
Dynamic Packet Scheduler Optimization in Wireless

Relay Networks

Hussein Al-Zubaidy, Changcheng Huang, James Yan

SCE, Carleton University, Ottawa, ON, K1S 5B6 Canada.

e-mail: {hussein, huang}@sce.carleton.ca, jim.yan@sympatico.ca.

January 31, 2011

Abstract

In this article, we investigate the optimal dynamic packet scheduling policy in a

wireless relay network (WRN). We model this network by a two sets of parallel queues,

that represent the subscriber stations (SS) and the relay stations (RS). We model the

wireless channel connectivity by a two-state random process. We prove that, in a system

with symmetrical connectivity and arrival distributions, a policy that tries to balance

the lengths of all the system queues, at every time slot, is optimal. An optimal policy

minimizes, in stochastic ordering sense, the process of cost function of the SS and RS

queue sizes. We use stochastic dominance and coupling arguments in our proof. We also

provide a low-overhead algorithm for optimal policy implementation.

1 Introduction

Fourth generation (4G) wireless systems are high-speed cellular networks with peak download

data rates of 100 Mbps. These systems deploy dedicated wireless relay nodes to achieve

cooperative diversity. In such systems, wireless relay nodes are spread over the coverage range

of the cell. They have the effect of increasing coverage within a cell and facilitating the targeted

1

2

data rate for 4G mobile users. These relay nodes usually possess limited functionality and

have low power consumption. Consequently, they are significantly cheaper than a full scale

base station.

Early studies of cooperative communication were initiated by [2], [3] and [4]. Since then,

the subject has attracted the attention of many researchers as well as the industry, c.f. [5] [6].

IEEE 802.16j task group recommended the use of relay nodes and user cooperation in cellular

networks design [7].

Most of the existing work in this area aimed at exploiting the diversity and multiplexing

gain to improve some performance criteria, e.g., capacity and bandwidth utilization, outage

probability, error rate, etc. These are often achieved through the use of adaptive modulation

techniques, distributed space-time coding, or error-correction coding. However, performance

optimization in such systems involves more than one layer and therefore requires a cross-layer

design perspective.

In this work, we study the problem of cooperative communication in wireless cellular net-

works from new perspective, the dynamic packet scheduling perspective. We are interested

in the scheduling of packets on the uplink of a wireless relay network (WRN). Each of the

subscriber or the relaying nodes is assumed to have a time-varying channel that can be mod-

elled as a random process. We present a queueing model that captures the packet buffering,

scheduling and routing processes as well as the intermittent channel connectivity in such

network. We then use this model to study dynamic packet scheduling in such networks.

Dynamic packet scheduling enables the redistribution of the available resources to improve

network performance. Furthermore, optimal packet scheduling policies can be determined un-

der various operating constraints to optimize various performance criteria and to achieve

performance gain. This motivated the investigation of the optimal control problem that we

present here. The inherent randomness of the wireless channel and the dynamic configuration

of the nodes in wireless networks create a formidable challenge to such investigation. There-

fore, it is wise and often necessary in such cases to make simplifying assumptions that result

in mathematically tractable problem formulations. Otherwise, optimality results may not be

attainable.

In this article, we investigate an optimal dynamic packet scheduling policy in a wireless

3

relay network (WRN) composed of a base station (BS), L subscriber stations and K relay

stations. L can be larger, smaller or equal to K. This network is modelled by two sets of

queues with infinite size. The wireless channel in such network is varying with time and can

best be described by a random process. A wireless link (that connects a SS node to a RS node

or a RS node to the BS) is assumed to be ‘connected’ with probability p and ‘not connected’

otherwise. We further assume that the connectivity processes are independent across the

wireless links. The transmission frame is divided into two halves; during the first half a SS

node is scheduled to transmit (to a selected relay station) and during the second half a RS

node is scheduled to transmit (to the base station).

This model is widely used to study scheduling and routing algorithms in multi-hop, wire-

less networks such as relay assisted, fourth generation wireless networks. Cellular networks,

including 4G wireless networks, are mostly infrastructure-based networks. Therefore, a cen-

tralized approach can be used for the implementation of packet-scheduler in these networks.

Furthermore, in modern cellular networks a pilot channel is used to estimate, among other

things, the channel signal-to-noise ratio by measuring the received signal power at the re-

ceiving end [8]. In this case, the channel state information (CSI) as well as the queue state

information (backlog) can be made available to the controller with minimal efforts.

The optimization cost that we consider in this work is a monotone, non-decreasing function

of the system queue occupancy. The optimization criterion we use in this work is stochastic

dominance [19]. Stochastic dominance is a stronger optimization notion than the expected

cost minimization since the former implies the later; however, the reverse is not true [9].

This cost may represent the expected total queueing delay, since this delay can be stated as

a function (i.e., the expected value) of the total number of buffered packets in the system,

according to Little’s law. We prove using stochastic dominance and coupling arguments [20],

that a most balancing (MB) policy minimizes, in stochastic ordering sense, the process of cost

function mentioned above. A MB policy is a dynamic packet scheduling policy that at every

scheduling opportunity, i.e., at every time frame, tries to minimize the imbalance of the SS

queue sizes as well as the RS queue sizes.

4

A1(t)

AL(t)

C
S

1(t)

X1(t)

XL(t)

A2(t)

X2(t)

C
r
1(t)

Y1(t)

YK(t)

Y2(t)

BS

SSs RSs

User 1

User 2

Base Station

A(t)
CX(t)

X(t)
CY(t)

Y(t)

BS

C
S

L(t)

C
S

2(t) C
r
2(t)

C
r
K(t)

Figure 1: A model for packet scheduling in a 2-hop wireless relay networks.

1.1 Previous Work

The optimality problem we are investigating lies in the area of optimal control in queueing

networks. A related problem was first studied by Roseburg et al in [10]. They investigated

an optimal control policy of service rate in a system of two queues in tandem. They proved,

using dynamic programming argument, that a threshold policy is optimal in that it minimizes

the expected cost function of the queue occupancy. An extension to their work is to include

random connectivity between the two queues to represent wireless channel. This is a special

case of the model we presented in Figure 1, where L = K = 1.

