
Optimal Service Allocation For Multi-Hop Network
With Intermittent Connectivity

Hussein Al-Zubaidy,
ECE, University of Toronto, Toronto, ON, Canada.

e-mail: hzubaidy@comm.utoronto.ca

Abstract—A network of queues is partitioned into K tandem,
disjoint sets of parallel queues. A queue that belongs to set k is
randomly connected to the queues in set k+1 with probability p.
Time is slotted into fixed size transmission frames. A scheduler
selects one packet per hop (set) per transmission frame to be
forwarded to the next hop. Exogeneous arrivals may be inserted
into set 1 queues only. This setup can be used to model a wireless
relay network (WRN), where set 1 represents the subscriber
stations (SS), while the other sets represent multi-hop relay
stations (RS). In this paper, we investigate an optimal dynamic
packet scheduling algorithm for this network. We define the
optimal policy as the dynamic packet scheduling policy that
minimizes, in a stochastic ordering sense, the process of cost
function of the queue sizes in all hops. We consider a system
with symmetrical connectivity and arrival distributions across
the queues in each of the K sets. We prove that a policy that
tries to balance the lengths of all queues in each of the K sets
of queues in the system at every transmission frame is optimal.
For the proof, we use coupling arguments. We also provide a
low-complexity implementation algorithm and we prove that it
will result in an optimal policy.

I. INTRODUCTION

Wireless relays are intermediary wireless nodes that assist,
with or without cooperation of other nodes in the network,
with data transmission between a source and a destination. In
a multi-hop wireless relay network (WRN), the data transmis-
sion may involve multiple wireless relays. The deployment
of dedicated wireless relay nodes in fourth generation (4G)
wireless networks design was recommended by the IEEE
802.16j task group [1] in order to enhance the capacity of these
networks. Such configuration facilitates cooperation between
relay nodes in order to achieve diversity gain. Cooperative
communication was initially studied by [2], [3] and [4].
Among the benefits of such deployment are increased coverage
and higher data rates. In addition, wireless relays typically
have limited functionality and low power consumption, and
are significantly cheaper than a base station. This makes them
an attractive alternative for network expansion.

Most of the work in this area focuses on the utilization
of diversity and multiplexing gain to improve performance
criteria, such as capacity and bandwidth utilization, outage
probability, error rate, etc. These are achieved using adaptive
modulation techniques, distributed space-time coding, or error-
correction coding.

In previous work [5], we looked at this problem from a
different perspective, the dynamic packet scheduling perspec-
tive. The goal was to investigate an optimal packet scheduling

policy on the uplink of a WRN. To do that, we presented
a queuing model for a two-hop WRN. The wireless nodes
were assumed to have random channel connectivity that was
modelled as a random process. We used coupling arguments to
prove the optimality of a class of policies, namely the class of
most balancing (MB) policies. In this work, we extend our
results to the general case of K-hop WRN (for K ≥ 2).
We develop a queueing model that captures packet buffering,
scheduling and routing processes as well as the randomness
of channel connectivity in multi-hop WRN. The model is then
used to investigate the optimal dynamic packet scheduling
policy in these networks. This extension is not a trivial one
and the proofs of the presented results are much harder to
obtain as we will show in Section IV.

Dynamic packet scheduling provides a mechanism for the
redistribution of the available resources in order to improve
network performance. Furthermore, it is possible to obtain
packet scheduling policies that optimize performance criteria
under various operating constraints. This motivated the work
we present here. The stochastic nature of the wireless channel
and the dynamic node configuration in wireless networks
present a formidable challenge to our investigation. Therefore,
it is often necessary to make suitable assumptions that result
in mathematically tractable problem formulations. Otherwise,
optimality results may not be attainable. Most of the assump-
tions used in this model are well vetted in the literature, e.g.,
[11], [12] and [13] .

In this work, we investigate an optimal dynamic packet
scheduling policy for a K-hop wireless relay network (WRN).
The network is composed of a base station (BS), a set of L1

subscriber stations (SS) and K−1 tandem sets of relay stations
(RS) where set k, k = 2, 3, . . . ,K has Lk RS nodes, for any
arbitrary K < ∞ and Lk < ∞, k = 1, . . . ,K. This network
is modelled by K mutually exclusive1 sets of infinite size
queues (or stacks of queues, see Figure 1). Time is slotted
into equal size transmission frames. The wireless channel
connectivity is assumed to be a Bernoulli process. At any
given time, a wireless link is assumed to be ‘connected’ with
probability p and ‘not connected’ otherwise. We assume that
the connectivity processes are independent across the wireless
links. We further assume that relay nodes have the ability to
schedule/route packets to the next hop. A transmission frame

1In most infrastructure based WRNs, the relays are uniformly distributed
in order to increase the coverage area with minimum number of relay nodes.
Therefore, this assumption is not far fetched. Furthermore, this assumption is
essential to the optimality proof we present in this paper.

A1(t)

AL1(t)

C1,1(t)

X1,1(t)

X1,L1(t)

A2(t)

X1,2(t)

C2,1(t)

X2,1(t)

X2,L2(t)

X2,2(t)

BS

SSs (set 1) RSs (set 2)

User 1

User 2

Base Station

A(t)
CX(t)

X(t)

CY(t)
Y(t)

BS

C1,L1(t)

C1,2(t) C2,2(t)

C2,L2(t)

CK,1(t)

XK,1(t)

XK,LK(t)

XK,2(t)

CK,2(t)

CK,LK (t)

RSs (set K)

Fig. 1. A queueing model for a multi-hop wireless relay networks.

is divided into K slots; during the first slot a SS node is
scheduled to transmit (to a selected RS on the second hop)
and during the second slot, a RS node from the second set
of nodes is scheduled to transmit to the next hop and so on.
During the Kth slot, a RS node from the Kth set of nodes is
scheduled to transmit to the base station.

In this work, we provide a proof using stochastic dominance
[9] and coupling arguments [10], that a most balancing (MB)
policy is optimal in that it minimizes, in stochastic ordering
sense, the cost function under consideration2. The optimization
cost function belongs to a set of monotone, non-decreasing
functions of the process of queue occupancy in the system.
The exact characterization of this class of functions is given
in Section IV-B.

In the literature, similar problems can be found in the area
of optimal control of queueing networks. Perhaps the earliest
work related to ours is the one presented by Roseburg, Varaiya
and Walrand in [8]. They investigated an optimal control
policy of service rate in a system of two queues in tandem.
They proved, using a dynamic programming argument, that
a threshold policy is optimal in that it minimizes the ex-
pected cost function of the queue occupancy. Tassiulas and
Ephremides [11] studied an optimal packet scheduling policy
in a system of parallel queues with a single server and random
connectivity; they showed that a LCQ policy, a policy that
allocates the server to its longest connected queue, minimizes
the total number of packets in the system. In [12] the authors
studied a system of parallel queues with symmetrical statistics
and K identical servers. At any given time slot: (i) a server
is either connected (to all queues) or not connected, (ii) at
most one server can be allocated to each scheduled queue.
Using stochastic coupling arguments, the authors proved that
allocating the K servers to the K longest connected queues
at every time slot is optimal.

In [13], the authors studied the problem of optimal schedul-
ing in a multi-server system of parallel queues with random
queue-server connectivity. They relaxed assumptions (i) and
(ii) in [12] above. They proved, using coupling arguments, that
a Most Balancing (MB) policy is optimal in that it minimizes,
in stochastic ordering sense, a cost function of the queues’
occupancy.

In [15], the authors studied link scheduling in WRN with
bandwidth and delay guarantees. They used simple directed
graph to model the system. They proposed an efficient al-

2Stochastic ordering is a stronger optimization notion than the expected
cost minimization since the former implies the latter [7].

gorithm to provide delay guarantee over WRN. In [14], the
authors proposed a cooperative multiplexing and scheduling
algorithm for a WRN with a single relay node. They showed
that this algorithm outperforms the traditional opportunistic
scheduling in terms of spectral efficiency.

