
Using Context to Verify User Intentions
He (Shawn) Shuang

December 13, 2019

1 Introduction and Design

A malware on the user client 1 may generate service requests to a
remote service without user’s awareness. One possible defense is
CAPTCHA. However, CAPTCHA falls prey to a more powerful
attacker with operating system(OS)-level privilege. An OS-level
attacker may tamper with program memory stealthily so that the
service request generated from the memory is not what user in-
tended. We call this type of attack OS-level user impersonation
attack (OS-UImp). The state-of-the-art defenses [5, 6, 10, 13, 17]
for OS-UImp try to revealed user intentions to the service. But they
assume the user has a clear intention, perceives the UI correctly
and performs the extra work as imposed by the individual solution
correctly. We challenge this assumption. Prior work on UI at-
tacks [12,21,23,24] has shown the feasibility to affect user percep-
tion through UI modification. We identify a new class of UI attack
called Context Forgery (CF), where an OS-level attacker modifies
the UI to trick the user into carry out unintended actions which
result in unintended service requests — the same consequence as
OS-UImp. All of existing defense for OS-UImp fall prey to CF.

In summary, the limitations of the state-of-the-art defenses of
OS-UImp are: 1 extra user effort is required and 2) vulnerable
to Context Forgery attacks. We believe it is possible to build
a solution to OS-UImp while avoiding the two limitations. We
hypothesize that it is possible to build a solution that "sees what
the user sees". Specifically, to prevent context forgery attacks on
a web page, a solution is to ensure that what user sees matches the
expected appearance of the web page designer, thus no tampering
is possible. And to prevent user impersonation attack, by "seeing"
how the user interacts with the page, we can infer her intention.
By "seeing what the user sees", no extra effort is required on the
user side. We illustrate our solution in the rest of this section.
Project Statement. We believe it is possible to build a solution
to OS-UImp while the two limitations. We hypothesize that
it is possible to build a solution that "sees what the user sees".
Specifically, to prevent context forgery attacks on a web page,
a solution is to ensure that what user sees matches the expected
appearance of the web page designer, thus no tampering is
possible. And to prevent user impersonation attack, by "seeing"
how the user interacts with the page, we can infer her intention.
By "seeing what the user sees", no extra effort is required on the
user side. We illustrate our solution in the rest of this section.

We propose Attested Intention(AINT), a framework that
defeats both OS-UImp and CF. AINT extracts the client-side
display and validates it against specifications from services.
Since AINT cannot rely on the OS, it proposes a design guideline,
called Tabularization, for remote services to design better
machine-checkable web pages. Tabularization requires the
service to place UI elements into a tabular structure so that
each cell can be individually validated. This method divides the
difficult problem of validating the entire page into many simpler
problems of validating cells. When a tabularized is rendered on
the client side, AINT validates it using a combination of image
hash and optical character recognition (OCR). Image hashes

1In this project, we use the term client to denote any computing device, includ-
ing smartphones and PCs.

hash visually similar images to similar values, and thus providing
robustness to variations due to the rendering environments. OCR
extracts text from images and thus provides detection on subtle
tampering such as single character change. AINT requires the
image hash difference between a local rendering and the good
hash value to be smaller than a threshold, 30, and requires the
text from the local rendering to match the expected text exactly.

With a properly rendered display, AINT infers user intention
based on her interaction with the web page directly from the screen.
AINT relies on an important property: a non-malicious user al-
ways ensures the display of her inputs matches with her inputs
through peripherals, a process we call Implicit Confirmation(IC).
For instance, as the user types ’abc’ on the keyboard, she ensures
the display shows ’abc’ at the place she expects. However, we be-
lieve it is infeasible for the human user to validate every character
on the screen all the time, thus, AINT developed two techniques
to to reduce user effort. First of all, AINT tracks user focus, and
only extracts text currently under the user focus. Once the user has
finished interacting with a field, she no longer needs to validate it.
Secondly, the blinking input cursor suggests the position of user
focus in a long paragraph, thus, AINT only takes into account the
most recent characters the user occurred on the right-side of cursor.
The user does not have to validate previously entered characters.
AINT enforces these two rules using a combination of computer
vision and optical character recognition (OCR) and protects cap-
tured user inputs with isolation methods. When the user finishes
her interaction, AINT checks user initiation based on the location
of the cursor, cursor must be on the submit button for a service
request to be generated. AINT supports the generation of the ser-
vice request based on service-specific logic in a trusted execution
environment (TEE). The generated request will be transmitted
the designated service. AINT requires the service to be modified
to only accept requests from AINT, a malicious OS can generate
its own request, but it will not be accepted by the remote service.