Another related work to the optimal control problem we are presenting here was reported

by Tassiulas and Ephremides in [21]. They considered a model of parallel queues with a single

server; they showed that a LCQ policy, a policy that allocates the server to its longest con-

nected queue, minimizes the total number of packets in the system. Bambos and Michailidis

[22] worked on a model similar to that in [21] and proved that, under stationary ergodic input

job flow, both MCW (Maximum Connected Workload) and LCQ allocation policies maximize

the stability region for this system. The same authors proved similar results for continuous

time models in [23].

The authors in [24] studied a satellite node with K transmitters. They modelled the system

by a set of parallel queues with symmetrical statistics competing for K identical servers. At

any given time slot in this model: (i) a server is connected to either all or no queues at all,

(ii) at most one server can be allocated to each scheduled queue. Using stochastic coupling

5

arguments, the authors proved that an LCQ (Longest Connected Queue) policy is optimal, in

that it stochastically minimizes a cost function of the queues’ length. This policy allocates,

at every time slot, the K servers to the K longest connected queues.

In previous work [25], we studied the problem of optimal scheduling in a multi-server

system of parallel queues with random queue-server connectivity. We relaxed assumptions

(i) and (ii) above, i.e., a server may be connected to a subset of the queues and not to the

others, and we allow multiple servers to be allocated to a single queue at a given time slot. We

proved, using coupling arguments, that the class of Most Balancing (MB) policies is optimal

in that they minimize, in stochastic ordering sense, a cost function of the queues’ sizes in the

system.

The model we are presenting in this article differs from the above in that it contains two

sets of parallel queues in tandem rather than just one. At every time frame, the scheduler

in this case must decide which SS node transmits during the first half of the frame, which

RS queue receives the transmitted packets and which RS node transmits (to BS) during the

second half of the frame.

In [11], the authors proposed a cooperative multiplexing and scheduling algorithm for a

wireless relay network with a single relay node. They showed that this algorithm outperforms

the traditional opportunistic techniques in terms of spectral efficiency. The authors in [12]

studied link scheduling in WRN with bandwidth and delay guarantees. They modelled the

system using simple directed graph. They proposed an efficient algorithm to provide delay

guarantee over WRN. They proved that the worst-case performance of the proposed algorithm

compared to an optimal one is bounded.

In [13], the authors presented opportunistic relaying with decode-and-forward (DaF) and

amplify-and-forward (AaF) strategies under an aggregate power constraint. They showed that

opportunistic DaF relaying is outage-optimal. Furthermore, they showed that opportunistic

AaF relaying is outage-optimal among single-relay selection methods. The authors in [14]

proposed a utility maximization framework for wireless cooperative cellular data network with

a base station and many cooperative subscribers. They claim that their strategy optimizes

relay selection as well as power allocation.

For a wireless relay network, the choices of relay node, relay strategy, and the allocation of

6

power and bandwidth for each user are important design parameters which were investigated

thoroughly in recent literature. Relay selection and cooperation strategies for relay networks

have been investigated by [15] and [16] among others. Power control has been investigated by

[17] and [18] and many others. However, the modern wireless networks are mostly IP-based,

and therefore the optimization problem may be reduced to finding the optimal dynamic packet

scheduling policies in these networks.

1.2 Our Contributions

In this work, we developed a queueing model to study the process of packet scheduling in

wireless relay network. Our main contributions can be summarized by the following:

• We propose a study of wireless relay networks from dynamic packet scheduling perspec-

tive. A queueing model is developed for this study, see Figure 1.

• We introduce (in Equation 15) and show the existence of the class of optimal scheduling

policies (i.e., the class of MB policies) for the model of Figure 1.

• We prove the optimality of MB policies (Theorem 2) for packet scheduling in wireless

relay networks with symmetrical parameters, i.e., arrivals and connectivities. The opti-

mality criterion we use is stochastic ordering and the cost that is minimized belongs to

a set of functionals of the SS and RS queue sizes.

• We provide an implementation algorithm for the MB policies. At every time frame, this

algorithm schedules the longest connected SS queue to transmit during the first half of

the frame, then route the transmitted packet to the shortest RS queue, update the RS

queue sizes and lastly schedule the longest connected RS queue to transmit during the

second half of the frame. We also prove that this algorithm results in a MB policy.

Our literature survey revealed several proposed algorithms for packet scheduling in WRN.

Many of the scheduling policies resulted from these algorithms may outperform other existing

policies under some operating conditions but they are not optimal. The theoretical as well as

practical value of the optimal packet scheduling policy is what motivated this work.

7

The rest of this paper is organized as follows; In Section II, we present a detailed description

of the queueing model for the relay network under investigation. In Section III, we define the

“Most Balancing” policy for the presented model. In Section IV, the optimal packet scheduling

policy is investigated and the optimality results are presented. Conclusions are given in Section

V.

2 Model Description

We model this network using a discrete-time queueing system1 as shown in Figure 1. The

objective is to find the optimal dynamic packet scheduling policy (or equivalently, the channel

allocation decision at every time slot) for this network. The optimal policy is the one that

minimizes a cost function of the system queue lengths.

In this model, time is slotted into constant intervals each of which is equal to one trans-

mission frame. Let T = {1, 2, . . .} denote the set of decision intervals (a time slot is equal to

one decision interval). At every time slot, the following sequence of events happen: (a) the

system state (queue sizes and connectivities) is observed, (b) a scheduler action (or control

decision) is selected, and (c) the exogenous arrivals are added to their respective SS queues.

The scheduler action involves (i) selecting a SS node to transmit to a RS node (denote that

action by U1(t)), (ii) selecting the RS node that the scheduled packet is routed to (denoted by

U2(t)), and (iii) selecting a RS node to transmit to the base station (denoted by U3(t)). These

actions are sequentially executed with order U1(t), U2(t) then U3(t). A packet that arrives

during the current time slot can only be considered for transmission in the subsequent time

slots.

A scheduled packet completes transmission with probability 1 at a given time frame and

therefore no retransmission is required. This is a simplifying assumption, however, the results

obtained for this model can be easily adapted for a system with retransmission. We assume

that the scheduler has complete knowledge of the system state when the decision time arrives.

This is a realistic assumption for most infrastructure-based networks since they use a central-

1In this model, the direct link between a subscriber station and the destination (the base station) can be
considered as a degenerate case.

