD (MicroStation): To create site geometry 

2- ARC tools: Conduct the facility layout analysis and design 

3- Excel: Conducts the DBMS function such as adding tabular attributes, data 

consolidation, database query and user interface. 

4- ARC prompt: ArcSite allows the usr to suspend the user interface and exit to the 

ARC prompt to use Arc/Info functions. 

 

2.5.2 Mathematical Techniques 

Most mathematical techniques involve the identification of one or more goals 

that the layout should strive to achieve. Any of these goals is interpreted to what 

mathematicians term "an objective function". This objective function is then optimized 

under problem specific constraints via any common optimization technique. Some of 

the techniques used by researchers in the site layout optimization problem are listed in 

Table 2-1.  

Table 2-1 Summarization of optimization techniques used in  
solving site layout planning problem 

 

2.6 OPTIMIZATION 

Researchers that have used optimization techniques in site layout planning have 

formulated many equations to be used as their optimization goal or objective function. 

Table 2-2 summarizes the different objective functions formulated by researchers using 

optimization techniques. 

In almost all optimization approaches, in site layout planning, the layout goal to 

be attained, takes the general form: 

Min:[ Inter-facility Transportation Costs] 

This goal is translated to the objective function that takes the general form: 

Technique Research 
Linear Programming Zouein & Tommelien (1999) 
Genetic Algorithms Li & Love (1998), Hegazy & Elbeltagi (1999) 
Neural Networks Yeh (1995) 
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Where: 

P= Total number of fixed and temporary facilities present. 

jid , = Distance between facilities i and j 

In the literature, the term jiW ,  represents one of the following:  

1- Transportation cost data of some sort or 

2- A relative proximity weight that reflects the required closeness between any two 

facilities. 

Practically, in the absence of data, the project manager would try to assign a 

relative weight which represents his/her anticipated closeness required between any two 

facilities. But the question is what exactly should this weight depend on? Is it only a 

function of transportation costs or do other variables dictate its exact value? Even if 

these variables are known, how do they interact and what is the extent of the 

contribution of each to the value of the proximity weight? 

 

Table 2-2 Objective functions formulated by researchers using optimization techniques 

Objective function to minimize Research 
Frequency of trips made by construction 
personnel.  

Li & Love (1998) 

Total transportation costs of resources 
between facilities. 

Tam et al. (2001)  
Cheung et al. (2002) 

Cost of facility construction + Interactive 
cost between facilities 

Yeh (1995) 

Proximity weight on an exponential scale  Hegazy & Elbeltagi (1999) 
Proximity weight + Relocation weight Zouein & Tommelien (1999) 

 

Considering a single objective in layout planning overlooks the intricate nature 

of construction sites. When planning a construction site any project manager wants to 

achieve various objectives while simultaneously abiding with various constraints.  

Researchers who introduced the idea of the proximity weight were highly aware 

of this problem. They were also aware that other models that explicitly tried to 

minimize costs of any sort required enormous amounts of cost related data. Data of this 

sort may be unavailable or very hard to attain for the following two reasons: 
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1. Site planning is performed in a very early planning phase. The exact scope of the 

project may not be well defined. 

2. Although organized construction corporations keep track of most relevant cost 

data, the cost data required for site optimization may not be readily available. 

For example, data on the cost of transportation of 1 unit of concrete per unit 

distance is not the type of cost data contractors usually keep a record of. 

 

In an attempt to fully describe the proximity weight, (Elbeltagi & Hegazy 2001) 

proposed a fuzzy rule based system that quantifies this proximity weight based on three 

variables. There work was an extension to their previous EvoSite model (Hegazy & 

Elbeltagi 1999). The six level proximity weights (Table 2-3) were defined as fuzzy sets 

as shown in Figure 2-3 

 

 

Figure 2-3 Fuzzy sets of the variable “proximity weights” (Elbeltagi & Hegazy, 2001) 

 

Based on construction experts opinion, three input variables we formed to 

govern the proximity weight value. These input variables are: 

1. Work flow (trips/day) 

2. Safety  / Environmental concerns (scale of 1 to 10) 

3. User preference (scale of 1 to 10) 

 

Figure 2-4 illustrates the fuzzy sets depicting each of these input variables. 

Each of the three input variables was defined by three fuzzy sets, thus 33 = 27 

rules were formulated linking each of these input variables to the proximity weight. For 
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example, rule #3:  

 

"If workflow is low, safety concerns are medium and user preference is low, 

then the required proximity is unimportant." 

The process involved in the system is known as  fuzzy rule-based inferencing. 

 

 

Figure 2-4 Fuzzy sets for the input variables (Elbeltagi & Hegazy, 2001) 

2.6.1 Linear Programming 

Linear programming is a class of mathematical programming models concerned 

with the efficient allocation of limited resources to known activities with the objective 

of meeting a desired goal (such as maximizing profit or minimizing cost). The distinct 
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characteristics of linear programming models is that the function representing the 

objective and the constraints are linear (Taha, 1971).  

Despite its relative simplicity and prevalence in a vast range of engineering 

optimization applications from its initial conception in the 1950’s, not many models 

have directly utilized linear programming in site layout planning. Zouein & Tommelien 

(1999) utilized a simple linear program model in their dynamic layout model. The 

typical objective function to be minimized each time a facility is to placed on site is 

simply: 

∆ VFL = Inter-facility Transportation Cost + Facility Relocation Costs ............... (2-2) 

Which translates to the following mathematical equation: 

( ) ( )iiiiiiiiiii YYXXRYYXXWTVFL
tt

−+−+−+−×=∆
−−−− 1111 ... (2-3) 

Where:  

∆VFL: The change in the objective function due to the introduction facility i 

Ti: The time resource i is present on site (Time of current time frame) 

Wi: Proximity weight between resource i and resource i-1. 

Xi-1: X coordinate of resource i-1. 

Yi-1: Y coordinate of resource i-1. 

Ri: Relocation weight of resource i. 

Xti-1: X coordinate of resource i at previous time frame. 

Yti-1: Y coordinate of resource i at previous time frame. 

Xi: X coordinate or resource i at current time frame. 

Yi: y coordinate or resource i at current time frame. 

 

The optimization problem is characterized by having various constraints each 

separated by an OR operator:  

  

 

   

The solution algorithm includes two main imbedded sub-modules; the CSPA 

(constraint satisfaction and propagation algorithm) and the PTFLCA (primary time 

frame layout construction algorithm).The CSPA module determines the sets of feasible 

positions for facilities in a given time frame. Upon assignment each facility is assigned 

a SPP (set of possible positions). The SPP of facilities not yet assigned is influenced by 
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the assignment of new facilities. On the other hand, the PTFLCA module performs the 

assignment process with time frames in chronological order. It starts from the SPP’s 

output by the CSPA for a specific time frame, then singles out a position for each 

facility one at a time.  

Until now the optimization seems quite simple. In fact this bare simplicity 

obscures some implementation difficulties, mainly in the formulation of the constraints. 

It is the investigators' opinion that the process of defining the SPP of a facility to 

prevent overlap or constraint violation via a purely mathematical approach ignores 

much of the capabilities of available graphically oriented softwares that can easily 

detect overlap between geometrical entities or position them based on set constraints. 

2.6.2 Genetic Algorithms 

Genetic or evolutionary algorithms are search algorithms based on the 

mechanics of natural selection and natural genetics. They combine survival of the fittest 

among string structures yet randomized information exchange to form a search 

algorithm with some of the innovative flair of human search. In every generation, a new 

set of artificial creatures (strings) is created using bits and pieces of the fittest of the old; 

an occasional new part is tried for good measure. While randomized, genetic algorithms 

are no simple random walk. They efficiently exploit historical information to speculate 

on new search points with expected improved performance (Goldberg, 1989).  

Li & Love (1998) presented a genetic algorithm for facility allocation. The 

algorithm presented was specific and limited because it optimally placed facilities in 

predefined positions. The user simply specified locations where facilities could be 

placed and the algorithm would assign facilities in their best locations so as to minimize 

the total travel distance between facilities. The algorithm only addressed the static 

layout problem. The solution generated was completely independent of the site layout 

geometry and individual facility size or shape.  

The objective of site-level facility layout is to minimize the total travelling 

distance of site personnel between facilities. The total distance TD is defined as: 

∑∑∑
= = =
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1 1 1

δ .................................................................. (2-4) 

Where: 

N: Number of facilities 

δij: permutation matrix variable 
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fij: frequency of trips by personnel between facilities i and j (fij = fji) 

dij: Distance between locations m and n 

Selecting an appropriate representation for the solution is termed “coding” in the 

GA solution. It is considered one of the most important steps in formulating an accurate 

solution. The problem at hand is a combinatorial optimization problem. Many 

approaches, like the permutation, binary and ordinal representations have been used for 

these types of problems. In this study, the permutation type was used, the other 

approaches being unsuitable. The string layout representation for 8 facilities is as 

follows: 

Facility 1 2 3 4 5 6 7 8 

Location 5 3 1 7 8 2 4 6 

 

Crossover is one of the main operators utilized in any GA to propagate a new 

population from an old one. Of the most efficient operators developed is the edge 

recombination operator (Li & Love, 1998). The edge recombination operator uses an 

edge table to construct an offspring that inherit as much genetic information as possible 

from the parent strings.  

As we can see, the model developed by Li and Love is a purely mathematical 

model that utilizes facility to location assignment and has its limitations; thus; its use in 

the industry as a tool for site management is less likely.  

Hegazy & Elbeltagi (1999) presented their EvoSite model for site layout 

planning. Their work was much more comprehensive and generic than that performed 

by Li and Love (1998). The model was novel in utilizing a simple but effective 

spreadsheet representation of site geometry. In the proposed model, a facility is 

represented as a group of unit areas that can take any user specified shape. The model 

accepts any user specified site shape and incorporates a flexible GA procedure for the 

optimum placement of facilities.  
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Where: 

P= Total number of fixed and temporary facilities present. 

jid , = Distance between facilities i and j 

jiR , = A relative proximity weight that reflects the required closeness between 
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facilities i and j. 

 

Figure 2-5 Site and Facility representation in the EvoSite model (Hegazy & Elbeltagi, 
1999). 

The EvoSite model is a static layout planning model. The facilities have relative 

proximity weights between each other, this represents the level of interaction between 

facilities or the preference in having the facilities close or apart from each other. The 

proximity weights used are qualitative proximity weights. Theses qualitative measures 

are then mapped to a quantitative weight that can be used in optimization as shown in 

Table 2-3. The six levels of desired closeness have been used by other researchers in the 

facility layout problem. It is to be noted that there is no theoretical background for the 

exact numerical values given to each closeness level.  

Table 2-3 Closeness relationship values (Hegazy & Elbeltagi, 1999) 

Desired relationship 

between facilities 

Proximity 

weight 

Absolutely necessary 65 = 7,776 

Especially important 64 = 1,296 

Important 63 = 216 

Ordinary closeness 62 = 36 

Unimportant 61 = 6 

Undesirable 60 = 1 
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The genetic algorithm used generated random solutions (strings) as any GA 

would do. The solution was then evaluated for feasibility (for non-overlap between 

facilities)and the non-feasible solutions were disregarded. The system had a relatively 

high computation time. When the model was run with a population of 200 genes and 

100 offspring, it took a 233 MHz processor nearly 150 minutes to solve.  

 

Zouein et al (2002), formulated a genetic algorithm for solving the site layout 

problem with unequal-size and constrained facilities. The objective function utilized 

was similar to that described in Eq (2-5). Their genetic algorithm was highly problem 

oriented, incorporating modified mutataion and crossover operators that suit the gentic 

coding representing the problem at hand. Their research focused more on the 

investigation of the modified GA than on developing an integrated site layout planning 

system. The strengths and limitataions of their proposed GA was tested in the case of:  

1. Loosely vs. tightly constrained layouts with equal levels of interactions 

between facilities. 

2. Loosely vs. tightly packed layouts with variable levels of interactions 

between facilities. 

3. Loosely vs. tightly constrained layouts. 

2.6.3 Neural Networks 

Yeh (1995) presented a novel research on the use of Annealed Neural Networks 

for construction site layout. Yeh formulated the problem as a discrete combinatorial 

optimization problem. This formulation is identical to that presented by Li & Love 

(1998) in Eq (2-4). Similarly, the model aimed at assigning a set of predetermined 

facilities on a set of predetermined locations while satisfying a set of layout constraints. 

Thus the system's method of assignment is classified as a facility to location 

assignment. 

The annealed neural network proposed was a fusion between Hopfield neural 

networks and simulated annealing. Hopfield neural networks have been used to solve a 

wide variety of discrete combinatorial optimization problems. Its main drawback has 

been its limited inability to escape local minima. Simulated annealing was also 

proposed as a general technique to solve combinatorial optimization problems. 

Simulated annealing is considered as a probalistic hill-climbing search algorithm which 
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finds a global minimum by combining gradient decent with a random process. Although 

simulated annealing has provided quality solutions in many practical problems such as 

the traveling salesman problem, it requires unacceptably high computational times.  

The annealed neural network proposed exhibits the rapid convergence of the 

neural network while preserving the solution quality afforded by simulating annealing. 

(Yeh, 1995). 

2.7 SUMMARY OF RESEARCH  

Studies in the field of site layout planning have commenced as early as the early 

70’s. Research has evolved from the development of heuristic models and expert 

systems to the formulation of analytical models having a precise optimization goal. 

Various optimization tools have been used in site layout planning. Traditional 

optimization tools like linear programming have given way to artificial intelligence 

techniques like neural networks and genetic algorithms.  

Figure 2-6 summarizes the latest research pertaining to site layout planning 

based on the classification criteria discussed in this chapter. It is to be noted that, the 

model presented in this research is a mathematical model that uses facility to site 

assignment. 

Facility to Site 
Assignment

Facility to Location 
Assignment

Cheng & O'Connor (1996)

Tommelein & Zouein (1993)

Heuristic 
Techniques

Tommelein et al. (1992)

Mathematical
Techniques

Hegazy & Elbeltagi (1999)
Zouein & Tommelein (1999)

Cheung et al. (2002)
Tam et al. (2001)
Yeh (1995)
Li & Love (1998)

Zouein et al. (2002)

 

Figure 2-6 Classification of some of the construction site layout models 
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3 RESEARCH APPROACH & THEORETICAL BACKGROUND 

 

In this chapter, three main topics are discussed. The first section discusses the 

suitability of using CAD platforms and genetic algorithms in an integrated system for 

site layout planning. The second section presents the theoretical background behind 

genetic algorithms. The final section compares between two representations for the 

objective function used in site layout planning. 

3.1 SUITABILITY OF  CAD PLATFORMS AND GENETIC ALGORITHMS 

Computer Aided Design platforms experienced great advances during the late 

80’s. Their use in various engineering disciplines became inevitable. In the civil 

engineering branch, CAD software started off in use in the design stage as a drafting 

tool. Applications of CAD platforms in the construction stage lagged behind their 

counterparts in the design stage. In the field of construction engineering, Mahoney & 

Tatum (1994) reported the potential benefits of using CAD on construction site 

operations. Applications included planning survey control, planning construction 

sequence and method, analyzing concrete sequence and placements, designing 

formwork for concrete and coordinating subcontractors. The researchers suggested that 

CAD could be used to plan construction site layouts, as adoption of such systems allows 

easy and accurate visualization of the relationship between the permanent structures and 

temporary facilities on site.  

The site layout planning problem is evidently graphical in nature. Site 

boundaries, existing buildings on site, obstacles, and temporary site facilities all occupy 

space and have distinct shape. Thus, the need to represent the relationship between all 

aforementioned entities in some sort of graphical format is apparent. Tommelien & 

Zouein (1993) were one of the earliest researchers that utilized CAD platforms. Their 

MovePlan model was implemented in object oriented common lisp (MCL 2.0). Recent 

research focused more on the use of artificial intelligence tools than on benefiting from 

the graphical capabilities of CAD platforms. This research tries to integrate the 

powerful graphical capabilities of CAD platforms with the evolutionary optimization 

technique known as genetic algorithms.  

In this research, genetic algorithms are used as function optimizers, although the 

range of problems to which genetic algorithms have been applied is quite broad. (Chan 
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et al, 1996). The use of GA’s as an optimization tool is dependant on the problem to be 

solved. In many optimization methods we move gingerly from a single point in the 

decision space to the next using some transition rule to determine the next point. This 

point to point method is dangerous because it is a perfect prescription for locating false 

peaks in multimodal search spaces. By contrast GA’s work from a rich database of 

points simultaneously, climbing many peaks in parallel. GA’s belong to the class of 

methods known as “weak methods” in the Artificial Intelligence community because it 

makes relatively few assumptions about the problem that is being solved. GA’s do not 

utilize gradient information. Thus, they are highly applicable to problems having non-

differentiable functions, as well as functions with multiple local optima. On the other 

hand, if there exists a specialized optimization method for a specific problem, then 

genetic algorithm may not be the best optimization tool for that application (Whitley, 

1993). 

Al-Tabtabi & Alex (1998) suggest that the use of GA in optimization is 

appropriate in the following circumstances: 

1- Conventional statistical & mathematical methods are inadequate. 

2- The problem is very complex, because the possible solution space is too large to 

analyze in finite time. 

3- The additional information available to guide the search is absent or not sufficient, so 

conventional methods are not practical. 

4- The solution to the problem can be encoded in the form of strings and characters. 

5- The problem is large and poorly understood. 

6- There is an urgent need for near-optimal solutions to use as starting points for 

conventional optimization methods. 

Three of the aforementioned points make the utilization of GA in solving the site 

layout problem very suitable. Firstly, when modeling a large construction site the 

available solution space is immense. The larger the available areas for placement and 

the greater number of facilities needed to be assigned the larger the feasible solution 

space becomes. Secondly, the solution to the problem can be encoded in the form of 

strings. This will be highlighted in chapter 4. Thirdly, finding a comprehensive solution 

to the site layout problem is not as trivial as minimizing an objective function. 

Conditions on construction sites involve far more constraints, variables and 

uncertainties than those taken into consideration in most mathematical approaches for 

problem solving. Practically, the difference between optimum and near optimum 
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solution is not that important, as even the optimum solution may require slight 

enhancements dictated by unforeseen site conditions. 

3.2 GENETIC ALGORITHMS 

Genetic algorithms were first investigated by John Holland (1975) at the 

University of Michigan. Further studies were carried out by his students DeJong (1975) 

and Goldberg (1989).  