We simulate our design guideline on five web pages. On
the client-side, we implemented AINT Tesseract, OpenCV
and Wavelet hash on top of Xen. We also added a cache in our
implementation to speed up AINT’s performance. We evaluate
the sensitiveness and robustness of our validating method using
various UI attacks and rendering variations we simulated. We
show where AINT fails. We also evaluate the performance of
AINT in a CPU-only setting, as well as with Tesseract running
in a GPU. Since AINT relies on image hashes for tampering
detection, we evaluate the similarity tolerance, collision rate and
the performance impact of various image hash functions. The
result shows that our choice of image hash needs improvements.

2 Related Work

2.1 Clickjacking

One class of UI attacks is clickjacking attack, the idea is to
overlay the victim application with attacker’s UI, and while the
user is thinking that she is interacting with the UI at the front, her
actions such as clicks and taps are hijacked to trigger events in the
victim application underneath [24] and cause unintended actions.
Hijacking attack is not limited to clicks [22], it can be combined
with other attacks such as CSRF [14], XSS [21] and CSS [11], to

1



steal files [15] and cookies [26], and with a bit of domain-specific
knowledge, it can hijack likes and shares on Facebook [4].

The root cause of this type of attack is UI deception [1] and
illegal delivery of user inputs [8]. To prevent UI overlay, Frame
buster [16, 25] is a technique used by web pages to check if they
are being contained in a frame, since loading a web page inside
a frame is the first step to overlay it on another page. Some web
browser such as Gazelle [27] prevents cross-origin frames to be
rendered transparently. This raises usability issues. To stop the
delivery of user input to unintended pages,one method is to do dou-
ble confirmation on security-sensitive operations. For instance,
Facebook requires confirmation when the user clicks on the like
button [7]. Another set of defense mechanism [2,9], checks, when
an element is being clicked, whether the element is displayed with
no overlay. If the element is partially or entirely obscured, when it
was clicked, that indicates the possibility of a clickjacking attack.

The main difference between regular UI attack and CF is the
OS-level attacker. The main victim of CF is 1) the user who sent
out unintended requests to remote services, as well as 2) remote
services, that respond to the request and not knowing that they are
not intended. This is particularly harmful to services where the
liability is on the service side. CF can achieve UI modification in
several ways: 1) it can tamper with the bitmap in the lowest level
display frame buffer or 2) it can tamper with the memory of the dis-
play driver stack, such as X server and OpenCL or 3) it can tamper
with the application level logic that is responsible for rendering
such as the browser. We emphasize that CF is an UI attack, CF
does not tamper with the application logic that generates network
requests. CF assumes that part of the memory is protected [19,20].

2.2 Deliver User Interaction to the Server

This category of work focuses on delivering user intention to a
remote party assuming an OS-level attacker. Gyrus [13] leverages
a trusted path for user IO and requires the user to validate the
text values in the trusted system is what they intended. Then it
uses a hypervisor to ensure that the content of outgoing network
packets matches what the trusted system had. There are several
problems with their approach. First of all, the service request
cannot be assumed to contain the same on-screen text, due to
client-side processing such as encryption. Secondly, Gyrus places
too much burden on the user. For instance, Gyrus requires the
user to validate everything user enters in a field, this may not be
possible if the user is composing a long email. And lastly and
most importantly, under a OS-level attacker, the rendering of
applications cannot be assumed to be correct. An CF attack can
trick the user into doing something she does not intends to do.
And Gryus does does not provide any defense.

