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Abstract

In this paper, we present a model and a methodology to investigate the optimal

packet scheduling policy in wireless relay networks. We define the optimal policy as

the one that maximizes the network throughput. We model this network by a system

of queues, representing the subscriber stations and the relay stations, with random

channel connectivity. Time is slotted. The scheduler selects one of the system queues to

be served in every time slot. In this system, we use finite state Markov channel (FSMC)

to model the wireless channel. This problem is formulated as a Markov decision process

(MDP). We solve this problem using value iteration for the optimal scheduling policy.

We present results for several special cases. The numerical results obtained showed

that the optimal policy is threshold type. Furthermore, in a system with homogeneous

connectivity and arrivals, a policy that tries to balance the lengths of all the system

queues is optimal.
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1 Introduction

The wireless networks evolved towards IP-based, high-speed data networks. The IP-based

infrastructure made possible the deployment of mature existing technologies, that were ini-

tially developed for wired IP networks. On the other hand, the higher data rate was always

subject to wireless channel limitations. The wireless channel is inherently random and un-

predictable. The bandwidth resources are scarce and have to be shared by all the users

in the network. Many technologies, e.g., adaptive modulation and coding (AMC), hybrid

ARQ, etc., were developed to mitigate the effect of channel randomness and increase the

bandwidth efficiency.

In modern wireless networks, the data rate is adapted to the channel’s signal-to-noise

ratio (SNR) through the use of adaptive modulation and coding. This makes the achievable

data rate highly dependent on the channel state. In order to mitigate the unpredictability of

the user’s channel, different types of diversity were proposed, e.g., time diversity, frequency

diversity, spatial diversity and user diversity. The basic idea of the first three techniques

is to combine (or choose among) multiple copies of the transmitted signal to maximize the

received SNR and hence the data rate. User diversity, on the other hand, chooses a signal

among the transmitted signals of different users to find the user with better channel state.

Traditionally, spatial diversity is achieved using multiple antennas at the transmission

and reception sides. In this case, spatial diversity is accomplished using a technique called

“multiple input multiple output” (MIMO). However, some low-cost user equipments that are

available nowadays do not have multiple antennas and therefore are incapable of handling

such technique. This means lower channel quality and lower data rates for those users. An

alternative technique for this type of users is to use “cooperative diversity”. This technique

is a form of spatial diversity technique. Users use cooperation among themselves to achieve

higher transmission rates. Single antenna users in a multi-user environment share their

antennas in a virtual multi-antenna environment to enhance their data rates (Figure 1). In

such environment, users act as relays for other users. Although diversity gain is achievable,
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Figure 1: User cooperation in wireless networks.

the cost of this gain will manifest itself as elevated power and network resources consumption.

The gain of user cooperation can be further exploited by optimally allocating the energy and

bandwidth resources among users based on the channel state information (CSI) at every

node [1].

In wireless networks with well-defined infrastructure, such as fourth generation (4G) wire-

less systems, another scheme to achieve cooperative diversity is proposed. In such scheme,

dedicated wireless relay nodes (WRN) is spread over the coverage range of the cell. These

relay nodes usually possess limited functionality and have low power consumption. They

are significantly cheaper than a full scale base station. They have the effect of increasing

coverage within a cell and facilitating the targeted 4G data rate of 100 Mbps for mobile

users. A hybrid of the two techniques (WRN and user cooperation) is also possible.

Early studies of cooperative communication were initiated by [2], [3] and [4]. Since then,

the subject has attracted the attention of many researchers as well as the industry, c.f. [5]

[6]. IEEE 802.16j task group recommended the use of relay nodes in cellular networks design

[7].

In 4G wireless networks, time is slotted into fixed length transmission frames. The

channel resources may be scheduled in one of two modes. In the first mode, the transmission

frame is divided into two periods. The first is dedicated for subscriber station (SS) nodes

transmission, while the second is dedicated for Relay station (RS) nodes transmission. Then

relay nodes do not have to compete with SS nodes for channel resources. In the second

mode, all nodes (SS or RS nodes) are competing for channel resources.
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Cellular networks (e.g. 4G wireless networks) are usually infrastructure-based networks.

Therefore, a centralized controller can be easily deployed for the implementation of packet-

scheduling function in such networks. In this case, the channel state information (CSI) will

be available to the controller. This will enable the redistribution of the available resources

to improve network performance. Optimal packet scheduling policies can be determined

under various operating constraints to optimize various performance criteria and to achieve

performance gain.

Most of the existing work in this area aimed at exploiting the diversity and multiplexing

gain to improve some performance criteria, e.g., capacity and bandwidth utilization, outage

probability, error rate, etc. These are often achieved through the use of adaptive modulation

techniques, distributed space-time coding, or error-correction coding. However, optimization

in these systems involves several layers and therefore requires a cross-layer design perspective.

In this work, we study the problem of cooperative communication in wireless cellular

networks from new perspective, the dynamic packet scheduling perspective. We are inter-

ested in the scheduling of packets on the uplink. Each of the relaying nodes has a limited

buffer capacity and its channel is time varying and can be modelled as a random process.

The reward that we consider in this work is a function of the system throughput as well as

queue occupancy.

The rest of this paper is organized as follows; In section 2, we present a queuing model

for the relay network under investigation. In section 3, related literature was discussed. In

section 4, the formulation of the optimal control problem as a MDP is presented. In section

5, we present value iteration, a technique used to determine the optimal policy. In section

6, the optimal policies for special cases are computed. Conclusions are given in section 7.
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Figure 2: FSMC model for wireless channel.

