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Abstract— In this paper, we use the Markov Decision Process
(MDP) technique to find the optimal code allocation policy
in High-Speed Downlink Packet Access (HSDPA) networks. A
discrete stochastic dynamic programming model for the HSDPA
downlink scheduler is presented. The model then is solved
numerically using value iteration. The system performance when
using the resulted optimal policy as compared to Round Robin
(RR) is studied using simulation. The behaviour of the value
function was observed then used to develop a heuristic scheduling
policy. The devised heuristic policy performs very close to the
optimal policy. It has much less computational complexity which
makes it easy to deploy and with only slight reduction in
performance compared to the optimal policy.

I. INTRODUCTION

The rapid development of wireless technology enables the

implementation of services which are so far available only on

IP based networks. Each service has its own requirements,

in terms of bandwidth (Web browsing service for instance),

or Quality of Service (QoS) for real-time applications. The

new 3G systems (e.g., HSDPA) were designed to have an IP-

based infrastructure that enables the reuse of the available IP

resources and technologies and in order to reduce the cost [1].

Nevertheless, the added packet switching capability introduced

new challenges that have to be dealt with.

One of the challenges is to meet the QoS requirements of

the offered services. Wireless links are subject to time- and

location-dependent signal attenuation, fading and interference,

which will result in bursty errors and time varying channel

capacities. Therefore, the direct application of the available

wireline QoS techniques is impractical. Furthermore, it is ex-

tremely difficult to provide hard (absolute) QoS guarantees and

only soft QoS (Differentiated services) can be provided [2].

Packet scheduling is one of the most important QoS control

approaches for wireless communications [3]. The scheduling

algorithms in wireless systems should take into consideration

the variation in channel characteristics, make use of the user

diversity to maximize throughput, and aim at providing all

users with a fair access to the network.

Scheduling in HSDPA systems involves not only Transmis-
sion Time Intervals (TTI) allocation but also codes allocation.

On the downlink, HSDPA uses Code and Time Division

Multiplexing (CDM/TDM) and has 15 codes to be alocated
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per TTI. Most of the available work in scheduler design (e.g.

[2]and [4]) is based on intuition and creativity of the designers.

This approach can be described as a procedural approach.

This, most likely, will result in a suboptimal algorithm at the

best, that performs well in some scenarios and poor in the

others. Another observation is the lack of work on schedulers

that dynamically allocate codes as well as TTI for the users

in the system.

This work presents a novel approach for scheduling. An

analytic model, using stochastic dynamic programming is built

to represent the HSDPA scheduler with some realistic assump-

tions to the rest of the system components. This model is a

simplifying abstraction of the real scheduler which estimates

system behaviour under different conditions and describes the

role of various system components in these behaviours. This

model can be solved numerically to obtain the optimal code

allocation policy for some given objective function in a straight

forward manner.

The rest of the paper is organized as follows; section 2

describes the problem. In section 3 we introduce the model.

Section 4 presents a two user case study. In section 5, a

heuristic policy is presented. In section 6, the performance

of the heuristic policy is studied. Conclusions are given in

section 7.

II. PROBLEM DEFINITION AND CONCEPTUALIZATION

Third generation release R’5 [1], also called High-Speed

Downlink Packet Access (HSDPA), is an IP-based network

that can offer users a high speed asymmetric radio link with

downlink peak bit rate up to 14.4 Mbps [10].

A. HSDPA Downlink Scheduler Abstraction

The HSDPA downlink channel uses a mix of Time Division

Multiplexing and Code Division Multiplexing:

Time is slotted into fixed length 2 ms TTIs.•
During each TTI, there are 15 available codes that may•
be allocated to one or more users.

During one TTI, the channel capacity associated to one

single user depends on the number of allocated codes and

on the channel condition. This is mainly due to the fact

that HSDPA uses AMC to adapt the transmission rate to the

current channel conditions. A mobile user with good channel

conditions will experience higher data rate than the other users.



The diagram in Figure 1 depicts a conceptual realization

of the HSDPA downlink scheduler. Different users have
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Fig. 1. HSDPA scheduler model (downlink).

separate buffers in the base station (Node-B according to

3GPP), and they are competing for the system resources.

Channel state monitor/predictor is necessary to monitor current

channel conditions of each user and predict his channel state

during the next TTI. This information will then be used to

adapt the transmission rate to the expected channel conditions.

The arrived Service Data Units (SDU) are assumed to be

segmented by the Radio Link Control (RLC) into ui fixed size

Protocol Data Units (PDU) before delivering them to Node-B.