8

ized control provided by the base station. They deploy a dedicated control channel that can

be used to communicate such information.

2.1 Formulation and Statistical Assumptions

We define the following notation that we use to describe the model under investigation.

Throughout this paper, we will use UPPER CASE, bold face and lower case letters to

represent random variables, vector/matrix quantities and sample values respectively. In our

notation, we define two dummy queues, one SS and one RS, that we denote by the index

‘0’. These queues are used to represent the idling action, i.e., a dummy packet is removed

from queue 0 when no real packet from real queue is scheduled for transmission. We assume

that the dummy queues have full connectivity at all times and initial sizes of 0. The dummy

queues are required in order to facilitate the mathematical formulation of this optimal control

problem. Let L = {0, 1, . . . , L} (respectively K = {0, 1, . . . , K}) be the set of indices for the

SS (respectively RS) stack of queues

For any time slot t ∈ T , we define the following:

• X(t) = (X0(t), X1(t), . . . , XL(t)) is the queue length vector for SS nodes (measured in

number of packets) at the beginning of time slot t, where Xi(t) ∈ {0, 1, 2, . . .} and

X0(1) = 0, i.e., we assume that the dummy queue is initially empty.

• Y(t) = (Y0(t), Y1(t), . . . , YL(t)) is the queue length vector for RS nodes at the beginning

of time slot t, where Yi(t) ∈ {0, 1, 2, . . .}. We assume that Y0(t) = 0 for all t.

• A(t) = (A0(t), A1(t), . . . , AL(t)), where Ai(t) is the number of exogenous arrivals to SS

queue i during time slot t.

• Cs(t) = (Cs
0(t), Cs

1(t), . . . , Cs
L(t)) (resp. Cr(t) = (Cr

0(t), Cr
1(t), . . . , Cr

K(t))) is the channel

connectivity random variable for SS (resp. RS) nodes during time slot t, where Cs
0(t) =

Cr
0(t) = 1,∀t.

• U(t) = (U1(t), U2(t), U3(t)), s.t. U1(t) ∈ L, U2(t) ∈ K, U3(t) ∈ K, is the scheduler

decision (or control), where U(t) = (i, j, k) means that SS node i is scheduled to transmit

9

to RS node j during the first half of time slot t, and RS node k is scheduled to transmit

to the BS during the second half of time slot t.

For ease of reference, we refer to the state of queue lengths and connectivities, i.e., the

tuple (X(t),Y(t),Cs(t),Cr(t)), as the system “state” at the beginning of time slot t that we

denote by S(t).

We make the following statistical assumptions regarding the random processes in the sys-

tem. The arrival processes (Ai(t), i = 1, . . . , L) are assumed to be i.i.d. Bernoulli, with

parameter q, i.e., packet arrival to SS queue i is given by:

Ai(t) =

1 with probability q,

0 with probability 1− q

However, the arrivals to any RS queue at time t is equal to the number of packets transmitted

from a SS node to that RS node during that time slot. In either case, arrivals during time

slot t will be added only after the removal of the scheduled packets at that time slot. For

convenience, we define A0(t) = W s
0 (t), where W s

0 (t) is the number of packets withdrawn

from queue 0 during time slot t, in order to ensure that X0(t) = 0 for all t. Furthermore,

transmitted dummy packets (i.e., fictitious packets from dummy queues) will not be added to

the receiver queue (the RS queue that the packet is routed to). This assumption is intuitively

correct, since fictitious packet is generated only when the channel is idled (i.e., when there is

no real packet transmission).

The connectivity processes Cs
i (t) and Cr

j (t), for all i = 1, . . . , L and j = 1, . . . , K are

assumed to be independent 2-state channels with connection probability p. It is further

assumed that the connectivity and arrival processes are independent of each other.

We define next the ‘withdrawal’ and the ‘insertion’ controls as a function of the scheduler

control U(t). These controls simplify the formulation and the proof of the optimality problem

we are studying in this article.

10

2.2 Feasible Withdrawal/Insertion Control Vectors

Let 1{B} denote the indicator function for condition B. At any given time slot t, we define

the SS (respectively the RS) withdrawal vector Ws(t) (respectively Wr(t)) as follows:

W s
i (t) = 1{U1(t)=i}, i = 0, 1, . . . , L, (1)

and,

W r
j (t) = 1{U3(t)=j}, j = 0, 1, . . . , K, (2)

where W s
i (t) (respectively W r

j (t)) represents the number of packets withdrawn from SS queue

i (respectively RS queue j) during time slot t.

Similarly, we define the RS insertion vector as follows:

V r
j (t) = 1{U2(t)=j}, j = 1, . . . , K, U2(t) > 0 (3)

where V r
j (t) represents the number of packets inserted to RS queue j during time slot t. Note

that we do not allow real packets to be inserted in the dummy queue. Similarly, we do not

allow dummy packets to be inserted in to real queues.

In the system described above and for any (feasible) withdrawal/insertion controls, the

queue length for any SS node evolves according to the following relation:

X(t+ 1) = X(t)−Ws(t) + A(t) (4)

Similarly, the queue length evolution for any RS node is given by the following relation:

Y(t+ 1) = Y(t) + Vr(t)−Wr(t) (5)

Exogenous arrivals (in Equation (4)) can only be added after the scheduling control is

executed and the scheduled packet is withdrawn.

It is apparent, from Equations (4) and (5) that Equations (1) – (3) do not guarantee

feasibility of the withdrawal/insertion vectors and hence the scheduling control vector U(t).

Therefore, we provide the following feasibility condition:

A vectors U(t) is said to be a ‘feasible scheduling control ’ if the following condition is

satisfied: ‘a packet may only be withdrawn from a connected, non-empty queue’. A formal

statement of this condition is given next.

11

Given the system state S(t) during time slot t, a scheduling control vector U(t) is fea-

sible if and only if the resulted withdrawal/insertion vectors satisfy the following feasibility

constraints:

0 ≤ W s
i (t) ≤ 1{Xi(t)>0} · Cs

i (t), ∀i 6= 0, (6)

0 ≤ W r
j (t) ≤ 1{Yj(t)>0} · Cr

j (t), ∀j 6= 0, (7)

L∑
i=0

W s
i (t) = 1,

K∑
j=0

W r
j (t) = 1. (8)

According to Constraint (6), a packet is withdrawn from a SS queue i only if queue i is

connected and non-empty, i.e., Xi(t) > 0 and Cs
i (t) = 1. Similarly, according to Constraint

(7), a packet can only be withdrawn from a connected, non-empty RS queue. Constraint (8)

insures that only one SS node and one RS node are allowed to transmit at any given time slot

t.