2 Problem Definition and Model Description

2.1 Problem Definition

We consider a two-hop relay network that is composed of a base station (BS), L subscriber

stations and K relay stations. L can be larger, smaller or equal to K. Each of the wireless

channels connecting a SS to a RS and each RS to the base station is modelled by M -state

finite state Markov channel (FSMC) following [8]. Assuming that the fading is slow enough

that the channel states for consecutive time epochs are neighbouring states, then the model

will be reduced into a discrete time birth and death process, as shown in Figure 2.

Modern cellular networks use pilot channel to estimate, among other things, the channel

quality by measuring the received signal power at the receiving end [9]. This information

can be made available to the controller with minimal efforts. In this work, we assume that

the controller have complete knowledge of the channel state when the decision time arrives.

The transmission rate for a station is directly proportional to its channel state (which is a

realistic assumption for rate adaptation in wireless networks) [10]. Furthermore, we assume

that i packets can be transmitted from a given node at any given time frame when the node’s

respective channel is in state i > 0 and no packets can be transmitted when the channel

is in state 0, i.e., disconnected. All channels are assumed to be stochastically independent

from each other and from the arrivals to the subscriber stations. However, only one station

(SS or RS) is allowed to transmit at a time. A special case of this problem is to have the

SS nodes transmit independently from the RS nodes, i.e., using half a time frame for each
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transmission. The problem in this case will be reduced to finding the optimal scheduling

policy for each of the two sets of nodes separately. We plan to investigate this case in our

future research.

A scheduled packet completes transmission with probability 1 at a given time frame

and therefore no retransmission is required. This is a simplifying assumption, however, the

results obtained for this model can be easily adapted for a system with retransmission. We

assume that the scheduler has complete knowledge of the system state at all times. This is

a realistic assumption for cellular networks since they use a centralized control provided by

the base station. They deploy a dedicated control channel that can be used to communicate

such information.

2.2 Model Description

We model this network using a discrete-time queuing system1 as shown in Figure 3. In this

model, we assume a finite buffer size for the subscriber stations (denoted by Bs) as well as

the relay stations (which we denote by Br). The objective is to find the optimal dynamic

packet scheduling policy (or equivalently, the channel allocation decision at every time slot)

for this network. The optimal policy is the one that maximizes a reward function of the

system throughput and queue lengths.

In this model, time is slotted into constant intervals each of which is equal to one trans-

mission frame. Let T denote the set of decision epochs and T = {1, 2, . . .}. We assume that

these decision epochs happens at the beginning of every time slot. A packet that arrives

during the current time slot can only be considered for transmission in the subsequent time

slots. At time t ∈ T , we denote by S(t) and D(S), the system state and the scheduler

decision at that state respectively.

We define the following notation that we use to describe the model under investigation.

Throughout this paper, we will use UPPER CASE, bold face and lower case letters to

1In this model, the direct link between a subscriber station and the destination (the base station) can be

considered as a degenerate case.
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Figure 3: A model for packet scheduling in a 2-hop relay networks.

represent random variables, vector/matrix quantities and sample values respectively.

• X(t) = (X1(t), X2(t), . . . , XL(t)) is the queue lengths vector for SS nodes (measured in

number of packets) at time slot t. Xi(t) ∈ X = {0, 1, 2, . . . , Bs}.

• Y(t) = (Y1(t), Y2(t), . . . , YL(t)) is the queue lengths vector for RS nodes at time slot t.

Yi(t) ∈ Y = {0, 1, 2, . . . , Br}.

• A(t) = (A1(t), A2(t), . . . , AL(t)), where Ai(t) is the number of exogenous arrivals to

queue i during time slot t.

• CX(t) is an L×K matrix, where CX
i,j(t) ∈ M ≡ {0, 1, . . . ,M − 1}, is the channel

connectivity random variable between SS node i and RS node j during time slot t, M

is the number of states in the FSMC model.

• CY(t) = (CY
1 (t), CY

2 (t), . . . , CY
K(t)), where CY

i (t) ∈ M is the channel connectivity

random variable between RS node i and the base station during time slot t.

• UX(t) is an L×K matrix, where UX
i,j(t) = 1 if SS node i is scheduled for transmission

to RS node j during time slot t and UX
i,j(t) = 0 otherwise.
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• UY(t) = (UY
1 (t), UY

2 (t), . . . , UY
K (t)), where UY

j (t) = 1 if RS node j is scheduled for

transmission to the base station during time slot t and UY
i (t) = 0 otherwise.

• S(t) = (X(t),Y(t),CX(t),CY(t)) denotes the “state” of the system2 at the beginning

of time slot t.

The “decision” taken by the scheduler when the system is in state s(t) during time slot

t is given by:

D(s) = (UX(t),UY(t)), (1)

subject to
L∑
i=1

K∑
j=1

UX
i,j(t) +

K∑
j=1

UY
j (t) = 1, (2)

This constraint insures that one node (SS or RS) is allowed to transmit at any given time

slot.

We define the withdrawal control vector at time t ∈ T by:

Z(t) = (ZX(t),ZY(t)), s.t. (3)

• ZX(t) = (ZX
1 (t), ZX

2 (t), . . . , ZX
L (t)) is the SS nodes withdrawal control vector, where

ZX
i (t) =

K∑
j=1

UX
i,j(t) · CX

i,j(t), (4)

for any i and ZX
i (t) ∈ {0, 1, . . . ,M−1} denotes the number of packets withdrawn from

SS queue i during time slot t.