In the very broad sense genetic algorithms or GA’s, are search algorithms based 

on the mechanics of natural selection and natural genetics. They combine survival of the 

fittest among string structures with seemingly randomized information exchange to 

form a search algorithm with some of the innovative flair of human search. In every 

generation, a new set of artificial creatures (strings) is created using bits and pieces of 

the fittest of the old; an occasional new part is tried for good measure. While 

randomized, genetic algorithms are no simple random walk. They efficiently exploit 

historical information to speculate on new search points with expected improved 

performance (Goldberg, 1989). 

The parallelism between GA’s and biological evolution and natural selection is 

evident. Goldberg (1989) summarized this parallel nature in Table 3-1.  

 

Table 3-1 Comparison between natural and GA terminologies 

Natural Terminology GA Terminology 

Chromosome String 

Gene Feature, character, detector 

Allele Feature value 

Locus String position 

Genotype Structure 

Phenotype Parameter set 

Epistatsis Non-linearity 

 

3.2.1 GA example 

The best way to introduce the concepts of genetic algorithms is through an 

example of a GA in action. We will illustrate in this example the two principles of 
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coding and selection. 

Suppose we are interested in finding the maximum value of the function 

105.1005.0 2 ++−= xxy  over the range 2550 ≤≤ x  as illustrated in Figure 3-1. The 

first aspect to consider about a GA is its encoding, that is the transformation of the 

solution to a unique chromosome like structure. For simplicity we will use an 8 string 

binary coding to represent the solution space. Take for example the string 11001100,  

the binary representation for the decimal number 230. 

The binary number is translated into its decimal equivalent as follows: 

128 64 32 16 8 4 2 1 

1 1 0 0 1 1 0 0 

Coding: 

= 128+64+8+4 = 230 
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Figure 3-1 Graph of 105.1005.0 2 ++−= xxy  

Any GA follows the shown simple algorithm (Chan et al. ,1996) 
Begin 

Generate a new population of solutions 

While terminating condition is not met DO 

   Evaluate the solutions 

   Select the better solutions 

   Recombine solutions using genetic operators 

END 

 Initially a GA must start with a randomized initial population of solutions. 
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Suppose we will randomly choose 10 initial solutions. For each solution or string the 

GA evaluates its objective function. In column (5) we evaluate the probability of 

selection in the next population such that a solution’s probability to be selected is 

directly proportional to the value of its objective function. Pselect is sometimes referred to 

as the solution’s relative fitness. In column (6) the expected count for the current 

solution i is calculated by multiplying pselect by the number of solutions N, while in 

column (7) the actual count is calculated by rounding off column (6). The selection is 

made such that fitter solutions have a higher probability of being reselected. On the 

other hand, bad solutions are eliminated from the population. It is in this manner that 

GA’s mimic the process of natural selection and survival of the fittest.  

Table 3-2 A genetic algorithm by hand 

 

As it can be seen, the objective function is evaluated several times during any 

one generation. Thus the evaluation process must be relatively fast. As the members of 

the population reproduce, their offspring must be evaluated. If it takes 1 hour to perform 

an evaluation, then it takes over 1 year to perform 10,000 evaluations. This is 

approximately 50 generations for a population of only 200 strings.  

After the selection process the solutions are recombined using the common 

Solution # String X y = f(x) 
pselect = 

fi / ∑f 

Countexp = 

pselect * N 
Count act=

(1) (2) (3) (4) (5) (6) (7) 

1 00111001 57 79 0.11 1.1 1 

2 00011110 31 52 0.073 0.73 1 

3 11101111 223 95 0.132 1.3 1 

4 00110001 49 71 0.099 0.99 1 

5 00001001 9 23 0.032 0.32 0 

6 00000110 6 19 0.02 0.2 0 

7 11010101 213 103 0.144 1.44 1 

8 10010110 150 122 0.17 1.7 2 

9 00011010 26 45 0.06 0.6 1 

10 01011111 95 107 0.15 1.5 2 

Sum 717 1 10 10 
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genetic operators, namely crossover and mutation. They will be discussed in further 

detail later in this chapter. 

3.2.2 Concept of hyperplane sampling 

The question most people tend to ask at this point is, Why does any of this 

work? How would such a random search technique produce anything useful? John 

Holland, the founder of genetic algorithms developed several arguments to explain how 

GA’s can result in complex and robust search by sampling hyperplane partitions of a 

search space.  

Perhaps the best way to understand how a GA can sample hyperplane partitions 

is to consider a simple 3-dimensional space as illustrated in Figure 3-2. Assume we 

have a problem encoding with just 3 bits and each bit can take on either a 0 or 1 value. 

GA’s that utilize binary encoding are known as canonical genetic algorithms. This can 

be represented as a simple cube with the string 000 at the origin. The 8 corners of the 

cube represent the 23 possible encodings or solutions. It can be noticed that the front 

plane of the cube contains all the points that begin with a 0. If an “*” symbol is used as 

a ‘don’t care’ or wild card match symbol, then this plane can also be represented by the 

string 0**. Strings that contain * are referred to as schemata. Each schemata 

corresponds to a hyperplane in the search space. The order of the hyperplane refers to 

the number of actual bit values that appear in its schemata. Thus, 1** is order-1 while 

*011****1 is order-4.  

000 001

101

010

100

110

011

111

 

Figure 3-2 Cube representation of a 3 dimensional hyperplane 

Let us inspect our cube example more closely. How many schema does a single 

solution belong to? Generally speaking for any string encoding of length L and coding 

alphabet n. Number of schema = nL -1 . In our example any solution belongs to 23-1=8 
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schemata. Take the point 001, it belongs 3 order-1 schema (**1, 0**, *0*), 3 order-2 

schema (0*1, *01, 00*) and 1 order-3 schemata 001 which is the point itself. It is to be 

noted that the order-1 schema represent three faces of the cube while the order-2 schema 

represent the three edges of the cube.  

During the evaluation of any population of solutions in a GA far more 

hyperplanes are sampled than the number of strings contained in the population.  

This mention of hyperplanes and schemata leads us to the concept of implicit 

parallelism. Implicit parallelism implies that many hyperplane competitions are 

simultaneously solved in parallel during the evaluation of a population. The theory 

suggests that through the process of reproduction  and recombination the schemata of  

competing hyperplanes increase or decrease their representation in the population 

according to the relative fitness of the strings that lie in those hyperplane partitions. 

Thus even though a GA never explicitly evaluates any particular hyperplane partition, it 

should change the distribution of string copies as if it had. This idea is formalized 

through the following equation.  

f
tHftHMtHM ),(),()',( = ......................................................................................... (3-1) 

Where: 

M(H,t) = The number of strings sampling a hyperplane H at the current generation t 

M(H,t’) = The number of strings sampling a hyperplane H at the current generation t 

after selection but before crossover. 

f(H,t) = The average evaluation of the sample of strings in partition H in the current 

population 

 

3.2.3 The Schema Theorem 

A foundation has now been laid to develop the fundamental theorem of genetic 

algorithms. The schema theorem (Holland, 1975) provides a lower bound on the change 

in the sampling rate for a single hyperplane from generation t to generation t+1. From 

Eq.(3-1) we want to consider the effects of crossover as the next generation is created 

from the intermediate one. We consider that crossover is performed probabilistically 

with probability Pc. The portion  that does not undergo crossover is unchanged. When 

crossover does occur we must account for the losses due to its disruptive effects.  
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The term “losses” refers to those disruptions in the schema representing the 

hyperplane H, produced by crossover . But crossover is not always disruptive to the 

schema. For example consider the schema 110*****. If crossover between the two 

strings 11010100 and 00010011 occurs after the second bit, their offspring will be 

11010011 and 00010100. The schema 110***** is still preserved in the first offspring. 

A conservative approach is to ignore all gains, considering any crossover operation to 

be disruptive. 
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⎣

⎡
−+−≥+ )1(),(),(),(),()1()1,( disruption

f
tHftHMP
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We might wish to consider one exception. If two strings that both sample H are 

recombined then no disruptions occur. Disruption is therefore given by: 

),(1(
1
)( tHP

L
H

−
−
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Where: 

∆(H) : The defining length associated with 1-point crossover 

L : String length 

P(H,t) = The proportional representation of H in the population (=M(H,t) / N) 

Dividing both side of Eq. (3-2) by the population size “N” to transform the expression 

in terms of P(H,t) instead of M(H,t). 
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Till now our version of the schema theorem does not account for mutation. Let 

o(H) be a function that defines the order of the hyperplane H. Pm is the probability of 

mutation, where the mutation operator always flips the string. The probability that 

mutation affects the schema H is (1-Pm)o(H) . This leads to the general expression of the 

schema theorem. 
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3.2.4 GA encoding 

Usually there are only two main components of most genetic algorithms that are 

problem dependant, the problem encoding and the evaluation function. The encoding 
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scheme of any GA is the essence of its success. Goldberg (1989) presented two main 

principles for choosing GA encoding: 

1) Principal of meaningful building blocks: 

“the user should select a coding so that short, low order schemata are relevant to 

the underlying problem and relatively unrelated to schemata over other fixed 

positions” 

2) Principal of meaningful alphabets: 

“The user should select the smallest alphabet that permits a natural expression of 

the problem” 

Some GA encodings, that have been successfully used in practice are the binary, 

permutation and value encoding. Each type is discussed in detail below. 

1. Binary Encoding: The first works of GA’s used this type of encoding. Each 

chromosome assumes either the value of 1 or 0. Binary encoding gives many possible 

chromosomes even with a small number of alleles. On the other hand, this encoding is 

often not natural for many problems and sometimes corrections must be made after 

crossover and/or mutation.  

 

Chromosome A 1 1 0 1 0 0 0 1 0 0 

Chromosome B 0 1 1 1 1 0 1 0 1 1 

Figure 3-3 Example of a chromosome with a 10-bit binary encoding 

2. Permutation Encoding: Every chromosome is a string of numbers, which represents 

numbers in a sequence. This type of encoding is only useful for ordering problems.  

 

Chromosome A 1 4 2 9 0 3 5 8 7 6 

Chromosome B 8 7 9 2 6 4 5 0 1 3 

Figure 3-4 Example of a chromosome with a 10-bit permutation encoding 

3. Value Encoding: Direct value encoding can be used in problems where complicated 

values such as real numbers are used. Use of binary encoding for this type of problems 

would be very difficult. Values of the alleles can be anything related to the problem, 

whole numbers, real number, characters, or even objects. 
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Chromosome A 1.23 6.75 9.31 0.73 5.52 7.11 

Chromosome B A C B C B D 

Chromosome C (up) (down) (left) (up) (right) (down) 

Figure 3-5 Example of a chromosome with a 6-bit value encoding 

3.2.5 Selection of the fittest 

Selection of the fittest is the cornerstone of the operation of the GA. From a 

broader point of view it can be considered as the process of creating an intermediate 

population. It is this intermediate population that undergoes the genetic operations of 

crossover and mutation. There are two distinct methods of performing the selection 

process, namely roulette wheel selection and rank selection.  

1. Roulette wheel selection: The population is mapped onto a roulette wheel, where 

each individual is represented by a space that proportionally corresponds to its fitness. 

By repeatedly spinning the roulette wheel, individuals are chosen using “stochastic 

sampling with replacement”. 

A selection process that will more closely match the expected fitness value is 

“remainder stochastic sampling”. For each string i where fi / favg is greater than 1.0, the 

integer portion of this number indicates how many copies of that string will be copied to 

the intermediate population. All strings (including those with fi / favg < 1.0) are then 

chosen with a probability corresponding to the fractional probability of fi / favg. For 

example, a string with fi / favg = 2.3 is chosen twice and then receives a 0.3 chance of 

placing a third copy. 

Remainder stochastic sampling is most efficiently implemented using a method 

known as “stochastic universal sampling”. Assume that the population is laid out in 

random order as in a pie graph, where each individual is assigned space on the pie graph 

in proportion to fitness. Next an outer roulette wheel is placed around the pie with N 

equally spaced pointers. A single spin of the roulette wheel will now simultaneously 

pick all X members of the intermediate population. The resulting selection is also 

unbiased. 

2. Rank selection: Roulette wheel selection may cause the population to prematurely 

converge to a non-optimum solution. This situation occurs when the population consists 

of few chromosomes having a very high fitness value compared to the remainder of the 

population. These fit chromosomes will have a high probability of selection compared 



 32

to other unfit members. The reproduced population will inevitably be dominated by the 

fit members, causing potentially rich genetic information to be lost from the population.  

 An alternative selection process can be used. Instead of representing the 

chromosomes as spaces corresponding to their relative fitness, chromosomes are gives a 

ranked fitness. The worst will have a fitness of 1, second worst 2 and so on, the best 

chromosome will have a fitness of N (number of chromosomes in the population). 

Consider the 6 chromosomes having the fitness values shown in Table 3-3. 

 

Table 3-3 Comparison between Raw selection and Rank selection 

Raw Selection Rank Selection 
Chromosome Fitness Relative 

Fitness 
Fitness Relative 

Fitness 
1 100 0.55 6 0.29 
2 25 0.14 5 0.24 
3 20 0.11 4 0.19 
4 20 0.11 3 0.14 
5 10 0.055 2 0.09 
6 5 0.027 1 0.05 

1

2

3

4
5 6

1

6
5

4

3 2

Before Ranking (Raw Fitness) After Ranking (Ranked Fitness)

 

Figure 3-6 Comparison between Raw fitness and Ranked fitness after mapping on a 
roulette wheel 

After selection has been carried out the construction of the intermediate 

population is complete and recombination (crossover – mutation) can occur. 

3.2.6 Crossover 

Crossover can very simply be defined as a process in which the newly 

reproduced strings are randomly coupled, and each couple of the string partially 
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exchanges information. There are various methods for performing crossover.  

1. Single point crossover: One crossover point is randomly selected. String form the 

beginning of the chromosome to the crossover point is copied from one parent; the rest 

is copied from the second parent. 

 

Parent A 1 1 0 1 0 0  Offspring 1 1 1 0 1 1 0

Parent B 0 1 1 1 1 0  Offspring 2 0 1 1 1 0 0

 

Figure 3-7 Example of a single point crossover with a binary encoding 

2. Two-point crossover: Two crossover points are randomly selected. This method 

copies string from the first parent, starting from the beginning of the chromosome to the 

first crossover point and from the second crossover point to the end of the chromosome. 

The remainder is copied form the second parent.  

 

Parent A 1 1 0 1 0 0  Offspring 1 1 1 1 1 0 0

Parent B 0 1 1 1 1 0  Offspring 2 0 1 0 1 1 0

 

Figure 3-8 Example of a Two-point crossover with a binary encoding 

3. Uniform crossover: Bits are randomly selected from both parents creating the 

offspring.  

 

Parent A 1 1 0 1 0 0  Offspring 1 1 1 0 1 0 0

Parent B 0 1 1 1 1 0  Offspring 2 0 1 1 1 1 0

Figure 3-9 Example of a uniform crossover with binary encoding 

3.2.7 Mutation 

The main motivation for using mutation is to prevent the permanent loss of any 

particular allele. After several generations it is possible that selection will drive all 

alleles in some position to a single value. If this happens without the genetic algorithm 

converging to a satisfactory solution then the algorithm has prematurely converged. 

This may particularly be a problem if one is working with a small population. Without a 

Crossover Point

2nd Crossover Point1st Crossover Point
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mutation operator, there is no possibility for reintroducing he missing bit value 

(Whitley, 1993). 

Generally speaking, mutation involves the random alteration of a bit value in the 

chromosome. The probability of mutation occurrence is usually small compared to 

crossover. Mutation probabilities are usually in the range of (0.005 - 0.01), while 

crossover probabilities are usually in the range of (0.4 - 0.8). Two methods for 

performing mutation will be discussed below. 

1- Bit inversion: Performed only with binary encoding. A randomly selected bit (or bits) 

is inverted from 0 to 1 or visa versa. 

 

1 0 1 1 1 0 Mutation 1 0 0 1 1 1 

Figure 3-10 Example of 2-bit inversion with binary encoding 

2- Order changing: Two alleles are randomly selected and exchanged.  

 

8 6 3 2 9 6 Mutation 3 6 8 2 9 6 

Figure 3-11 Example of order changing with value encoding 

3.3 THE OBJECTIVE FUNCTION: RELATIVE WEIGHTS VS. COST DATA 

In almost all optimization approaches, when performing static layout, the 

objective function to be minimized, takes the general form: 
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Where: 

P= Total number of fixed and temporary facilities present. 
t

jid , = Distance between facilities i and j 

In the literature, the term jiW ,  represents one of the following:  

1- Transportation cost data of some sort or 

2- A relative proximity weight that reflects the required closeness between any two 

facilities. 

 In all optimization problems the clear identification of a goal to attain is 

essential. Thus, the first representation has the clear objective of minimizing total 

transportation costs between site facilities. The objective is not as apparent when using 
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the relative weight representation. With the second representation one might argue, 

“What exactly are we trying to achieve?”  

Several scales have been adopted in order to facilitate the verbal representation 

of the proximity weight. One of the common scales used in industrial facility layout 

planning is shown in figure-. In the previous chapter we outlined how these weights 

were quantified using a fuzzy rule based system (Elbeltagi & Hegazy 2001). The main 

advantage of using the relative weight representation is the great difficulty in obtaining 

accurate inter-facility transportation cost data. Using a relative proximity weight may be 

much easier for the site planner to provide. One of the common proximity weight 

representations used in industrial facility layout planning is shown in Table 3-4. (Askin 

& Standrige, 1993) 

Table 3-4 The six value closeness relationship values used in industrial facility layout 
planning 

Desired relationship 

between facilities 

Proximity 

weight 

Absolutely necessary (A) 81 

Especially important (E) 37 

Important (I) 9 

Ordinary closeness (O) 3 

Unimportant (U) 1 

Undesirable (X) 0 

 

On the other hand, when performing dynamic layout, the objective function 

takes the general form: 
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,,: + Relocation Cost of Facility  

Relocation costs of facilities are more easily quantifiable than inter-facility 

transportation costs. Formulating a relative relocation weight to be used with the 

proximity weight is quite complex. In this research, the objective function to be 

minimized takes the general form: 

Layout Cost = Transportation Cost (T.C.) + Relocation Cost (R.C.) 
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4 SYSTEM DEVELOPMENT 

 

This chapter provides details of the automated CAD-based GA system used for 

the dynamic layout planning of construction sites. The chapter begins with an overview 

of the system structure as a whole. Afterwards the various modules comprising the 

system are thoroughly explained. These include the space detection module, the 

constraint satisfaction module and the GA-based optimization procedure. The coding 

for all modules is provided in the appendices of this thesis. 

4.1 SYSTEM STRUCTURE 

The automated site layout planning system is comprised of three main 

components: 

1- An input facility that incorporates various types of data needed for the layout 

planning task. 

2- An optimization engine based on the concepts of genetic algorithms.  