In WRN, the choices of relay node, relay strategy, and the
allocation of power and bandwidth for each user are important
design parameters. These parameters were investigated thor-
oughly in recent literature. Relay selection and cooperation
strategies for relay networks have been investigated by [16]
and [17] among others. Power control has been investigated
by [18] and [19] and many others. However, the modern
wireless networks are mostly IP-based. Therefore, dynamic
packet scheduling optimization is an important problem in
studying WRNs.

The main contributions of this work can be summarized by
the following:
• We propose a queueing model to study the process of

packet scheduling in a multi-hop wireless relay network,
see Figure 1.

• We introduce (in Equation 12) the class of Most Bal-
ancing (MB) policies. We prove the optimality of MB
packet scheduling policies (Theorem 2) in this model. The
optimality was carried out in stochastic ordering sense.
The cost that is minimized belongs to a set of functions
of the SS and RS queue lengths.

• We suggest an algorithm to implement the MB policies
in WRN. We provide a proof that this algorithm results
in a MB policy.

The model we are presenting in this article differs from the
previous work in that it contains K sets of parallel queues
in tandem rather than just one or two. As we mentioned
earlier, a transmission frame in our model is divided into
K transmission slots, one per each hop. During transmission
slot k : k ∈ {1, . . . ,K} of each transmission frame t, the
scheduler must decide which node, out of the Lk nodes in
hop k, transmits a packet and which node in hop k + 1
receives that packet. Solving this optimization problem is not
straightforward. There are dependency issues between each
two neighbouring sets of queues in the transmission chain that
must be resolved before a rigorous proof can be carried out.
This adds more complexity to the solution of this optimization
problem. The approach we use in our proof (section IV)
addresses this issue rigorously.

The rest of this article is organized as follows; in Section
II, we provide description of the queueing model under in-
vestigation. In Section III, we introduce the class of “Most
Balancing” policies. The optimality results are given in Section
IV. Conclusions are given in Section V. Proofs for some of the
results are given in the appendix.

II. MODEL DESCRIPTION AND PROBLEM FORMULATION

We use a discrete-time queueing system to model the WRN,
as shown in Figure 1. The objective is to study the optimal
dynamic packet scheduling policy for this model. We define
the optimal policy as the one that minimizes, in stochastic
ordering sense, a cost function of the queue lengths (to be
defined shortly).

In this model, time is slotted into constant transmission
intervals (time frames) denoted by t. Each frame is divided
into K (transmission or scheduling) slots, each of which is
good for transmitting one packet across a single hop, i.e., slot
k is used to transmit one packet from a queue in set k to a
queue in set k+1. During slot k, k = 1, . . . ,K, the following
sequence of events occur: (a) the sizes and connectivities of
queues that belong to the set k and their immediate neighbours
in the set k+1 is observed, (b) the scheduler selects a control
decision, then if k = 1 (c) the exogenous arrivals are added to
their respective SS queues3. The scheduler decision during slot
k involves (i) selecting a node in the set k to transmit to a relay
node in the next hop (or to the BS if k = K); we denote this
control by Uk,1(t), (ii) selecting the relay node that the sched-
uled packet (in (i) above) is routed to; denote it by Uk,2(t).
The scheduler decision are sequentially executed with order4

. . . , UK,1(t−1);U1,1(t), U1,2(t), . . . , UK,1(t);U1,1(t+1), . . .,
where the semicolons indicate the limits for frame t. A packet
that arrives during the current frame can only be considered
for transmission in the subsequent frames. We assume that
the scheduler has partial knowledge of the system states at
every transmission (or scheduling) slot k, k = 1, . . . ,K. This
knowledge includes the queue lengths and connectivities of all
queues in the set k : k ∈ {1, . . . ,K} and the set k + 1 for
k < K.

A. Problem Formulation

Throughout this paper, we will use UPPER CASE, bold
face and lower case letters to represent random variables,
vector/matrix quantities and sample values respectively. In our
notation, we define K dummy queues, one for each of the K
sets of queues, that we denote by the index ‘0’. These queues
are used to represent the idling action, i.e., a dummy packet is
removed from queue 0 when no real packet from real queue
is scheduled for transmission. We assume that the dummy
queues have full connectivity at all times and are initially
empty. The dummy queues are required in order to facilitate
the mathematical formulation of this problem and to simplify
notation. Let Lk = {0, 1, . . . , Lk}, k = 1, . . . ,K be the set
of indices for the kth stack of queues in the system. For any
transmission frame t = 1, 2, . . ., we define the following:

1) A(t) = (A0(t), A1(t), . . . , AL1
(t)), where Aj(t) is the

number of exogenous arrivals to SS queue j during
transmission frame t.

2) Xk(t) = (Xk,0(t), Xk,1(t), . . . , Xk,Lk
(t)), k= 1, . . . ,K

is the queue length vector for the nodes in set k
(measured in number of packets) at the beginning of time
frame t, where Xk,j(t) ∈ {0, 1, 2, . . .} and Xk,0(1) =
0,∀k.

3) Ck(t) = (Ck,0(t), Ck,1(t), . . . , Ck,Lk
(t)), k = 1, . . . ,K

is the channel connectivity for set k’s nodes during slot
k of transmission frame t, where Ck,0(t) = 1,∀k, t.

4) U(t) = (U1,1(t), U1,2(t), . . . , UK,1(t)), s.t. Uk,1(t) ∈
Lk, Uk,2(t) ∈ Lk+1, is the scheduler decision (or con-

3The exogenous arrivals will be added at the end of slot 1 of each frame.
4Note that on the last hop (hop K) the only control a node scheduled for

transmission has is to forward a packet to the base station.

trol), where U(t) = (i1, j1, i2, j2, . . . , iK) means that
node ik in set k is scheduled to transmit to node jk in set
k + 1 during the kth slot of frame t, ∀k=1, . . . ,K−1,
and node iK is scheduled to transmit to base station
during the Kth slot of transmission frame t.

5) We set X(t) = (X1(t); . . . ;XK(t)) and C(t) =
(C1(t); . . . ;CK(t)). For ease of reference, we refer to
(X(t),C(t)), as the system “state” (denoted by S(t))
during transmission frame t.

To facilitate problem tractability we make several statistical
assumptions for the model parameters. The exogenous arrival
processes, to the SS nodes, (Ai(t) ∈ {0, 1}, i = 1, . . . , L1) are
assumed to be i.i.d. Bernoulli, with parameter q. The arrivals
to any RS node in a subsequent set k during frame t is
equal to the number of packets transmitted from a node in
set k − 1 to that RS node during slot k − 1 of frame t. For
convenience, we define A0(t) = W1,0(t), where W1,0(t) is the
number of packets withdrawn from queue 0 in set 1 during
slot 1 of frame t, in order to ensure that X1,0(t) = 0 for
all t. Furthermore, transmitted dummy packets (i.e., fictitious
packets from dummy queues) will not be added to the receiver
queue (the RS queue that the packet is routed to). This
assumption is needed to keep the book-keeping straight, since
fictitious packet is generated only when there is no real packet
transmission.

The connectivity processes Ck,i(t) and Ck,j(t), for all
k = 1, . . . ,K, i, j = 1, . . . , Lk, i 6= j are assumed to
be independent Bernoulli with connection probability p. We
further assume that the arrival and connectivity processes are
independent of each other.

To simplify problem formulation and the proofs, we define
next the ‘withdrawal’ and the ‘insertion’ controls as a function
of the scheduler control U(t).

B. Feasible Withdrawal/Insertion Control Vectors

At any given frame t, we define the withdrawal vector
Wk(t) for set k as follows:

Wk,i(t) = 1{Uk,1(t)=i}, ∀i ∈ Lk (1)

where 1{B} denote the indicator function for condition B.
Wk,i(t) represents the number of packets withdrawn from
queue i of set k during slot k of frame t. We also define
the insertion vector for set k ≥ 2 as:

Vk,j(t) = 1{Uk−1,2(t)=j}, ∀j ∈ Lk \ {0} (2)

and V1,j(t) = 0,∀j, i.e., there is no endogenous arrivals to
queues in stack 1 (the SS nodes). Vk,j(t) represents the number
of packets inserted to RS queue j of set k during slot k of
frame t. Note that we do not allow real packets to be inserted in
the dummy queue. Similarly, we do not allow dummy packets
to be inserted into real queues.