• ZY(t) = (ZY
1 (t), ZY

2 (t), . . . , ZY
k (t)) is the RS nodes withdrawal control vector, where

ZY
i (t) = UY

i (t) · CY
i (t), (5)

for any i and ZY
i (t) ∈ {0, 1, . . . ,M−1} denotes the number of packets withdrawn from

RS queue i during time slot t.

2The state information can be communicated through one of the available control channels in the network.

Therefore, this information can be made available to the controller at the decision epoch.
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The above definition will be useful in the computation of system state transition proba-

bility as we will show later.

The control decision D(s) that was defined in Equation (1) identify the node that is

scheduled to transmit when in state s(t) during time slot t. On the other hand, Z(t) provides

extra information regarding the number of packets withdrawn from that node’s buffer. The

two controls are related via Equations (4) and (5). The queue length for any SS node evolves

according to the following relation:

Xi(t+ 1) = max
([
Xi(t)− ZX

i (t)
]+

+ Ai(t), Bs

)
(6)

Similarly, the queue length evolution for any RS node is given by the following relation:

Yj(t+ 1) = max

([
Yj(t)− ZY

j (t)
]+

+
L∑
i=1

UX
i,j(t) · CX

i,j(t), Br

)
(7)

The exogenous arrivals to any SS nodes are assumed to be Bernoulli with parameter qi

for node i and is given by:

Ai(t) =

v with probability qi, v ∈ Z+

0 with probability 1− qi

However, the arrivals to any RS node at time t is equal to the number of packets transmitted

from any SS node to that RS node during that time slot. In either case, arrivals during time

slot t will be added only after the removal of the scheduled packets at that time slot.

3 Previous Work and Our Contributions

This work lies in the area of optimal control in queuing systems. A related problem was

first studied by Roseburg et al in [11]. They investigated an optimal control policy of

service rate in a system of two queues in tandem. They proved, using dynamic programming

argument, that a threshold policy is optimal. An extension to their work is to include random
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Figure 4: Two tandem queues with random connectivity

connectivity between the two queues to represent wireless channel, see Figure 4. This is a

special case of the model we presented in Figure 3, where L = K = 1.

Another related problem is the one that was studied by Al-Zubaidy et al [12]. In this

work, the authors investigated an optimal packet scheduling policy in a homogeneous system

of parallel queues and multiple servers with independent server-queue connectivity. They

proved, via stochastic dominance technique and coupling arguments, that a class of policies,

namely the most balancing (MB) policies, is optimal in that it minimizes a class of cost

functions of the system state. Our model, similar to this one, is characterised by the mesh

connectivity pattern between the first set of queues (SS) and the second set of queues (RS).

In [13], the authors proposed a cooperative multiplexing and scheduling algorithm for a

wireless relay network with a single relay node. They showed that this algorithm outperforms

the traditional opportunistic techniques in terms of spectral efficiency. The authors in [14]

studied link scheduling in WRN with bandwidth and delay guarantees. They modelled

the system using simple directed graph. They proposed an efficient algorithm to provide

delay guarantee over WRN. They proved that the worst-case performance of the proposed

algorithm compared to an optimal one is bounded.

In [15], the authors presented opportunistic relaying with decode-and-forward (DaF) and

amplify-and-forward (AaF) strategies under an aggregate power constraint. They showed

that opportunistic DaF relaying is outage-optimal. Furthermore, they showed that oppor-

tunistic AaF relaying is outage-optimal among single-relay selection methods. The authors

in [16] proposed a utility maximization framework for wireless cooperative cellular data net-

work with a base station and many cooperative subscribers. They claim that their strategy
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optimizes relay selection as well as power allocation.

For a wireless relay network, the choices of relay node, relay strategy, and the allocation of

power and bandwidth for each user are important design parameters which were investigated

thoroughly in recent literature. Relay selection and cooperation strategies for relay networks

have been investigated by [17] and [18] among others. Power control has been investigated by

[19] and [20] and many others. However, the modern wireless networks are mostly IP-based,

and therefore the optimization problem may be reduced to finding the optimal dynamic

packet scheduling policies in these networks.

In this work, we developed a queuing model to study the function of packet scheduling

in wireless relay network. Our main contributions can be summarized by the following:

• A queuing model is developed to study packet scheduling in wireless relay networks.

• We present a methodology for the optimization of WRN from dynamic packet schedul-

ing perspective.

• The optimal scheduling problem is formulated using dynamic programming and a re-

ward function is proposed.

• A program is developed to compute the optimal policy numerically using value itera-

tion.

• The optimal packet scheduling policy is computed and presented graphically for several

special cases.

Dynamic programming is used widely in the investigation of optimal control problems.

Our literature survey revealed several proposed algorithms for packet scheduling in WRN.

Many of the scheduling policies resulted from these algorithms may outperform other existing

policies under some operating conditions but they are not optimal. The theoretical as well

as practical value of the optimal scheduling policy is what motivated this work.

Our main goal is to study the structural characteristics of the optimal policy. The next

step in our investigation of this problem is to provide theoretical proofs for the optimality
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of these policies using dynamic programming and/or stochastic coupling arguments. This is

part of our proposed future work.

In the following section, we present a dynamic programming formulation [21], [22] for

the model in Figure 3 and we solve it numerically for the optimal channel allocation policy

using value iteration.