VButton [17] and Fedelius [6] deploy trusted displays embed-
ded inside a larger untrusted display. The content and any user
interaction in the trusted display is secure. However, it is difficult
to make the entire screen secure because rendering engine that han-
dles screen output and drivers that handle user input have gigantic
code base. The embedded trusted display is not secure, an attacker
can carefully craft the untrusted and unprotected part of the display
and still affect user perception [8]. For instance, Alice may think
that she is interacting with Amazon.com and by entering her credit
card information through the trusted window, she will pay for the
goods in her cart. But in fact, a rootkit has invoked a different
website attacker.com, and disguised the UI of attacker.com under-
neath amazon.com. But the credit card form, where Alice believes
to be Amazon’s, actually belongs to attacker.com, and if Alice

continues the transaction, will pay the money to attacker.com.

3 Evaluation
3.1 Tampering Detection
In this section, we answer the first question: whether AINT
can detect tampering on a web page. We simulated several UI
attacks on the AINT-enabled website The Example by manually
modifying the HTML source. We show the test cases and the
result in Table 1. For all the tests in this section, AINT passes if
it can print out an error message indicating the source of the error
or the validation of the target cell fails. AINT passes all tests.

3.2 Variation Tolerance
In this section, we aim to answer the second question: can
AINT tolerate variations of different platforms. We simulate the
rendering variations on different platforms. All tests and results
are shown in Table 2. AINT passes all tests except the cursor
overlay tests. We address this failure in Section 4. Recall that,
in this section, a test passes if the image hash difference is less
than the threshold, 30, and the extracted text is identical to the
expected text.

3.3 AINT Performance
In this section, we aim to answer the question: how fast can AINT
perform validation and intention extraction. Performance of
AINT is important because it is on the critical path of the client
and server communication.

3.3.1 Performance on Web Pages
We aim to figure out how fast AINT can validate the rendering
of each frame. No user interaction is involved in this experiment.
We report the information about tabularized web pages and the
collected performance data in Table 3. We see that there is a linear
relationship between the total time and the number of cells. The
reason is that for every cell, AINT needs to perform validation,
and that includes computing the image hash as well as OCR.

On average, GPU speeds up the performance by 20%. The
reason why GPU is not as beneficial as expected is because AINT
is written in Python while OpenCL and Tesseract naively support
C++. This means that AINT must be written in C++ to take the
full advantage of GPU acceleration. In its current paste, every
operation of Tesseract that attempts to use the GPU will have
to go through 1) a transformation of Python data objects into
OpenCL objects 2) a transmission from disk to GPU due to the
use of PyTesseract and 3) transmission and transformation back.
To improve the performance, AINT can be entirely implemented
using C++, and take advantage of the GPU acceleration of both
OpenCV CUDA and Tesseract OpenCL.

3.3.2 Micobenchmark
We aim to find out which part of AINT is the slowest. Knowing
the bottleneck help us improving the performance. We aim to
figure out whether the bottleneck is related to the methodology
or some external tool used by AINT.

We profile AINT without caching for a single frame of The Ex-
ample, and we list the percentage in Table 4. The microbenchmark
was done using cProfile 2. And we visualized the data by convert-
ing cProfile traces to kCacheGrind format 3 and pyprof2calltree 4.
We did our best effort to find components that spend the most time.

2https://docs.python.org/3.2/library/profile.html
3http://kcachegrind.sourceforge.net/html/Home.html
4https://pypi.org/project/pyprof2calltree/

2



Test name Description Result
Tabularization Removing tabularization dots or tamper with dot color 4
Graphics Additional graphical content added to a cell 4
Labels Single character change in a text label 4
Input labels Single character change in a input label. 4
Structure Additional box-like structure, simulating another input

field
4

Multiple cursors Multiple cursors on the page 4
Multiple focus boxes Multiple focus box on the page 4
Multiple input cursors Multiple input cursors on the page 4

Table 1: Tampering Detection

Test name Description Result
Input cursor detection and
OCR

The blinking input cursor is intentionally placed beside
a character with similar appearance (the character l)