3- An output facility that utilizes the programmable features of the CAD 

platform of choice. 

 

The automated system utilizes vast amounts of data. Data used in the system can 

be grouped into four major categories (Table 4-1), namely, schedule data, temporary 

facility data, site geometrical data and facility cost data.  

Table 4-1 Description of the main data types required in the model 

Data Description 

Schedule data Main project phases. Phases are grouped based on 

temporary facility requirements. 

Temporary facility data Temporary facility requirements in each phase in addition 

to the expected sizes of these temporary facilities. 

Site geometrical data CAD drawings representing the layout of fixed facilities in 

each project phase. 

Facility cost data Inter-facility transportation costs for each phase in addition 

to the expected cost for relocating temporary facilities. 
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Figure 4-1 Detailed system architecture 
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Genetic algorithms are used to perform the optimization process, which 

proceeds in two stages. Firstly, static layout is performed and each phase is considered 

completely separate. Secondly, dynamic layout is performed taking layout continuity 

into consideration. Following the optimization process, the model delivers a series of 

CAD drawings each depicting a particular construction phase with all temporary 

facilities placed in their optimal positions. The detailed system architecture is illustrated 

in figure 4-2. The figure shows where the system process the different types of data 

described in table 4-1.   

4.2 SPACE IDENTIFICATION 

The functionality of the optimization engine largely depends on identifying the 

specifics of the CAD drawing (i.e., site boundaries, permanent facilities, and obstacles). 

Accurately identifying the available space on site for assigning the temporary facilities 

is essential in order to yield a feasible solution. Available space on site is detected 

through the algorithm explained hereafter. The main concept in space detection is that 

of space discretization, that is the division of space into an orthogonal two-dimensional 

grid. This grid is then coded, each grid cell having a unique (X,Y) coordinate as 

illustrated in Figure 4-1. Regardless of the site geometry, the system is able to capture 

all geometric data lying within the site boundaries, after which removal of space 

occupied by permanent facilities occurs. 

Site Boundary

Virtual site mesh

Facilities occupying space

Occupied grid spaces

X

Y

(0,0)

 

Figure 4-2 Details of space discretization 
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The available space on site is detected using the capabilities of the CAD platform 

of choice. In the widely used AutoCAD™, a macro can be employed to perform this 

function. Generally, two steps must be accomplished, first the site boundaries are 

identified, second fixed facilities and obstacles occupying space are identified.  

4.2.1 Identification of enclosed site space: 

In order to perform this task the user must identify the site boundaries (must be 

an AutoCAD™ LWpolyline) and any point lying inside the site boundaries. Performing 

this task proceeds as follows: 

1. Using the rectilinear coordinates of the site boundary’s vertices, the CAD 

macro identifies the edges of the site boundary as a set of equations:  

 

2. Using a point inside the boundary, the CAD macro identifies the edges of the 

site boundary as a set of inequalities: 

 

3. By toggling through coordinates of all points inside the site boundary’s 

“Bounding Box” (Figure 4-3), the macro chooses only those points that 

satisfy all linear inequalities simultaneously. 

4. Feasible grid squares are stored in 2 arrays: AvailableX( ) and 

AvailableY ( ) such that any point “i” has coordinates (AvailableX(i), 

AvailableY(i)) 

4.2.2 Identification of fixed facilities and obstacles 

Till this stage no account has been made for obstacles or fixed facilities. 

Obstacles are defined as site facilities with fixed positions having no closeness 

relationship with other facilities. Fixed facilities on the other hand have fixed positions 

but maintain closeness relationship with other facilities. (Hegazy & Elbeltagi 1999). In 

order to perform this task the user must identify all obstacles and fixed facilities present 

on site (must be an AutoCAD™ LWpolyline). Performing this task proceeds as follows:  

1- Grid spaces occupied by these obstacles are removed from the arrays 

AvailableX and AvailableY. 

2- Grid spaces occupied by these fixed facilities are removed from the 

arrays AvailableX and AvailableY. The coordinates of their centroid 

are stored for future use in the optimization procedure.  

11 bxay += 22 bxay += .....33 bxay += nn bxay +=

11 bxay +≤ 22 bxay +≥ .....33 bxay +≥ nn bxay +≥
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After these two sub-tasks are accomplished, available site space, obstacles and 

fixed facilities are translated into a set of X,Y coordinates. These coordinates will be 

utilized in the optimization procedure during the layout of the temporary facilities. 

Site Boundary

Bounding Box  

Figure 4-3 Bounding box of a polygon 

4.3 GA STRING CODING 

The optimization procedure itself depends primarily on GA optimization. As 

discussed in chapter 3, the coding of a solution to a string is one of the most important 

aspects of success for GA optimization. The coding scheme of any GA is the essence of 

its success. The coding scheme used in the presented model is a modified version of that 

adopted by Hegazy & Elbeltagi (1999). As their model depended largely on utilizing a 

set of grid cells to represent site space; each grid cell was uniquely coded based on the 

location of the row and column in which the cell is located. Site facilities were then 

referenced via these developed codes (figure 2-5). The model by Hegazy & Elbeltagi 

(1999) was implemented using MS-Excel.  

In this research the case is quite different. The main dependency on geometrical 

data is by space detection through the CAD platform. It was seen previously that 

available space is represented by a set of X and Y coordinates. Therefore there is no 

need for the unique coding of grid spaces, as each grid space in uniquely identified by a 

set of two numbers (i.e., the X and Y coordinates). The coding of a certain solution 

representing the assignment of 4 temporary facilities is illustrated in Figure 4-4. 

It is to be noted that the temporary facilities are arranged in descending order of 

size. That is: F1 > F2 > F3 > F4 > ….> Fn. The reason for this pre-sorting will be 

explained in the following section. 

Although the position of fixed facilities affects the value of the objective 
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function, they are not represented in the string as their positions are fixed making their 

allele values in the chromosome constants. 
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Figure 4-4 GA string encoding of 2D space  

4.4 CONSTRAINT SATISFACTION 

Geometrical constraints are vital in the layout process. It is of utmost importance 

that temporary facilities be placed (1) Inside our site boundaries and (2) In such a 

manner that no overlap occurs between any two temporary facilities or between 

temporary facilities and fixed facilities.  

To achieve the satisfaction of geometrical constraints, two main modules are 

utilized, namely “CheckSite” and “CheckOverlap”. These modules rely on 5 main 

variables in their operation as shown in Table 4-2. 

The constraint satisfaction algorithm is applied on each facility in ascending 

string position (ie. F1 , F2, F3…).  
For each Temporary Facility 

CheckSite(Xmin, Ymin, FacilityX, FacilityY) 

CheckOverlap(Xmin, Ymin, FacilityX, FacilityY) 

Next Facility 

 

Where:  

Xmin and Ymin are gene values for current facility (coordinates of bottom left 

corner of facility) and FacilityX and FacilityY are the dimensions of the 
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temporary facility in the X and Y directions respectively. 

Table 4-2 Main variables required in the constraint satisfaction procedure 

Variable Name Description 

AvailableX( ) Available X-coordinates for assigning temporary facilities 

AvailableY( ) Available Y-coordinates for assigning temporary facilities 

OccupiedX( ) Space currently occupied by temporary facility 

OccupiedY( ) Space currently occupied by temporary facility 

ReservedPTS Number of grid units currently occupied by temporary 

facilities 

 

It is now clear why it is very important that facilities be sorted in descending 

order of size from F1 to Fn, as placing small facilities early on site may not leave 

sufficient room for other larger facilities to be placed later on. Other researchers have 

used different heuristics to guide their order of assignment. Zouein & Tommelien 

(1999) choose the facilities based on their relative interaction with other facilities as 

represented by the sum of their proximity weights. In tight congested sites, using this 

heuristic alone may lead to infeasible site layouts. Primarily because small facilities – 

having high proximity weights with other facilities – may be assigned to spacious areas 

that are more suited to place other larger facilities. Starting the assignment procedure in 

descending order or facility size ensures that this premature solution infeasibility does 

not occur. 

4.4.1 CheckSite module: 

This module is a built-in function that makes sure that any temporary facility (1) 

lies inside the site boundaries and (2) does not overlap with any fixed facility or site 

obstacle. 

This function requires as input 4 variables; [Xmin, Ymin, FacilityX and 

FacilityY]. It provides a Boolean true/false output. In its operation it toggles through all 

grid coordinate occupied by the facility and compares them with the arrays AvailableX 

and AvailableY. 
If any (X,Y) of facility ⊄  Available(X,Y) then CheckSite = 

False 

Else CheckSite = True 
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Figure 4-5 Functionality of the Checksite module 

4.4.2 CheckOverlap module 

This module is a built-in function that performs two sequential tasks. 

a- Makes sure that the facility being checked does not occupy space already 

being reserved for another facility that has been assigned on site. 
If any (X,Y) of facility ⊂  Occupied(X,Y) then CheckOverlap = 

False 

Else CheckOverlap = True 

b- If no overlap occurs space is reserved for the facility 

For ∀  (X,Y) of facility, Occupied(X,Y) = Facility(X,Y) 
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Figure 4-6 Functionality of the CheckOverlap module 

 

 

4.5 INTER-FACILITY COST MATRIX 

The inter-facility transportation cost matrix contains the most important 

optimization relevant data. Using these numbers, the optimization procedure will 

assign facilities close to or far from one another. The cost data is represented in a 

lower triangular matrix as shown in Table 4-3 for 6 temporary facilities and 3 fixed 

facilities. As shown in the table, no inter-facility costs data exists for fixed-to-fixed 

facilities.  

Table 4-3 Inter-facility cost matrix for 6 temporary facilities and 3 fixed facilities 

F1          
F2 W12         
F3 W13 W23        
F4 W14 W24 W34       
F5 W15 W25 W35 W45      
F6 W16 W26 W36 W46 W56     
F7 W17 W27 W37 W47 W57 W67    
F8 W18 W28 W38 W48 W58 W68 N/A   
F9 W19 W29 W39 W49 W59 W69 N/A N/A  
 F1 F2 F3 F4 F5 F6 F7 F8 F9 
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4.6 OPTIMIZATION PROCEDURE 

The GA-based optimization procedure utilized is a steady state GA generation 

that utilizes single-point crossover and a modified mutation operator. Details of the 

objective function to be optimized and the GA procedure are fully described in the 

following section. The flowchart for the GA is illustrated in Figure 4-8.  

4.6.1 Objective function 

The objective function that is evaluated in the optimization process is a modified 

version of that adopted by Zouein & Tommelien (1999). The objective function to be 

minimized is: 

Layout Cost = Transportation Cost (T.C.) + Relocation Cost (R.C.) 
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Where: 

P = Total number of fixed and temporary facilities present. 
t
jiW ,  = Transportation costs / unit distance between facility i and j during the 

current phase t 
t

jid , = Distance between facilities i and j during the current phase t 

t
iR = Cost of relocating facility i during the current phase t 

tt
id )1( − = Distance that facility i has moved from phase t-1 to phase t  

 

In the newly developed model the term R.C. depicting the relocation cost has 

been slightly modified. Generally, relocation cost of a construction facility can be 

represented by the following equation: 

R.C. = Fixed Cost + Variable Cost................................................................... (4-3) 

 

Where the fixed cost represents those costs spent on dismantling, re-installment, 

delay and providing an alternative facility. Variable costs are usually attributed to 

hauling, and are a direct function of hauling distance. In construction site planning, the 

cost of relocating a facility is not greatly dependant on the distance of relocation but on 
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whether relocation has taken place or not. When considering most construction related 

facilities, fixed costs are far larger than variable costs. Accordingly, the following 

representation for relocation cost can be used: 

∑
=

−∗=
P

i

tt
ii OcRCR

1

)1(.. ....................................................................................... (4-4) 

Where iOc  is a binary variable that takes only 0 or 1 

If facility i has been relocated from phase (t-1) to phase t, then 1)1( =− tt
iOc   

If no relocation has occurred 0)1( =− tt
iOc  

4.6.2 Initialization of Population 

Any GA procedure starts with an initial population of solutions. The number of 

initial solutions generated influences the GA. It is known that increasing the population 

size has the following effects on the GA: 

1- Tremendously increases the time required for generating a new population. 

2- Causes a very slow convergence rate. 

3- Causes the GA to reach more optimum solutions. 

 

 

Figure 4-7 Effect of population size on optimum solution (Hegazy & Elbeltagi, 1999) 

In order to assist the GA in its blind search, a slight enhancement has been 

proposed. Instead of working with a very large population throughout the GA, the initial 

population is selected as the best ‘n’ solutions from an initial pool of ‘N’ solutions 
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where n < N. Before running the GA, both the initial pool “N” and the required 

population size “n”. Thus the GA benefits from the presence of a large initial population 

that assists its random search without paying the large computational penalty posed by 

dealing with a large population at each generation.  

4.6.3 GA Generations 

The generation process proposed in this research is a slight modification of that 

used by Hegazy & Elbeltagi (1999). Traditional GA’s move from generation(i) to 

generation(i+1) via the generation of a new population. The approach proposed by 

Hegazy & Elbeltagi (1999) moved from one generation to the other via the introduction  

of two new offspring that would replace the worst two solutions in the population. In 

case the new offspring were not better than the worst solutions, they were discarded and 

two other offspring were chosen.  

Elimination of the worst offspring meant that as each new solutions are 

introduced, the population as a whole would improve. It also meant a chance for 

randomly bred offspring to even outperform the best solution in the population. 

Generation of new offspring involves the 3 traditional genetic operators: 

1- Replication 

Traditional roulette wheel selection is performed based on the fitness value for 

individual solutions. Two random solutions are chosen to replace the worst two 

solutions in the population. There is no need to check for the feasibility of the solutions, 

as no modifications were performed (crossover, mutation). 

2- Crossover: 

The same selection procedure is applied to select the parents that will be crossed. 

Simple single-point crossover was used so as to minimize the disruption of the 

schemata.  

4 20 0 14 2 8  4 20 24 16 4 7 

12 2 6 10 22 9  12 2 2 14 8 15 
             

15 5 24 16 4 7  15 5 0 14 2 8 

0 8 2 14 8 15  0 8 6 10 22 9 

 
Crossover point 
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Figure 4-8 Genetic Algorithm Flowchart 
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After the crossing two checks are performed on the offspring: 

1- Constraint satisfaction: To verify the feasibility of the new solutions. 

2- Objective function improvement: To verify that the new solutions are not 

worse that those being replaced. 

3- Mutation: 

Mutation is used mainly to break current stagnation in improvement by 

introducing new genetic information into the population. It was noticed during the 

development of the system, that performing the GA without mutation led to solutions 

that required slight refinements to reach more optimum solutions. These refinements 

usually involved very small movements of one or more facilities in a specific direction.  

Have all possible 
mutations been 

tried ?

Select next best 
solution in population

Yes

Solution better 
than worst 
solution?

Replace best 
solution with 

mutated string

Yes

Yes

Is solution 
feasible ?

Select best solution 
in population

Apply random 
mutation operator

No

No

 

Figure 4-9 Mutation Operator Flowchart 

A modified mutation operator is developed in this research to attain the required 

function. The mutation operator randomly choose the following: 

1- The facility to be moved. 

2- Whether the movement should be in the X or Y direction. 

3- Whether the movement should be in the +ve or –ve direction. 

And then applies a movement of 1 unit to the facility chosen and in the direction 

chosen. Similarly, the new solution is checked for constraint satisfaction and objective 

function improvement. If violated, the mutation procedure is repeated. The mutation 

operator flowchart is shown in Figure 4-9. 
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4.6.4 Convergence Condition 

In any GA the generation process must proceed until a certain termination 

condition is reached. Researchers have used various convergence conditions: 

1- Until no further improvement in the population occurs (Al-Tabtabi & Alex, 

1998) 

2- Until all offspring in the population are replaced (Hegazy & Elbeltagi, 1999) 

3- Until there is very little variation within the population itself. 

In our system, the generation process continues until the following convergence 

condition is reached: 

        ∆ < Convergence 

Where  

Max
MinMax −

=∆  

Convergence: User specified tolerance (usually 5-10%). 

Min: minimum solution in current population 

Max: Maximum solution in current population 

4.6.5 Dynamic Optimization 

Until now, all discussion of the optimization process was only for a single phase 

in the project. The layout process itself is dynamic in nature, thus the optimization 

process must also reflect this dynamics. The optimization process begins with the static 

optimization of all phases based solely on transportation costs. It treats each phase as if 

it were a completely separate phase with no interaction with preceding or succeeding 

phases. After static optimization of all layouts are complete, one of two dynamic 

optimization techniques are followed. The two techniques are called the critical phase 

approach and the mini-min approach (Figure 4-10). 

In the past, researchers who have tried to tackle the problem of dynamic site 

layout planning have proceeded in chronological order (Zouein & Tommelien, 1999). 

This approach has its drawbacks. The main weakness lies in the fact that facilities that 

are assigned positions in early phases may: 

1- Be placed in positions that  will subsequently be occupied by permanent 

facilities, thus they will be forced to be relocated.  

2- Be placed in positions that minimize transportation costs during early phases 

but in subsequent phases be in unfavorably far positions from other facilities.   
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As mentioned before, two approaches are employed to mitigate these costs of 

early assignment of facilities in positions that may seem favorable in early phases, but 

could turn out very costly in phases to come. 

 

Figure 4-10 Flowchart for the optimization procedure 

I- Critical Phase Approach 

It is evident that the choice of the first phase to be the initial phase (where no 

relocation costs are calculated) may not necessarily yield the most optimum 

transportation + relocation cost for all phases combined. The key to finding the 

optimum solution for all phases lies in identifying an initial phase whose layout will be 

solely dependant on the transportation cost. Dynamic optimization should proceed in 

forward chronological order for succeeding phases and backward chronological order 

for preceding phases as illustrated in Figure 4-11. 

This approach is based on the prevalence of a phase in the project having several 

on- site temporary facilities, a lot of ongoing site movement and a relatively long time 

span. Thus during this critical phase, transportation costs are more likely to be much 

higher than other phases. During planning, extra care should be provided to this phase. 

Performing facility layout based solely on transportation costs in phases other than the 

critical phase may lead to facilities being placed in a position that is not optimum during 

this critical phase. Transportation costs in this critical phase could greatly boost. The 

overall transportation costs for all phases could be far from optimum.  

The critical phase approach highlights the importance of this critical phase. The 

approach selects the phase having the highest transportation costs (previously obtained 

from static optimization) as being the initial phase. Dynamic optimization proceeds in 

Transportation Costs Static Optimization 

Dynamic OptimizationTransportation Costs + 
Relocation Costs 

Critical Phase 
Approach 

Mini-Min 
Approach 
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backward chronological order for all phases preceding the critical phase and in forward 

chronological order for all phases succeeding the critical phase. It is to be noted that this 

approach does not necessarily give the most optimum solution. It is merely suggested as 

an enhancement to approaches that begin the layout process with the first phase in the 

project sequence. 