4 MDP Formulation

In this section we will present an approach, based on Markov Decision Process (MDP), to

find the optimal packet scheduling policy for the model presented in Figure 3. In order to do

that, we need to define the quintuple (T ,S,D, Pss′(d), RT (s,d)), where S and D are the state

and decision spaces, Pss′(d) , Pr(S(t + 1) = s′|S(t) = s,D(s) = d) is the state transition

probability, and RT (s,d) is the instantaneous reward function (to be defined shortly) when

at state s and taking the decision d. The decision space is the set of all possible controls

D(s).

Note that for a given L < ∞ and K < ∞, the state space of the system, S = {X L ×
YK ×MK(L+1)}, has finite size since the buffers have finite sizes and the channel state space

(M) is also finite.

4.1 State Transition Probability

The state transition probability Pss′(d) is the probability that choosing the decision d at

time slot t when the system state is s will result in the state s′ at time slot t+ 1. Using the

definitions of the system state S(t) and the decision D(t), Pss′(d) can be stated as follows

Pss′(d) , Pr(S(t+ 1) = s′|S(t) = s,D(t) = d) = Pr(x′1, . . . , x
′
L, y

′
1, . . . , y

′
K , c

x′

1,1, . . . , c
x′

L,K ,

cy
′

1 , . . . , c
y′

K |x1, . . . , xL, y1, . . . , yK , c
x
1,1, . . . , c

x
L,K , c

y
1, . . . , c

y
K , u

x
1,1, . . . , u

x
L,K , u

y
1, . . . , u

y
K)(8)

where s′ = (x′,y′, cx′, cy′) and d = (ux,uy). where the primed variables represent the values

of those variables during time slot t+ 1.



13

The joint conditional probability in Equation (8) can be decomposed, using conditioning,

as follows:

Pss′(d) = Pr(x′1, . . . , x
′
L, y

′
1, . . . , y

′
K |x1, . . . , xL, y1, . . . , yK , cx1,1, . . . , cxL,K , c

y
1, . . . , c

y
K ,

ux1,1, . . . , u
x
L,K , u

y
1, . . . , u

y
K) · Pr(cx′1,1, . . . , cx

′

L,K , c
y′

1 , . . . , c
y′

K |x
′
1, . . . , x

′
L, y

′
1, . . . , y

′
K , x1,

. . . , xL, y1, . . . , yK , c
x
1,1, . . . , c

x
L,K , c

y
1, . . . , c

y
K , u

x
1,1, . . . , u

x
L,K , u

y
1, . . . , u

y
K) (9)

Applying conditioning again to the second part of Equation (9) we have:

Pss′(d) =Pr(x′1, . . . , x
′
L, y

′
1, . . . , y

′
K |x1, . . . , xL, y1, . . . , yK , cx1,1, . . . , cxL,K , c

y
1, . . . , c

y
K ,d)

·Pr(cx′1,1|x′1, . . . , x′L, y′1, . . . , y′K , x1, . . . , xL, y1, . . . , yK , cx1,1, . . . , cxL,K , c
y
1, . . . , c

y
K ,d) · . . .

·Pr(cx′L,K |cx
′

1,1, . . . , c
x′

L,K−1, x
′
1, . . . , x

′
L, y

′
1, . . . , y

′
K , x1, . . . , xL, y1, . . . , yK , c

x
1,1, . . . , c

x
L,K ,

cy1, . . . , c
y
K ,d) · Pr(cy

′

1 |cx
′

1,1, . . . , c
x′

L,K , x
′
1, . . . , x

′
L, y

′
1, . . . , y

′
K , x1, . . . , xL, y1, . . . , yK ,

cx1,1, . . . , c
x
L,K , c

y
1, . . . , c

y
K ,d) · . . . · Pr(cy

′

K |c
x′

1,1, . . . , c
x′

L,K , c
y′

1 , . . . , c
y′

K−1, x
′
1, . . . , x

′
L,

y′1, . . . , y
′
K , x1, . . . , xL, y1, . . . , yK , c

x
1,1, . . . , c

x
L,K , c

y
1, . . . , c

y
K ,d) (10)

Recall that the wireless channel is modelled by a Markov process and it is assumed that

channels for different nodes are independent. Therefore, the next channel state depends

only on the current channel state. Therefore, the channel state transition probability can be

expressed as follows:

Pr(cx
′

i,j|s) = Pr(cx
′

i,j|cxi,j) , Pcxi,jcx
′

i,j
(11)

and,

Pr(cy
′

k |s) = Pr(cy
′

k |c
y
k) , P

cykc
y′
k

(12)

Hence, Equation (10) can be rewritten as follows:

Pss′(d) = Pr(x′1, . . . , x
′
L, y

′
1, . . . , y

′
K |x1, . . . , xL, y1, . . . , yK , cx1,1, . . . , cxL,K , c

y
1, . . . , c

y
K ,d)

·
L∏
i=1

K∏
j=1

Pcxi,jcx
′

i,j
·
K∏
k=1

P
cykc

y′
k

(13)
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Following the same approach, the queue size joint probability, i.e., the first term in

Equation (13), can be decomposed as follows:

Pr(x′1, . . . , x
′
L, y

′
1, . . . , y

′
K |x1, . . . , xL, y1, . . . , yK , cx1,1, . . . , cxL,K , c

y
1, . . . , c

y
K ,d)

= Pr(x′1|x1, . . . , xL, y1, . . . , yK , cx1,1, . . . , cxL,K , c
y
1, . . . , c

y
K ,d) · . . .