4

Cursor overlay 1 Mouse cursor over a button 8
Cursor overlay 2 Mouse cursor over an input field 8
Cursor overlay 3 Mouse cursor over a text label 8
Font type Serif font and sans serif font 4
Font size The text font size is rendered with its default size+2 4
Color differences the captured recording is compressed differently (using

mov, mp4 and avi formats) causing color shift, e.g. pure
red becomes darker red

4

Table 2: Variation Tolerance

Resolution (pixels) Num of Cells CPU Only (s) w. Tesseract-OpenCL (s)
Salt & Pepper 1893 * 1080 12 7.57 6.388 (-15.61%)
Unhappy Less 1920 * 1080 4 3.503 2.598 (-25.86%)
Unhappy More 1920 * 1080 10 6.715 5.282 (-21.34%)
TD 1894 * 1080 58 30.861 25.809 (-16.37%)
The Example 1920 * 1080 9 4.17 3.36 (-19.42%)

Table 3: Seconds per frame for validating AINT pages

Function Name Percentage of
Overall Execution

Image Reading 1.5
Cursor Detection 25.22
Cursor Removal 0.68
Reconstruct grid 0.54
Cell extraction 1.77
Image hash 1.33
Text detection 0.37
Initialize Tesseract child process 6.54
Waiting for Tesseract to complete 54.52
Hash comparison & Sync extracted user
inputs

0 (too small)

Table 4: Microbenchmark

But the total of our microbenchmark does not add up to 100% due
to how kCacheGrind skips the functions that do not consume long.

PyTesseract and Tesseract. Tesseract is the OCR command-
line tool, PyTesseract is a simple python wrapper to invoke
Tesseract from Python. Tesseract is not performance-tuned, and
PyTesseract adds additional overhead to it. Together, they make

up over 60% of the execution time for a single frame.
Assuming a simple Tesseract function where it takes an image

as input and outputs text in the string. By examining the code,
PyTesseract inefficiently writes the image argument to disk
and invokes Tesseract on that image through the command-line
interface. Specifically, for each invocation, PyTesseract needs
to write the image to disk, wait for this operation to complete,
spawn a process to invoke Tesseract, set up the communication
channel between the Tesseract process and the main process, wait
for the operation to complete, read from disk the data returned
by Tesseract and finally return to the caller. This process is
inefficient, especially if done repeatedly.

Tesseract itself is not performance-tuned. For instance, to
be able to detect single character from an image, it requires a
specially configured parameter−−psm10. And to know whether
an image contains only a single character, AINT checks whether
the previous call to Tesseract returns an empty string. If that
is the case, AINT calls Tesseract a second time with specially
configured parameters in case if the image contains a single
character. This causes repeated calls to Tesseract causing major
performance overhead. There are also rumors on the Internet
that suggests Tesseract is tuned for usability but not performance.
Therefore, to improve OCR performance, a future version of
AINT can use a performance-tuned OCR.

3



CPU Only w. cache
Seconds per frame (seconds) 4.17 1.32
Number of cells validated 90 56

Table 5: Performance of AINT on 10 frames of 9 cells each and
image hash as cache key.

Template Matching. To exhaustively search for cursors, AINT
checks the presence of the cursor at every possible pixel for
every cursor type. AINT needs to check every cursor to know no
duplicated cursors are presented. This process is inefficient, and
as the result shows, makes up 25.22% of the overall execution.
In our experiment on The Example, we had 7 types of cursors
and 205200 (1920 * 1080) pixels in total. This repeated process
of searching for cursors can be saved by caching.