Given a (feasible) withdrawal control, the queue length
process for SS nodes (stack 1) in the system described above
evolves according to the following relation:

X1(t+ 1) = X1(t)−W1(t) + A(t) (3)

Similarly, for any feasible withdrawal/insertion controls, the
queue length process for RS nodes (stacks k=2,. . . , K) evolves
according to the following relation:

Xk(t+ 1) = Xk(t) + Vk(t)−Wk(t) (4)

Examining Equations (3) and (4) closely reveals that Equa-
tions (1) and (2) do not guarantee feasibility of the with-
drawal/insertion vectors or the scheduling control U(t). To
remedy that, we state the following feasibility condition:

U(t) is said to be a ‘feasible scheduling control’ if the fol-
lowing condition is satisfied: ‘a packet may only be withdrawn
from a connected, non-empty queue’.

Formally, given the system state S(t) during transmission
frame t, a scheduling control U(t) is feasible if and only if
the resulted withdrawal/insertion vectors satisfy the following
feasibility constraints:

0 ≤Wk,i(t) ≤ 1{Xk,i(t)>0} · Ck,i(t), ∀k, i 6= 0, (5)

Li∑
i=0

Wk,i(t) = 1, ∀k. (6)

According to Constraint (5), a packet is withdrawn from a
queue i in stack k only if this queue is connected and non-
empty, i.e., Ck,i(t) = 1 and Xk,i(t) > 0. Constraint (6) insures
that only one node in every set of nodes is allowed to transmit
at any given transmission frame t. Define the set U(S(t)) as the
set of all feasible scheduling controls U(t) when the system
is in state S(t).

C. Policies for Dynamic Packet Scheduling

A packet scheduling policy π (or policy π for short) is a
rule that determines the feasible control vectors U(t) for all
t as a function of the past history and current state of the
system, where the state history H(t) is given by the following
sequence of random variables

H(1) = (X(1)), and for t ≥ 2 :

H(t) = (X(1),C(1),A(1), . . . ,C(t−1),A(t−1),C(t))(7)

Let Ht be the set of all state histories up to time frame t.
Then a policy π can be formally defined as the sequence of
measurable functions

gt : Ht 7−→ Z2K−1
+ , s.t. gt(H(t)) ∈ U(S(t)), t = 1, 2, . . . (8)

where Z+ is the set of non-negative integers.
The set of feasible5 scheduling policies described in Equa-

tion (8) is denoted by Π. We are interested in a subset of Π that
we will introduce in the next section, namely the class of Most
Balancing (MB) policies. We intend to prove the optimality
of MB policies among all policies in Π.

5We say that a policy π is feasible if it selects a feasible scheduling control
Uπ(t) ∈ U(S(t)) for all t.

III. THE CLASS OF MB POLICIES (ΠMB)

In this section, we provide a description and mathematical
characterization of the class of MB policies. Intuitively, the
MB policies attempt to balance the sizes (leftover) of the
queues for everyone of the K sets in the system. This can
be achieved by minimizing the queue length differences for
all sets of queues, at every time frame t.

We present next a more formal characterization of MB
policies. We first define the ‘imbalance index’ (κ(x)) of a
vector x.

Let x ∈ ZM+ be an M -dimensional vector. The imbalance
index of x is defined as follows:

κ(x) : ZM+ 7−→ Z+, κ(x) =

M−1∑
i=1

M∑
j=i+1

(x[i] − x[j]), (9)

where [k] denotes the index of the kth longest component in
the vector x.

The above definition ensures that the differences are non-
negative and a pair of components is accounted for in the
summation only once. We define next the “balancing inter-
change” for the vector x. We use this operation in the proof
for the optimality of MB policies.
Definition: Balancing Interchange: Given vectors x,x∗ ∈
ZM+ , we say that x∗ is obtained from x by performing
a balancing interchange if the two vectors differ in two
components i > 0 and j ≥ 0 only, where

x∗i = xi − 1, x∗j = xj + 1, s.t. xi ≥ xj + 1. (10)

If the vector x represents a queue sizes vector then per-
forming a balancing interchange would involve removing one
packet from a larger queue i and adding it to a smaller queue
j. We will show later (in Lemma 2) that such an operation
will decrease the vector’s imbalance index.

Given a state s(t) and a policy π that chooses the feasible
scheduling control u(t) ∈ U(s(t)) at transmission frame t;
define the “updated” queue size, x̂k,j(t), as the size of queue
j in stack k after applying the control u(t) at slot k (and
before adding the exogenous arrivals for stack 1, the SS nodes)
during transmission frame t. Note that because we let a0(t) =
w1,0(t), x̂1,0(t) may be negative. The updated queue sizes can
be stated as follows:

x̂1,i(t) = x1,i(t)− w1,i(t), i ∈ L1, and,

x̂k,i(t) = xk,i(t) + vk,i − wk,i(t), k ≥ 2, i ∈ Lk(11)

Note that x̂k,i(t), i > 0 is a non-negative quantity due to the
feasibility constraint (5).

At any given time frame t, the imbalance indices for the
updated queue length vector x̂k(t),∀k is given by κ(x̂k(t)).
From Equation (9), it follows that the minimum possible value
of the imbalance index for a M + 1-dimensional vector x
is equal to M · x[M] which is indicative of a fully balanced
system.

We denote by ΠMB the set of all MB policies in the system.
The elements of ΠMB are defined as follows:
Definition: Most Balancing Policies: A Most Balancing
(MB) policy is a policy π ∈ Π that, at every t = 1, 2, . . .,

chooses feasible scheduling control vector u(t) ∈ U(s(t)) that
minimizes the imbalance indices κ(x̂k(t)),∀k, i.e.,

ΠMB =
{
π ∈ Π :

K⋂
k=1

argmin
u(t)∈U(s(t))

κ(x̂k(t)),∀t
}

(12)

In Equation (12), K sets of policies are defined through
the K argmin functions. Policies in the kth set minimize the
imbalance index for the kth stack updated queue length vector.
The intersection of all sets results in a set of policies that
minimize the imbalance index for all vectors. We say that
a policy has the “MB property” during time frame n, if it
chooses a control that satisfies Equation (12) at t = n. Then
a MB policy can be defined as the policy that has the MB
property at every time frame.

The set ΠMB in (12) is well-defined and non-empty, since
the minimization is over a finite set of controls. Furthermore,
the set of MB policies may have more than one element.

A. MB Policy Implementation

In this section, we provide a low-complexity algorithm to
implement MB policies. This algorithm is defined next:
Definition: Algorithm 1: For every time frame t, Algorithm
1 selects the feasible control vector u(t) such that for every
k, uk,1(t) is the longest connected queue in stack k, uk,2(t)
is the shortest queue in stack k + 1. That is

uk,1(t) = l : l ∈ argmax
i∈Lk:ck,i(t)=1

(xk,i(t) + vk,i(t)) (13)

uk,2(t) = s : s ∈ argmax
i∈I

ck+1,i(t), where

I = argmin
j∈{1,...,Lk+1}

xk+1,j(t), (14)

for all k, where vk(t) is the insertion vector (endogenous
packets) to stack k at time frame t. For queue 0 of each stack
k we add one extra condition for the sake of mathematical
accuracy, that is: “If uk,1(t) = 0 then uk,2(t) = 0.” This may
happen when the controller is forced to idle during any slot
of frame t. �

Equation (14) identifies the shortest RS queue in stack k+1;
if there are more than one queue that satisfy this condition,
one of which (at least) is connected, then the connected one
is the one selected as uk,2(t). Otherwise, uk,2(t) will be the
shortest non-connected queue in the stack. The reason behind
this extra condition is a special case where all the queues in
stack k+ 1 have the same size, then queue uk,2(t) will be the
longest queue in stack k+1 after adding the packet transmitted
from queue uk,1(t). Selecting a connected queue in this case
will provide the opportunity for the scheduler to select the
longest queue as uk+1,1(t) at the next scheduling slot.

Lemma 1. Algorithm 1 results in a feasible control vector
u(t) for any t.