The PDUs then will be classified and inserted into the proper

buffers awaiting transmission to the intended user. RNC is the

Radio Network Controller unit which implements the RLC

protocol.

B. HSDPA Downlink Channel Model

The wireless channel for the HSDPA system is modelled as

a Finite-State Markov Channel (FSMC) following [7]. This is

done by partitioning the signal to noise ratio (SNR) into finite

number of intervals, each representing a state in a Markov

Chain. Assuming that the fading is slow enough that the

channel states for consecutive time epochs are neighbouring

states, then the model will be reduced into a discrete time birth

and death process, as shown in Figure 2.
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Fig. 2. FSMC model for HSDPA downlink channel.

Depending on the expected SNR, different modulation and

error-correcting coding rates can be dynamically selected

from a set of Modulation and Coding Schemes (MCS) [5].

The higher the order of the MCS selected the higher the

transmission rate. The SNR is mapped directly into MCS and

hence into data rates. In light of this, the states in our channel

model will equivalently represent data rate levels rather than

SNR.

III. MODEL DESCRIPTION

In this section, we use the approach we presented in [6]

to find the optimal code allocation policy for the HSDPA

downlink scheduler. We present a general model for this sys-

tem, based on Markov Decision Process (MDP), and suggest

a reward function that achieve the objective function.

To describe a system as a MDP model, the states, actions,

rewards and transition probabilities have to be defined first.

In our proposed model, time is slotted in constant intervals

of size ∆t. Let T denote the set of decision epochs of the

system, and T = {1, 2, . . .}. At time t ∈ T , we define s(t)
and a(s) as the system state and the action taken at that

state. HSDPA downlink scheduler is modelled by the 5-tuple

(T, S, A, Pss′(a), R(s, a)), where S and A are the state and

action spaces, Pss′(a) = Pr(s(t + 1) = s′|s(t) = s, a(s) = a) is

the state transition probability, and R(s, a) is the immediate

reward when at state s and taking action a.

A. Basic Assumptions

There are L active users in the cell. A user i ∈ I =
{1, 2, . . . , L} is allocated a buffer of size Bi. For the sake

of simplicity, we will assume that Bi = B for all i ∈ I .

Error free transmission is assumed for eliminating the need

for retransmission queue. SDUs arrive at the RNC during the

current TTI will be segmented by RLC into a fixed number of

PDUs (ui) and delivered to Node-B to be inserted into their

respected buffer at the beginning of the next TTI.

For each user i ∈ I and slot t ∈ T , we define:

yi(t) the number of scheduled PDUs,•
= {0, 1, 2, ..., B} the queue size,• xi(t) ∈ X

zi(t) ∈ {0, ui} the number of arriving PDUs.•
The SDUs destined to user i arrives at the RNC during one

TTI according to the Bernoulli distribution with parameter qi.

Arrivals are assumed to be independent of the system state and

of each other. PDU size is chosen to be equal to the minimum

Transport Format and Resource Combination (TFRC) for one

code (i.e., one code is needed to transmit one PDU when the

channel is in state 1). The scheduler can assign the available

15 codes as chunks of c codes at a time to active users in

the system. The chunk size c must divide the total number of

codes (15); therefore, c ∈ {1, 3, 5, 15}. For example, choosing

c = 5 means that the policy can assign 0, 5, 10, or 15 of the

available 15 codes to any user at any given TTI.

B. FSMC State Space

The channel state of user i during slot t is denoted by

γi(t); and its associated channel state space is the set M =
{0, 1, . . . ,M − 1}, where M is the total number of available

channel states. M constitutes a subset of the available MCS

set recommended by 3GPP. The elements of M were ordered

in a way such that γi(t) is directly proportional to the number

of PDUs that can be transmitted by user i in one TTI. This

ordering is necessary to reduce computational complexity.

Furthermore, we assume that user i channel can handle up

to γi(t) PDUs per code, i.e., a γi(t) = 2 means that at time

t, user i can transmit two PDUs using one code and up to 30

PDUs when using all the 15 codes. The Markov transition

probability Pγiγ′ is known and can be calculated for any
i

mobile environment with Rayleigh fading channel [7].

C. State and Action Sets

The system state s(t) ∈ S is a vector comprised of multiple

state variables representing the queue sizes and the channel
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states for the L users. In other word,

s(t) = (x1(t), x2(t), . . . , xL(t), γ1(t), γ2(t), . . . , γL(t)) (1)

and, S = {X ×M}L is finite, due to the assumption of finite

buffers size and channel states.