3.3.3 Caching

Cache saves repetitive computation, but the exact amount of sav-
ing depends on 1) user activeness 2) the length of the AINT session
and 3) the design of the AINT web page. When the user does not
move, all cells do not change and thus can benefit from cached
validation results. Even if the user moves, only the cells that the
cursor moves over and the cells where the user inputs need to be re-
validated; other cells stay static and can benefit from caching. The
longer an AINT session goes and assuming the same level of user
activity, a longer interval of inactiveness can benefit from caching.
And lastly, if the AINT web page is fine-grained tabularized, that
means user interaction only affects a smaller number of cells, and
thus a larger number of cells will be static and thus benefit from
the cache. Theoretically, caching can reduce the AINT to only
validate the integrity of the first frame for any arbitrarily long ses-
sion given that there is no user activity. We did a simple test on 10
frames of The Example on CPU only. We list the average seconds
per frame in Table 5. We emphasize that 1.32 second per frame is
only the time for 10 frames, about 2.5s of user interaction if sam-
pling at 250ms. We point out that there is no upper bound on the
benefit of the cache. And thus our evaluation is for illustration only.
We note that how cache key is computed affects the numberof com-
putations that we have to do, we will evaluate image hash and cryp-
tographic hash as cache key generation method in the next section.

3.4 Security Guarantees of Image Hashes

Our hypothesis for image hash is that, in different rendering
environments, it should return similar hash values for the same
content and should return different values (larger than a threshold)
for different content. In this section, we aim to find out if it is true.

3.4.1 Similarity Tolerance

In this experiment, we designed three test cases of similar-looking
images to simulate the appearance on a web page, as shown
in Table 6. The attack scenario is that, on a shopping page, an
attacker may want to change the appearance of the product and
trick the user to pay more than what they intend. For instance,
paying the price of a modern beetle and get a vintage beetle in-
stead, assuming the vintage beetle values much less. We evaluate
image hashes on the two images and see if the hash difference is
greater than the threshold we used in AINT. If the hash difference
is smaller than the threshold, then it means AINT cannot detect
any difference, which will disapprove our hypothesis.

We report the result in Table 7. For image hashes, we indicate
the hamming distance between two hashes. wHash 8 was used

Beetles

Greens

Cutlery

Table 6: Experiments used to test image hash on similar images.

Beetles Greens Cutlery
wHash 8 39 25 7

wHash 16 104 96 36
pHash 8 28 27 12

pHash 16 160 118 117

Table 7: The hamming distance between the images in Table 6.
The number after the hash function represents the output size in
bytes.

wHash 8 wHash 16
77 pairs of images in 16 unique hashes 0

pHash 8 pHash 16
0 0

Table 8: Number of pair-wise collisions of various hash function
on randomly generated images.

by AINT with a threshold of 30, and only beetles’ hammering
distance is larger than the threshold. This means that AINT will
not be able to differentiate the two similar images in Greens
and Cutlery. In other words, an attacker can interchange the two
similar images and AINT will not be able to detect any difference.

To counter this, there are three ways. 1) use a greater wHash
output size allows a hash value to capture more about the details
of the image, and thus, when comparing two similar-looking
images, the difference will be larger. This trend can be justified
by the increasing difference between 8 bytes output and 16 bytes
output. 2) use a different image hash function. On average, pHash
reports a larger difference than wHash both on 8 bytes and 16
bytes output. 3) a better-chosen threshold. The threshold used in
AINT was picked to allow the maximum variations of the same
content rendered on different platforms. This number may be too
fit to the type of image in that experiment and not well suited for
the types of images in this experiment. We leave the choice of
a good threshold as future work.

4



Output hash
size

8 bytes (64
bits)

16 bytes
(128 bits)

32 bytes
(256 bits)

wHash 3.62 3.66 3.95
pHash 0.94 1.15 1.81
MD5 n/a 0.275 n/a
SHA-256 n/a n/a 0.43

Table 9: Average performance of hash functions on Caltech 101
in seconds

3.4.2 Collision Rate

A high collision rate on random images entails the high
probability that an attacker can pick a random image and collide
with the hash value of a given image. We conduct the experiment
by running hash functions on every image in the Caltech 101
dataset and collect images evaluated to the same hash but from
different categories (Inter-category images represent distinct
looking images). We report the numbers of pairs of collisions
in Table 8. This number is calculated based on

(n
2

)
, where n is

the number of unique categories within a list of images collide to
the same hash. For wHash 8, there is a total of 77 pairs of images
that hashes to 16 unique hashes. For wHash with 16 bytes output,
pHash and the cryptographical hashes, there is no hash collision.