Define the set U(S(t)) as the set of all feasible scheduling controls when the system in

state S(t). In the following subsection, we formally define packet scheduling policies for the

queueing system under investigation.

2.3 Policies for Dynamic Packet Scheduling

A packet scheduling policy π (or policy π for short) is a rule that determines the feasible

control vectors U(t) for all t as a function of the past history and current state of the system,

where the state history H(t) is given by the sequence of random variables

H(1) = (X(1),Y(1)), and

H(t) = (X(1),Y(1),Cs(1),Cr(1),A(1), . . . ,Cs(t− 1),

Cr(t− 1),A(t− 1),Cs(t),Cr(t)), n = 2, 3, . . . (9)

Note that only the initial queue size value is included in the history. The queue size for

the subsequent time slots can be easily determined for a given initial state and a given policy

when the values of the arrival and connectivity processes are known at all preceding time slot.

12

Let Ht be the set of all state histories up to time slot t. Then a policy π can be formally

defined as the sequence of measurable functions

gt : Ht 7−→ Z3
+,

s.t. gt(H(t)) ∈ U(S(t)), t = 1, 2, . . . (10)

where Z+ is the set of non-negative integers and Zm+ = Z+ × . . . × Z+, where the Cartesian

product is taken m times.

The set of feasible2 scheduling policies described in Equation (10) is denoted by Π. We

are interested in a subset of Π that we will introduce in the next section, namely the class of

Most Balancing (MB) policies. The main objective of this work is to prove the optimality of

MB policies among all policies in Π.

3 The Class of MB Policies (ΠMB)

In this section, we provide a description and mathematical characterization of the class of MB

policies. Intuitively, the MB policies attempt to balance the sizes (leftover) of the SS queues

as well as the RS queues in the system. This can be achieved by minimizing the queue length

differences for the two sets of queues, at every time slot t. We present next a more formal

characterization of MB policies. We first define the ‘imbalance index ’ of a vector x that we

denote by κ(x).

Let x ∈ ZM+ be an M -dimensional vector. The imbalance index of the vector x is defined

as the following sum of differences:

κ(x) : ZM+ 7−→ Z+,

κ(x) =
M−1∑
i=1

M∑
j=i+1

(x[i] − x[j]), (11)

where [k] denotes the index of the kth longest component in the vector x.

The above definition ensures that the differences are nonnegative and a pair of components

is accounted for in the summation only once; moreover, as we shall see in Lemma 2, this

2We say that a policy π is feasible if it selects a feasible scheduling control Uπ(t) ∈ U(S(t)) for all t.

13

definition allows for a straightforward calculation and comparison of various policies. We

define next the “balancing interchange” for the vector x. We use this operation in the proof

for the optimality of MB policies.

Definition: Balancing Interchange: Given vectors x,x∗ ∈ ZM+ , we say that x∗ is obtained

from x by performing a balancing interchange if the two vectors differ in two components

i > 0 and j ≥ 0 only, where

x∗i = xi − 1, x∗j = xj + 1, s.t. xi ≥ xj + 1. (12)

�

To put the above definition into perspective, if the vector x represents a queue sizes vector

then a balancing interchange would involve the removal of one packet from a larger queue i

and the insertion of that packet to a smaller queue j. We will show later (in Lemma 2) that

such an interchange will decrease the imbalance index of the vector, i.e., make the queue sizes

more balanced.

Given a state s(t) and a policy π that chooses the feasible scheduling control u(t) ∈ U(s(t))

at time slot t; define the “updated” queue sizes, x̂i(t) and ŷj(t), as the size of these queues

after applying the control u(t) and just before adding the exogenous arrivals during time slot

t. Note that because we let z0(t) = ws0(t), x̂0(t) may be negative. The updated queue sizes

can be stated as follows:

x̂i(t) = xi(t)− wsi (t) i = 0, 1, . . . , L (13)

and,

ŷj(t) = yj(t) + vrj (t)− wrj (t) j = 0, 1, . . . , K (14)

At any given time slot t, the imbalance indices for the updated SS and RS queue length

vectors x̂(t) ∈ ZL+1
+ and ŷ(t) ∈ ZK+1

+ are given by κ(x̂(t)) and κ(ŷ(t)). The L+ 1st SS queue

as well as the K + 1st RS queue are the dummy queues defined in the previous section. By

convention, the SS (respectively the RS) “dummy queue”, i.e., queue 0 in either stack, will

always have order L+ 1 (respectively K + 1), i.e., the queue with the minimum length in the

stack.

14

From Equation (11), it follows that the minimum possible value of the imbalance index for

a M + 1-dimensional vector x is equal to M ·x[M] (i.e., the first M components have the same

value which is equal to that of the smallest component) which is indicative of a fully balanced

system. It also follows that the maximum such value is equal to 2(M − 1)x[1] − (M − 2)x[M].

This value is attained when the M − 1 largest components have the same size.

We are ready to define the set of MB policies. We denote by ΠMB the set of all MB policies

in the system we described earlier. We define the elements of ΠMB as follows:

Definition: Most Balancing Policies: A Most Balancing (MB) policy is a policy π ∈ Π

that, at every t = 1, 2, . . ., chooses feasible scheduling control vector u(t) ∈ U(s(t)) such that

both imbalance indices κ(x̂(t)) and κ(ŷ(t)) are minimized, i.e.,

ΠMB=
{
π ∈ Π : argmin

u(t)∈U(s(t))

κ(x̂(t))
⋂

argmin
u(t)∈U(s(t))

κ(ŷ(t)),∀t
}

(15)

In Equation (15), two sets of policies are defined through the two argmin functions. Policies

in the first (respectively the second) set minimize the imbalance index for the SS (respectively

the RS) queue length vector. The intersection of the two sets results in a set of policies that

minimize the imbalance index for both vectors.

We say that a policy has the “MB property” during time slot n, if it choses a control that

satisfies Equation (15) at t = n. Then a MB policy can be defined as the policy that has the

MB property at every time slot.