The action space A is the set of all possible actions. The

action a(s) ∈ A is taken when in state s. The action taken

at each slot corresponds to the number of codes allocated to

each user. Let D = {0, 1, . . . , 15/c} be the action space for

a single user, where c is the code chunk size (the minimum

number of codes that can be allocated at any given time). Let

ai(s) ∈ D be the number of code chunks allocated to user i
when in state s. Then the number of codes allocated to user

i is ai(t)c. In this case, a(s) will be the collection of code

allocation to all users, that is

a(s) = (a1(s), a2(s), . . . , aL(s)) (2)

subject to

L∑ 15
ai(s) ≤ , and ai(s) ≤

γ

x

i

i

(
(
t

t

)
)
cc

i=1

The first constraint means that the policy can not allocate more

than the available 15 codes at each time slot. The second

makes the policy conserving by allocating no more codes to

user i than that required to empty its buffer.

D. Reward Function

In this subsection, we describe the reward function used to

determine the optimal allocation policy. As stated previously,

the objective is to maximize the throughput while maintaining

fairness between active users. Let the fairness factor, denoted

by σ, be a parameter that reflects the significance of fairness in

the optimal policy. Define ¯ ∑L
x as the average instantaneous size

1of the L queues in the system at time t, i.e., x̄ = L i=1 xi,

(we suppressed the time index to simplify notation). The

reward function R(s, a) will have two components correspond-

ing to the two objectives and it is given by

L L

R(s, a) = aiγic − σ (B − x̄) 1{xi=B} (3)

i=1 i=1

where 1{·} is the indicator function. The positive term of

the reward maximizes the cell throughput. If the reward is

composed of this part only, then the policy will always favour

the users with good channel conditions. Therefore the users

with less favourable channels will starve. That is why we

introduced the second term, which guarantees some level of

fairness and reduces dropping probability. Lower σ will result

in a policy that favours cell throughput over fairness, while

higher σ has the opposite effect. Overall, R(s, a) will produce

a policy that maximizes cell throughput for a given σ.

E. Transition Probability function

Pss′(a) denotes the probability that choosing an action a at

time t when in state s will lead to state s′ at time t+1. Using

(1) and (2), Pss′(a) can be stated as follows

Pss′(a) = Pr(s(t + 1)=s′|s(t)=s, a(t)=a)
= Pr(x1

′ , . . . , xL
′ , γ1, . . . , γ

′ x1, . . . , xL,′
L|

γ1, . . . , γL, a1, . . . , aL) (4)

The evolution of the queue size (xi) is given by

x′
i = min [xi − yi]

+ + zi
′ , B

= min [xi − aiγic]
+ + zi

′ , B (5)

where, zi
′ is the arrival to queue i at t+1, [e]+ equals e if e ≥ 0

and 0 otherwise. The channel state γi depends only on the

previous channel state, that is Pr(γi
′|s) = Pr(γi

′|γi) = Pγiγ′ .

Accordingly, we can write (4) as follows

L

Pss′(a) = Pxix′ (γi, ai) Pγiγ′ (6)
i i

i =1

where Pγiγ′ is the Markov transition probability of the FSMC.
i

Define W1 and W2 as follows

W1 = [xi − aiγic]
+ + ui

W2 = [xi − aiγic]
+

We derived Pxix′ (γi, ai) using (5) and the law of total
i

probability, and arrived at the following expression
1 if x′ =xi =B & aiγi = 0,i

qi if x′ =xi =B & 0 < aiγi ≤ ui,i
if x′ =B & xi < B & W1 ≥ B,iPxix′ (γi, ai)=

qi

i 
qi if x′ <B & x′ = W1,i i

1−qi if xi
′ <B & x′ = W2,i0 otherwise.

(7)

The first three cases in (7) corresponds to the boundary state,

while the remaining cases correspond to the non-boundary

states. For complete derivation of the state transition proba-

bility see [8].