 

Backward chronological order

Travel Cost = 18,200

Forward chronological order

33,100

Optimization of each TF seperatly 
based on both transportation & 

relocation costs (dynamic layout)

(The more critical phase)
Maximum Travel Cost

22,400 56,600

 

Figure 4-11 Critical phase approach in dynamic optimization 

II- Mini-Min Approach 

Due to the fact that the critical phase approach does not necessarily yield the 

most optimum solution, the Mini-Min approach is introduced. The main weakness in 

the critical phase approach is that the phase having the largest transportation cost might 

not necessarily be the initial phase. This approach is a slight enhancement of its critical 

phase counterpart. 

The Mini-Min approach considers all possibilities for choosing the critical 

phase. It performs the dynamic optimization of all phases Nphase times, Nphase being the 

number of phases. It calculates the total costs for all phases Nphase times and chooses the 

trial having the least cost as the Minimum-Minimum solution. The Figure 4-12 illustrates 

this process for a four-phase project. 
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Figure 4-12Mini-Min approach for dynamic optimization 

 

It may seem that the Mini-Min approach performs the dynamic optimization 

problem far too many times and that this may be computationally exhaustive. In fact, it 

is. For a project comprised of Nphase phases, our system is required to solve Nphase
2 

optimization problems. But as we shall see in chapter 6 of this thesis, running the 

system on PC’s of regular speed is computationally possible, though may require large 

running times. 

Figure 4-13 compares the number of optimization problems required to be 

solved for the two approaches. 

4.7 SOLUTION REPRESENTATION 

Regardless of the dynamic optimization technique used, the optimum solution 

must be represented in a user-comprehendible form. The final step in our system is the 

physical representation of the optimum solution.  

The system, via the drawfacility module automatically opens all AutoCAD 

drawings and draws the temporary facilities in their optimum positions as depicted by 

the genetic algorithm. Having the output in graphical form allows the planner to easily 
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visualize the relationship between the permanent structures and temporary facilities on 

site. Graphical solution representation proceeds as follows 
For all project phases 

 Open CAD file representing current phase 

 For all temporary facilities in phase 

 Draw temporary facility in optimum postion 

 Next temporary facility 

 Close CAD file 

Next project phase  
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Figure 4-13 Effect of the dynamic approach used on the number of optimization 
problems solved 
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5 AUTOMATED SYSTEM & ILLUSTRATED EXAMPLE 

 

In this chapter the automated system, EDSLP (Evolutionary Dynamic Site 

Layout Planner)  is presented along with an illustrated example that demonstrates the 

various features of the automated system. The system has been implemented via MS 

VisualBasic™ 6.0. The CAD interface has been made possible through the 

programmable features of AutoCAD™ in the VBA environment. Code for the various 

modules can be found in the appendices of this thesis. 

5.1 SYSTEM INPUT  

The previous chapter discussed the types of data required as input to the system. 

Data can broadly be grouped into four categories namely, schedule data, temporary 

facility data, site geometrical data and facility cost data. 

In the automated system, schedule data and temporary facility data are input 

simultaneously as shown in Figure 5-1. On each screen, the phase name, start date and 

end date are entered. For each phase, a list of all required temporary facilities and their 

anticipated dimensions is entered. Input continues until all project phases are entered. 

 

Figure 5-1 Schedule and temporary facility input screen 

Meanwhile, site geometrical data input is made possible via the VisualBasic™ - 
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AutoCAD™ referencing capabilities. The automated system is capable of opening 

existing CAD drawings and reading the site layouts found in these drawings. The 

system detects the available site space, the fixed facilities present and any site obstacles. 

Hence, the available space for temporary facility placement is deduced.  

CAD drawings for each phase should be appropriately prepared before the 

automated system process them. For each phase an individual drawing depicting the site 

geometry, fixed facilities and obstacles is required. The task of space detection 

completely takes place from within the CAD environment. Figure 5-2 shows the 

AutoCAD™ interactive capabilities present from within the automated system. Figure 

5-3 shows the procedure for space detection operating from within the AutoCAD™ 

environment.  

 

Figure 5-2 AutoCAD™ interactive capabilities from within the program environment 

Facility cost data is comprised of: 

1- Inter-facility transportation cost data: Input is through Excel environment in order to 

utilize the ready made cell divisions to mimic the required inter-facility matrix. (Figure 

5-4)  

 

2- Facility relocation cost data: A separate input screen is available from within the 

system's environment.  
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Figure 5-3 AutoCAD™ VBA macro for space detection of site layouts 

 

 

Figure 5-4 Inter-facility cost input from within the MSExcel™ environment 
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5.2 SYSTEM OPTIMIZATION 

The optimization procedure progresses in two stages.  

Stage-1: Static Optimization of individual phases taking only transportation costs into 

consideration. 

Stage-2: Dynamic Optimization of all phases taking transportation as well as relocation 

costs into consideration. 

The automated system offers two alternatives for performing the optimization process.  

1- Start a new optimization performing Step-1 followed by Step-2. 

2- Load the results of a previous static optimization and use it to conduct dynamic 

optimization. 

 

Figure 5-5 Static optimization results loading screen 

5.3 SYSTEM OUTPUT 

The system provides two distinct forms of output, namely graphical output and a 

cost summary. Graphical output is represented via automated assignment of temporary 

facilities in the AutoCAD™ environment (Figure 5-8). A summary for the total layout 

costs (transportation costs + relocation costs) can be presented and automated charting 

capabilities via MSExcel™ is available through the optimization results screen Figure 

5-6.  



 59

 

Figure 5-6 Dynamic optimization results screen (Mini-Min approach) 

5.4 ILLUSTRATED EXAMPLE 

The following example of a 4-phase project is used to demonstrate the system 

capabilities and evaluate the output. The illustrative project is comprised of a – 15,000 

m2 - residential compound of 4 villas, a swimming pool, in addition to the necessary 

infrastructure. The project is scheduled to be completed in 12 months. The first phase 

lasts for 2 months and involves the construction of the necessary infrastructure for the 

compound. The second phase involves the construction of the large, southern villas and 

lasts for 5 months. During the third phase of the project, construction operations mainly 

take place in the northern section of the site where the smaller villas are being 

constructed. This phase lasts for 3 months. The fourth phase of the project starts on the 

11th month of the project and involves the construction of a swimming pool in the center 

of the compound. The evolution of the site layout is shown in Figure 5-7. 

5.4.1 Schedule & Temporary facility data 

To sustain the required construction operations, 7 temporary facilities are 

required. Not all temporary facilities will be required throughout the project (Table 5-1). 

When infrastructure works are underway, only the caravans and the electromechanical 

warehouse are required. During phases 2 and 3, all temporary facilities are required. The 
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aggregate storage area can be dismantled during the last phase, when no major concrete 

works will be underway.   

Table 5-1 Schedule and temporary facility data 

Phase1 
Infrastructure

Phase2 
South 

Phase3  
North 

Phase4 
Swimming 

pool Temporary Facility Dimensions
(m) 

2 months 5 months 3 months 2 months 
Administrative Caravans 10x8     

Engineer’s Caravans 10x5     
Steel Fabrication Yard 14x14     

Concrete Mixer 10x10     
Aggregate Storage 12x6     
Electromechanical 

Warehouse 12x6     

Wood Warehouse 10x10     

5.4.2 Site Layout Data: 

P-1

P-2 P-4

P-3

P-5

Gate

Phase 1: Infrastructure
Villa - 10 Gate Villa - 11

Phase 2: South

Villa - 10

Villa - 13

Gate Villa - 11

Phase 3: North

Villa - 12

Villa - 10

Villa - 13

Gate Villa - 11

Phase 4: Swimming pool

Swimmig Pool

Villa - 12

 

Figure 5-7 Evolution of site layout throughout project phases 
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5.4.3  Facility cost data 

1- Transportation cost data 

The inter-facility cost matrices for facilities present during all project phases are 

illustrated in Table 5-2. 

Inter-facility cost matrix – Phase 1 

Caravan 1 0        
Caravan 2 0 37       
P-1 81 0 37      
P-2 81 0 37 0     
P-3 81 0 37 0 0    
P-4 81 0 37 0 0 0   
P-5 81 0 37 0 0 0 0  
Gate 37 81 9 0 0 0 0 0 
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Inter-facility cost matrix – Phase 2 

Wood Warehouse 0         
Steel fabrication yard 0 0        
Agg. Storage 0 0 0       
Caravan 1 0 0 0 0      
Caravan 2 0 0 0 0 37     
Mixer 0 0 0 81 0 0    
Villa - 10 37 81 81 0 3 37 81   
Villa - 11 37 81 81 0 3 37 81 0  
Gate 37 37 9 37 81 9 0 0 0 
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Table 5-2 Inter-facility cost matrix for the four project phases 
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Inter-facility cost matrix – Phase 3 

Wood Warehouse 0           
Steel fabrication yard 0 0          
Agg. Storage 0 0 0         
Caravan 1 0 0 0 0        
Caravan 2 0 0 0 0 37       
Mixer 0 0 0 81 0 0      
Villa - 10 0 0 0 0 0 0 0     
Villa - 11 0 0 0 0 0 0 0 0    
Villa - 12 37 81 81 0 3 37 81 0 0   
Villa - 13 37 81 81 0 3 37 81 0 0 0  
Gate 37 37 9 37 81 9 0 0 0 0 0 
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Inter-facility cost matrix – Phase 4 

Wood Warehouse 0           
Steel fabrication yard 0 0          
Caravan 1 0 0 0         
Caravan 2 0 0 0 37        
Mixer 0 0 0 0 0       
Villa - 10 0 0 0 0 0 0      
Villa - 11 0 0 0 0 0 0 0     
Villa - 12 0 0 0 0 0 0 0 0    
Villa - 13 0 0 0 0 0 0 0 0 0   
Swimming Pool 81 81 81 3 37 37 0 0 0 0  
Gate 37 37 9 81 9 0 0 0 0 0 0 
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Table 5-2  Inter-facility cost matrix for the four project phases (continued) 
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2- Relocation cost data 

Table 5-3 Facility Relocation Cost Data 

Temporary Facility Relocation Cost 
Administrative Caravans 5000 
Engineer’s Caravans 5000 
Steel Fabrication Yard 1000 
Concrete Mixer 300 
Aggregate Storage 1000 
Electromechanical Warehouse 2500 
Wood Warehouse 2000 

5.5 OPTIMIZATION RESULTS 

The output capabilities of the automated system are exemplified through the 

optimization results of the illustrated example presented in the preceding section. The 

system enables optimization results to be presented in various forms.  

5.5.1 CAD presentation 

The most obvious form of output is that in which data was input, CAD 

drawings. The automated system is capable of opening project drawings and placing 

temporary facilities in their optimal positions. 

 

Figure 5-8 System automated drawing capabilities 
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5.5.2 Comparative graphical cost presentation  

The system provides automated charting capabilities to be used for comparative 

analysis of cost related data. Table 5-4 compares the total layout costs associated with 

each initial phase. It is evident that choosing phase-4 as the initial phase yields the 

Minimum-Minimum solution. 

 

Elec. Warehouse

Caravans

Steel 
fabrication

Agg. Storage

Wood 
WarehouseCaravans

Elec. Warehouse

Mixer

Wood 
Warehouse

Caravans

Agg. Storage

Elec. Warehouse

Steel 
fabrication

Mixer

Steel 
fabrication

Elec. Warehouse

Caravans

Wood 
Warehouse

Swimmig Pool

Mixer

Phase 1: Infrastructure Phase 2: South

Phase 4: Swimming poolPhase 3: North  

Figure 5-9 Automated system generated layouts – Mini-Min approach 

 

 

 

 

 

Table 5-4 Layout cost data – Mini-Min approach 
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Initial Phase Summary of layout costs 

Ph
as

e-
1 

Phase Transportation 
Cost  

Relocation 
Costs  

Total Costs  

Phase-1 25993 0 25993 
Phase-2 69964 2500 72464 
Phase-3 63690 4300 67990 
Phase-4 12367 8000 20367 

Total Costs 172013 14800 186813  

Ph
as

e-
2 

Phase Transportation 
Cost  

Relocation 
Costs  

Total Costs  

Phase-1 31043 2500 33543 
Phase-2 72012 0 72012 
Phase-3 72178 3300 75478 
Phase-4 10999 8300 19299 

Total Costs 186233 14100 200333  

Ph
as

e-
3 

Phase Transportation 
Cost  

Relocation 
Costs  

Total Costs  

Phase-1 29396 2500 31896 
Phase-2 98012 6800 104812 
Phase-3 62174 0 62174 
Phase-4 16874 3300 20174 

Total Costs 206456 12600 219056  

Ph
as

e-
4 

Phase Transportation 
Cost  

Relocation 
Costs  

Total Costs  

Phase-1 28678 0 28678 
Phase-2 73835 4300 78135 
Phase-3 62578 4300 66878 
Phase-4 11839 0 11839 

Total Costs 176929 8600 185529  
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6 SYSTEM VALIDATION & CASE STUDY 

 

In this chapter the performance of the automated system is validated via a 

construction project with  24,000 m2 site area. Based on the results, a comparison 

between the existing layouts and the layouts created by the system is conducted and 

comparisons are drawn 

6.1 CASE STUDY 

The selected project is a major swimming pool complex with several auxiliary 

buildings. The site is part of the new Heliopolois club in El-Shorouk city, Egypt. The 

contract for the complex was awarded for 14 million LE . Due to the immense size of 

the club’s ground and facilities, it was divided into three main packages, the swimming 

pool complex, the social building, and the sports grounds. Each was awarded to a 

separate contractor. Each of the contractors occupies a portion of the club’s site where 

his work is executed. All contractors independently sustain their construction sites and 

no sharing of facilities occurs between them.  

Children's Pool

Diving Pool

Recreational Pool

Olympic Pool

Changing rooms

Site GateSite Gate

Hardscape 
Area

N
Site Boundary

 

Figure 6-1 Layout of fixed facilities on the construction site 

The case study focuses only on the swimming pool complex and considers it a 

completely independent site. The site layout showing all fixed facilities present is 
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shown in Figure 6-1. 

During the project planning phases, the site layout was created by the project 

management group. Extensive effort was placed in the layout development which was 

thereafter approved by the engineer. The layout was developed solely using past 

experience and no formal approach was exploited. 

During a site visit the following information was collected: 

1- The project schedule. 

2- The actual layout of the temporary facilities on site. 

3- Inter-facility closeness relationships. 

4- Facility relocation costs. 

6.1.1 Project Schedule data 

After thorough analysis of the project schedule and method statement, three distinct 

phases could be identified as shown in Table 6-1. 

Table 6-1 Project phases with a brief description of the main construction operations   

Phase Duration 
(months) 

Available 
Site Space 

(m2) 
Description 

Phase 1 11 14632 m2 Work is started in the Olympic and 

diving pools. Only the north section of 

the recreational pool has commenced to 

allow the concrete pump to reach the 

east walls of the Olympic pool 

Phase 2 7 11676 m2 Work is started in the changing rooms 

building and the south section of the 

recreational pool. Work in the children's 

pool and the hardscape area has not yet 

begun.  

Phase 3 6 9408 m2 Work in all 6 permanent structures of 

the project is underway. 

6.1.2 Permanent Facilities data 

The swimming pool complex is comprised of six main permanent structures as 

well as the site gate. An underground basement occupies a large portion of the Olympic 

and diving pools. Table 6-2 illustrates permanent facilities and their dimensions. 
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Table 6-2 Listing and approximate dimensions of permanent facilities  

Permanent facility Approx. Dimension (m) 
Diving Pool 56 x 48 

Olympic Pool 86 x 48 
Children’s Pool 52 x 26 

Recreational Pool 90 x 48 
Changing Rooms 38 x 20 
Hardscape Area 38 x 24 

Site Gate 3 x 3 

6.1.3 Site Obstacles 

An access road covering the site was considered as an obstacle. During the first 

phase, an area south of the recreational pool was reserved to allow the concrete pump to 

pour the east wall of the olympic pool. The arrangement of permanent facilities and site 

obstacles within the site boundaries during the three project phases is shown in Figure 

6-2 At maximum site congestion (third phase), the permanent facilities and site 

obstacles occupy nearly 15000 m2 of the site. The remaining 9000 m2 is left for 

assigning the temporary facilities. 
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Figure 6-2 Arrangement of permanent facilities & obstacles on the swimming pool 
complex during different project phases 
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Figure 6-2 Arrangement of permanent facilities & obstacles on the swimming pool 
complex during different project phases (continued) 

6.1.4 Temporary Facilities 

The temporary facilities found on the site can be divided into four main 

categories: 

1- Storage Areas: General storage Area, Steel storage 
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2- Staff Facilities: Caravans, Toilets, Prayer area, Parking 

3- Supporting Facilities: Water Tanks, Generators 

4- Fabrication Areas: Steel fabrication yard 

The temporary facilities needed to sustain the construction requirements, their 

dimensions and relocation costs are shown in Table 6-3  

Table 6-3 Dimensions and relocation costs of temporary facilities 

Temporary Facility Dimension 
(m) 

Relocation Cost 
(LE) 

Storage Area 42 x 20 2400 
2 Administrative Caravans 10 x 3 1150 

2 Engineer’s Caravans 10 x 3 1150 
Parking Area 12 x 4 150 

Toilets 10 x 3 800 
Steel fabrication yard 10 x 18 450 

Steel storage 10 x 12 250 
Generators 2 x 2 150 

6.1.5 Proximity Matrix 

An inter-facility proximity matrix was provided by the project manager during a 

short interview. This matrix was transformed into its quantitative equivalents before 

input to the system. (Table 3-4). 

Steel fabrication yard U              
Steel Storage U A             
Car Parking U X X            

Adm Caravan 1 U X X U           
Adm Caravan 2 U X X I A          
Eng Caravan 1 U X X I E E         
Eng Caravan 2 U X X I E E A        

Diving Pool A I E E X X I I       
Olympic Pool A I E E X X I I N/A      

Children's Pool E U I I X X I I N/A N/A     
Recreational Pool E U I I X X I I N/A N/A N/A    
Changing rooms E U I I X X I I N/A N/A N/A N/A   
HardScape Area I U I I X X I I N/A N/A N/A N/A N/A  

Gate I I X A A A E E N/A N/A N/A N/A N/A N/A
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6.2 AUTOMATED SYSTEM OUTPUT 

6.2.1 Step1: Static Layout 

The system performed the GA-based optimization of the three project phases in 

a total of 92 minutes running on a Pentium-3 800 MHz processor. A termination 

condition of ∆ = 5% was used. Table 6-4 summarizes the static optimization results. 