·Pr(x′L|x′1, . . . , x′L−1, x1, . . . , xL, y1, . . . , yK , cx1,1, . . . , cxL,K , c
y
1, . . . , c

y
K ,d)

·Pr(y′1|x′1, . . . , x′L, x1, . . . , xL, y1, . . . , yK , cx1,1, . . . , cxL,K , c
y
1, . . . , c

y
K ,d) · . . .

·Pr(y′K |x′1, . . . , x′L, y′1, . . . , y′K−1, x1, . . . , xL, y1, . . . , yK , cx1,1, . . . , cxL,K , c
y
1, . . . , c

y
K ,d)(14)

The queue length for each SS node (respectively RS node) evolves according to Equation

(6) (respectively Equation (7)). From Equation (6) and the independence assumption of

the different queues random variables (arrivals and channel connectivities), we can see that

for SS queue i, x′i (the queue size at time t + 1) depends on xi (its current queue size),

cxi,1, . . . , c
x
i,K (its connectivity state), uxi,1, . . . , u

x
i,K (the decision) and ai (the arrivals to queue

i during time slot t) and independent of everything else. Therefore,

Pr(x′i|s) = Pr(x′i|xi, cxi,1, . . . , cxi,K , uxi,1, . . . , uxi,K) , Pxix′i(c
x,d) (15)

Similarly, Equation (7) show that for RS queue j, y′j (the queue size at time t + 1)

depends on yj (the current queue size), its connectivity state cyj , c
x
1,j, . . . , c

x
L,j and the decision

ux1,j, . . . , u
x
L,j, u

y
j and independent of the other variables in the system. Therefore,

Pr(y′j|s) = Pr(y′j|yj, cx1,j, . . . , cxL,j, c
y
j , u

x
1,j, . . . , u

x
L,j, u

y
j ) , Pyjy′j(c

x, cy,d) (16)

Note that the arrivals to RS queue (i.e., relay node) j at any given time slot is equal to∑L
i=1 u

x
i,j · cxi,j packets.

In light of the above, Equation (13) is reduced to the following:

Pss′(d) =
L∏
i=1

Pxix′i(c
x,d)

K∏
k=1

Pyky′k(cx, cy,d) ·
L∏
i=1

K∏
j=1

Pcxi,jcx
′

i,j
·
K∏
k=1

P
cykc

y′
k

(17)
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Equation (17) states that the state transition probability is the product of the individual

queue state transition probabilities of the L×K stations in the system and their FSMC state

transition probabilities. According to [8], the FSMC channel state transition probabilities

can be estimated from practical measurements and made available to the scheduler. Next

we will derive the queue state transition probabilities for the SS and RS nodes.

4.1.1 Determination of SS queue state transition probability

The queue state transition probability for SS i is given by

Pxix′i(c
x,d) = Pr(Xi(t+ 1) = x′i|Xi(t) = xi, C

X
i,1(t) = cxi,1, . . . , C

X
i,K(t)=cxi,K ,

UX
i,1(t)=uxi,1, . . . , U

X
i,K(t)=uxi,K) (18)

The queue length Xi(t+ 1) is related to Xi(t) via Equation (6). Let

wsi = [xi − zxi ]+

From Equation (6), we can partition the probability space into the following two cases:

Case (1):
[
Xi(t)− ZX

i (t)
]+

+ Ai(t) < Bs, where ZX
i (t) is defined by Equation (4). In

this case Equation (6) reduces to:

Xi(t+ 1) =
[
Xi(t)− ZX

i (t)
]+

+ Ai(t) (19)

and Equation (18) can be rewritten as:

Pxix′i(c
x,d) = Pr(

[
Xi(t)− ZX

i (t)
]+

+ Ai(t) = x′i|Xi(t) = xi, C
X
i,1(t) = cxi,1,

. . . , CX
i,K(t)=cxi,K , U

X
i,1(t)=uxi,1, . . . , U

X
i,K(t)=uxi,K)

= Pr([xi − zxi ]+ + Ai(t) = x′i)

= Pr(Ai(t) = x′i − [xi − zxi ]+) (20)

where,

zxi =
K∑
j=1

uxi,j · cxi,j (21)
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Recall that the arrivals to SS queue i has Bernoulli distribution with parameter qi. There-

fore, the queue state transition probability in this case is given by:

Pxix′i(c
x,d) =


qi if x′i = wsi + v

1− qi if x′i = wsi

0 Otherwise

(22)

Case (2):
[
Xi(t)− ZX

i (t)
]+

+ Ai(t) ≥ Bs or equivalently Xi(t + 1) = Bs. In this case,

Equation (18) can be rewritten as:

PxiBs(c
x,d) = Pr(

[
Xi(t)− ZX

i (t)
]+

+ Ai(t) ≥ Bs|Xi(t) = xi, . . . , C
X
i,1(t) = cxi,1,

CX
i,K(t)=cxi,K , U

X
i,1(t)=uxi,1, . . . , U

X
i,K(t)=uxi,K)

= Pr([xi − zxi ]+ + Ai(t) ≥ Bs)

= Pr(Ai(t) ≥ Bs − [xi − zxi ]+) (23)

Similar to case (1), we can state the queue state transition probability as follows:

PxiBs(c
x,d) =


1− qi if wsi = Bs

qi if wsi < Bs, w
s
i + v ≥ Bs

0 Otherwise

(24)

Equation (24) defines the transition probability of queue i from state xi to the boundary

state Bs (i.e., full buffer state).