Proof: According to Equation (13), packets are withdrawn
from connected queues only. Furthermore, packets are with-
drawn from the longest connected queue for any stack of
queues. This will insure that as long as there is at least a single
connected, non-empty queue in the stack then the longest

connected queue will not be empty. Therefore, Equations
(5) is satisfied. Furthermore, Equation (6) is satisfied by the
definition of the scheduler control u(t).

Next we will prove a theorem that states that the policy
resulted from the proposed implementation algorithm is indeed
a MB policy. To do that we need the following lemma. Its
proof can be found in [5].

Lemma 2. Let x and x∗ be two L + 1-dimensional or-
dered vectors (in descending order); suppose that x∗ is
obtained from x by performing a balancing interchange of
two components, l and s, of x, where xl > xs, such that,
s > l;xl > xa,∀a > l and xs < xb,∀b < s. Then

κ(x∗) = κ(x)− 2(s− l) · 1{xl≥xs+2} (15)

Lemma 2 quantifies the effect of performing a balancing
interchange on the imbalance index κ(x) of the L + 1-
dimensional vector x.

Theorem 1. For the operation of the system under consider-
ation, a MB policy can be constructed using Algorithm 1.

We prove Theorem 1 by contradiction. We assume that a
MB policy selects a control u(t) at t that does not satisfy
Equations (13) – (14) for some k. The control vector selected
by Algorithm 1 is feasible according to Lemma 1. Then using
Lemma 2 we show that applying the controls selected by Equa-
tions (13) – (14) will result in an imbalance index κ(x̂k(t))
that is smaller than that under the MB policy which contradicts
Equation (12). Therefore, u(t) must satisfy Equations (13) –
(14) for all k and the theorem follows.

Proof for Theorem 1: Given the system state s(t) =
(x(t), c(t)) at t; let l be the index of the longest connected
queue in set k after adding the insertion vector vk(t) (as
in Equation (13)) and s be the index of the shortest queue
in k + 1 before executing the control u(t) that satisfies
Equation (14). Let π ∈ ΠMB be a MB policy that selects
the scheduler control u(t) ∈ U(s(t)) during frame t. To show
a contradiction, we assume (to the contrary of Theorem 1) that
u(t) does not satisfy Equations (13) – (14) for the scheduling
slot k ∈ {1, . . . ,K}.

We show next that in this case, the control vector selected
by Algorithm 1 during frame t will result in an imbalance
index κ(x̂k(t)) that is either (i) less than or (ii) equal to that
obtained under a MB policy. Case (i) contradicts Equation
(12); therefore, the MB policy must satisfy Equations (13) –
(14). Case (ii) insures that Algorithm 1 satisfies Equation (12).
In either case, Theorem 1 will follow.

Consider the following two cases corresponding to Equa-
tions (13) and (14):

1) uk,1(t) does not satisfy Equation (13) during slot k of
frame t, i.e., xk,uk,1(t)(t) + vk,uk,1(t)(t) < xk,l(t) + vk,l(t).
Then x̂k,uk,1(t)(t) < x̂k,l(t) − 1 (under π). According to
Equation (10) we can perform a balancing interchange be-
tween components uk,1(t) and l that will reduce the imbal-
ance index κ(x̂k(t)). Therefore, π does not satisfy Equation
(12) and hence it is not a MB policy. This contradicts the
original assumption that π ∈ ΠMB . Therefore, we conclude
that a MB policy must satisfy Equation (13). Note that

xk,uk,1(t)(t) + vk,uk,1(t)(t) > xk,l(t) + vk,l(t) is not possible
since queue uk,1(t) must be connected (feasibility constraint
(5)) and queue l is the longest connected queue after adding the
insertion vector by assumption. Equality is also not possible
since uk,1(t) satisfies Equation (13) in this case.

2) uk,2(t) does not satisfy Equation (14) during slot
k of frame t, i.e., xk+1,uk,2(t)(t) > xk+1,s(t). Then
xk+1,uk,2(t)(t) + vk+1,uk,2(t)(t) > xk+1,s(t) + vk+1,s(t) + 1
(under π). Similar to the previous case, we can perform a
balancing interchange between queues uk,2(t) and s. Again
this will reduce the imbalance index κ(xk+1(t) + vk+1(t)).
Therefore, π does not satisfy Equation (12) and hence it is
not a MB policy. This contradiction leads us to conclude that
π must satisfy Equation (14). Since s is the shortest queue by
assumption, then xk+1,uk,2(t)(t) < xk+1,s(t) is not possible.
However, if xk+1,uk,2(t)(t) = xk+1,s(t) s.t. uk,2(t) 6= s; in
this case, if ck+1,uk,2(t)(t) = ck+1,s(t) then uk,2(t) satisfies
Equation (14) during time frame t. Otherwise, i.e., ck+1,s(t) >
ck+1,uk,2(t)(t) = 0, then xk+1,uk,2(t)(t) + vk+1,uk,2(t)(t) =
xk+1,s(t) + vk+1,s(t) + 1. In this case, if uk+1,1(t) = s
then x̂k+1,uk,2(t)(t) = x̂k+1,s(t) + 2. A balancing interchange
between queues uk,2(t) and s will reduce the imbalance index
κ(x̂k+1(t)). Therefore, π does not satisfy Equation (12) and
hence it is not a MB policy. By contradiction π must satisfy
Equation (14).

If on the other hand uk+1,1(t) 6= s then a policy that chooses
either uk,2(t) or s while keeping uk,1(t) and uk+1,1(t) the
same will result in the same imbalance index κ(x̂k+1(t)).
Since π ∈ ΠMB by assumption, then Algorithm 1, in this
case, will result in a policy that belongs to ΠMB as well.

We conclude that a MB policy π ∈ ΠMB satisfies Equations
(13) and (14) for all k and Theorem 1 follows.
Remark: The presented algorithm shows that it is feasible
(with minimum efforts) to implement the MB policies. The
details of such implementation in a real wireless system is out
of the scope of this work. �

IV. OPTIMALITY OF MB POLICIES

In this section we provide a proof for the optimality of the
Most Balancing (MB) policies for the operation of the system
presented earlier and shown in Figure 1. We start by defining
a partial order that facilitates the comparison of the cost
functions under different policies. We also define a class of
cost functions for the optimality problem under investigation.

A. Definition of the Partial Order (4)

For the proof of our results, we require a methodology that
enables the comparison of the queue lengths under different
policies. The idea is to define an order that we refer to as
the “preferred order” to compare queue length vectors in each
stack under different policies. We define the relation v on ZM+
for some M > 0 as follows; we say that two vectors x̃ and x
are related via x̃ v x if:
S1- x̃i ≤ xi for all i (i.e., point wise comparison),
S2- x̃ is a 2-component permutation of x; the two vectors

differ only in two components i and j, such that x̃i = xj
and x̃j = xi, or

S3- x̃ is obtained from x by performing a “balancing inter-
change” as in Equation (10).

Now we are ready to define the “preferred order”.
Definition: Define the preferred order (4) as the transitive
closure of the relation v on the set ZM+ ,M > 0. �

The transitive closure of v on the set ZM+ is the smallest
transitive relation on ZM+ that contains the relation v [20].
In other words, x̃ 4 x if the vector x̃ is obtained from
x by performing a sequence of operations that involve re-
ductions, permutations of two components and/or balancing
interchanges.

B. The Class F of Cost Functions

We prove the optimality of MB policies for a class of cost
functions F that we define next.

Denote by F the class of real-valued functions on the set
ZM+ that are monotone and non-decreasing with respect to the
partial order4 defined earlier. For any two vectors x̃,x ∈ ZM+ ,
a function f ∈ F if and only if

x̃ 4 x ⇒ f(x̃) ≤ f(x). (16)

From (16) and the definition of preferred order, it can be
easily shown that the function f(x) = x1 + x2 + · · · + xM
belongs to F .