F. Value Function

In this paper, we investigate an infinite-horizon MDP. We

use the total expected discounted reward optimality criterion

with discount factor λ, where 0 < λ < 1, in attempt to

find the policy π among all policies, that maximize the value
function V π(s). The following optimality equation is used to

characterize the optimal policy [9]

V ∗(s) = ma [R(s, a) + λ Pss′(a)V ∗(s′)] (8)
a∈A

s′∈S

where V ∗(s) is the maximal discounted value function (i.e.,

V ∗(s) = supπ V π(s)), attained when applying the optimal

policy π∗.

i
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Value iteration (also known as successive approximation)

is used to solve this model numerically. The first step is to

define V0(s) to be any arbitrary bounded function. Then run

the following recursive equation for n > 0

Vn(s) = max[R(s, a) + λ Pss′(a)Vn−1(s′)]
a∈A

s′∈S

Vn converges to V ∗ as n → ∞ [11]. For a given ε > 0,

the algorithm can be stopped after n iteration, providing the

following

Vn+1 − Vn‖ < ε(1 − λ)/2λ (9)

where ‖v‖ = sups∈S v(s) . If (9) holds, then ‖Vn+1 − V ∗‖ <| |
ε/2, according to [9].

Using results from the discounted case we can generalize

for the infinite horizon average reward using results from [11].

IV. CASE STUDY: TWO USERS WITH TWO-STATE

CHANNEL

The approach presented earlier was used to model the case

when there are two users (i.e., L = 2) sharing the same cell.

The channel is modelled as a two-state FSMC with transition

probability matrix

1 − αi αi

βi 1 − βi
(10)

The two user case will simplify the resultant policy and

makes it easy to visualize, evaluate, and to deduct conclusions

for the optimal policy. It also serves as a verification for the

proposed approach, since it may be possible to verify the

results for such a case intuitively. The obtained results can

then be generalized to more complex cases.

User i is said to be connected when γi =1 with probability

P (γi = 1) = αi/(αi + βi), and not connected (γi = 0) with

probability P (γi =1)=βi/(αi + βi).
The remaining parameters were chosen as follows: B =25,

σ=0.5, λ=0.95, ε=0.1, and c=3, 5 or 15. The action space

depends on the value of c. For example, if c = 5 then there are

four possible actions for each user (i.e., D= 0, 1, 2, 3}) and

A = {(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,
{
2), (2,0), (2,1),

(3,0)}, where a = (a1, a2) corresponds to a1c codes assigned

to user1 and a2c codes assigned to user 2. Similarly, when

c = 15 then there are two possible actions per user (i.e.,

D = 0, 1}) and when c = 3 then there are six possible{
actions per user (i.e., D= 0, 1, 2, 3, 4, 5}).{

The model is solved using value iteration to determine the

optimal scheduling policy. The effect of the channel quality

and arrival probability on the behaviour of the optimal policy

was studied. Figure 3 provide general structure of the optimal

policy for c =15 and 3 (see [6] for the case c = 5).

The optimal policy for two symmetrical users with the same

channel characteristics (αi = βi = p) for all 0 ≤ p ≤ 1 and

with P (zi = 5) = 0.5 for all i ∈ {1, 2} is shown in sub-

figures 3(a) and 3(d). Only the case when the two users have

γi =1 is shown here, since the two users are competing for the

system resources. The other three cases when one or both of

them has γ =0 resulted in a policy that assigns all the codes

(required) to the connected user and nothing to the other. The

optimal policy in this case can be described as follows: divide
the codes between the connected users in proportion to their
queue length. When c=15, the action space will be reduced

to A= (0, 0), (0, 1), (1, 0)} and the policy will be equivalent{
to serve the longest queue first (LQF), which makes intuitive

sense and matches with the findings in [12] for a case similar

to the c=15 case.

The effect of the channel quality on the optimal policy

structure when γ1 = γ2 = 1 is shown in sub-figures 3(b) and

3(e). When P (γ1 =1) > P (γ2 =1) the policy favours user 2
which is less likely to have γ2 =1 compared to user 1. The bias

in favour of user 2 is depicted in sub-figures 3(b) and 3(e) by

a larger dark area, which corresponds to optimal action (0,1)

and (0,5) respectively, compared to sub-figures 3(a) and 3(d).

We noticed that this bias increases as the difference between

P (γ1 = 1) and P (γ2 = 1) increases. The reason is that using

an LQF in this situation will result in uncontrollable growth in

user 2 queue. User 2 will start experiencing unfairness in terms

of higher delay and more drops. Hence, more resources have

to be assigned to the user with the worst channel to avoid that

result. The resource sharing in this case will be governed by

the difference ∆Pγ = P (γ1 =1) − P (γ2 =1) as well as their

relative queue length.

The arrival probability has similar effect on the optimal

policy structure. The relative increase in one of the users

arrival probability will result in more traffic inserted in that

user’s buffer and it will require more resources to keep the

queue length stable and achieve fairness between the two users.