The set ΠMB in Equation (15) is well-defined and non-empty, since the minimization is

over a finite set of controls. It is also possible that the set of MB policies may have more than

one element. This could happen, for example, when at a given time slot t, one of two (or

more) equal size queues is scheduled to transmit during that time slot under an MB policy

π1 ∈ ΠMB. Then, a policy π2 that choses the other equal size queue will result in the same

imbalance index as π1 during that time slot. Therefore, π2 ∈ ΠMB.

3.1 MB Policy Implementation

Given s(t), one can construct an MB policy using a direct search over all possible scheduling

control vectors. For large L and K, this can be a challenging computational task. We provide

15

next a low-complexity heuristic algorithm (LCQ/SQ/LCQ) to implement MB policies. This

algorithm is defined next:

Definition: Algorithm LCQ/SQ/LCQ: For every time slot t, Algorithm LCQ/SQ/LCQ

selects the feasible vector u(t) ∈ U(s(t)) such that u1(t) is the longest connected SS queue

(LCQ), u2(t) is the shortest RS queue (SQ), and u3(t) is the longest connected RS queue

(LCQ). That is

u1(t) = ls : ls ∈ argmax
i∈L:csi (t)=1

xi(t) (16)

u2(t) = sr : sr ∈ argmax
i∈I

cri (t), I = argmin
j∈{1,...,K}

yj(t) (17)

u3(t) = lr : lr ∈ argmax
j∈K:crj (t)=1

(yj(t) + vrj (t)) (18)

where vr(t) is the RS insertion vector at time slot t. For SS queue 0 we add one extra

condition for the sake of mathematical accuracy in the extreme case, that is: “If u1(t) = 0

then u2(t) = 0.” This may happen when the controller is forced to idle during the first half

of the frame, e.g., when all connected SS queues are empty). �

Equations (16) – (18) describe the control vector u(t) = (u1(t), u2(t), u3(t)). Equation

(16) identifies the longest connected SS queue as u1(t). Equation (17) identifies the shortest

RS queue; if there are more than one RS queue that satisfy this condition, one of which (at

least) is connected, then the connected one is the one selected as u2(t). Otherwise, u2(t) will

be the shortest non-connected RS queue. The reason behind this extra condition is a special

case where all the RS queues have the same size, then RS queue u2(t) will be the longest RS

queue after adding the packet transmitted from SS queue u1(t). Selecting a connected RS

queue in this case will provide the opportunity for the scheduler to select the longest SS queue

as u3(t). Equation (18) identifies the longest connected RS queue, after adding the packet

received from SS nodes during the first half of time slot t, as u3(t).

Lemma 1. Algorithm LCQ/SQ/LCQ results in a feasible control vector u(t) for any t.

Proof. According to Equations (16) – (18), packets are withdrawn from connected queues

only. Furthermore, packets are withdrawn from the longest connected queue for both SS and

16

RS stack of queues. This will insure that as long as there is at least a single connected, non-

empty queue then the LCQ will not be empty. Therefore, Equations (6) and (7) are satisfied.

Furthermore, Equation (8) is satisfied by definition of the scheduler control u(t).

The following theorem states that the policy resulted from the proposed implementation

algorithm is indeed a MB policy.

Theorem 1. For the operation of the system presented in Section 2 and shown in Figure 1,

a MB policy can be constructed using Algorithm LCQ/SQ/LCQ.

To prove Theorem 1, we will need the following lemma. It quantifies the effect of performing

a balancing interchange on the imbalance index κ(x) of the L+ 1-dimensional vector x.

Lemma 2. Let x and x∗ be two L + 1-dimensional ordered vectors (in descending order);

suppose that x∗ is obtained from x by performing a balancing interchange between two com-

ponents, l and s, of x, where xl > xs, such that, s > l;xl > xa,∀a > l and xs < xb, ∀b < s.

Then

κ(x∗) = κ(x)− 2(s− l) · 1{xl≥xs+2} (19)

According to Equation (11), to prove Lemma 2 we have to show that

L∑
i′=1

L+1∑
j′=i′+1

(x∗i′ − x∗j′) =
L∑
i=1

L+1∑
j=i+1

(xi − xj)

−2(s− l) · 1{xl≥xs+2} (20)

The full proof of Lemma 2 is presented in Appendix Appendix .1. Now we are ready to

prove Theorem 1.

Proof for Theorem 1. Given the system state s(t) = (x(t),y(t), cs(t), cr(t)) at time slot t.

During this time slot, let ls be the index of the longest connected SS queue (as in Equation

(16)) and sr be the index of the shortest RS queue before executing the control u(t) that

satisfies Equation (17); let lr be the index of the longest connected RS queue after executing

the controls u1(t) and u2(t) and just before executing the control u3(t) (as in Equation (18)).

17

We show next that the control vector selected by Algorithm LCQ/SQ/LCQ during time

slot t will result in an imbalance index that is either (i) less or (ii) equal to that of a MB policy.

Case (i) contradicts Equation (15); therefore, the MB policy must satisfy Equations (16) –

(18). Case (ii) insures that LCQ/SQ/LCQ satisfies Equation (15). In either case, Theorem 1

will follow.

Let π ∈ ΠMB be a MB policy that selects the scheduler control u(t) ∈ U(s(t)) during time

slot t. To show the contradiction, we assume (to the contrary of Theorem 1) that u(t) does not

satisfy Equations (16) – (18). In this case, consider the following three cases corresponding

to Equations (16), (17) and (18) respectively:

1) xu1(t)(t) < xls(t), i.e., u1(t) does not satisfy Equation (16) during time slot t. Then

x̂u1(t)(t) < x̂ls(t) − 1 (under π). According to Equation (12) we can perform a balancing

interchange between components u1(t) and ls that will reduce the imbalance index κ(x̂(t)).

Therefore, π does not satisfy Equation (15) and hence it is not a MB policy. This contradicts

the original assumption that π ∈ ΠMB. Therefore, we conclude that a MB policy must satisfy

Equation (16). Note that xu1(t)(t) > xls(t) is not possible since queue u1(t) must be connected

(feasibility constraint (6)) and queue ls is the longest connected queue by assumption.