The following genetic parameters were used: 

Pmutation = 0.05  
Pcrossover = 0.7  
Population size = 250 

Table 6-4 Summary of the GA-based optimization process for the three project phases 

 Run-Time 
(minutes) 

Number of GA 
generations 

Optimum Transportation 
costs  (LE) 

Phase-1 43 1,664 13,141 
Phase-2 22 558 8,142 
Phase-3 27 1,168 8,726 

 

The generated layouts based solely on inter-facility transportation costs are 

shown in Figure . It is noted that till this step the system deals with each layout as if it 

were a totally independent optimization problem. It is the dynamic optimization process 

that integrates the relocation costs of facilities from one phase to the next, creating the 

required chronological continuity between project phases. 

Steel 
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Figure 6-3 Automated system assignment of temporary facilities (Static Layout) 
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Figure 6-3 Automated system assignment of temporary facilities -Static Layout 
(continued) 

6.2.2 Step2: Dynamic Layout 

The second step is performing the optimization process taking into consideration 

the relocation costs of facilities from one layout to the next. As shown in Table 
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6-5Table 6-4, the maximum transportation costs occur during Phase-1 of the project. 

Total transportation and relocation costs are dependant on the choice of the initial phase.  

The results, shown in Table 6-5, demonstrate the transportation and relocation 

costs for all project phases when each of the project phases is taken is the initial phase. 

When Phase-1 is taken as the initial phase for dynamic layout planning, the 

optimization process yields the highest values for both transportation and relocation 

costs. Adopting the critical phase approach, Phase-1 would be taken as the initial, 

critical phase and layouts would be constructed in forward chronological order. 

Adopting the Mini-Min approach will consider all possible combinations for choosing 

the initial phase and then choose the combination that yields the lowest total 

transportation and relocation costs. In this case, choosing Phase-2 as the initial phase. 

Table 6-5 Summary of layout costs after dynamic optimization (Mini-Min approach) 

Initial Phase Summary of layout costs 

Ph
as

e-
1 

Phase Transportation 

Cost (LE) 

Relocation 

Costs (LE) 

Total Costs 

(LE) 

Phase-1 13,141 0 13,141 

Phase-2 9,315 2,550 11,865 

Phase-3 8,875 3,100 11,975 

Total Costs 31,331 5,650 36,981 
 

Ph
as

e-
2 

Phase Transportation 

Cost (LE) 

Relocation 

Costs (LE) 

Total Costs 

(LE) 

Phase-1 11,856 0 11,856 

Phase-2 8,142 0 8,142 

Phase-3 8,871 850 9,721 

Total Costs 28,870 850 29,720 
 

Ph
as

e-
3 

Phase Transportation 

Cost (LE) 

Relocation 

Costs (LE) 

Total Costs 

(LE) 

Phase-1 11,770 700 12,470 

Phase-2 9,015 0 9,015 

Phase-3 8,727 0 8,727 

Total Costs 29,512 700 30,212 
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Figure 6-4 System assignment of  temporary facilities (Dynamic Layout, Mini-Min 
approach) 
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Figure 6-4 System assignment of  temporary facilities (Dynamic Layout, Mini-Min 
approach), continued 

The Mini-Min solution was attained when taking Phase-2 as the initial phase, 

yielding a total layout cost of 29,720 LE. The three layouts are depicted in Figure 6-4. It 

is noted that no relocation costs occur from Phase-2 to Phase-1, that is the layouts are 

identical during the first 18 months of the project. The third phase did undergo the 

relocation of the steel fabrication yards, the steel storage area and the generator. 

6.3 ACTUAL SITE LAYOUTS 

During a brief site interview, the project manager made clear the following facts 

pertaining to the site layout: 

1. Site constraints forced the schedule to proceed in a certain order. The south 

section of the recreational pool was postponed until the east wall of the olympic 

pool was poured. The concrete pump’s boom could not reach the east wall 

otherwise (Figure 6-2). 

2. The engineer’s caravans were placed in place of the hardscape area. Work in the 

hardscape area was scheduled to begin on the 18th month of the project. The 

caravans were to be relocated during that time.   

3. During the 15th month of the project the engineer issued a change order. The west 

edge of the olympic and diving pools were shifted 6m to the west. This forced the 
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contractor to move the administrative caravans and car parking so as not to 

obstruct this shift. The storage area decreased in size due to this shift. 

4. The contractor decided to relocate the engineer’s caravans on the 15th instead of 

the scheduled 18th month date so as to minimize site disruption caused by several 

facility relocations. 

 

 

Figure 6-5 Actual site layout, first 15 months 

Actual layouts adopted during the project differed to some extent from the 

system generated layouts: The site layout plan was intended to undergo only one 

change. The engineering caravans were to be moved during the last six months of the 

project to make room for the hardscape area. This change did occur, but ahead of 

schedule. During the 15th month, the owner issued a change order increasing the 

premises of the Olympic and diving pools by six meters to the west. The contractor was 

forced to relocate the 2 administrative caravans and the car parking. The contractor was 

reimbursed for the relocation. At the same time, and so as not to disrupt the layout any 

further, it was decided to relocate the engineer's caravans and make room for the 

hardscape area which was to undergo construction in only three months time. 
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Figure 6-6 Actual site layout, last 9 months 

6.4 COMPARATIVE ANALYSIS 

The automated system dealt with the three main phases but yielded only two 

distinct layouts. One layout spanned the first and second phases, while the second 

layout spanned the last phase. A brief comparison between the assignment of temporary 

facilities in the actual and the system generated layouts is shown in Table 6-6. Total 

layout costs for the actual and the system generated layouts is shown in Table 6-7.   

Table 6-6 Comparison between actual and system generated layouts  

Temporary Facility Comment 

Storage Area Assignment of the storage area was identical in both 

layouts. This consistency is mainly due to the large size of 

the facility and thus the unavailability of various site 

locations to be placed in. 
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Steel fabrication yard & 

Steel storage area 

In the actual layout, no relocation occurred. In the 

system’s layout, they were assigned in place of the 

children’s pool during the first two phases as no 

construction had yet begun. During the last phase they 

had to be relocated. They were relocated south of the 

diving pool, which was the same position the contractor 

had assigned them in. This indicates a partial consistency 

between the generated layout and the actual layout.   

Engineer’s Caravans In the actual layout, the caravans underwent relocation 

from the hardscape area to an area west of the diving 

pool. In the generated layout, no relocation occurred and 

the caravans were assigned west of the diving pool 

throughout the project. Although during the last phase the 

caravans were placed west of the diving pool in both 

layouts, their exact assignment did differ by 

approximately 4 meters.  

Administrative Caravans Both layouts assigned the administrative caravans west of 

the diving pools. Their exact assignment did differ by 

approximately 7 meters.  

Parking Area In the actual layout the car parking underwent relocation 

upon issue of the change order. In the generated layout, 

no relocation occurred. Both layouts assigned the parking 

west of the diving pool although their exact assignments 

did differ by 1 meter in the first two phases and 10 meters 

in the last phase. 

 

Table 6-7 Comparative layout costs between actual and automated system layout 

 Actual Layout Generated Layout 

Transportation costs (LE) 35,600 28,870 

Relocation costs (LE) 4,750 850 

Total Layout Cost (LE) 40,350 29,720 
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7 SUMMARY & CONCLUSIONS 

7.1 SUMMARY 

This research investigates the use of genetic algorithms in construction site 

layout planning. Although genetic algorithms have been previously utilized by other 

researchers in solving the site layout planning problem, this research aims to create an 

integrated CAD-based GA automated computer system for site layout planning. The 

system utilizes genetic algorithms (GA’s), as function optimizers, in determining the 

temporary facility location according to the graphical information depicted in a CAD 

environment. 

Due to the special nature of the problem at hand, a problem oriented GA 

procedure was developed in order to suit site layout planning problem. The developed 

GA uses steady state generation with a modified mutation operator. Due to the evident 

graphical nature of the problem, the GA was integrated with a CAD platform. The CAD 

environment is utilized in space detection of the site layout and in the satisfaction of 

geometrical constraints dictated by the facility assignment problem. 

The system addresses the changing nature of construction sites via performing 

dynamic site layout planning. Two dynamic optimization approaches have been 

suggested to overcome the shortcomings found in the traditional dynamic layout 

techniques. The integrated system has been implemented via MS VisualBasic™ 6.0. 

The CAD interface has been made possible through the programmable features of 

AutoCAD™ in the VBA environment. The automated system EDSLP (Evolutionary 

Dynamic Site Layout Planning System) incorporates various data input facilities, a GA-

based optimization engine and a CAD output facility. 

In order to validate the performance of the system, it was tested on an actual 

24,000 m2 construction site. The system produced a site layout that accomplished nearly 

a 25% saving in total layout cost compared to the layout actually adopted. 
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7.2 CONCLUSIONS 

 

1- Genetic algorithms can be satisfactorily used to solve the site layout problem: 

When tested with an actual case study the EDSLP system yielded highly 

optimum solutions with nearly 25% savings in total layout cost. Run times are 

feasible and reasonable compared to other genetic algorithms taking into 

account the iterative dynamic optimization approach used. 

2- The integration between CAD platforms and genetic algorithms was successful 

in performing the site layout optimization process: Overall, the integrated 

system managed to benefit from the intricate search and optimization abilities of 

genetic algorithms and at the same time utilize the powerful graphical 

capabilities of CAD systems. Optimization results were very satisfactory as 

previously mentioned. Geometrical constraints dictated by the site geometry 

were strictly followed by the CAD platform as no overlap or out-of-boundary 

assignment of temporary facilities occurred. 

3- The two suggested approaches for performing the dynamic layout process 

overcome the shortcomings found in previous models: Both the Critical Phase 

approach and the Mini-Min approach for dynamic layout aim to mitigate costs 

of assignment of facilities in positions that may seem favorable in early phases, 

but could turn out very costly in phases to come. Traditional chronological 

dynamic layout is proven to yield non-optimal solutions throughout the project 

phases. 

4- Assigning facilities based solely on transportation & relocation costs neglects 

other secondary objectives: This was found when comparing the system 

generated layout with that created by the project manager. Although the system's 

layout scored higher than the adopted layout, the project manager considered the 

layout to create some minor local site congestions. Thus it can be concluded that 

other secondary objectives should be taken into consideration when performing 

site layout planning. These objectives include but are not limited to minimizing 

local site congestion and promoting safe working environments.  
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7.3 RECOMMENDATIONS FOR FURTHER RESEARCH 

 

1- Formulate a comprehensive objective function that accounts for secondary, 

intangible objectives in addition to the main objective: Assigning facilities based 

solely on transportation & relocation costs neglects other secondary objectives 

as mentioned. Thus, a comprehensive multi-objective objective function should 

be formulated that takes all influencing factors into consideration according to 

their relative importance.  

2- Provide the system with a knowledge-based facility identification module: This 

module will estimate the number of required temporary facilities and the 

dimension of each temporary facility. This estimation will be based on project 

related data such as: the type of construction activities involved, the number of 

personnel present on site, the amounts of material to be stored, required 

equipment, etc… 

3- Enhance the system to be able to deal with actual travel distances between 

facilities instead of rectilinear distances: The present system utilizes rectilinear 

distances between facilities. These distances may not necessarily represent the  

realistic distances to travel inside the site. Especially in congested sites, 

maneuvering around facilities may be required during travel. Using CAD 

features, actual travel distances around facilities can be correctly estimated.  

4- Enhance the system to be able to deal with irregular facility shapes instead of 

rectangular shapes: The present system is able to deal with irregular site 

boundaries but can only identify rectangular facility shapes. Although most 

temporary construction facilities tend to have rectangular shapes, permanent 

facilities may assume any irregular shape. Enhancing the system to be able to 

recognize irregular facilities will further increase its practicality for use. 

5- Develop a system is capable of dealing with three dimensional spatial aspects. 

(3-D site layout planning): The present system performs site layout planning at 

the 2-D level. Some projects (eg. High-rise buildings built on congested sites) 

require temporary support facilities to be placed inside the building whilst 

construction. Enhancing the system to deal with the third dimension will make it 

more suitable for these types of projects, further increasing its practicality for 

use. 
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9 APPENDICES 

APPENDIX A: OPTIMIZATION CODE 

StaticOpt module 

 
Const Maxpool = 1000 
Const Maxpop = 1000 
Const Maxstring = 10 'Also maximum number of facilities 
Const Maxpoints = 10000 'Maximum number of grid squares 
 
'GA Data 
Public Type Individual 
  ChromosomeX(Maxstring) As Byte 
  ChromosomeY(Maxstring) As Byte 
  ObjectiveFunc As Single 
  Fitness As Single 
End Type 
 
Public Type Population 
  TypePop As Individual 
End Type 
 
Public NewPop(2) As Population 
Public PoolPop(Maxpool) As Population 
Public CurrentPop(Maxpop) As Population 
Public Current_SOF As Single 
 
Public Popsize As Byte    'Integer global variables 
Public Pcross As Single, Pmutation As Single   'Real global 
varibles 
Dim Action As String 'What has occured (crossover, mutation, 
etc..) 
Public Parent1 As Byte, Parent2 As Byte 'Parents that were 
selected 
Public Nmutation As Integer, Ncross As Integer, Ngener As 
Integer    'Integer Statistics 
Public Maximum As Single, Maximum2 As Single, Minimum As Single, 
Average As Single 'Population statistics 
Public MaxSolution As Byte, MaxSolution2 As Byte, MinSolution As 
Byte 
Public MinObjFunc(10) As Single 
Public RelocationCost(10) As Integer 
Public OptSol(10, 10, 2) As Byte 
Public Percent_Occ(10) As Single 
Public RunTime(10) As Single 
 
'Optimization Data 
Public Delta As Single, Convergence As Single 
Public InitalChoice As Integer 'Initial pool of choice 
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Public A As Integer, B As Byte 'Transformation of Obj Func to 
Fitness 
 
Public CG_X(25) As Single 
Public CG_Y(25) As Single 
Public Prox(10, 20, 20) As Single 'Proximity Matrix 
Public Reloc(10, 10) As Single 'Relocation Weights 
 
'Facility & Activity Data 
'Maximum of 10 phases and 10 temporary facilities per phase 
 
Public Fac_Name(10, 10) As String 
Public Fac_Length(10, 10) As Integer 
Public Fac_width(10, 10) As Integer 
Public Phase_Name(10) As String 
Public Phase_num As Byte 
Public NumTemp(10) As Byte, NumFixed(10) As Byte 
Public TotalNumber(10) As Byte 'Sum of temporary and fixed 
facilities 
Public Start(10) As Byte 
Public Finish(10) As Byte 
Public PhaseLength(10) As Byte 
Public PFac_Name(10, 10) As String 
Public PCentroid(10, 10, 2) As Integer 
Public Phase As Integer 'The phase number currently being 
optimized 
'Geometrical Data 
Public NumofPoints(10) As Integer 
 
Public AvailableX(10, Maxpoints) As Byte 
Public AvailableY(10, Maxpoints) As Byte 
Public OccupiedX(10, Maxpoints) As Byte 
Public OccupiedY(10, Maxpoints) As Byte 
Public ReservedPts As Integer 
 
Sub StaticOptimization() 
'Optimization Procedure 
Dim S As Variant, F As Variant 
 
S = Timer 
Chromosome 
ObjectiveFunc 
PopSort 
Initialize 
 
Do 
Sort 'done 
Generate 
Statistics 
OutputData 
frmOpmz2.ProgressBar1.Value = 400 * Delta ^ 2 - 400 * Delta + 
100 
Loop Until Delta < Convergence / 100 
frmOpmz2.ProgressBar1.Value = 90 
RefineSolution 
SaveResults 
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MinObjFunc(Phase) = Minimum * PhaseLength(Phase) 
frmOpmz2.ProgressBar1.Value = 100 
frmOpmz2.Action_lbl = "Opimization Complete" 
F = Timer 
RunTime(Phase) = F - S 
frmOpmz2.Time_lbl.Caption = RunTime(Phase) 
End Sub 
 
 
Private Sub Chromosome() 
Dim random As Integer 
Dim j As Byte, N As Integer 
frmOpmz2.Action_lbl.Caption = "Initializing first population" 
ReservedPts = 1 
row = 0 
For N = 1 To InitalChoice 
For j = 1 To NumTemp(Phase) 
10  Randomize 
    random = Int((Rnd * NumofPoints(Phase)) + 1) 
    PoolPop(N).TypePop.ChromosomeX(j) = AvailableX(Phase, 
random) 
    PoolPop(N).TypePop.ChromosomeY(j) = AvailableY(Phase, 
random) 
       'Check to make sure facility fits on site: 
       If CheckSite(PoolPop(N).TypePop.ChromosomeX(j), 
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 10 
       'Check for no overlap, reserving places for placed 
facilities: 
       If CheckOverlap(PoolPop(N).TypePop.ChromosomeX(j), 
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 10 
Next j 
EmptyOccupied 
frmOpmz2.ProgressBar1.Value = (N / InitalChoice) * 100 
frmOpmz2.Refresh 
Next N 
End Sub 
 
 
Public Function CheckSite(Xmin As Byte, Ymin As Byte, X As 
Integer, Y As Integer) As Boolean 
Dim X1 As Byte, Y1 As Byte, i As Integer 
For X1 = Xmin To Xmin + X - 1 
   For Y1 = Ymin To Ymin + Y - 1 
      For i = 1 To NumofPoints(Phase) 
         If X1 = AvailableX(Phase, i) And Y1 = AvailableY(Phase, 
i) Then GoTo 5 
      Next i 
      CheckSite = False 
      GoTo 10 
5     Next Y1 
Next X1 
CheckSite = True 
10 End Function 
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Public Function CheckOverlap(Xmin As Byte, Ymin As Byte, X As 
Integer, Y As Integer) As Boolean 
Dim X1 As Byte, Y1 As Byte, i As Integer 
For X1 = Xmin To Xmin + X - 1 
   For Y1 = Ymin To Ymin + Y - 1 
      For i = 1 To ReservedPts 
         If X1 = OccupiedX(Phase, i) And Y1 = OccupiedY(Phase, 
i) Then 
         CheckOverlap = False 
         GoTo 10 
         End If 
      Next i 
    Next Y1 
Next X1 
CheckOverlap = True 
'Reserve space for placed facility: 
For X1 = Xmin To Xmin + X - 1 
    For Y1 = Ymin To Ymin + Y - 1 
        OccupiedX(Phase, ReservedPts) = X1 
        OccupiedY(Phase, ReservedPts) = Y1 
        ReservedPts = ReservedPts + 1 
    Next Y1 
Next X1 
10 End Function 
 