The two cases above are the only possible cases. The union of these two probability

space partitions represents the SS queue state transition probability. This probability can

be summarized as follows:
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Pxix′i(c
x,d) =



1− qi if x′i = wsi = Bs

qi if x′i=Bs, w
s
i <Bs, w

s
i + v≥Bs

qi if x′i = wsi + v < Bs

1− qi if x′i = wsi < Bs

0 Otherwise

(25)

4.1.2 Determination of RS queue state transition probability

The queue state transition probability for RS node j is given by

Pyjy′j(c
x, cy,d) = Pr(Yj(t+ 1) = y′j|Yj(t) = yj, C

X
1,j(t) = cx1,j, . . . , C

X
L,j(t)=cxL,j,

CY
j (t) = cyj , UX1,j(t)=ux1,j, . . . , UXL,j(t)=uxL,j, U

Y
j (t)=uyj) (26)

The queue length Yj(t + 1) is related to Yj(t) via Equation (7). From Equation (6), we

can see that given the state s and the decision d, the queue state y′j can be deterministically

calculated through Equation (7). Let

wrj =
[
yj − zyj

]+
+

L∑
i=1

uxi,j · cxi,j,

then the RS queue state transition probability can be stated as follows:

Case (1):
[
Yj(t)− ZY

j (t)
]+

+
∑L

i=1 U
X
i,j(t)·CX

i,j(t) < Br, where ZY
j (t) is defined by Equation

(5). Then

Pyjy′j(c
x, cy,d) =

1 if wrj = y′j

0 if wrj 6= y′j

(27)

Case (2):
[
Yj(t)− ZY

j (t)
]+

+
∑L

i=1 U
X
i,j(t) · CX

i,j(t) ≥ Br or equivalently Yj(t + 1) = Br.

In this case

PyjBr(c
x, cy,d) =

1 if wrj ≥ Br

0 if wrj < Br

(28)
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The two cases above can be summarized as follows:

Pyjy′j(c
x, cy,d) =


1 if y′j = Br, w

r
j ≥ Br

1 if 0 ≤ y′j < Br, y
′
j = wrj

0 Otherwise

(29)

This conclude the derivation of the state transition probability. In the next section, we

compute the optimal policy for some case studies.

4.2 Reward Function

At every time slot t, we define the instantaneous reward RT (s,d) that is a function of the

system state and the decision taken during time slot t. The investigated optimal policy is

the one that maximizes this reward function at every time slot.

Let wsi (t) = [xi(t)− zxi (t)]+, and let wrj (t) =
[
yj(t)− zyj (t)

]+
+
∑L

i=1 u
x
i,j(t) · cxi,j(t)

For the model under consideration, we define the reward function RT (s,d) as:

RT (s,d) =
K∑
i=1

min
(
uyi (t) · c

y
i (t), yi(t)

)
− c
( L∑
j=1

1{ws
j (t)+v>Bs}+

K∑
k=1

1{wr
k(t)>Br}

)
(30)

where c ≥ 0.

The first part of the suggested reward function (the first term in Equation (30)) repre-

sents the number of packets received by the base station. This is indicative of the system

throughput. The second part (i.e., the second term in Equation (30)) is a cost for actions

resulting in packet drops, e.g., an action that involves routing a packet from SS station to a

full RS buffer.

5 Optimal Policy Determination

In this section, we will use value iteration to determine the optimal scheduling policy for the

model we presented earlier. We investigate an infinite-horizon MDP. To find the optimal
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scheduling policy, we use the expected discounted cost optimality criterion with a discount

factor λ, where 0 < λ < 1. A policy π defines a sequence of measurable functions (D(s))

of the system state s(t) at every time slot t. The optimal policy is the policy π, among all

policies, that maximizes the value function V π(s).

Let V ∗(s) be the maximal discounted value function (i.e., V ∗(s) = supπ V
π(s)), attained

when applying the optimal policy π∗. Then we use the following optimality equation (Bell-

man equation) to characterize the optimal policy [21]

V ∗(s) = max
d∈D

[RT (s,d) + λ
∑
s′∈S

Pss′(d)V ∗(s′)] (31)

We use Value iteration to solve this model numerically for the optimal policy. We define

V0(s) to be an arbitrary bounded function. Then Vn(s), n > 0 can be determined using the

following recursion

Vn(s) = max
d∈D

[RT (s,d) + λ
∑
s′∈S

Pss′(d)Vn−1(s
′)] (32)

The function Vn converges to V ∗ as n → ∞ [22]. The algorithm will be stopped after n

iterations, provided that

‖Vn+1 − Vn‖ < ε(1− λ)/2λ (33)

for a given ε > 0, where ‖v‖ = sups∈S |v(s)|. If (33) holds, then ‖Vn+1 − V ∗‖ < ε/2, according

to [21].

6 Results and Analysis

In this section, the optimal policy is computed and presented for several special cases of the

general model presented in section 2 using value iteration, as discussed in section 5 above.

The cases we studied here corresponds to the following3: (i) L = K = 1, (ii) L = K = 2, and

3We studied other cases for this model and the results match those presented for the cases we present

here. We did not include them here for brevity.
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(ii) L = 1, K = 2. The results obtained from studying these cases, regarding the optimal

policy structural characteristics, can be extended to the general case.