Sub-figures 3(c) and 3(f) shows the optimal policy when

P (z1 =5)=0.8 and P (z2 =5)=0.5 and both users have the

same channel quality. The policy shifts in favour of the user

with higher arrival probability (user 1 in this case). The shift is

proportional to the difference ∆Pz = P (z1 =u) − P (z2 =u).

V. NEAR-OPTIMAL HEURISTIC SCHEDULING POLICY

The optimal policy allocates the codes in proportion to the

weighted queue length of the connected users. We devised a

heuristic approach for code allocation in HSDPA system that

works in the three cases introduced earlier (i.e., c =15, 5 or 3)

and takes into account the channel quality and load variations.

It can also be used (with little modifications) for any value of

c. The suggested heuristic policy tries to mimic the behaviour

of the optimal policy studied in IV.

The weight (wi) is a function of the difference of the two

channel qualities and that of the arrival probabilities:

w1 = f([−∆Pγ ]+, [−∆Pz]+) (11)

w2 = f([∆Pγ ]+, [∆Pz]+) (12)

A. The Heuristic Policy for c = 15

In this case, the optimal policy is a switch over policy as

depicted in Figure 3. We can identify three regions which

correspond to the three possible actions: (0,0), (1,0) and (0,1).

The heuristic policy is a weighted LQF and it assigns codes

to users according to the following rules:
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Fig. 3. The optimal policy for two user case for c = 15 and 3 respectively

Rule1: when there is only one connected user then assign

all the needed codes to that user,

Rule2: when both users are not connected (i.e., γ1 =γ2 =

Rule3: when the two users are connected, if x1+x2 < 15
then allocate codes to the two users in proportion to their

queue length, else allocate the code chunks as follows• 
0) then no codes will be allocated to any user,

Rule3: when the two users are connected allocate code•
chunks according to (13) below

(5, 0) if w1x1 > w2x2 + 12,

(4, 1) if w2x2+6<w1x1≤w2x2+12,

(3, 2) if w2x2 <w1x1 ≤ w2x2 + 6,
a(t)= (15)(1, 0) if w (2, 3) if w2x2 − 6 < w1 > w2x 

1x 2,
1 ≤ w1x 2x2,a(t)= (13)

(0, 1) if w (1, 4) if w2x2−12<w1x1≤w2x2−6,1x1 ≤ w2x2

(0, 5) if w1x1 ≤ w2x2 − 12,B. The Heuristic Policy for c = 5
D. Weight Function and Other Considerations

We observed the behaviour of the optimal policy by running

a range of scenarios. We noticed that the intermediate regions

(e.g., the regions corresponds to actions (1,2) and (2,1) in

‘c = 5’ case) has almost a constant width that equals 2c
in all the scenarios that have been studied. We also noticed

that the optimal policy is monotonic and a1 (respectively

a2) is increasing in x1 (respectively x2). It is also apparent

from the studied scenarios that f() is increasing in |∆Pγ |
and decreasing in |∆Pz . Following these observations, we|
approximated w1 and w2 as follows

+ŵ1 = 1 + 1.5[−∆Pγ ] − 0.7[−∆Pz]+ (16)
+ŵ2 = 1 + 1.5[∆Pγ ] − 0.7[∆Pz]+ (17)

The ratio w1/w2 represents the slop of the switchover line

The optimal policy defines ten each of which is character-

ized by an optimal action as shown in section IV. However,

only four of these regions are of interest. They lie within the

area where the demand exceeds the available resources. Based

on this observation, the heuristic policy partitions the state

space into four major regions that corresponds to the actions

(3,0), (2,1), (1,2), and (0,3). The heuristic policy defines two

additional regions corresponds to actions (0,0) and (1,1) to

make the policy conservative. The same heuristic policy in

V-A above will apply here except for Rule3 which will be

modified as follows:

Rule3: when the two users are connected, if x1+x2 < 15•
then allocate codes to the two users in proportion to their

queue length, else allocate the code chunks as follows

a(t)=




(3, 0) if w1x1 > w2x2 + 10, between the different areas in the policy. When ∆Pγ =0 and

(2, 1) if w2x2 < w1x1 ≤ w2x2 + 10,
(14)

∆Pz =0 then ˆ w2 =1 and the policy for the three cases willw1/ ˆ
look exactly like the ones in sub-figures 3(a) and 3(d). The

(1, 2) if w2x2 − 10 ≤ w1x1 ≤ w2x2,
suggested heuristic policy can be modified to accommodate

(0, 3) if w1x1 < w2x2 − 10, classes. This is done by adding a multiplicative parameter to

the weight in (16) to implement differentiated services.