C. MB Policies Are Optimal

In what follows, we present a theorem stating the optimality
of MB policies among all feasible policies and its proof. We
use Y ≤st Z to denote the usual stochastic ordering for two
real-valued random variables Y and Z [9]. We state that a
policy σ ∈ Π ‘dominates’ another policy π ∈ Π if

f(Xσ
k(t)) ≤st f(Xπ

k (t)), ∀ t = 1, 2, . . . ,∀ k, (17)

and for all cost functions f ∈ F ; where Xα
k (t), t = 1, 2, . . . ,

is the queue lengths process for stack k under policy α.
Note that from Equation (16) and the definition of stochastic

ordering, Xσ
k(t) 4 Xπ

k (t) for all k, t and all sample paths in
a suitable sample space6, is sufficient for policy domination.

Let XMB
k and Xπ

k be the queue size processes of stack
k under πMB ∈ ΠMB and an arbitrary policy π ∈ Π
respectively. We define the following subsets of the set Π:

(a) Πτ ⊆ Π, the set of policies that has the MB property
during frames t ≤ τ , and are arbitrary for t > τ .

(b) Πk
τ ⊆ Π, the set of policies that has the MB property

during frames t ≤ τ−1 and during t = τ chooses the controls
ui,1(τ) and ui,2(τ) for all i ≤ k according to a MB policy and
chooses arbitrary (may not be MB) controls for k < i ≤ K
and for t > τ .

It is trivially obvious that Π = Π0. We can also see
that Πk

n,∀k = 1, . . . ,K and n = 0, 1, . . . form a monotone
sequence of subsets, such that Πn ≡ ΠK

n ⊆ ΠK−1
n ⊆ . . . ⊆

Π1
n ⊆ Πn−1. Furthermore, the set Πn for any n is not empty,

since it contains the MB policies. The set ΠMB can be defined

6The intended sample space is the standard one used in stochastic coupling,
see [10] for details.

as ΠMB =
⋂∞
n=1 Πn. To prove Theorem 2 below, we need

the following lemmas. Their proofs are given in the appendix.

Lemma 3. Given π ∈ Πτ−1, a policy π̃ ∈ Π1
τ that dominates

π, in the sense of Equation (17), can be constructed.

Lemma 4. For any policy π ∈ Πh
τ , h = 1, . . . ,K, there exist

a policy π̃ ∈ Πh+1
τ that dominates π.

The above lemmas provide a methodology to construct
a MB policy from any arbitrary policy π using stepwise
improvements on the original policy while maintaining policy
domination.

Theorem 2. For the operation of the system described in
Section II, a Most Balancing policy πMB ∈ ΠMB dominates
any arbitrary policy π ∈ Π, i.e.,

f(XMB
k (t)) ≤st f(Xπ

k (t)), ∀k, ∀ t = 1, 2, . . . , (18)

and for all cost functions f ∈ F .

Proof: The proof of Theorem 2 is conducted as follows:
Starting from any arbitrary policy π ∈ Π, we construct
a sequence of policies π1, π2, . . ., using Lemmas 3 and 4
repeatedly7, that satisfy the following: (a) π1 dominates the
original arbitrary policy π, (b) πn ∈ Πn, i.e., πn has the
MB property during time frames t = 1, 2, . . . , n, and, (c) πm
dominates πn for m > n.

By definition, π is an arbitrary policy; therefore, π ∈ Π0.
We construct a policy π1,1 ∈ Π1

1 that dominates π according
to Lemma 3. Using Lemma 4 we construct a sequence of
policies π1,i ∈ Πi

1, i = 2, . . . ,K each of which dominates
the previous one according to Lemma 4. The last such policy
π1 = π1,K ∈ ΠK

1 ≡ Π1 that has the MB property during
transmission frame t = 1 and dominates π.

By repeating the above for frames t = 2, 3, . . . we obtain a
sequence of policies πn ∈ Πn, n = 2, 3, . . . that satisfy (a) –
(c) above, i.e., each subsequently constructed policy has the
MB property for one extra frame (compared to the previous
one) and dominates all the previously constructed policies as
well as the original policy π.

Lets denote the limiting policy (as n −→ ∞) of the
sequence of policies constructed earlier by π∗. Then π∗ has
the MB property at all time and therefore, π∗ ∈ ΠMB . From
the previous construction, we conclude that π∗ dominates πn,
for all n < ∞ as well as the original policy π. The proof
is complete since the initial policy π ∈ Π is assumed to be
arbitrary.

V. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

In this paper, we investigated an optimal dynamic packet
scheduling policy for multi-hop network with random con-
nectivity. We modelled the K-hop network by K tandem sets
of queues each of which represents the collection of nodes
in a single hop. The random connectivity can be used to
capture the stochastic nature of wireless channels. This model
is suitable for studying dynamic scheduling in wireless relay
networks. We proved, using coupling arguments, that most

7To construct πi starting from πi−1 we apply Lemma 3 once and Lemma
4 K − 1 times.

balancing policies dominate all other feasible policies in that
they minimize, in stochastic ordering sense, a class of cost
functions of the system queue lengths. One such function is
the total number of packets in the system. We also provided
an algorithm to construct the optimal scheduling policy. We
proved that the suggested algorithm produces a most balancing
policy for the system under investigation. Examples where this
model can be applied include process scheduling in multi-stage
operations with intermittent connectivity that can be found
in operational research, software engineering (performance
analysis and optimization) as well as computer networks
(wireless relay networks and multi-hop wireless networks in
general).

This work contribute to a theoretical platform that can be
used to launch further research in the area of optimal packet
scheduling in wireless networks. For future work we suggest
the following extensions to the model: (i) the two-state model
may be extended to finite-state Markov channel, (ii) the use
of multiple servers per hop in the model presented in Figure
1, i.e., multiple packets can be scheduled at each of the
K slots, (iii) the use of matrix connectivity per hop rather
than the vector connectivity used here, (iv) the relaxation
of the symmetry assumption we imposed on arrivals and
connectivities of queues in each hop. It is worth noting that
the problem resulted from adding such extensions will not be
a trivial one.

APPENDIX

We use stochastic coupling arguments in the proof of
Lemmas 3 and 4. A brief introduction to the coupling method
is given next.

A. Stochastic Coupling

In order to compare probability measures on a measurable
space, it is often possible and sometime rewarding to con-
struct random elements (variables or processes) on a common
probability space with these measures as their distributions,
such that this comparison can be conducted in terms of the
random elements rather than the probability measures. Such
construction is often referred to as stochastic coupling8 [10].
To put it differently, coupling refers to the joint construction
of two or more random elements (in a convenient way) in
order to deduce properties of the individual random elements.
A formal definition of coupling of two probability measures
on the measurable space (E, E) is given below [10].

A random element in (E, E) is a quadruple (Ω,F ,P, X),
where (Ω,F ,P) is the sample space and X is the class of
measurable mappings from Ω to E (X is an E-valued random
variable, s.t. X−1(B) ∈ F for all B ∈ E).
Definition: A coupling of the two random elements
(Ω,F ,P,X) and (Ω′,F ′,P′,X′) in (E, E) is a random
element (Ω̂, F̂ , P̂, (X̂, X̂′)) in (E2, E2) such that

X
D
= X̂ and X′

D
= X̂′, (A-1)

8A familiar (but more restrictive) definition of stochastic coupling is the
construction of two stochastic processes such that their paths coincide after
some coupling epoch T .

where D
= denotes ’equal in distribution’. Note that the original

random elements need not be defined on a common probability
space, i.e., they may not have a joint distribution. The cou-
plings (the constructed copies), on the other hand, have a joint
distribution.

Originally, stochastic coupling was used by mathematicians
to prove properties for stochastic processes, e.g., establishing
asymptotic stationarity of birth and death processes. Later on,
stochastic coupling methods were used to prove optimality
results for dynamic control of queueing systems. cf. [21], [22],
[11], [12].

B. Proofs for Lemmas 3 and 4

To prove Lemmas 3 and 4, we show how π̃, as described
in these lemmas, can be constructed while maintaining policy
domination as stated in these lemmas. In both proofs we apply
the coupling method as follows: For the scheduling policy π,
let ω be a given sample path of the system state process. A
new sample path, ω̃ and a new policy π̃ are constructed. This
construction is detailed in the proof below. In reference to the
coupling definition (Equation (A-1)), the “coupled” processes
of interest in Equation (A-1) will be the queue sizes X̂ =
{Xk(n)} and X̂′ = {X̃k(n)}.