 
Public Sub EmptyOccupied() 
Dim i As Integer 
For i = 1 To ReservedPts 
    OccupiedX(Phase, i) = 0 
    OccupiedY(Phase, i) = 0 
Next i 
ReservedPts = 1 
End Sub 
 
 
Public Sub PopSort() 
Dim Min As Single 
Dim i As Integer 
Dim j As Integer 
Dim Flag As Integer 
For i = 1 To Popsize 
    Min = 100000000 
    For j = 1 To InitalChoice 
        If PoolPop(j).TypePop.ObjectiveFunc < Min Then 
            Flag = j 
            Min = PoolPop(j).TypePop.ObjectiveFunc 
        End If 
    Next j 
    For j = 1 To NumTemp(Phase) 
        CurrentPop(i).TypePop.ChromosomeX(j) = 
PoolPop(Flag).TypePop.ChromosomeX(j) 
        CurrentPop(i).TypePop.ChromosomeY(j) = 
PoolPop(Flag).TypePop.ChromosomeY(j) 
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        CurrentPop(i).TypePop.ObjectiveFunc = 
PoolPop(Flag).TypePop.ObjectiveFunc 
    Next j 
    CurrentPop(i).TypePop.Fitness = (A / 
PoolPop(Flag).TypePop.ObjectiveFunc) ^ B 
    PoolPop(Flag).TypePop.ObjectiveFunc = 100000000 
Next i 
End Sub 
 
 
Private Sub ObjectiveFunc() 
Dim i As Byte, j As Byte, k As Byte 
Dim N As Integer 
Dim ObjFunc As Single 
Dim d(20, 20) As Single 
For N = 1 To InitalChoice 
    'Centroid Position 
    For i = 1 To NumTemp(Phase) 
        CG_X(i) = PoolPop(N).TypePop.ChromosomeX(i) + 
Fac_Length(Phase, i) / 2 
        CG_Y(i) = PoolPop(N).TypePop.ChromosomeY(i) + 
Fac_width(Phase, i) / 2 
    Next i 
    j = 1 
    For i = 1 + NumTemp(Phase) To TotalNumber(Phase) 
        CG_X(i) = PCentroid(Phase, j, 1) 
        CG_Y(i) = PCentroid(Phase, j, 2) 
        j = j + 1 
    Next i 
    'objective function 
    ObjFunc = 0 
    k = 2 
    For i = 1 To TotalNumber(Phase) 
        For j = k To TotalNumber(Phase) 
            d(i, j) = Distance(CG_X(i), CG_Y(i), CG_X(j), 
CG_Y(j)) 
            ObjFunc = ObjFunc + d(i, j) * Prox(Phase, i, j) 
        Next j 
        k = k + 1 
    Next i 
    PoolPop(N).TypePop.ObjectiveFunc = ObjFunc 
Next N 
End Sub 
 
 
Public Function Distance(X1 As Single, Y1 As Single, X2 As 
Single, Y2 As Single) As Single 
Distance = ((X1 - X2) ^ 2 + (Y1 - Y2) ^ 2) ^ 0.5 
End Function 
 
 
Public Sub Sort() 
Dim i As Byte 
Dim Max As Single, Min As Single 
Max = CurrentPop(10).TypePop.ObjectiveFunc 
Min = CurrentPop(10).TypePop.ObjectiveFunc 
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For i = 1 To Popsize 
    If CurrentPop(i).TypePop.ObjectiveFunc < Min Then 
        Min = CurrentPop(i).TypePop.ObjectiveFunc 
        MinSolution = i 
    End If 
    If CurrentPop(i).TypePop.ObjectiveFunc > Max Then 
        Maximum2 = Max 
        Max = CurrentPop(i).TypePop.ObjectiveFunc 
        MaxSolution2 = MaxSolution 
        MaxSolution = i 
    End If 
Next i 
Maximum = Max 
Minimum = Min 
End Sub 
 
 
Public Sub Generate() 
'This procedure generates a random offspring. 
Dim i As Byte, j As Byte, k As Byte 
Dim TempX As Integer, TempY As Integer 
Dim jcross As Integer 
Dim mate1, mate2 As Integer 
Dim X As Single 
 
'generates new offspring from oldpop 
CurrentSOF 
Select Case Flip(Pcross, Pmutation) 
Case 1 
Nmutation = Nmutation + 1 
Action = "Mutation" 
Mutation 
Case 2 
'crossover here 
Ncross = Ncross + 1 
Action = "Crossover" 
Crossover 
Case 3 
    ' No crossover, just roulette wheel selection 
Action = "Copy Parents" 
CopyParents 
End Select 
End Sub 
 
 
Public Sub Mutation() 
Dim lop As Integer, h As Integer 
Dim Best As Single 
Dim m As Byte, T As Byte, d As Byte, j As Byte 
lop = 0 
  m = MinSolution 'The best solution so far 
  Best = CurrentPop(m).TypePop.Fitness 
  For T = 1 To NumTemp(Phase) 
    For h = -1 To 1 Step 2 
        For d = 0 To 1 
        Select Case d 
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        'Change in the X direction 
        Case 0 
        On Error Resume Next 
        CurrentPop(m).TypePop.ChromosomeX(T) = 
CurrentPop(m).TypePop.ChromosomeX(T) + h 
        ObjectiveFunction (m) 
        'Check that the objective function has improved 
        If CurrentPop(m).TypePop.Fitness < Best Then 
            'The new offspring are not better than the worst 
population member 
            CurrentPop(m).TypePop.ChromosomeX(T) = 
CurrentPop(m).TypePop.ChromosomeX(T) - h 
            ObjectiveFunction (m) 
            GoTo 5 
        End If 
   'CHECK MUTATION IS FEASIBLE 
        EmptyOccupied 
        For j = 1 To NumTemp(Phase) 
        If CheckSite(CurrentPop(m).TypePop.ChromosomeX(j), 
CurrentPop(m).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then 
            CurrentPop(m).TypePop.ChromosomeX(T) = 
CurrentPop(m).TypePop.ChromosomeX(T) - h 
            GoTo 5 
        End If 
    
        If CheckOverlap(CurrentPop(m).TypePop.ChromosomeX(j), 
CurrentPop(m).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then 
            CurrentPop(m).TypePop.ChromosomeX(T) = 
CurrentPop(m).TypePop.ChromosomeX(T) - h 
            GoTo 5 
        End If 
        Next j 
        GoTo 10 
        'Change in the Y direction 
        Case 1 
        On Error Resume Next 
        CurrentPop(m).TypePop.ChromosomeY(T) = 
CurrentPop(m).TypePop.ChromosomeY(T) + h 
        ObjectiveFunction (m) 
        'Check that the objective function has improved 
        If CurrentPop(m).TypePop.Fitness < Best Then 
            'The new offspring are not better than the worst 
population member 
            CurrentPop(m).TypePop.ChromosomeY(T) = 
CurrentPop(m).TypePop.ChromosomeY(T) - h 
            ObjectiveFunction (m) 
            GoTo 5 
        End If 
   'CHECK MUTATION IS FEASIBLE 
        EmptyOccupied 
        For j = 1 To NumTemp(Phase) 
        If CheckSite(CurrentPop(m).TypePop.ChromosomeX(j), 
CurrentPop(m).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then 
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            CurrentPop(m).TypePop.ChromosomeY(T) = 
CurrentPop(m).TypePop.ChromosomeY(T) - h 
            GoTo 5 
        End If 
        If CheckOverlap(CurrentPop(m).TypePop.ChromosomeX(j), 
CurrentPop(m).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then 
            CurrentPop(m).TypePop.ChromosomeY(T) = 
CurrentPop(m).TypePop.ChromosomeY(T) - h 
            GoTo 5 
        End If 
        Next j 
        GoTo 10 
        End Select 
5         Next d 
    Next h 
  Next T 
10 End Sub 
 
 
Public Sub Crossover() 
Dim i As Byte, j As Byte, k As Byte 
Dim temp1(Maxstring)  As Byte, temp2(Maxstring) As Byte, 
temp3(Maxstring) As Byte, temp4(Maxstring) As Byte 
Dim TempX As Byte, TempY As Byte 
Dim jcross As Integer 
Dim mate1, mate2 As Integer 
Dim Worst As Single 'Worst fitness so far 
'i and k are the chromosome number to replace 
i = MaxSolution 
k = MaxSolution2 
Worst = Maximum2 
10 mate1 = SelectChrom(Popsize, Current_SOF) 
   mate2 = SelectChrom(Popsize, Current_SOF) 
    Randomize 
    jcross = Int(((NumTemp(Phase) - 1) * Rnd) + 1) 
    '1st half of exchange 
      For j = 1 To jcross 
      NewPop(1).TypePop.ChromosomeX(j) = 
CurrentPop(mate1).TypePop.ChromosomeX(j) 
      NewPop(1).TypePop.ChromosomeY(j) = 
CurrentPop(mate1).TypePop.ChromosomeY(j) 
      NewPop(2).TypePop.ChromosomeX(j) = 
CurrentPop(mate2).TypePop.ChromosomeX(j) 
      NewPop(2).TypePop.ChromosomeY(j) = 
CurrentPop(mate2).TypePop.ChromosomeY(j) 
      Next j 
    '2nd half of exchange 
      For j = jcross + 1 To NumTemp(Phase) 
      TempX = CurrentPop(mate1).TypePop.ChromosomeX(j) 
      TempY = CurrentPop(mate1).TypePop.ChromosomeY(j) 
      NewPop(1).TypePop.ChromosomeX(j) = 
CurrentPop(mate2).TypePop.ChromosomeX(j) 
      NewPop(1).TypePop.ChromosomeY(j) = 
CurrentPop(mate2).TypePop.ChromosomeY(j) 
      NewPop(2).TypePop.ChromosomeX(j) = TempX 
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      NewPop(2).TypePop.ChromosomeY(j) = TempY 
      Next j 
    'Check that solution is feasible 
    EmptyOccupied 
    For j = 1 To NumTemp(Phase) 
    If CheckSite(NewPop(1).TypePop.ChromosomeX(j), 
NewPop(1).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 10 
    If CheckOverlap(NewPop(1).TypePop.ChromosomeX(j), 
NewPop(1).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 10 
    Next j 
    EmptyOccupied 
    For j = 1 To NumTemp(Phase) 
    If CheckSite(NewPop(2).TypePop.ChromosomeX(j), 
NewPop(2).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 10 
    If CheckOverlap(NewPop(2).TypePop.ChromosomeX(j), 
NewPop(2).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 10 
    Next j 
    'Place Newpop in place of Oldpop 
    For j = 1 To NumTemp(Phase) 
        temp1(j) = CurrentPop(i).TypePop.ChromosomeX(j) 
        temp2(j) = CurrentPop(i).TypePop.ChromosomeY(j) 
        temp3(j) = CurrentPop(k).TypePop.ChromosomeX(j) 
        temp4(j) = CurrentPop(k).TypePop.ChromosomeY(j) 
        CurrentPop(i).TypePop.ChromosomeX(j) = 
NewPop(1).TypePop.ChromosomeX(j) 
        CurrentPop(i).TypePop.ChromosomeY(j) = 
NewPop(1).TypePop.ChromosomeY(j) 
        CurrentPop(k).TypePop.ChromosomeX(j) = 
NewPop(2).TypePop.ChromosomeX(j) 
        CurrentPop(k).TypePop.ChromosomeY(j) = 
NewPop(2).TypePop.ChromosomeY(j) 
    Next j 
    'Place new offspring on the spreadsheet 
    ObjectiveFunction (i) 
    ObjectiveFunction (k) 
    'Check that the objective function has improved 
    If CurrentPop(i).TypePop.ObjectiveFunc > Worst Or 
CurrentPop(k).TypePop.ObjectiveFunc > Worst Then 
    'The new offspring are not better than the worst population 
member 
     For j = 1 To NumTemp(Phase) 
        CurrentPop(i).TypePop.ChromosomeX(j) = temp1(j) 
        CurrentPop(i).TypePop.ChromosomeY(j) = temp2(j) 
        CurrentPop(k).TypePop.ChromosomeX(j) = temp3(j) 
        CurrentPop(k).TypePop.ChromosomeY(j) = temp4(j) 
     Next j 
     ObjectiveFunction (i) 
     ObjectiveFunction (k) 
     GoTo 10 
    End If 
Parent1 = mate1 
Parent2 = mate2 
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ObjectiveFunction (i) 
ObjectiveFunction (k) 
End Sub 
 
 
Public Sub CopyParents() 
Dim i As Byte, j As Byte, k As Byte 
Dim mate1, mate2 As Integer 
'i and k are the chromosome number to replace 
i = MaxSolution 
k = MaxSolution2 
    mate1 = SelectChrom(Popsize, Current_SOF) 
    mate2 = SelectChrom(Popsize, Current_SOF) 
    For j = 1 To NumTemp(Phase) 
      CurrentPop(i).TypePop.ChromosomeX(j) = 
CurrentPop(mate1).TypePop.ChromosomeX(j) 
      CurrentPop(i).TypePop.ChromosomeY(j) = 
CurrentPop(mate1).TypePop.ChromosomeY(j) 
      CurrentPop(k).TypePop.ChromosomeX(j) = 
CurrentPop(mate2).TypePop.ChromosomeX(j) 
      CurrentPop(k).TypePop.ChromosomeY(j) = 
CurrentPop(mate2).TypePop.ChromosomeY(j) 
    Next j 
    'Place new offspring on the spreadsheet 
Parent1 = mate1 
Parent2 = mate2 
ObjectiveFunction (i) 
ObjectiveFunction (k) 
End Sub 
 
 
Public Function SelectChrom(Popsize As Byte, Current_SOF As 
Single) As Byte 
'This function selects a chromosome based on roulette wheel 
selection 
'Note: currentpop is the population to select from 
Dim rand, partsum As Single 
Dim j As Byte 
partsum = 0 
j = 0 
Randomize 
rand = Rnd * Current_SOF 
Do 
  j = j + 1 
  partsum = partsum + CurrentPop(j).TypePop.Fitness 
Loop Until partsum >= rand Or j = Popsize 
SelectChrom = j 
End Function 
 
 
Private Sub Statistics() 
Dim i As Byte 
Dim Max As Single, Min As Single, Total As Single 
Max = 0 
Min = 100000000 
Total = 0 
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For i = 1 To Popsize 
    If CurrentPop(i).TypePop.ObjectiveFunc < Min Then 
        Min = CurrentPop(i).TypePop.ObjectiveFunc 
        MinSolution = i 
    End If 
    If CurrentPop(i).TypePop.ObjectiveFunc > Max Then 
        Max = CurrentPop(i).TypePop.ObjectiveFunc 
        MaxSolution = i 
    End If 
    Total = Total + CurrentPop(i).TypePop.ObjectiveFunc 
Next i 
Average = Total / Popsize 
Maximum = Max 
Minimum = Min 
Delta = (Maximum - Minimum) / Maximum 
Ngener = Ngener + 1 
End Sub 
Sub OutputData() 
Dim i As Byte 
frmOpmz2.Min_lbl.Caption = Minimum  'Min 
frmOpmz2.Avg_lbl.Caption = Average 'Avg 
frmOpmz2.Ncross_lbl.Caption = Ncross   'Number of crossovers 
frmOpmz2.Nmut_lbl.Caption = Nmutation    'number of mutations 
frmOpmz2.Gnr_lbl.Caption = Ngener    'number of generations 
frmOpmz2.Refresh 
End Sub 
 
 
Public Function Flip(ProbCr As Single, ProbMu As Single) As Byte 
Randomize 
If Rnd < ProbMu Then 
Flip = 1 'Mutation 
ElseIf Rnd < ProbCr Then 
Flip = 2 'Crossover 
Else 
Flip = 3 'Neither 
End If 
End Function 
 
Public Sub ObjectiveFunction(StringNum As Byte) 
Dim i As Byte, j As Byte, k As Byte 
Dim ObjFunc As Single 
Dim d(20, 20) As Single 
    'Centroid Position 
    For i = 1 To NumTemp(Phase) 
        CG_X(i) = CurrentPop(StringNum).TypePop.ChromosomeX(i) + 
Fac_Length(Phase, i) / 2 
        CG_Y(i) = CurrentPop(StringNum).TypePop.ChromosomeY(i) + 
Fac_width(Phase, i) / 2 
    Next i 
    j = 1 
    For i = 1 + NumTemp(Phase) To TotalNumber(Phase) 
        CG_X(i) = PCentroid(Phase, j, 1) 
        CG_Y(i) = PCentroid(Phase, j, 2) 
        j = j + 1 
    Next i 
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  'objective function 
    ObjFunc = 0 
    k = 2 
    For i = 1 To TotalNumber(Phase) 
        For j = k To TotalNumber(Phase) 
            d(i, j) = Distance(CG_X(i), CG_Y(i), CG_X(j), 
CG_Y(j)) 
            ObjFunc = ObjFunc + d(i, j) * Prox(Phase, i, j) 
        Next j 
        k = k + 1 
    Next i 
    CurrentPop(StringNum).TypePop.ObjectiveFunc = ObjFunc 
    CurrentPop(StringNum).TypePop.Fitness = (A / ObjFunc) ^ B 
End Sub 
 
 
Public Sub CurrentSOF() 
Dim i As Byte 
Current_SOF = 0 
For i = 1 To Popsize 
    Current_SOF = Current_SOF + CurrentPop(i).TypePop.Fitness 
Next i 
End Sub 
 
 
Sub Initialize() 
frmOpmz2.Action_lbl.Caption = "Running GA" 
Nmutation = 0 
Ncross = 0 
Ngener = 0 
End Sub 
 
Private Sub RefineSolution() 
Dim i As Byte 
frmOpmz2.Action_lbl.Caption = "Refining Solution" 
For i = 1 To 20 
    Mutation 
    Statistics 
    OutputData 
Next i 
End Sub 
 
 
Private Sub SaveResults() 
Dim i As Byte 
For i = 1 To NumTemp(Phase) 
    OptSol(Phase, i, 1) = 
CurrentPop(MinSolution).TypePop.ChromosomeX(i) 
    OptSol(Phase, i, 2) = 
CurrentPop(MinSolution).TypePop.ChromosomeY(i) 
Next i 
End Sub 

DynaOpt1 (critical phase approach) 
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Const Maxpop = 8000 
Const Maxstring = 10 'Also maximum number of facilities 
Const Maxpoints = 10000 'Maximum number of grid squares 
'A variable that specifies wether a facility is present in a 
previous phase or not 
Dim PR(10, 10) As Byte 
Dim AmountofReloc(Maxpop) As Integer 
Public TypeofOpt As Byte 'Indicates which type of optimization 
is performed 
Public CrPhase As Byte 'The most critical phase 
Public Stp As Integer 'value indicates wether we are moving in 
forward or backward order 
 