We show some examples of random images hashed to the same
hash value in Table 11, and we detail some of the limitations of
current image hash function that AINT uses. We observed the
following: 1) different dimensions of the images do not prevent
collision, as shown by the conugar face and motorbike example
in Table 11. Images with different dimension look perceptually
distinct to humans, but not image hashes. We suspect that it is
due to the resizing operation of hash functions. Specifically, all
input images are resized to have identical width and height. And
because of this, long rectangular shaped input images suffers
much more comparing to square shaped images, because the
former must be squeezed causing information loss. 2) the shape
of content contributes to the collision, as shown by the image
with random background in Table 11. Due to its circular shape,
its hash collides with many other images with circular shape. We
suspect that it is also due to resizing. After resizing to 8 by 8,
the details of the content is lost but the circular shape remains. 3)
Since image hash removes color, the random background image
collides with the hedgehog despite their color differences.

3.4.3 Image Hash Performance

As shown in prior work [3], Wavelet hash (wHash) and Perceptual
(pHash) hash give good anti-tampering ability. We choose these
two as our target hash functions for performance evaluation. We
evaluate the performance of the two across different output sizes,
from 8 bytes to 32 bytes. We illustrate the total time and average
time in Table 9. We add the performance of cryptographic hash
in the same table for reference. MD5 and SHA-256 are taken
from HashLib in python. We tried evaluating the performance
of MD5 and SHA-256 using OpenSSL because OpenSSL utilizes
the Intel SHA extensions for hardware acceleration. However,
the results are slower than HashLib in Python. The performance
results suggest the use of pHash over wHash as the former is
faster in every output size configuration.

4 Conclusion and Future Work

AINT is only a research prototype, many things can be improved.

Image Hash and Threshold. As shown in Section 3.4, wHash
8 is neither sensitive to images with similar looking but different
content nor prevent collisions for distinct-looking imgaes with
different content. Also, the threshold was chosen based on one
experiment. We plan to adopt pHash 16 with a better threshold
that is picked through more experiments.

Automatic Tabularization. Currently, tabularization is done
manually, it will greatly help the developers if this task can be
done automatically.

Color-encoding. Currently, AINT relies on a color-coding
scheme for some of its object detection. For instance, the cell
encoding must be pure red, the focus box must be blue, and the
input cursor must be green. Some of these assumptions such
as the focus box come from real-life browsers such as Google
Chrome, but not all assumptions will hold in real-life scenarios.
Therefore, AINT’s object detection can be improved by using
more shape-based detection. For instance, focus boxes and input
cursors only occur inside input fields, thus, they can be tied to
the rectangular shape of the input field.

Support User Intention through other input methods. This
thesis only deals with text fields while existing websites use other
structures such as radio buttons and drop-downs. AINT can be
extended to include these structures, however, the two tasks are to
1) validate the rendering and 2) extract the semantics. These two
tasks have to be done individually for each structure and design
carefully about how these structures interact with a tabularized
web page.

AINT on Android. The entire work bases on x86, but it can
be extended to Android. The entire AINT can be moved
from a trusted hypervisor into ARM TrustZone, a TEE that is
commercially available on many ARM processors. Since the
validation is designed for whole screen applications, AINT will
fail if the user uses an on-screen keyboard, which is the primary
input method on Android. One solution is to take the virtual
keyboard into consideration and also validate the display of the
keyboard similar to ScreenPass [18]. AINT focuses on web pages
because AINT requires a way to gain ground truth information
used for validation, and web pages files are sent to the client
before rendering, thus providing a good opportunity to acquire
this information. AINT can be ported to work with the traditional
desktop application and Android applications, if there is a way
to specify 1) the view that requires AINT to do checking 2)
specifications used for validation and 3) what should AINT do
after intention is collected. These information must be sent to
AINT with integrity and authenticity protection. Lastly, even
though touch screen devices do not have cursors, but focus boxes
and input cursors help AINT detect where the user focus is.