A feasible scheduling policy chooses a feasible control
U(t) ∈ U(S(t)) at every frame t. Using Equations (3) and
(4), the new queue states xk(·) under π and x̃k(·) under π̃ for
all k, are computed.

One can show the dominance of policy π̃ over π by proving
that the following K relations are satisfied for all t.

x̃k(t) 4 xk(t), ∀k = 1, . . . ,K (A-2)

A queue length vector x̃k is preferred over xk (i.e., x̃k 4
xk) if one of the statements S1, S2 or S3 (in Section IV-A)
holds.

Proof for Lemma 3: The proof of Lemma 3 is carried
out in two steps (detailed in Part 1 and Part 2) as follows:
Starting from an arbitrary policy π ∈ Πτ−1 and a sample
path ω = (x(1), c(1),a(1), . . .), we construct the sample path
ω̃ and the policy π̃ (as stated by Lemma 3) for times up to
t = τ (in Part 1) and for t > τ (in Part 2).

Part 1: We construct ω̃ to coincide with ω for all t < τ , i.e.,
ã(t) = a(t) and c̃(t) = c(t) for all t < τ . Furthermore, we
construct π̃ such that ũ(t) = u(t) for all t < τ . Then the
resulting queue lengths under both policies are the same, i.e.,
x̃(τ) = x(τ).

At t = τ , let c̃(τ) = c(τ) and ã(τ) = a(τ). We construct
π̃ at t = τ by selecting ũk,1(τ) and ũk,2(τ),∀k as follows:

1- Construction of ũ1,1(τ). We have the following two cases
to consider:

(i) The scheduling control u1,1(t) satisfies Equation (13) at
t = τ , i.e., u1,1(τ) = l : l ∈ argmaxi∈L1:c1,i(τ)=1 x1,i(τ),
since v1,i(t) = 0,∀i, t by assumption. Then we set ũ1,1(τ) =
u1,1(τ). The resulting queue lengths x̃1(τ + 1) = x1(τ + 1)
(since ã(τ) = a(τ) by construction), property (S1) holds true
for set 1 queue length vector and (A-2) is satisfied for k = 1
at t = τ + 1.

(ii) The scheduling control u1,1(t) does not satisfy Equation
(13) at t = τ . Then we set

u1,1(τ) = l : l ∈ argmax
i∈L1:c1,i(τ)=1

x1,i(τ).

Given the construction of c̃(τ) and ã(τ), we conclude the
following (we suppress the time argument for the subscript to
simplify notation):

ˆ̃x1,ũ1,1
(τ) = x̂1,ũ1,1

(τ)− 1, ˆ̃x1,u1,1
(τ) = x̂1,u1,1

(τ) + 1,

where x̂1,ũ1,1
(τ) > x̂1,u1,1

(τ) (A-3)

Note that the selection of ũ1,1(τ) and u1,1(τ) have no affect
on the remaining sets of queues, i.e., for k > 1.

From Equation (A-3) and the construction of the exogenous
arrivals we conclude that property (S3) holds true for set 1
queue length vector and (A-2) is satisfied for k = 1 at t =
τ + 1.

2- Construction of ũ1,2(τ) and ũ2,1(τ). We have the fol-
lowing two cases to consider:

(i) The scheduling control u1,2(t) satisfies Equation (14)
at t = τ , i.e., u1,2(τ) = s : s ∈ argmaxi∈I c1,i(τ), where
I = argminj∈{1,...,K} x2,j(τ). Then we set ũ1,2(τ) = u1,2(τ)
and ũ2,1(τ) = u2,1(τ). The resulting queue sizes for k = 2,
x̃2(τ +1) = x2(τ +1). Property (S1) holds true for the queue
length vector of set 2 and (A-2) is satisfied for k = 2 at
t = τ + 1.

(ii) The scheduling control u1,2(t) does not satisfy Equa-
tion (14) at t = τ . Then we set u1,2(τ) = s : s ∈
argmaxi∈I c1,i(τ), where the set I is defined in case (i) above.
We also set ũ2,1(τ) = u2,1(τ). In this case and for all feasible
selections of u2,1(τ), the queue lengths of set 2 satisfy the
following:

x̃2,ũ1,2(τ+1) = x2,ũ1,2(τ+1) + 1,

x̃2,u1,2(τ+1) = x2,u1,2(τ+1)− 1,

where x2,ũ1,2(τ + 1) < x2,u1,2(τ + 1). (A-4)

According to Equation (A-4), x̃2(τ + 1) is obtained from
x2(τ + 1) by performing a balancing interchange of two
components ũ1,2(τ) and u1,2(τ). Therefore, property (S3)
holds true for queue length vector of set 2, and hence, Equation
(A-2) is satisfied for k = 2 at t = τ + 1.

3- Construction of ũk,i(τ) for k > 2. We set ũk,i(τ) =
uk,i(τ),∀k, i. The resulting queue lengths satisfy x̃k(τ+1) =
xk(τ+1), property (S1) holds true for the queue length vector
for all the remaining sets of queues and Equation (A-2) is
satisfied for all k > 2 at t = τ + 1.

The above concludes the construction of π̃ for t = τ . As we
can see from the construction steps 1 and 2 above, π̃ chooses
the controls ũ1,1(τ) and ũ1,2(τ) similar to a MB policy. We
also showed (in steps 1 – 3 above) that Equation (A-2) is
satisfied for t = τ + 1. This summarizes the construction of
π̃ for all time frames t ≤ τ .

In Part 2 below, we construct π̃ for t > τ . We also show
using forward induction that Equation (A-2) is satisfied for all
time frames t > τ .

Part 2: In Part 1, we constructed ω̃ and π̃ for t ≤ τ . We
now do the same for t > τ . The induction argument proceeds

as follows: We already showed (in Part 1 above) that either
(S1), (S2) or (S3) is satisfied, and therefore Equation (A-2) is
satisfied, for all k at t = τ + 1. Let π̃ and ω̃ be defined up to
time n − 1 ≥ τ and that either (S1), (S2) or (S3) is satisfied
for all xk(t) at t = n, which leads to x̃k(n) 4 xk(n),∀k. We
will show that at time frame n, we can construct π̃ such that
Equation (A-2) is satisfied at t = n+ 1. To do that, we have
to show that either (S1), (S2) or (S3) holds for xk(t) at time
frame t = n+ 1.

The construction (for t = n) is carried out in K steps
starting with k = 1. We utilize the symmetry of these K
steps to reduce the construction efforts by iterating the same
construction steps for k = 2, 3, . . . ,K.

Starting from k = 1, we consider three cases that correspond
to properties (S1), (S2) and (S3) of the vector xk(n). For each
one of these cases, we consider three sub-cases that correspond
to properties (S1), (S2) and (S3) of the vector xk+1(n). For
each of the last three sub-cases, we consider three sub-cases
for the vector xk+2(n), and so on.

1- x̃1(n) ≤ x1(n) (i.e., property (S1) holds for x1(t)).
We set c̃1(n) = c1(n) and ã(n) = a(n). We set ũ1,1(n) =
u1,1(n). The resulted queue lengths for set 1 satisfy (S1), i.e.,
x̃1(n+1) ≤ x1(n+1), and (A-2) holds for k = 1 at t = n+1.
The controls ũ1,2(n) and ũ2,1(n) are constructed below and
the queue lengths for k = 2 are computed as follows:

(a) x̃2(n) ≤ x2(n) (i.e., property (S1) holds for x2(n)). We
set c̃2(n) = c2(n). We also set the controls ũ1,2(n) = u1,2(n)
and ũ2,1(n) = u2,1(n). In this case, (S1) is satisfied for k = 2
and (A-2) holds for k = 2 at t = n+ 1.