 
Sub FacPresence() 
Dim i As Integer, j As Byte, k As Byte 
'Backward Order 
    For i = CrPhase - 1 To 1 Step -1 
        For j = 1 To NumTemp(i) 
            For k = 1 To NumTemp(i + 1) 
                If Fac_Name(i + 1, k) = Fac_Name(i, j) Then 
                    PR(i, j) = k 
                    GoTo 10 
                End If 
            Next k 
10            Next j 
    Next i 
'Forward order 
For i = CrPhase + 1 To Phase_num 
    For j = 1 To NumTemp(i) 
        For k = 1 To NumTemp(i - 1) 
                 If Fac_Name(i - 1, k) = Fac_Name(i, j) Then 
                    PR(i, j) = k 
                    GoTo 20 
                End If 
            Next k 
20        Next j 
    Next i 
End Sub 
 
 
Sub DynamicOptimization1() 
Dim m As Variant 
FacPresence 
'Backward 
frmOpmz4.Progress_lbl = "Backward Chronological Order" 
If CrPhase = 1 Then GoTo 10 
For Phase = CrPhase - 1 To 1 Step -1 
    Stp = -1 
    frmOpmz4.Phase_lbl.Caption = Phase_Name(Phase) 
    frmOpmz4.Dur_lbl.Caption = Finish(Phase) - Start(Phase) 
    DynamicPro 
    frmOpmz4.ProgressBar2.Value = frmOpmz4.ProgressBar2.Value + 
(100 / Phase_num - 1) 
    frmOpmz4.List3.AddItem frmOpmz4.List1.List(0) 
    frmOpmz4.List1.RemoveItem (0) 



 98

Next Phase 
'Forward 
10 If CrPhase = Phase_num Then GoTo 20 
frmOpmz4.Progress_lbl = "Forward Chronological Order" 
For Phase = CrPhase + 1 To Phase_num 
     
    frmOpmz4.Phase_lbl.Caption = Phase_Name(Phase) 
    frmOpmz4.Dur_lbl.Caption = PhaseLength(Phase) 
    Stp = 1 
    DynamicPro 
    frmOpmz4.ProgressBar2.Value = frmOpmz4.ProgressBar2.Value + 
(100 / Phase_num - 1) 
    frmOpmz4.List3.AddItem frmOpmz4.List2.List(0) 
    frmOpmz4.List2.RemoveItem (0) 
Next Phase 
20 End Sub 
 
 
Private Sub DynamicPro() 
'Optimization Procedure 
Dim S As Variant, F As Variant 
S = Timer 
Chromosome  'done 
ObjectiveFunc 
PopSort 
Initialize 
Do 
Sort 'done 
Generate 
Statistics 
OutputData 
frmOpmz4.ProgressBar1.Value = 400 * Delta ^ 2 - 400 * Delta + 
100 
Loop Until Delta < Convergence / 100 
frmOpmz4.ProgressBar1.Value = 90 
RefineSolution 
SaveResults 
frmOpmz4.ProgressBar1.Value = 100 
frmOpmz4.Action_lbl = "Opimization Complete" 
F = Timer 
RunTime(Phase) = F - S 
frmOpmz4.Time_lbl.Caption = RunTime(Phase) 
End Sub 
 
 
Private Sub Chromosome() 
Dim random As Integer 
Dim j As Byte, N As Integer 
frmOpmz4.Action_lbl.Caption = "Initializing first population" 
ReservedPts = 1 
row = 0 
For N = 1 To InitalChoice 
For j = 1 To NumTemp(Phase) 
If PR(Phase, j) = 0 Then 'New facility 
10  Randomize 
    random = Int((Rnd * NumofPoints(Phase)) + 1) 
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    PoolPop(N).TypePop.ChromosomeX(j) = AvailableX(Phase, 
random) 
    PoolPop(N).TypePop.ChromosomeY(j) = AvailableY(Phase, 
random) 
       'Check to make sure facility fits on site: 
       If CheckSite(PoolPop(N).TypePop.ChromosomeX(j), 
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 10 
       'Check for no overlap, reserving places for placed 
facilities: 
       If CheckOverlap(PoolPop(N).TypePop.ChromosomeX(j), 
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 10 
Else 'Facility was present in previous phase 
    Randomize 
    If Rnd > 0.5 Then 'Facility will be placed in its same 
position 
        i = PR(Phase, j) 
        PoolPop(N).TypePop.ChromosomeX(j) = OptSol(Phase - Stp, 
i, 1) 
        PoolPop(N).TypePop.ChromosomeY(j) = OptSol(Phase - Stp, 
i, 2) 
        'Check to make sure facility fits on site: 
        If CheckSite(PoolPop(N).TypePop.ChromosomeX(j), 
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 20 
        'Check for no overlap, reserving places for placed 
facilities: 
        If CheckOverlap(PoolPop(N).TypePop.ChromosomeX(j), 
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 20 
    Else 
    'Facility is placed in random order 
20  Randomize 
    random = Int((Rnd * NumofPoints(Phase)) + 1) 
    PoolPop(N).TypePop.ChromosomeX(j) = AvailableX(Phase, 
random) 
    PoolPop(N).TypePop.ChromosomeY(j) = AvailableY(Phase, 
random) 
       'Check to make sure facility fits on site: 
       If CheckSite(PoolPop(N).TypePop.ChromosomeX(j), 
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 20 
       'Check for no overlap, reserving places for placed 
facilities: 
       If CheckOverlap(PoolPop(N).TypePop.ChromosomeX(j), 
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 20 
    End If 
End If 
Next j 
EmptyOccupied 
frmOpmz4.ProgressBar1.Value = (N / InitalChoice) * 100 
frmOpmz4.Refresh 
Next N 
End Sub 



 100

 
 
 
Private Sub PopSort() 
Dim Min As Single 
Dim i As Integer 
Dim j As Integer 
Dim Flag As Integer 
For i = 1 To Popsize 
    Min = 1000000 
    For j = 1 To InitalChoice 
        If PoolPop(j).TypePop.ObjectiveFunc < Min Then 
            Flag = j 
            Min = PoolPop(j).TypePop.ObjectiveFunc 
        End If 
    Next j 
    For j = 1 To NumTemp(Phase) 
        CurrentPop(i).TypePop.ChromosomeX(j) = 
PoolPop(Flag).TypePop.ChromosomeX(j) 
        CurrentPop(i).TypePop.ChromosomeY(j) = 
PoolPop(Flag).TypePop.ChromosomeY(j) 
        CurrentPop(i).TypePop.ObjectiveFunc = 
PoolPop(Flag).TypePop.ObjectiveFunc 
    Next j 
    CurrentPop(i).TypePop.Fitness = (A / 
PoolPop(Flag).TypePop.ObjectiveFunc) ^ B 
    PoolPop(Flag).TypePop.ObjectiveFunc = 1000000 
Next i 
End Sub 
 
 
Private Sub ObjectiveFunc() 
Dim i As Byte, j As Byte, k As Byte 
Dim N As Integer 
Dim ObjFunc As Single 
Dim d(20, 20) As Single 
For N = 1 To InitalChoice 
    'Centroid Position 
    For i = 1 To NumTemp(Phase) 
        CG_X(i) = PoolPop(N).TypePop.ChromosomeX(i) + 
Fac_Length(Phase, i) / 2 
        CG_Y(i) = PoolPop(N).TypePop.ChromosomeY(i) + 
Fac_width(Phase, i) / 2 
    Next i 
    j = 1 
    For i = 1 + NumTemp(Phase) To TotalNumber(Phase) 
        CG_X(i) = PCentroid(Phase, j, 1) 
        CG_Y(i) = PCentroid(Phase, j, 2) 
        j = j + 1 
    Next i 
    'objective function 
    ObjFunc = 0 
    k = 2 
    For i = 1 To TotalNumber(Phase) 
        For j = k To TotalNumber(Phase) 
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            d(i, j) = Distance(CG_X(i), CG_Y(i), CG_X(j), 
CG_Y(j)) 
            ObjFunc = ObjFunc + d(i, j) * Prox(Phase, i, j) 
        Next j 
        k = k + 1 
    Next i 
    For i = 1 To NumTemp(Phase) 
         j = PR(Phase, i) 
         If j = 0 Then GoTo 10 
         If PoolPop(N).TypePop.ChromosomeX(i) <> OptSol(Phase - 
Stp, j, 1) Or PoolPop(N).TypePop.ChromosomeY(i) <> OptSol(Phase 
- Stp, j, 2) Then 
            ObjFunc = ObjFunc + Reloc(Phase, i) 
         End If 
10  Next i 
    PoolPop(N).TypePop.ObjectiveFunc = ObjFunc 
Next N 
End Sub 
 
 
Private Sub Sort() 
Dim i As Byte 
Dim Max As Single, Min As Single 
Max = CurrentPop(10).TypePop.ObjectiveFunc 
Min = CurrentPop(10).TypePop.ObjectiveFunc 
For i = 1 To Popsize 
    If CurrentPop(i).TypePop.ObjectiveFunc < Min Then 
        Min = CurrentPop(i).TypePop.ObjectiveFunc 
        MinSolution = i 
    End If 
    If CurrentPop(i).TypePop.ObjectiveFunc > Max Then 
        Maximum2 = Max 
        Max = CurrentPop(i).TypePop.ObjectiveFunc 
        MaxSolution2 = MaxSolution 
        MaxSolution = i 
    End If 
Next i 
Maximum = Max 
Minimum = Min 
End Sub 
 
 
 
Private Sub Statistics() 
Dim i As Byte 
Dim Max As Single, Min As Single, Total As Single 
Max = 0 
Min = 100000000 
Total = 0 
For i = 1 To Popsize 
    If CurrentPop(i).TypePop.ObjectiveFunc < Min Then 
        Min = CurrentPop(i).TypePop.ObjectiveFunc 
        MinSolution = i 
    End If 
    If CurrentPop(i).TypePop.ObjectiveFunc > Max Then 
        Max = CurrentPop(i).TypePop.ObjectiveFunc 
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        MaxSolution = i 
    End If 
    Total = Total + CurrentPop(i).TypePop.ObjectiveFunc 
Next i 
Average = Total / Popsize 
Maximum = Max 
Minimum = Min 
Delta = (Maximum - Minimum) / Maximum 
Ngener = Ngener + 1 
End Sub 
Sub OutputData() 
Dim i As Byte 
frmOpmz4.Min_lbl.Caption = Minimum  'Min 
frmOpmz4.Avg_lbl.Caption = Average 'Avg 
frmOpmz4.Ncross_lbl.Caption = Ncross   'Number of crossovers 
frmOpmz4.Nmut_lbl.Caption = Nmutation    'number of mutations 
frmOpmz4.Gnr_lbl.Caption = Ngener    'number of generations 
frmOpmz4.Refresh 
End Sub 
 
 
Public Sub ObjectiveFunction(StringNum As Byte) 
Dim i As Byte, j As Byte, k As Byte 
Dim ObjFunc As Single 
Dim d(20, 20) As Single 
AmountofReloc(StringNum) = 0 
    'Centroid Position 
    For i = 1 To NumTemp(Phase) 
        CG_X(i) = CurrentPop(StringNum).TypePop.ChromosomeX(i) + 
Fac_Length(Phase, i) / 2 
        CG_Y(i) = CurrentPop(StringNum).TypePop.ChromosomeY(i) + 
Fac_width(Phase, i) / 2 
    Next i 
    j = 1 
    For i = 1 + NumTemp(Phase) To TotalNumber(Phase) 
        CG_X(i) = PCentroid(Phase, j, 1) 
        CG_Y(i) = PCentroid(Phase, j, 2) 
        j = j + 1 
    Next i 
  'objective function 
    ObjFunc = 0 
    k = 2 
    For i = 1 To TotalNumber(Phase) 
        For j = k To TotalNumber(Phase) 
            d(i, j) = Distance(CG_X(i), CG_Y(i), CG_X(j), 
CG_Y(j)) 
            ObjFunc = ObjFunc + d(i, j) * Prox(Phase, i, j) 
        Next j 
        k = k + 1 
    Next i 
    For i = 1 To NumTemp(Phase) 
         j = PR(Phase, i) 
         If j = 0 Then GoTo 10 
         If CurrentPop(StringNum).TypePop.ChromosomeX(i) <> 
OptSol(Phase - Stp, j, 1) Or 
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CurrentPop(StringNum).TypePop.ChromosomeY(i) <> OptSol(Phase - 
Stp, j, 2) Then 
            ObjFunc = ObjFunc + Reloc(Phase, i) 
            AmountofReloc(StringNum) = AmountofReloc(StringNum) 
+ Reloc(Phase, i) 
         End If 
10  Next i 
    CurrentPop(StringNum).TypePop.ObjectiveFunc = ObjFunc 
    CurrentPop(StringNum).TypePop.Fitness = (A / ObjFunc) ^ B 
End Sub 
 
 
Sub Initialize() 
frmOpmz4.Action_lbl.Caption = "Running GA" 
Nmutation = 0 
Ncross = 0 
Ngener = 0 
End Sub 
 
Private Sub RefineSolution() 
Dim i As Byte 
frmOpmz4.Action_lbl.Caption = "Refining Solution" 
For i = 1 To 20 
    Mutation 
    Statistics 
    OutputData 
Next i 
End Sub 
 
Private Sub SaveResults() 
Dim i As Byte 
For i = 1 To NumTemp(Phase) 
    OptSol(Phase, i, 1) = 
CurrentPop(MinSolution).TypePop.ChromosomeX(i) 
    OptSol(Phase, i, 2) = 
CurrentPop(MinSolution).TypePop.ChromosomeY(i) 
Next i 
MinObjFunc(Phase) = Minimum * PhaseLength(Phase) 
RelocationCost(Phase) = AmountofReloc(MinSolution) 
End Sub 

 

Dyna_Opt2 (Mini-Min approach) 
 

Const Maxpop = 1000 
Const Maxstring = 10 'Also maximum number of facilities 
Const Maxpoints = 10000 'Maximum number of grid squares 
'A variable that specifies wether a facility is present in a 
previous phase or not 
Dim PR(10, 10) As Byte 
Dim AmountofReloc(Maxpop) As Integer 
Public OptSol2(10, 10, 10, 2) As Byte  'for 2nd type of 
optimization 
Public RelocationCost2(10, 10) As Integer, RelocationCost3(10) 
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Public TotalCost2(10, 10) As Single, TotalCost3(10) As Single 
 
 
Sub FacPresence() 
Dim i As Integer, j As Byte, k As Byte 
'Backward Order 
    For i = CrPhase - 1 To 1 Step -1 
        For j = 1 To NumTemp(i) 
            For k = 1 To NumTemp(i + 1) 
                If Fac_Name(i + 1, k) = Fac_Name(i, j) Then 
                    PR(i, j) = k 
                    GoTo 10 
                End If 
            Next k 
10            Next j 
    Next i 
'Forward order 
For i = CrPhase + 1 To Phase_num 
    For j = 1 To NumTemp(i) 
        For k = 1 To NumTemp(i - 1) 
                 If Fac_Name(i - 1, k) = Fac_Name(i, j) Then 
                    PR(i, j) = k 
                    GoTo 20 
                End If 
            Next k 
20        Next j 
    Next i 
End Sub 
 
 
Sub DynamicOptimization2() 
Dim m As Variant 
OptSolChange 
For CrPhase = 1 To Phase_num 
    Unload frmOpmz5 
    frmOpmz5.Show 
    FacPresence 
    'Backward 
    frmOpmz5.Progress_lbl = "Backward Chronological Order" 
    If CrPhase = 1 Then GoTo 5 
    For Phase = CrPhase - 1 To 1 Step -1 
        Stp = -1 
        frmOpmz5.Phase_lbl.Caption = Phase_Name(Phase) 
        frmOpmz5.Dur_lbl.Caption = Finish(Phase) - Start(Phase) 
        DynamicPro 
        frmOpmz5.ProgressBar2.Value = 
frmOpmz5.ProgressBar2.Value + (100 / Phase_num - 1) 
        frmOpmz5.List3.AddItem frmOpmz5.List1.List(0) 
        frmOpmz5.List1.RemoveItem (0) 
    Next Phase 
    'Forward 
5   If CrPhase = Phase_num Then GoTo 15 
    frmOpmz5.Progress_lbl = "Forward Chronological Order" 
    For Phase = CrPhase + 1 To Phase_num 
        frmOpmz5.Phase_lbl.Caption = Phase_Name(Phase) 
        frmOpmz5.Dur_lbl.Caption = PhaseLength(Phase) 
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        Stp = 1 
        DynamicPro 
        frmOpmz5.ProgressBar2.Value = 
frmOpmz5.ProgressBar2.Value + (100 / Phase_num - 1) 
        frmOpmz5.List3.AddItem frmOpmz5.List2.List(0) 
        frmOpmz5.List2.RemoveItem (0) 
    Next Phase 
15      ResultsByInitial 
Next CrPhase 
20 End Sub 
 
 
Private Sub DynamicPro() 
'Optimization Procedure 
Dim S As Variant, F As Variant 
S = Timer 
Chromosome  'done 
ObjectiveFunc 
PopSort 
Initialize 
Do 
Sort 'done 
Generate 
Statistics 
OutputData 
frmOpmz5.ProgressBar1.Value = 400 * Delta ^ 2 - 400 * Delta + 
100 
Loop Until Delta < Convergence / 100 
frmOpmz5.ProgressBar1.Value = 90 
RefineSolution 
SaveResults 
frmOpmz5.ProgressBar1.Value = 100 
frmOpmz5.Action_lbl = "Optimization Complete" 
F = Timer 
frmOpmz5.Time_lbl.Caption = F - S 
End Sub 
 