2) yu2(t)(t) > ysr(t), i.e., u2(t) does not satisfy Equation (17) during time slot t. Then

yu2(t)(t) + vru2(t)(t) > ysr(t) + vrsr(t) + 1. Similar to the previous case, we can perform a

balancing interchange between queues u2(t) and sr. Again this will reduce the imbalance

index κ(y(t) + vr(t)). Therefore, π does not satisfy Equation (15) and hence it is not a MB

policy. This contradiction leads us to conclude that π must satisfy Equation (17). Since sr is

the shortest queue by assumption, then yu2(t)(t) < ysr(t) is not possible. However, if yu2(t)(t) =

ysr(t) s.t. u2(t) 6= sr; in this case, if cru2(t)(t) = crsr(t) then u2(t) satisfies Equation (17) during

time slot t. Otherwise, i.e., crsr(t) > cru2(t)(t) = 0, then yu2(t)(t) + vru2(t)(t) = ysr(t) + vrsr(t) + 1.

In this case, if u3(t) = sr then ŷu2(t)(t) = ŷsr(t) + 2. A balancing interchange between queues

u2(t) and sr will reduce the imbalance index κ(ŷ(t)). Therefore, π does not satisfy Equation

(15) and hence it is not a MB policy. By contradiction π must satisfy Equation (17).

If on the other hand u3(t) 6= sr then a policy that choses either u2(t) or sr while keep-

ing u1(t) and u3(t) the same will result in the same imbalance index. Since π ∈ ΠMB by

assumption, then LCQ/SQ/LCQ ∈ ΠMB as well.

18

3) yu3(t)(t) + vru3(t)(t) < ylr(t) + vrlr(t), i.e., u3(t) does not satisfy Equation (18) during

time slot t. Then ŷu3(t)(t) < ŷlr(t) − 1. Again we can perform a balancing interchange

between queues u3(t) and lr that will result in a reduction of the imbalance index κ(ŷ(t).

Therefore, π does not satisfy Equation (15) and hence it is not a MB policy. This contra-

diction leads us to conclude that a MB policy π must satisfy Equation (18). Since lr is the

longest connected queue by assumption and given the feasibility constraint (7), the case where

yu3(t)(t) + vru3(t)(t) > ylr(t) + vrlr(t) is not possible.

The above cases are the only possible cases. We conclude that a MB policy π ∈ ΠMB

satisfies Equations (16) – (18) and Theorem 1 follow.

4 Optimality of MB Policies

In this section, we provide a proof for the optimality of the Most Balancing (MB) policies.

The optimal policy minimizes (stochastically) a class of cost functions that correspond to a

range performance criteria, including the minimization of the total number of packets in the

system. We use coupling arguments in our proof. We start by defining a partial order to

facilitate the comparison of the cost functions under different policies. We also define the

class of cost functions for the optimality problem that we investigate in this section.

4.1 Definition of the Partial Order

In order to prove the optimality of MB policies, we devise a methodology that enables com-

parison of the queue lengths under different policies. The idea is to define an order that we

call the “preferred order” and use it to compare queue length vectors, for the SS queues as

well as the RS queues, under different policies. We start by defining the relation v on ZM+ for

some M > 0 as follows; we say that the two vectors x̃ and x are related via x̃ v x if:

S1- x̃i ≤ xi for all i (i.e., point wise comparison),

S2- x̃ is a 2-component permutation of x; the two vectors differ only in two components i

and j, such that x̃i = xj and x̃j = xi, or

19

S3- x̃ is obtained from x by performing a “balancing interchange” as defined in Equation

(12).

Then the “preferred order” is defined as follows:

Definition: The preferred order (4) is defined as the transitive closure of the relation v on

the set ZM+ ,M > 0. �

The transitive closure of v on the set ZM+ is the smallest transitive relation on ZM+ that

contains the relation v [26]. Intuitively, x̃ 4 x if the vector x̃ is obtained from x by perform-

ing a sequence of operations including: reductions, permutations of two components and/or

balancing interchanges.

4.2 Definition of the Class of Cost Functions F

We denote by F the class of real-valued functions on the set ZM+ that are monotone and

non-decreasing with respect to the partial order 4. For any two vectors x̃,x ∈ ZM+ , a function

f belongs to the class F if and only if

x̃ 4 x ⇒ f(x̃) ≤ f(x). (21)

Using (21) and the definition of preferred order, we conclude that the function f(x) =

x1 + x2 + · · · + xM , i.e., the total sum of all components in x, belongs to F . If x is a queue

length vector, then this function corresponds to the total number of queued packets in the

system.

4.3 The Optimality Results

Let B ≤st C defines the usual stochastic ordering For two real-valued random variables B

and C [19]. For the rest of this article, we say that a policy σ ∈ Π dominates another policy

π ∈ Π if

f(Xσ(t)) ≤st f(Xπ(t)), AND (22)

f(Yσ(t)) ≤st f(Yπ(t)), ∀ t = 1, 2, . . . , (23)

20

for all cost functions f ∈ F ; where Xσ, respectively Yσ, is the SS (respectively RS) queue

length vector under policy σ.

Note that from Equation (21) and the definition of stochastic ordering, Xσ(t) 4 Xπ(t)

and Yσ(t) 4 Yπ(t), for all t and all sample paths in a suitable sample space, is sufficient to

insure policy domination. The intended sample space is the standard one used in stochastic

coupling [20]; refer to Appendix Appendix .2 for more details.

In what follows, let XMB and Xπ (respectively YMB and Yπ) represent the SS queue sizes

(respectively RS queue sizes) under πMB ∈ ΠMB and an arbitrary policy π ∈ Π.

To prove the optimality of MB policies (i.e., Theorem 2), we need the following definitions

and results.

Define the following subsets of the set Π of all feasible scheduling policies:

1. Πτ ∈ Π, the set of policies that has the MB property during slots t ≤ τ , and are arbitrary

for t > τ .

2. Πu2
τ ∈ Π, the set of policies that has the MB property during time slots t ≤ τ − 1 and

during t = τ choses the same actions u1(τ) and u2(τ) as those selected by a MB policy

and an arbitrary u3(τ). Note that for policies in this set, u3(τ) may not be a most

balancing action.