In all the cases we studied, the following parameters are used: λ = 0.95, ε = 0.1, c = 1,

v = 1 and M = 2. Let p be the two-state channel transition probability matrix, where

p =

(
1− α α

β 1− β

)
(34)

Therefore, the channel is “connected” with probability π1 = α
α+β

and “not-connected” oth-

erwise (i.e., π0 = β
α+β

), where π is the stationary distribution of the Markov chain for the

channel model in this system.

6.1 Case Study 1: L = K = 1

We computed the optimal policy for the case L = K = 1, i.e., the case of two tandem queues

with random connectivity. This case is shown in Figure 4.
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Figure 5: The optimal policy for case 1, cx1,1 = cy1 = 1, α1 = α2 = 0.6, β1 = β2 = 0.4 and

q1 = 0.5.
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(a) α1 = α2 = 0.6, β1 = β2 = 0.4 and q1 = 0.6.
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(b) α1 = 0.5, β1 = 0.5, α2 = 0.6, β2 = 0.4 and

q1 = 0.5.
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(c) α1 = 0.7, β1 = 0.3, α2 = 0.6, β2 = 0.4 and

q1 = 0.5.

Figure 6: The optimal policy for case 1 with different parameters, cx1,1 = cy1 = 1. The legend

in this figure is the same as that in Figure 5.
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The results show that the optimal policy allocates transmission slots only to connected

queues. When only one queue is connected, then the optimal policy allocates the transmission

slot to that queue. When both queues are not connected then the optimal policy will idle,

i.e., no packets are transmitted. Figure 5 depicts the optimal policy for this system with

homogeneous connectivity (i.e., α1 = α2 = 0.6, β1 = β2 = 0.4), when both queues are

connected. In this case, both queues (corresponding to SS and RS nodes) are competing for

the channel resources. Figure 6 shows the optimal policy for three other scenarios (of case

1) with different connectivity and arrival parameters.

From Figures 5 and 6, it is clear that the optimal policy is threshold policy as expected.

This agrees with the conclusions in [11] for tandem queues. Furthermore, we noticed that

the threshold depends on the connectivity and arrival parameters. Figure 5 also shows that

in a homogeneous connectivity system a balancing policy, a policy that tries to balance the

length of the two queues, is optimal.

Figure 6(a) shows the effect of arrival probability on the optimal policy structure. We

noticed that when both queues are connected, higher arrival probability (i.e., higher arrival

rate to SS node) shifts the threshold of the optimal policy in favour of the SS queue. This

agrees with intuition, since the more packets arrive to SS node the faster the SS queue grows.

Therefore, more resources (transmission slots) need to be allocated to this queue to mitigate

the effect of higher arrival rate.

Figures 6(b) and 6(c) show that when both queues are connected the optimal policy

favours the queue with lower channel connectivity. This makes intuitive sense, since the

queue with higher channel connectivity has more opportunity to transmit than the other

queue.

The case we studied in this subsection represents the core for many scheduling and routing

problems in multi-hop wireless networks including wireless relay networks. The results we

present in this section can be extended to many problems in multi-hop wireless networks

and can shed light on the structure and behaviour of the optimal policy in such networks.
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6.2 Case Study 2: L = K = 2

In this subsection, we determine the optimal policy for the model in Figure 3 with L =

K = 2. We consider a system with homogeneous connectivity where α = β = 0.5 for every

channel in this system. We used value iteration to find the optimal policy for this case.

The results show that the optimal policy schedules packets for transmission on connected

channels only. Therefore, we elected to show the case where all the channels are connected,

i.e., cxi,j = cyj = 1,∀i, j = 1, 2. In this case, there are seven feasible actions for the policy to

choose from. The first action is to idle the server, i.e., no transmission is scheduled during

that time slot, uxi,j = uyj = 0,∀i, j = 1, 2. The optimal policy chooses this action only when

x1 = x2 = y1 = y2 = 0. The other six actions corresponds to either one of the following,

ux1,1, u
x
1,2, u

x
2,1, u

x
2,2, u

y
1 or uy2 is equal to 1 while the rest equal to 0. The graphical depiction of

this policy requires 5-dimensional representation of the four queue lengths (x1, x2, y1, y2) and

the action chosen by the optimal policy. Since, to our best knowledge, a tool to represent a

5-dimensional graph on a 2-dimensional surface does not exist, and due to the importance

of the pictorial depiction of scheduling policies over multi-dimensional space to our research,

we developed a new method for representing these policies, please refer to Figure 7.

In Figure 7, we depict the four dimensions representing the queue lengths for the four

queues in the system (i.e., x1, x2, y1, y2) as four axes in a 2-dimensional space. Each axis

starts from the point of origin (0, 0, 0, 0), that is represented by a small circle in the middle,

and forms a right angle with two of the other three axes. We use colour to represent the fifth

dimension, the one corresponding to the selected action by the policy under consideration.

In other words, we use different colours to represent each of the seven possible actions.