Cursor over text. Currently, AINT does not handle cursor over
text well. When the mouse cursor overlaps with the text, AINT
cannot detect the cursor or the text behind it and OCR often gives
inaccurate results. One solution is to leverage the GPU’s help.
Since current OSs use hardware cursors, where GPU overlays the
cursor frame buffer over another frame buffer for the rest of the
display. It is possible for AINT to obtain two video recordings,
one with the cursor and one without. The validation will be done
without the cursor while checking for user initiation will be done
on the version with the cursor. Running AINT on Android will
not have the same problem because of the use of the touchscreen.

5



References

[1] Devdatta Akhawe, Warren He, Zhiwei Li, Reza Moazzezi, and
Dawn Song. Clickjacking revisited: A perceptual view of {UI}
security. In 8th {USENIX}Workshop on Offensive Technologies
({WOOT} 14), 2014.

[2] Marco Balduzzi, Manuel Egele, Engin Kirda, Davide Balzarotti,
and Christopher Kruegel. A solution for the automated detection of
clickjacking attacks. In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security, ASIACCS
’10, pages 135–144, New York, NY, USA, 2010. ACM.

[3] Content Blockchain. Testing different image hash functions, Dec
2018.

[4] Graham Cluley. Viral clickjacking ‘like’ worm hits facebook
users, 2010.

[5] Weidong Cui, Randy H. Katz, and Wai-tian Tan. Binder: An
extrusion-based break-in detector for personal computers. In
Proceedings of the 2005 USENIX Annual Technical Conference,
Berkeley, CA, USA, April 2005. USENIX Association.

[6] S. Eskandarian, J. Cogan, S. Birnbaum, P. Brandon, D. Franke,
F. Fraser, G. Garcia, E. Gong, H. T. Nguyen, T. K. Sethi, V. Subbiah,
M. Backes, G. Pellegrino, and D. Boneh. Fidelius: Protecting
user secrets from compromised browsers. In 2019 2019 IEEE
Symposium on Security and Privacy (SP), Los Alamitos, CA,
USA, may 2019. IEEE Computer Society.

[7] Facebook. Like button for ios, 2018-09.
[8] Yanick Fratantonio, Chenxiong Qian, Simon P Chung, and Wenke

Lee. Cloak and dagger: from two permissions to complete control
of the ui feedback loop. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 1041–1057. IEEE, 2017.

[9] Giorgio. Hello clearclick, goodbye clickjacking!, 2008.
[10] Ramakrishna Gummadi, Hari Balakrishnan, Petros Maniatis, and

Sylvia Ratnasamy. Not-a-bot: Improving service availability in the
face of botnet attacks. In Proceedings of the 6th USENIX Sympo-
sium on Networked Systems Design and Implementation, NSDI’09,
pages 307–320, Berkeley, CA, USA, 2009. USENIX Association.

[11] HTML5. Opera whole-page click hijacking via css, 2011.
[12] Lin-Shung Huang,Alex Moshchuk,Helen J. Wang,Stuart Schecter,

and Collin Jackson. Clickjacking: Attacks and defenses. In Pre-
sented as part of the 21st USENIX Security Symposium (USENIX
Security 12), pages 413–428, Bellevue, WA, 2012. USENIX.

[13] Yeongjin Jang, Simon P Chung, Bryan D Payne, and Wenke Lee.
Gyrus: A framework for user-intent monitoring of text-based
networked applications. In Proceedings of the 2014 Network and
Distributed System Security Symposium, 2014.

[14] Karthick Jayaraman, Grzegorz Lewandowski, and Steve J Chapin.
Memento: A framework for hardening web applications. Center for
Systems Assurance Technical Report CSATR-2008-11-01, 2008.

[15] Krzysztof Kotowicz. Filejacking: How to make a file server from
your browser (with html5 of course), 2011.

[16] Eric Lawrence. Internet explorer 8 security part vii: Clickjacking
defenses, 2009.