From the above definitions we have Π = Π0. Note that the set Πn for any t = n is not

empty, since MB policies are elements of it. For n = 0, 1, . . ., Πn form a monotone sequence

of subsets, such that Πn ⊆ Πu2
n ⊆ Πn−1. In light of the above, the set ΠMB can be defined as

ΠMB =
∞⋂
n=1

Πn.

We will need the following lemmas to complete the proof of Theorem 2.

Lemma 3. Given the policy π ∈ Πτ−1, a policy π̃ ∈ Πu2
τ can be constructed, such that π̃

dominates π.

Lemma 4. Consider a policy π ∈ Πu2
τ ; a policy π̃ ∈ Πτ can be constructed, such that π̃

dominates π.

21

We present the proof for Lemmas 3 and 4 in Appendix Appendix .2. The proof has two

parts. In the first part, we construct the policy π̃ by performing a balancing interchange to π

according to Equation (12). In the second part, we prove that π̃ dominates π (see Equation

(22)); we use stochastic coupling arguments for this part of the proof.

The above lemmas provide a methodology to construct a MB policy from any arbitrary

policy π using stepwise improvements (i.e., by constructing policies that has the MB property

for one extra time slot at every subsequent step) on the original policy while maintaining

policy domination. The intermediate construction step of Lemma 3 is necessary in order to

simplify the coupling arguments used in the proof of the lemma.

We are ready to present the main result of this work, i.e., the optimality of MB policies.

Theorem 2. Consider the system presented in Figure 1 and described in Section 2. A Most

Balancing policy πMB ∈ ΠMB dominates any arbitrary policy for the operation of this system,

i.e.,

f(XMB(t)) ≤st f(Xπ(t)), AND (24)

f(YMB(t)) ≤st f(Yπ(t)), ∀ t = 1, 2, . . . , (25)

for all π ∈ Π and all cost functions f ∈ F .

Proof. Starting from an arbitrary policy π, we apply a series of modifications to π, using

Lemmas 3 and lem:7, that result in a sequence of policies (π1, π2, . . .), such that:

(i) policy π1 dominates the original arbitrary policy π,

(ii) πn ∈ Πn, in other words, policy πn has the MB property during time slots t = 1, 2, . . . , n,

and,

(iii) πm dominates πn for m > n (i.e., when πm has the MB property for a period of time

m− n slots longer than πn).

By definition, π is an arbitrary policy; therefore, π ∈ Π0. We construct a policy π̃ ∈ Πu2
1

that dominates π according to Lemma 3. Using Lemma 4 we construct a second policy π1inΠ1

that has the MB property during time slot t = 1 and dominates π. Repeating the construction

22

steps above and using Lemmas 3 and lem:7 again for time slots t = 2, 3, . . . will result in a

sequence of policies πn ∈ Πn, n = 2, 3, . . . that satisfy (i) – (iii) above, i.e., each subsequently

constructed policy has the MB property for one more time slot (than the previous one) and

dominates all the previous policies including the original policy π.

Lets denote the limiting policy for the sequence of constructed policies as n −→ ∞ by

π∗. In that case, π∗ ∈ ΠMB since it has the MB property at all time. Furthermore, we can

conclude from the previous construction that π∗ dominates πn, for all n < ∞ including the

original policy π. The theorem follows since the initial policy π ∈ Π is an arbitrary policy by

assumption.

5 Conclusion

In this work, we studied the wireless relay networks optimization problem from dynamic

packet scheduling perspective. We provided a queueing model for these networks that takes

into consideration the randomness of the wireless channel connectivity. We introduced a class

of packet scheduling policies, the most balancing (MB) policies. We proved, using stochastic

dominance and coupling method, that MB policies dominate all other policies in that they

minimize, in stochastic ordering sense, a class of cost functions of the system queue lengths

including the total number of packets in the system. We proposed an implementation algo-

rithm and proved that it will produce a MB policy for the proposed queueing system. The

results presented in this article provide a concrete understanding of the optimal scheduling

policy structure in homogeneous wireless relay networks as well as other multi-hop wireless

network.

Appendix .1 Proof for Lemma 2 in Section 3.1

In this section, we present the full proof for Lemma 2. This lemma quantifies the effect of

performing a balancing interchange on the imbalance index κ(x) of a vector x.

23

Proof for Lemma 2. To prove this lemma, we first show that:

L∑
i′=1

L+1∑
j′=i′+1

(x∗i′ − x∗j′) =
L∑
i=1

L+1∑
j=i+1

(xi − xj)

−2(s− l) · 1{xl≥xs+2} (A-1)

Then according to Equation (11), the above is equivalent to Equation (19) and Lemma 2

follows.

We generate the vector x∗ by performing a balancing interchange of two components, l

and s (i.e., the lth and the sth largest components), in the vector x and reorder the resulted

vector in descending manner. The resulted vector x∗ is characterized by the following:

x∗l′ = xl − 1, x∗s′ = xs + 1, xl > xs

x∗k = xk, ∀k 6= l, s, l′, s′ (A-2)

where l′ (respectively s′) is the new index (i.e., the order in the new vector x∗) of component

l (respectively s) in the original vector x.

From Equation (A-2) we can identify L− 2 elements that have the same magnitude in the

two vectors x and x∗. Therefore, the sum of differences between these L− 2 elements in both

vectors will also be the same, i.e.,

L∑
i′=1

i′ /∈{l′,s′}

L+1∑
j′=i′+1
j′ /∈{l′,s′}

(x∗i′ − x∗j′) =
L∑
i=1

i/∈{l,s}

L+1∑
j=i+1
j /∈{l,s}

(xi − xj) (A-3)

We calculate the sums for the remaining terms (i.e., when at least one of the indices i, j

belongs to {l, s} and/or i′, j′ belongs to {l′, s′}) next. We first assume that xl ≥ xs+2; in this

case, we can easily show that l′ ≤ s′. Then, we have the following five, mutually exclusive,

cases to consider:

1. When i′ = l′, i = l, j′ = s′ and j = s. This case occurs only once, i.e., when decomposing

the double sum in Equation (A-1) we can find only one term that satisfies this case. From

Equation (A-2) we have

x∗l′ − x∗s′ = xl − xs − 2 (A-4)

24

2. When i′ = l′, i = l, j′ 6= s′ and j 6= s. There are L − l terms that satisfy this case.

Analogous to case 1) we determined that

x∗l′ − x∗j′ = xl − xj − 1 (A-5)