Each intersection point of the four axes in the original 5-dimensional space (i, j, k, l, a) is

represented by a closed curve that intersects all the four axes in the proposed two-dimensional

graph at points x1 = i, x2 = j, y1 = k and y2 = l, i.e., a point in the original 5-dimensional

space is mapped to a closed curve in the 2-dimensional depiction of the graph. The fifth

point (a) is represented by one of seven different colours. To represent a point that has one

(or more) axis with 0 value, e.g., x1 = 0, then the curve is drawn such that it passes through



24

 

 ux
1,1=1 

 ux
1,2=1 

 ux
2,1=1 

 ux
2,2=1 

  uy
1=1 

  uy
2=1 

Figure 7: The optimal policy for case 2, cxi,j = cyj = 1,∀i, j and q1 = q2 = 0.25.
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(a) ux1,1 = 1 (b) ux1,2 = 1 (c) ux2,1 = 1

(d) ux2,2 = 1 (e) uy1 = 1 (f) uy2 = 1

Figure 8: Optimal actions for case 2, cxi,j = cyj = 1,∀i, j and q1 = q2 = 0.25.
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the point where that axis meets the center circle as shown in Figure 7.

The number of curves required to represent all combinations of the queue lengths increases

exponentially with the number of queues in the system as well as the buffer size. In Figure

7 for example, there are 34 = 81 curves correspond to all 81 combination of the four axis.

Although we ran the program for larger buffer size, the figure shows a partial depiction of

the computed policy. Such graph is easier to visualize and to comprehend than a more

inclusive but cluttered one. The conclusions derived from this graph hold for the general

case. Furthermore, from the experimental data we collected, we concluded that increasing

the complexity of this graph will not add more information regarding the structure of the

optimal policy.

To study the structure of the optimal policy for this case, we decompose the graph in

Figure 7 into six graphs, one graph for every action as shown in Figure 8. From these figures

we conclude that the optimal policy is a most balancing (MB) policy. Such policy tries to

balance the queues in the system by allocating more resources (i.e., transmission slots) to

the longest connected queue (LCQ). If this queue is a SS one then the served packet will be

routed to the shortest connected RS queue, i.e., join the shortest queue (JSQ). To illustrate,

Figure 8(a) shows the queue length combinations (represented as closed curves) where the

optimal policy selects the action ux1,1 = 1, i.e., a packet from queue x1 is served and it is

routed to queue y1. A careful examination of this figure reveals that the optimal policy

chooses this action only when x1 ≥ x2, y1, y2 and y1 ≤ y2. The equality reflects the cases

where some queues have the same lengths as x1 and hence choosing either one will result in

the same reward. The density of the curves passing through a point on one axis compared

to other axis is a visual indication of the above argument.

Figure 8(b) on the other hand, corresponding to the optimal action ux1,2 = 1, shows that

x1 ≥ x2, y1, y2 while y1 ≥ y2. Therefore, the shortest RS queue in this case is y2 and hence

the action ux1,2 = 1 is selected.

Similar conclusions can be derived from the other four graphs in Figure 8. Notice that

these actions will result in a balancing effect. This result matches our previous conclusions
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for case 1.

6.3 Case Study 3: L = 1, K = 2

In this subsection, we determine the optimal policy for the model in Figure 3 with L = 1 and

K = 2. The arrival probability is q1 = 0.5. In this case we select a two-state connectivity

with α = β = 0.6 for every channel in this system. We calculated the optimal policy for this

case using value iteration. Similar to the previous cases, the results show that the optimal

policy schedules transmissions on connected channels only. Therefore, we present the case

where all the channels are connected, i.e., cxi,j = cyj = 1,∀i, j. There are five feasible actions

for the policy to choose from including the idling option. The optimal policy chooses idling

option only when x1 = y1 = y2 = 0. Each of the remaining actions corresponds to one of

the following controls: ux1,1, u
x
1,2, u

y
1 and uy2, equals to 1 while the rest equal to 0. We use the

same graphical depiction technique we introduced earlier to map the resulted (4-dimensional)

policy on a 2-dimensional surface. The optimal policy for case 3 is shown in Figure 6.3. The

plots for each of the four non-idling actions are shown in Figure 6.3.

From these figures we noticed that the optimal policy in case 3 have similar properties

to those in cases 1 and 2. The optimal policy selects to serve the longest connected queue.

From Figures 10(a) and 10(b), we can see that the scheduled packet is routed to the shortest

queue. The optimal policy in this case is a balancing policy, i.e., a policy that tries to balance

the three queues in the system.

7 Conclusion

In this work, we studied the wireless relay networks optimization problem from dynamic

packet scheduling perspective. We provided a queuing model for these networks, then we

formulated this problem as a Markov decision process. We solved the problem for several

special cases, using value iteration, to obtain the optimal policy in each case. From these
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Figure 9: The optimal policy for case 3, cx1,j = cyj = 1,∀j and q1 = 0.5.

results, we concluded that the optimal policy is a threshold type policy. Furthermore, for

homogeneous system the policy shown to be a most balancing one. We developed a method to

graphically map the optimal policy from the L+K+1-dimensional space to a 2-dimensional

space, in order to facilitate the visualization of the optimal policy structure and to deduce

conclusions.

The numerical determination of the optimal policy is a high computational complexity

task. For systems with large L and K, this complexity can be a prohibiting factor. How-

ever, the information regarding the structural characteristics of the optimal policy, that was

obtained for the special cases we studied here, can be generalized to larger systems. For

practical deployment, the optimal policy can be computed in non-real time and then stored

in a lookup table that can be accessed later.

For future work, we propose to design a heuristic algorithm, based on the results we

obtained here, that can be used to find the optimal policy for any wireless relay network.
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(a) ux1,1 = 1 (b) ux1,2 = 1

(c) uy1 = 1 (d) uy2 = 1

Figure 10: Optimal actions for case 3, cx1,j = cyj = 1,∀j and q1 = 0.5.
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We are also working on the theoretical proof of the results we obtained in this paper.
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