(b) x̃2(n) is a 2-component permutation of x2(n) (i.e.,
property (S2) holds for x2(t)). Let queues i and j in set k = 2
be the indices of the two permuted queues. Then let c̃2,i(n) =
c2,j(n), c̃2,j(n) = c2,i(n) and c̃2,m(n) = c2,m(n),∀m 6= i, j.
The controls u1,2(n) and u2,1(n) are constructed as follows:

ũ1,2(n) =

i if u1,2(n) = j

j if u1,2(n) = i

m if u1,2(n) = m, ∀m 6= i, j

(A-5)

ũ2,1(n) =

i if u2,1(n) = j

j if u2,1(n) = i

m if u2,1(n) = m, ∀m 6= i, j

(A-6)

From the construction of π̃, it is clear that property (S2) is
satisfied again for k = 2 at t = n + 1 and so is (A-2) for
k = 2.

(c) x̃2(n) is obtained from x2(n) by performing a balancing
interchange as described by Equation (10) (i.e., property (S3)
holds for x2(t)). Let i and j be the indices of the two queues
in set k = 2 involved in the balancing interchange, such that
x2,i(n) ≥ x2,j(n) + 1. There are two cases to consider:

(i) x2,i(n) = x2,j(n) + 1. Then x̃2,i(n) = x2,j(n) and
x̃2,j(n) = x2,i(n). This case corresponds to case (1b) above
and the same construction of ω̃ and π̃ apply. The resulted
queue lengths for k = 2 at t = n + 1 will satisfy property
(S2) and (A-2) holds for k = 2 as well.

(ii) x2,i(n) > x2,j(n) + 1. We set c̃2(n) = c2(n) and
ũ1,2(n) = u1,2(n).

If “c2,j(n) = 1, c2,m(n) = 0,∀m 6= j and x2,j(n) ≤ 0”9

(i.e., queue j is the only connected queue in set k = 2
which happens to be empty), then u2,1(n) = 0 (i.e., forced
idling) according to the feasibility constraint (5). Then we
set ũ2,1(n) = j, which is a feasible control since x̃2,j(n) =
x2,j(n) + 1 according to Equation (10). The resulted queue
length vector for k = 2 in this case satisfies (S1), i.e.,
x̃2(n+ 1) ≤ x2(n+ 1), and (A-2) holds for k = 2.

Else, i.e., x2,j(n) > 0 and/or there are other connected
queues in the stack, then we set ũ2,1(n) = u2,1(n). This action
preserve property (S3) for k = 2 and Equation (A-2) holds for
k = 2 at t = n+ 1.

The construction process for the remaining sets k =
3, . . . ,K can be done iteratively by repeating steps (a) - (c)
for each k and for each of the sub-cases above in a nested
fashion. The same conclusion that Equation (A-2) holds for
all k > 2 at t = n+ 1 is reached.

This concludes the construction of ω̃ and π̃ for case (1)
during time frame t = n.

2- x̃1(n) is a 2-component permutation of x1(n) (i.e.,
property (S2) holds for x1(t)).

Let i and j be the indices of the two permuted SS queues
(i.e., in set k = 1). Then let c̃1,i(n) = c1,j(n), c̃1,j(n) =
c1,i(n) and c̃1,m(n) = c1,m(n),∀m 6= i, j. Similarly, ãi(n) =
aj(n), ãj(n) = ai(n) and ãm(n) = am(n),∀m 6= i, j. We
construct the control u1,1(n) as follows:

ũ1,1(n) =

i if u1,1(n) = j

j if u1,1(n) = i

m if u1,1(n) = m,∀m 6= i, j

(A-7)

From Equation (A-7), it is clear that property (S2) holds
again for x̃1(n + 1) and x1(n + 1), and (A-2) is satisfied
for k = 1 at t = n + 1. Analogous to case (1-) above,
we consider three cases for the construction of u1,2(n) and
u2,1(n) that correspond to (S1), (S2) and (S3) properties of
the vector x2(n). The construction of ω̃ and π̃ in all three
cases is analogous to that presented in cases (1a), (1b) and (1c)
respectively, and the resulted queue length vector x̃k(n + 1)
satisfies (A-2) for all k ≥ 2.

3- x̃1(n) is obtained from x1(n) by performing a balancing
interchange as described by Equation (10) Let i and j be
the indices of the two queues in set k = 1 involved in that
operation, such that x1,i(n) ≥ x1,j(n) + 1. We have the
following cases to consider :

(i) x1,i(n) = x1,j(n) + 1. Then x̃1,i(n) = x1,j(n) and
x̃1,j(n) = x1,i(n). This case corresponds to case (2-) above
and the same construction of ω̃ and π̃ apply and the same
conclusions are reached. The resulted queue lengths at t =
n+ 1 will satisfy property (S2) and (A-2) follows.

(ii) x1,i(n) > x1,j(n)+1. We set ã(n) = a(n) and c̃1(n) =
c1(n).

If “c1,j(n) = 1, c1,k(n) = 0,∀k 6= j and x1,j(n) ≤ 0”
(i.e., queue j is the only connected queue in set k = 1, which
happens to be empty), then u1,1(n) = 0 (i.e., forced idling).
In this case, we set ũ1,1(n) = j. This control is feasible since

9x2,j(n) < 0 is possible since we did not exclude the dummy queue (j=0)
from the argument.

x̃1,j(n) = x1,j(n)+1 according to Equation (10). The resulted
queue lengths for k = 1 in this case satisfies (S1), i.e., x̃1(n+
1) ≤ x1(n+ 1), and (A-2) is preserved at t = n+ 1.

Else, i.e., if x1,j(n) > 0 and/or there are other connected
queues in the stack, then we set ũ1,1(n) = u1,1(n). This action
preserve property (S3) and Equation (A-2) is satisfied at t =
n+ 1.

In this case, as with the previous cases, there are three cases
to consider for the construction of u1,2(n) and u2,1(n) which
correspond to (S1), (S2) and (S3) properties of the vector
x2(n). The construction of ω̃ and π̃ in each of these cases
is analogous to the one presented in cases (1a), (1b) and (1c).
The same conclusion that x̃k(n + 1) satisfies (A-2) for all
k ≥ 2 is reached.

The above concludes the construction of the policy π̃ at
t = n, for n > τ . We have shown that the constructed policy
resulted in queue length vectors xk(n + 1),∀k that satisfy
Equation (A-2). Using induction argument we conclude that
Equation (A-2) is satisfied for all t. By construction in Part 1,
we have π̃ ∈ Π1

τ . Furthermore, π̃ dominance over π follows
from relation (16).

Proof for Lemma 4: We follow an argument similar to
that we used in the proof of Lemma 3. The two proofs differ
in Part 1, i.e., the policy construction for t ≤ τ . Part 2 of the
proof is the same and will not be repeated.

Let π be an arbitrary policy such that π ∈ Πh
τ , where h =

1, . . . ,K; and let ω = (x(1), c(1),a(1), . . .). In the following,
we will construct the sample path ω̃ and the policy π̃ for times
t ≤ τ .

For time t < τ we construct ω̃ to coincide with ω, i.e.,
ã(t) = a(t) and c̃(t) = c(t) for all t < τ . We choose π̃ to
be identical to π for all t < τ , i.e., ũ(t) = u(t). This results
in similar queue lengths under both policies at t = τ , i.e.,
x̃k(τ) = xk(τ),∀k.

At time frame t = τ , let c̃(τ) = c(τ) and ã(τ) = a(τ).
The construction of π̃ at t = τ is carried out as follows:

1- For all k ≤ h, we set ũk,1(τ) = uk,1(τ) and ũk,2(τ) =
uk,2(τ). Note that uk,1(τ) and uk,2(τ) in this case are most
balancing controls by assumption (π ∈ Πh

τ). In this case, (S1)
holds true for the queue length vector of sets k ≤ h.

2- For all k > h + 1, we set ũk,1(τ) = uk,1(τ) and
ũk,2(τ) = uk,2(τ). Note that uk,1(τ) and uk,2(τ) may or may
not be most balancing controls. Regardless of that, property
(S1) holds true for the queue length vectors of sets k > h+2.
We can not make any conclusions regarding the queue length
vector for the set h+2 until we construct the control ũh+1,2(τ),
which we present next.

3- For k = h + 1, we construct ũk,1(τ) and ũk,2(τ) as
follows:

(i) Construction of ũk,1(τ). If the scheduling control uk,1(τ)
satisfies Equation (13) at t = τ , i.e., uk,1(τ) is an MB control,
then we set ũk,1(τ) = uk,1(τ). Property (S1) holds true for
the queue length vector of set k = h+ 1 in this case.