 
Private Sub Chromosome() 
Dim random As Integer 
Dim j As Byte, N As Integer, row As Integer 
frmOpmz5.Action_lbl.Caption = "Initializing first population" 
ReservedPts = 1 
row = 0 
For N = 1 To InitalChoice 
For j = 1 To NumTemp(Phase) 
If PR(Phase, j) = 0 Then 'New facility 
10  Randomize 
    random = Int((Rnd * NumofPoints(Phase)) + 1) 
    PoolPop(N).TypePop.ChromosomeX(j) = AvailableX(Phase, 
random) 
    PoolPop(N).TypePop.ChromosomeY(j) = AvailableY(Phase, 
random) 
       'Check to make sure facility fits on site: 
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       If CheckSite(PoolPop(N).TypePop.ChromosomeX(j), 
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 10 
       'Check for no overlap, reserving places for placed 
facilities: 
       If CheckOverlap(PoolPop(N).TypePop.ChromosomeX(j), 
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 10 
Else 'Facility was present in previous phase 
    Randomize 
    If Rnd > 0.5 Then 'Facility will be placed in its same 
position 
        i = PR(Phase, j) 
        PoolPop(N).TypePop.ChromosomeX(j) = OptSol2(CrPhase, 
Phase - Stp, i, 1) 
        PoolPop(N).TypePop.ChromosomeY(j) = OptSol2(CrPhase, 
Phase - Stp, i, 2) 
        'Check to make sure facility fits on site: 
        If CheckSite(PoolPop(N).TypePop.ChromosomeX(j), 
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 20 
        'Check for no overlap, reserving places for placed 
facilities: 
        If CheckOverlap(PoolPop(N).TypePop.ChromosomeX(j), 
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 20 
    Else 
    'Facility is placed in random order 
20  Randomize 
    random = Int((Rnd * NumofPoints(Phase)) + 1) 
    PoolPop(N).TypePop.ChromosomeX(j) = AvailableX(Phase, 
random) 
    PoolPop(N).TypePop.ChromosomeY(j) = AvailableY(Phase, 
random) 
       'Check to make sure facility fits on site: 
       If CheckSite(PoolPop(N).TypePop.ChromosomeX(j), 
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 20 
       'Check for no overlap, reserving places for placed 
facilities: 
       If CheckOverlap(PoolPop(N).TypePop.ChromosomeX(j), 
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j), 
Fac_width(Phase, j)) = False Then GoTo 20 
    End If 
End If 
Next j 
EmptyOccupied 
frmOpmz5.ProgressBar1.Value = (N / InitalChoice) * 100 
frmOpmz5.Refresh 
Next N 
End Sub 
 
 
Sub OutputData() 
Dim i As Byte 
frmOpmz5.Min_lbl.Caption = Minimum  'Min 
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frmOpmz5.Avg_lbl.Caption = Average 'Avg 
frmOpmz5.Ncross_lbl.Caption = Ncross   'Number of crossovers 
frmOpmz5.Nmut_lbl.Caption = Nmutation    'number of mutations 
frmOpmz5.Gnr_lbl.Caption = Ngener    'number of generations 
frmOpmz5.Refresh 
End Sub 
 
 
Sub Initialize() 
frmOpmz5.Action_lbl.Caption = "Running GA" 
Nmutation = 0 
Ncross = 0 
Ngener = 0 
End Sub 
 
 
Private Sub RefineSolution() 
Dim i As Byte 
frmOpmz5.Action_lbl.Caption = "Refining Solution" 
For i = 1 To 20 
    Mutation 
    Statistics 
    OutputData 
Next i 
End Sub 
 
Private Sub SaveResults() 
For i = 1 To NumTemp(Phase) 
    OptSol2(CrPhase, Phase, i, 1) = 
CurrentPop(MinSolution).TypePop.ChromosomeX(i) 
    OptSol2(CrPhase, Phase, i, 2) = 
CurrentPop(MinSolution).TypePop.ChromosomeY(i) 
Next i 
MinObjFunc(Phase) = Minimum * PhaseLength(Phase) 
RelocationCost(Phase) = AmountofReloc(MinSolution) 
RelocationCost2(CrPhase, Phase) = RelocationCost(Phase) 
TotalCost2(CrPhase, Phase) = MinObjFunc(Phase) 
End Sub 
 
 
Private Sub ResultsByInitial() 
RelocationCost3(CrPhase) = 0 
TotalCost3(CrPhase) = 0 
For i = 1 To Phase_num 
    RelocationCost3(CrPhase) = RelocationCost3(CrPhase) + 
RelocationCost2(CrPhase, i) 
    TotalCost3(CrPhase) = TotalCost3(CrPhase) + 
TotalCost2(CrPhase, i) 
Next i 
End Sub 
 
 
Private Sub OptSolChange() 
For i = 1 To Phase_num 
    For j = 1 To Phase_num 
        For k = 1 To NumTemp(j) 
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            OptSol2(i, j, k, 1) = OptSol(j, k, 1) 
            OptSol2(i, j, k, 2) = OptSol(j, k, 2) 
        Next k 
    Next j 
Next i 
For i = 1 To Phase_num 
    TotalCost2(i, i) = MinObjFunc(i) 
Next i 
End Sub 
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APPENDIX B: SPACE IDENTIFICATION CODE 
 

Const Max_Lines = 50 
Dim Num_Eqn As Byte, X(Max_Lines) As Double, Y(Max_Lines) As 
Double 
Dim InteriorPoint As Variant 
Dim A(Max_Lines) As Double, B(Max_Lines) As Double 
Dim Xmax As Integer, Ymax As Integer, Xmin As Integer, Ymin As 
Integer 
Dim NumofPoints As Integer 
Dim PoolX(30000) As Integer, PoolY(30000) As Integer 
Dim Centroid(15, 2) As Single 
Public NumFixed As Byte, NumObst As Byte 
Dim PFac_Name(10) As String 'Names of permenant/fixed facilities 
Public Pitch As Integer 
Dim Flag(Max_Lines) As Byte 
 
 
Sub MainProgram() 
UserForm1.Show 
On Error GoTo ErrorHandler 
BoundarySelection 
GetEquations 
GetPoints 
GetPermenantFac 
GetObstacles 
Redimension 
SendToFile 
Exit Sub 
ErrorHandler: 
UserForm3.Show 
End Sub 
 
 
Private Sub BoundarySelection() 
Dim SitePolyLine As AcadLWPolyline 
Dim Pickedpt As Variant 
Dim PolyLineVertices As Variant 
Dim Vertix(100) As Double 
Dim i As Byte 'Counter 
With ThisDrawing.Utility 
.GetEntity SitePolyLine, Pickedpt, vbCr & "Select site 
boundaries (Must be polyline)" 
InteriorPoint = .GetPoint(, vbCr & "Select any point inside the 
boundary") 
End With 
SitePolyLine.GetBoundingBox Min, Max 
Xmin = Min(0) 
Ymin = Min(1) 
Xmax = Max(0) 
Ymax = Max(1) 
PolyLineVertices = SitePolyLine.Coordinates 
For i = 0 To 2 * Max_Lines Step 2 
  On Error GoTo 10 
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  X(i / 2) = PolyLineVertices(i) 
  Y(i / 2) = PolyLineVertices(i + 1) 
Next i 
 
10 Num_Eqn = (i - 2) / 2 '# of lines of polygon 
End Sub 
 
 
Private Sub GetEquations() 
For i = 1 To Num_Eqn 
   If X(i) = X(i - 1) Then 
            B(i) = X(i) 
            If X(i) < InteriorPoint(0) Then 
            Flag(i) = 3 
            Else: Flag(i) = 4 
            End If 
            GoTo 10 
   End If 
   If Y(i) = Y(i - 1) Then 
            B(i) = Y(i) 
            If Y(i) < InteriorPoint(1) Then 
            Flag(i) = 5 
            Else: Flag(i) = 6 
            End If 
            GoTo 10 
   End If 
    A(i) = (Y(i) - (Y(i - 1))) / (X(i) - X(i - 1)) 
   B(i) = Y(i) - (A(i) * X(i)) 
      'If Py > a*Px + b then "greater" 
      If InteriorPoint(1) > A(i) * InteriorPoint(0) + B(i) Then 
         Flag(i) = 1 
      Else 
         Flag(i) = 2 
      End If 
10  Next i 
 End Sub 
 
 
Private Sub GetPoints() 
Dim Counter As Byte 
Dim j As Integer 
Dim X As Integer, Y As Integer 
For X = Xmin To Xmax - 1 
    For Y = Ymin To Ymax - 1 
        Counter = 0 
        For i = 1 To Num_Eqn 
            Select Case Flag(i) 
                Case 1 
                If Y < A(i) * X + B(i) Then GoTo 10 
                Case 2 
                If Y > A(i) * X + B(i) Then GoTo 10 
                Case 3 
                If X < B(i) Then GoTo 10 
                Case 4 
                If X > B(i) Then GoTo 10 
                Case 5 
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                If Y < B(i) Then GoTo 10 
                Case 6 
                If Y > B(i) Then GoTo 10 
            End Select 
        Next i 
             PoolX(j) = X 
             PoolY(j) = Y 
             j = j + 1 
10     Next Y 
Next X 
NumofPoints = j + 1 
End Sub 
 
 
Private Sub FacilityBoundary() 
Dim FacilityPolyLine As AcadLWPolyline 
Dim X_min As Integer, Y_min As Integer, X_max As Integer, Y_max 
As Integer 
With ThisDrawing.Utility 
.GetEntity FacilityPolyLine, Pickedpt, vbCr & "Select site 
boundaries (Must be polyline)" 
End With 
FacilityPolyLine.GetBoundingBox Min, Max 
X_min = Min(0) 
Y_min = Min(1) 
X_max = Max(0) 
Y_max = Max(1) 
End Sub 
 
 
Private Sub GetPermenantFac() 
    Dim X1 As Integer, Y1 As Integer, X2 As Integer, Y2 As 
Integer 
    Dim FacilityBorder(10) As AcadLWPolyline 
    Dim PermenantFac(10) As AcadText 
    'delete the selection set if it already exists 
For i = 1 To NumFixed 
    With ThisDrawing.Utility 
.GetEntity FacilityBorder(i), Pickedpt, vbCr & "Select Permenant 
Facility (must be polyline)" 
FacilityBorder(i).Color = acMagenta 
FacilityBorder(i).Update 
End With 
Next i 
For i = 1 To NumFixed 
FacilityBorder(i).Color = acWhite 
FacilityBorder(i).Update 
Next i 
    For i = 1 To NumFixed 
      FacilityBorder(i).GetBoundingBox Min, Max 
      '-1 so that facilities can be placed exactly adjacent to 
permenant objects 
      X1 = Min(0) 
      Y1 = Min(1) 
      X2 = Max(0) - 1 
      Y2 = Max(1) - 1 
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      Centroid(i, 1) = X1 + ((X2 - X1 + 1) * 0.5) 
      Centroid(i, 2) = Y1 + ((Y2 - Y1 + 1) * 0.5) 
      Call RemoveOccupiedPlaces(X1, Y1, X2, Y2) 
    Next i 
For i = 1 To NumFixed 
ThisDrawing.Utility.GetEntity PermenantFac(i), Pickedpt, vbCr & 
"Select Permenant Facility Name (Follow the same order of 
previous selection!)" 
PFac_Name(i) = PermenantFac(i).TextString 
PermenantFac(i).Color = acMagenta 
Next i 
For i = 1 To NumFixed 
PermenantFac(i).Color = acWhite 
PermenantFac(i).Update 
Next i 
End Sub 
 
 
Private Sub GetObstacles() 
    Dim X1 As Integer, Y1 As Integer, X2 As Integer, Y2 As 
Integer 
    Dim FacilityBorder(10) As AcadLWPolyline 
    Dim PermenantFac As AcadText 
    'delete the selection set if it already exists 
For i = 1 To NumObst 
    With ThisDrawing.Utility 
.GetEntity FacilityBorder(i), Pickedpt, vbCr & "Select Site 
Obstacles (must be polyline)" 
FacilityBorder(i).Color = acMagenta 
FacilityBorder(i).Update 
End With 
Next i 
For i = 1 To NumObst 
FacilityBorder(i).Color = acWhite 
FacilityBorder(i).Update 
Next i 
   For i = 1 To NumObst 
      FacilityBorder(i).GetBoundingBox Min, Max 
      '-1 so that facilities can be placed exactly adjacent to 
permenant objects 
      X1 = Min(0) 
      Y1 = Min(1) 
      X2 = Max(0) - 1 
      Y2 = Max(1) - 1 
      Call RemoveOccupiedPlaces(X1, Y1, X2, Y2) 
    Next i 
End Sub 
 
 
Private Sub RemoveOccupiedPlaces(X1 As Integer, Y1 As Integer, 
X2 As Integer, Y2 As Integer) 
Dim Ywidth As Integer, Xwidth As Integer 
Ywidth = Y2 - Y1 
Xwidth = X2 - X1 
con = 1 
For j = 1 To NumofPoints 
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        If PoolX(j) = X1 And PoolY(j) = Y1 Then 
        For m = 0 To Ywidth 
            PoolX(j + m) = 9999 
            PoolY(j + m) = 9999 
        Next m 
        j = j + Ywidth 
        X1 = X1 + con 
        If X1 = X2 + 1 Then GoTo 10 
    End If 
Next j 
10  End Sub 
 
 
Private Sub Redimension() 
c = 0 
For j = 1 To NumofPoints 
    If PoolX(j) = 9999 Then 
        For i = j To NumofPoints 
            PoolX(i) = PoolX(i + 1) 
            PoolY(i) = PoolY(i + 1) 
        Next i 
        j = j - 1 
        c = c + 1 
    End If 
Next j 
NumofPoints = NumofPoints - c 
End Sub 
 
 
Private Sub SendToFile() 
    'sending line data to Text File 
    '.lin is the line data file 
    '.per is the permenant facilities file 
    Open "c:\Temp\EDSLP.LIN" For Output As #1 
    Write #1, NumofPoints - 1 
    For i = 1 To NumofPoints - 1 
        Write #1, PoolX(i - 1), PoolY(i - 1) 
    Next i 
    Close #1 
    Open "c:\Temp\EDSLP.PER" For Output As #1 
    Write #1, NumFixed 
    For i = 1 To NumFixed 
        Write #1, PFac_Name(i), Centroid(i, 1), Centroid(i, 2) 
    Next i 
    Close #1 
End Sub 
 
 
Sub CheckPoints() 
Dim PPoints As AcadPoint 
Dim P(2) As Double 
P(2) = 0 
Open "c:\temp\edslp.lin" For Input As #1 
Input #1, NumofPoints 
For i = 1 To NumofPoints 
    Input #1, P(0), P(1) 
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    Set PPoints = ThisDrawing.ModelSpace.AddPoint(P) 
Next i 
Close #1 
End Sub 

 

APPENDIX C: SOLUTION REPRESENTATION CODE 
 

Public ACADFileName(10) As String 
Public fMainForm As frmMain 
Option Explicit 
'This module sends line data to autocad 
 
 
Public Sub DrawFacilities(N As Byte) 
Dim AutoCADapplication As AcadApplication 
Dim PLinePoints(14) As Double 
Dim TextPoint(2) As Double 
Dim Point1(2) As Double, Point2(2) As Double, Point3(2) As 
Double, Point4(2) As Double 
Dim Facility As AcadPolyline 
Dim FacilityText As AcadText 
Dim i As Byte, j As Byte 
Set AutoCADapplication = CreateObject("AutoCAD.Application") 
AutoCADapplication.Visible = True 
AutoCADapplication.Documents.Open ACADFileName(N) 
Point1(2) = 0 
Point2(2) = 0 
Point3(2) = 0 
Point4(2) = 0 
For j = 1 To NumTemp(N) 
Point1(0) = OptSol(N, j, 1) 
Point1(1) = OptSol(N, j, 2) 
Point2(0) = Point1(0) + Fac_Length(N, j) 
Point2(1) = Point1(1) 
Point3(0) = Point2(0) 
Point3(1) = Point2(1) + Fac_width(N, j) 
Point4(0) = Point1(0) 
Point4(1) = Point3(1) 
For i = 0 To 2 
PLinePoints(i) = Point1(i) 
PLinePoints(i + 3) = Point2(i) 
PLinePoints(i + 6) = Point3(i) 
PLinePoints(i + 9) = Point4(i) 
PLinePoints(i + 12) = Point1(i) 
Next i 
TextPoint(0) = Point1(0) + 0.1 
TextPoint(1) = Point1(1) + 0.1 
TextPoint(2) = 0 
AutoCADapplication.ActiveDocument.ActiveLayer = 
AutoCADapplication.ActiveDocument.Layers("Facilities") 
Set Facility = 
AutoCADapplication.ActiveDocument.ModelSpace.AddPolyline(PLinePo
ints) 
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Set FacilityText = 
AutoCADapplication.ActiveDocument.ModelSpace.AddText(Fac_Name(N, 
j), TextPoint, 1) 
Next j 
TextPoint(0) = 0 
TextPoint(1) = 0 
Set FacilityText = 
AutoCADapplication.ActiveDocument.ModelSpace.AddText(MinObjFunc(
N), TextPoint, 1.5) 
End Sub 
 
Public Sub DrawFacilities2(Ini As Byte, N As Byte) 
Dim AutoCADapplication As AcadApplication 
Dim PLinePoints(14) As Double 
Dim TextPoint(2) As Double 
Dim Point1(2) As Double, Point2(2) As Double, Point3(2) As 
Double, Point4(2) As Double 
Dim Facility As AcadPolyline 
Dim FacilityText As AcadText 
Dim i As Byte, j As Byte 
Set AutoCADapplication = CreateObject("AutoCAD.Application") 
AutoCADapplication.Visible = True 
AutoCADapplication.Documents.Open ACADFileName(N) 
Point1(2) = 0 
Point2(2) = 0 
Point3(2) = 0 
Point4(2) = 0 
For j = 1 To NumTemp(N) 
Point1(0) = OptSol2(Ini, N, j, 1) 
Point1(1) = OptSol2(Ini, N, j, 2) 
Point2(0) = Point1(0) + Fac_Length(N, j) 
Point2(1) = Point1(1) 
Point3(0) = Point2(0) 
Point3(1) = Point2(1) + Fac_width(N, j) 
Point4(0) = Point1(0) 
Point4(1) = Point3(1) 
For i = 0 To 2 
PLinePoints(i) = Point1(i) 
PLinePoints(i + 3) = Point2(i) 
PLinePoints(i + 6) = Point3(i) 
PLinePoints(i + 9) = Point4(i) 
PLinePoints(i + 12) = Point1(i) 
Next i 
TextPoint(0) = Point1(0) + 0.1 
TextPoint(1) = Point1(1) + 0.1 
TextPoint(2) = 0 
AutoCADapplication.ActiveDocument.ActiveLayer = 
AutoCADapplication.ActiveDocument.Layers("Facilities") 
Set Facility = 
AutoCADapplication.ActiveDocument.ModelSpace.AddPolyline(PLinePo
ints) 
Set FacilityText = 
AutoCADapplication.ActiveDocument.ModelSpace.AddText(Fac_Name(N, 
j), TextPoint, 1.5) 
Next j 
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Set FacilityText = 
AutoCADapplication.ActiveDocument.ModelSpace.AddText(MinObjFunc(
i), TextPoint, 1.5) 
End Sub 
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