Figure 4 show the heuristic policy (the dotted line) super-

imposed on the optimal policy from section IV for different

loading and channel quality conditions. From these graphs, it

is fair to say that there is a reasonable convergence between

the heuristic policy and the optimal policy.

C. The Heuristic Policy for c = 3

In this case, there are 21 different regions in the state space

as shown in Figure 3. The heuristics used in V-A and V-B

can be extended to this case. Again only Rule3 need to be

modified as shown below
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Fig. 4. The heuristic policy (dotted line) in comparison to the optimal policy for c = 15, 5 and 3 respectively

We also noticed that the effect of σ is minimal in this case.

This is mainly due to the two-states channel model (connected

or not connected). When connected, both users will have the

same data rate and serving either one will result in the same

reward. However, it is expected that σ will have a prominent

role when using FSMC model with more than two states.

VI. PERFORMANCE EVALUATION OF THE SUGGESTED

HEURISTIC POLICY

The performance of the optimal policy and the devised

heuristic policy was studied using simulation. The Round

Robin fair queueing is used as a baseline. All the assumptions

made before is also used in the simulation for consistency.

The buffers sizes used in this part is B1 = B2 = 50.

The system throughput when applying the heuristic policy,

RR and the optimal policy is shown in Figure 5. The channel

model parameters was chosen such that P (γ1 = 1) = 0.84 and

P (γ2 = 1) = 0.5. Figure 5 shows that the suggested heuristic

policy performs very close to the optimal policy. It also shows

that RR performance converges to that of the optimal policy in

case of light loading (e.g., ρ = 0.5). However, it performs up to

30% worse than the optimal policy in heavy load conditions.

Where ρ = i Pzi
ui/rπ is the offered load and rπ is the

measured system capacity under the policy π.

Queueing delay performance is shown in Figure 6. Figures

7 and 8 show the average queue lengths of both users for

the suggested heuristic policy in comparison with that of

RR and the optimal policy. From those graphs, the following

conclusions were deducted:

The proposed heuristic policy performance is very close•
to that of the optimal policy.

The optimal policy provides the smallest difference in•
queueing delay between the two users, which means

higher fairness level. The heuristic policy provides a

comparable performance to that of the optimal policy,

while the round robin has the worst fairness and delay

performance.

The performance of the RR policy is highly dependent on•
the loading conditions. The results obtained proved that

RR has poor performance in wireless channel.
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The reason why RR performs so poorly in wireless environ-

ment is that it does not take into account the channel quality

variation, while the optimal policy tracks this variation very

closely.

A. Computational Complexity

The approach used is to run the value iteration for a system

with small B, to reduce the computation time, then use this

model to study the structure of the optimal policy for differ-

ent channel conditions and loading scenarios. The obtained

information is then used to build a heuristic policy that can

be expanded to larger buffers sizes. The same approach can

be used in the case when more than two users are involved.

The suggested heuristic approach trades performance for

simplicity. However, the small performance loss is acceptable

price to pay for the huge reduction in computation time. The

heuristic policy has deterministic polynomial complexity with

constant time complexity, i.e., O(1). On the other hand, the

calculation of the optimal policy has an exponential time

complexity in B with O(BL) per one iteration, where L is

the number of active users in the system, and is intractable

for very large B. The number of iteration required depends

on how fast the policy converges, which in turn depends on

many other parameters, such as ε, λ, and c. Studying the exact

complexity for this problem is beyond the scope of this paper.

VII. CONCLUSION

An MDP model for the scheduling problem in 3G-HSDPA

wireless system was developed. Value iteration was used to

solve for the optimal scheduling policy for a system with two

users and two-states Finite State Markov Channel model. The
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Fig. 8. Queue length, ρ = 1.1, P (γ1 = 1) = 0.6, P (γ2 = 1) = 0.6,
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policy structure was obtained for different policy granularities.

The study showed that the optimal policy can be described as

share the codes in proportion to the weighted queue length of
the connected users.

We developed a heuristic approach to obtain a near-optimal

policy. It has a reduced constant time complexity (O(1))
as compared to the exponential time complexity needed in

the determination of the optimal policy. The performance

of the resulted heuristic policy matches very closely to the

optimal policy. The results also proved that RR is undesirable

in HSDPA system due to the poor performance and lack

of fairness if deployed in such environment. The suggested

heuristic policy can be extended to the case with more than

two active users. It also can be easily adapted to accommodate

more than one class of service.
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