If on the other hand, the scheduling control uk,1(τ) does
not satisfy Equation (13) at t = τ . Then we set

ũk,1(τ) = l : l ∈ argmax
i∈Lk:ck,i(τ)=1

(xk,i(τ) + vk,i(τ)).

For set k, the queue lengths in this case satisfies the following
(with some abuse of the notation):

x̃k,ũk,1
(τ+1) = xk,ũk,1

(τ+1)− 1,

x̃k,uk,1
(τ+1) = xk,uk,1

(τ+1) + 1,

x̃k,i(τ+1) = xk,i(τ+1), ∀i 6= uk,1(τ), ũk,1(τ),

s.t. xk,ũk,1
(τ + 1) > xk,uk,1

(τ + 1) (A-8)

From the definition of balancing interchange and Equation
(A-8) above, we conclude that property (S3) is satisfied for
set k = h+ 1.

(ii) Construction of ũk,2(τ), k = h + 1. If the scheduling
control uk,2(τ) satisfies Equation (14) at t = τ , i.e., uk,2(τ)
is an MB control, then we set ũk,2(τ) = uk,2(τ). The resulted
queue lengths for set k + 1 = h+ 2 in this case satisfy (S1).
Note that the control ũk,2(τ) does not affect the queue lengths
of set k = h+ 1.

If on the other hand, the scheduling control uk,2(τ) does
not satisfy Equation (14) at t = τ , then we set

ũk,2(τ) = s : s ∈ argmax
i∈I

ck+1,i(τ),

where I = argminj∈{1,...,Lk+1} xk+1,j(τ).
The resulted queue lengths for set k+1 satisfy the following:

x̃k+1,ũk,2
(τ+1) = xk+1,ũk,2

(τ+1) + 1,

x̃k+1,uk,2
(τ+1) = xk+1,uk,2

(τ+1)− 1,

x̃k+1,i(τ+1) = xk+1,i(τ+1), ∀i 6= uk,2(τ), ũk,2(τ),

s.t. xk+1,ũk,2
(τ + 1) < xk+1,uk,2

(τ + 1), (A-9)

the last inequality is a direct consequence of the selection of
ũk,2(τ).

Using the definition of balancing interchange (Equation
(10)) we conclude that property (S3) is satisfied for set h+ 2.

The above three cases covers all K sets of queues. The
above concludes the construction of policy π̃ for time frame
t ≤ τ . From the construction steps in case (3-) above, π̃ selects
most balancing controls (ũk,1(τ) and ũk,2(τ)) for all k ≤
h + 1 during time frame τ , i.e., π ∈ Πh+1

τ . We also showed
that either (S1), (S2) or (S3) is satisfied for every case and
therefore we conclude that Equation (A-2) is satisfied for all
k at t = τ + 1.

The remaining part of the proof is to construct π̃ for t > τ .
Furthermore, starting from a preferred state at t = τ + 1, we
must show that Equation (A-2) is satisfied for all t > τ . This
part is similar to Part 2 in the proof of Lemma 3, which is
done using forward induction argument. We will not repeat it
here to avoid redundancy.

The above provide a complete description of the policy π̃.
This policy resulted in queue length vectors x(n + 1),∀k
that satisfy Equation (A-2). Note that policy π̃ ∈ Πh+1

τ by
construction in step (3-) above; its dominance over π follows
from relation (16). q.e.d.

REFERENCES

[1] “MMR Harmonized Contribution on 802.16j (Mobile Multihop
Relay) Usage Models,” Document No. IEEE 802.16j-06/015, Sep.
2006.

[2] A. Sendonaris, E. Erkip and B. Aazhang, “User Cooperation
Diversity–Part I: System Description,” IEEE Transactions on
Communications, vol. 51, no. 11, pp. 1927–1938, 2003.

[3] N. Laneman, D.N.C. Tse and G.W. Wornell, “Cooperative Di-
versity in Wireless Networks: Efficient Protocols and Outage
Behaviour,” IEEE Trans. Inform. Theory, vol. 50, pp. 3062–3080,
2004.

[4] A. Nosratinia, T.E. Hunter, A. Hedayat, “Cooperative Communi-
cation in Wireless Networks,” IEEE communications Magazine,
Vol. 42, pp. 74–80, Oct. 2004.

[5] H. Al-Zubaidy, C.C. Huang and J. Yan, “Dynamic Packet Sched-
uler Optimization in Wireless Relay Networks,” to appear in JSAC
SI-CoNet, Submitted/Accepted Mar. 2011/Aug. 2011.

[6] V. Stankovic, A. Host-Madsen, and Z. Xiong, “Cooperative
diversity for wireless ad hoc networks,” IEEE Signal Processing
Magazine, vol. 23, pp. 37–49, Sep. 2006.

[7] S. M. Ross, Stochastic Processes. 2nd ed. New York: Wiley, 1996.
[8] Z. Roseburg, P. Varaiya, J. Walrand, “Optimal Control of Service

in Tandem Queues,” IEEE Trans. Auto. Control. AC27, pp. 600–
610, 1982.

[9] D. Stoyan, Comparison Methods for Queues and other Stochastic
Models. J. Wiley and Sons, Chichester, 1983.

[10] T. Lindvall, Lectures on the coupling method. New York: Wiley,
1992.

[11] L. Tassiulas and A. Ephremides, “Dynamic server allocation to
parallel queues with randomly varying connectivity,” IEEE Trans.
on Inf. Theory, Vol. 39, Issue 2, pp.466–478, Mar. 1993.

[12] A. Ganti, E. Modiano and J. N. Tsitsiklis, “Optimal Trans-
mission Scheduling in Symmetric Communication Models With
Intermittent Connectivity,” IEEE Trans. on Inform. Theory, Vol.
53, Issue 3, pp. 998–1008, Mar. 2007.

[13] H. Al-Zubaidy, I. Lambadaris and I. Viniotis, “Optimal Re-
source Scheduling in Wireless Multi-service Systems With Ran-
dom Channel Connectivity,” in Proc. IEEE Globecom ’09, Hon-
olulu, HI, USA, Dec. 2009.

[14] Y. Shi, W. Zhang, K. B. Latief, “Cooperative Multiplexing and
Scheduling in Wireless Relay Networks,” in Proc. IEEE Int. Conf.
on Commun. (ICC 08), 2008.

[15] C.Y. Hong, A.C. Pang, “Link Scheduling with QoS Guarantee
for Wireless Relay Networks,” in Proc. IEEE Conf. on Computer
Commun. (INFOCOM), Rio De Janeiro, Brazil, 2009.

[16] V. Sreng, H. Yanikomeroglu, and D. Falconer, “Relay selection
strategies in cellular networks with peer-to-peer relaying,” in
Proc. IEEE Vehic. Tech. Conf., pp. 1949–1953, Oct. 2003.

[17] M. Yu and J. Li, “Is amplify-and-forward practically better than
decode-and- forward or vice versa?” in Proc. IEEE Inter. Conf.
Acoustics, Speech, and Signal Processing, (ICASSP 05), vol. 3,
pp. 365–368, Mar. 2005.

[18] A. Host-Madsen and J. Zhang, “Capacity bounds and power
allocation for wireless relay channels,” in Proc. IEEE Trans.
Information Theory, vol. 51, no. 6, pp. 2020–2040, June 2005.

[19] M. Chen, S. Serbetli, and A. Yener, “Distributed power alloca-
tion for parallel relay networks,” in Proc. IEEE Global Telecom.
Conf. (GLOBECOM 05), vol. 3, pp. 1177–1181, Nov. 2005.

[20] R. Lidl and G. Pilz, Applied abstract algebra, 2nd ed., Under-
grad. Texts in Math., Springer, 1998.

[21] J. Walrand, “A note on optimal control of a queuing system
with two heterogeneous servers,” Systems and Control Letters,
Vol. 4, pp. 131–134, 1984.

[22] P. Nain, P. Tsoucas and J. Walrand, “Interchange arguments in
stochastic scheduling”, Journal of Applied Probability, Vol 27,
pp. 815-826, 1989.