[17] Wenhao Li, Shiyu Luo, Zhichuang Sun, Yubin Xia, Long
Lu, Haibo Chen, Binyu Zang, and Haibing Guan. Vbutton:
Practical attestation of user-driven operations in mobile apps.
In Proceedings of the 16th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’18, pages
28–40, New York, NY, USA, 2018. ACM.

[18] Dongtao Liu, Eduardo Cuervo, Valentin Pistol, Ryan Scudellari,
and Landon P Cox. Screenpass: Secure password entry on touch-
screen devices. In Proceeding of the 11th annual international
conference on Mobile systems, applications, and services, pages
291–304. ACM, 2013.

[19] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou,
Anupam Datta, Virgil Gligor, and Adrian Perrig. Trustvisor:

Efficient tcb reduction and attestation. In Proceedings of the 2010
IEEE Symposium on Security and Privacy, SP ’10, pages 143–158,
Washington, DC, USA, 2010. IEEE Computer Society.

[20] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V.
Rozas, Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Sava-
gaonkar. Innovative instructions and software model for isolated
execution. In Proceedings of the 2Nd International Workshop
on Hardware and Architectural Support for Security and Privacy,
HASP ’13, pages 10:1–10:1, New York, NY, USA, 2013. ACM.

[21] Marcus Niemietz. Ui redressing: Attacks and countermeasures
revisited. in CONFidence, 2011, 2011.

[22] Marcus Niemietz and Jörg Schwenk. Ui redressing attacks on
android devices. Black Hat Abu Dhabi, 2012.

[23] Andrea Possemato, Andrea Lanzi, Simon Pak Ho Chung, Wenke
Lee, and Yanick Fratantonio. Clickshield: Are you hiding
something? towards eradicating clickjacking on android. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 1120–1136. ACM, 2018.

[24] Jeremiah Grossman (WhiteHat Security) Robert Hansen (SecThe-
ory). Cursorjacking again, Sept 2008.

[25] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson.
Busting frame busting: a study of clickjacking vulnerabilities at
popular sites. IEEE Oakland Web, 2(6), 2010.

[26] Tentacolo Viola. Cookiejacking, 2011.
[27] Helen J Wang, Chris Grier, Alexander Moshchuk, Samuel T King,

Piali Choudhury, and Herman Venter. The multi-principal os
construction of the gazelle web browser. In USENIX security
symposium, volume 28, 2009.

6



A Tabularized Web Pages

Figure 1: The Example: an example of tabularized web page, user’s view

Figure 2: The Example: AINT’s interpretation

Figure 3: Salt & Pepper: user’s view of a tabularized web page

7



1 2 3

5

6 7

8 9

10

11

12

4

Figure 4: Salt & Pepper: AINT attempts to reconstruct the grid of a tabularized web page

Figure 5: Unhappy: coarse-grained tablurazation

Figure 6: Unhappy: fine-grained tablurazation

8



Figure 7: TD: an example of tabularized web page, user’s view

Figure 8: TD: AINT’s interpretation

9



B Currently Supported Cursors

Cursor Types Default Drag Option Pointer Type Zoom-in Zoom-out

macOS

Ubuntu

Table 10: Currently Supported Cursors in AINT

C Random Images Evaluated to the Same Hash in Caltech 101

Image Image

ketch

Joshua Tree

Cougar Face

Motorbikes

Random Background
Watch

Random Background

Umbrella

10



Random Background

Strawberry

Random Background
Pizza

Random Background

Stop Sign

Random Background
Sunflower

Random Background
Hedgehog

Table 11: Each row represents a pair of random images from different
categories.

11



12


	Introduction and Design
	Related Work
	Clickjacking
	Deliver User Interaction to the Server

	Evaluation
	Tampering Detection
	Variation Tolerance
	AINT Performance
	Performance on Web Pages
	Micobenchmark
	Caching

	Security Guarantees of Image Hashes
	Similarity Tolerance
	Collision Rate
	Image Hash Performance


	Conclusion and Future Work
	Tabularized Web Pages
	Currently Supported Cursors
	Random Images Evaluated to the Same Hash in Caltech 101