3. When i′ 6= l′, i 6= l, j′ = s′ and j = s. There are s − 2 terms that satisfy this case. In

this case we can show that

x∗i′ − x∗s′ = xi − xs − 1 (A-6)

4. When i′ 6= l′, s′, i 6= l, s, j′ = l′ and j = l. There are l − 1 terms that satisfy this case.

In this case we can show that

x∗i′ − x∗l′ = xi − xl + 1 (A-7)

5. When i′ = s′, i = s, j′ 6= l′, s′ and j 6= l, s. There are L − s + 1 terms that satisfy this

case. In this case we have

x∗s′ − x∗j′ = xs − xj + 1 (A-8)

The above cases (i.e., Equations (A-3)-(A-8)) cover all the terms in Equation (A-1) when

xl ≥ xs + 2. Combining all these terms yields:

L∑
i′=1

L+1∑
j′=i′+1

(x∗i′ − x∗j′) =
L∑
i=1

L+1∑
j=i+1

(xi − xj)

−2 · (1)−1·(L−l)−1·(s−2)+1·(l−1)+1·(L−s+1)

=
L∑
i=1

L+1∑
j=i+1

(xi − xj)− 2(s− l) (A-9)

Furthermore, if xl = xs+1, then from Equation (A-2) it is clear that x∗l′ = xs and x∗s′ = xl,

i.e., the resulted vector is a permutation of the original one. Therefore, the sum of differences

will be the same in both vectors and Equation (A-1) will be reduced to

L∑
i′=1

L+1∑
j′=i′+1

(x∗i′ − x∗j′) =
L∑
i=1

L+1∑
j=i+1

(xi − xj) (A-10)

Equation (A-1) follows from Equations (A-9) and (A-10).

25

Appendix .2 Proofs for Lemmas 3 and 4

To prove Lemmas 3 and 4 we use stochastic coupling arguments. We start by introducing the

coupling method briefly.

Appendix .2.1 Stochastic Coupling Method

In order to compare probability measures on a measurable space, it is often possible to con-

struct random elements on a common probability space with these measures as their distribu-

tions, such that this comparison can be conducted in terms of these random elements rather

than the probability measures. Such construction is often referred to as stochastic coupling

[20]. In the notation of [20], a formal definition of coupling of two probability measures on the

measurable space (E, E) (the state space, e.g., E = R,Rd,Z+, etc.) is given below; further

details regarding coupling method and its application can be found in [20].

A random element in (E, E) is a quadruple (Ω,F ,P, X), where (Ω,F ,P) is the sample

space and X is the class of measurable mappings from Ω to E (X is an E-valued random

variable, s.t. X−1(B) ∈ F for all B ∈ E).

Definition: A coupling of the two random elements (Ω,F ,P,X) and (Ω′,F ′,P′,X′) in

(E, E) is a random element (Ω̂, F̂ , P̂, (X̂, X̂′)) in (E2, E2) such that

X
D
= X̂ and X′

D
= X̂′, (B-1)

where
D
= denotes ’equal in distribution’. �

Stochastic coupling was initially used by mathematicians to study properties of stochastic

processes (e.g., in renewal theory). Later on, coupling methods proved to be handy in proving

optimality results for dynamic control of queueing systems. c.f. [27], [28], [21], [24] and many

others.

In the proof of our results (Lemmas 3 and 4), we apply the coupling method as follows:

For the scheduling policy π, let ω be a given sample path of the system state process. Note

that the values of the sequences {X(n)}, {Y(n)} and U(n) can be completely determined by

ω and π. In our proof, we construct a new sample path, ω̃ and a new policy π̃. The details of

this construction is given in the proof of the two lemmas. To put things into perspective, in

26

the coupling definition (Equation (B-1)), ω̂ = (ω, ω̃) and the “coupled” processes of interest

in Equation (B-1) will be the SS queue sizes X̂ = {X(n)} and X̂′ = {X̃(n)} as well as the RS

queue sizes Ŷ = {Y(n)} and Ŷ′ = {Ỹ(n)}.

Appendix .2.2 Proof for the Results of Section 4

In this section, we provide a detailed proof for Lemmas 3 and 4. lets describe the construction

process for ω̃ and π̃ first.

Define ω to be the sequence of sample values of the random variables (S(1),A(1),Cs(2),

Cr(2),A(2), . . .), i.e., ω ≡ (x(1),y(1), cs(1), cr(1), a(1), cs(2), cr(2), a(2), . . .). Let ω̃ denote a

sample path of the system random variables under policy π̃. Then we construct ω̃ such that:

1) x̃(1) = x(1) and ỹ(1) = y(1), i.e., both systems start from the same initial queue sizes.

2) During t = τ , c̃s(n) is the same as cs(n), except for two elements that are exchanged.

We do the same for the other connectivity and arrival sample values.

Which elements to be exchanged will be detailed in the proof that follows. The resulted

random elements from this exchange have the same distribution as their original counter-

parts, since the distributions of the connectivities as well as the arrival processes are i.i.d. by

assumption, reordering their elements will not change their distribution.

The scheduling policy selects three control elements at every time slot, namely u1(t), u2(t)

and u3(t). The detailed construction of policy π̃ will be described in the proof. Using Equations

(4) and (5), We can compute the new queue states x(·),y(·) under π and x̃(·), ỹ(·) under π̃.

Our goal is to prove that the two relations

x̃(t) 4 x(t) (B-2)

ỹ(t) 4 y(t) (B-3)

are satisfied for all t. This will insure the dominance of policy π̃ over π.

A queue length vector x̃ is preferred over x (i.e., x̃ 4 x) if and only if one of the statements

S1, S2 or S3 (that we introduced in Section 4.1) holds.

Proof for Lemma 3. To prove this lemma, we start from an arbitrary policy π ∈ Πτ−1 and

a sample path ω = (x(1),y(1), cs(1), cr(1), a(1), . . .), where x(.),y(.), cs(.),cr(.) and a(.) are

27

sample values of the random variables X(.),Y(.), Cs(.), Cr(.) and A(.). For the remainder

of the proof, we refer to the three statements S1, S2 and S3, that we defined in Section 4.1)

as properties of the partial order (4). If one of these properties is satisfied then the partial

order holds.

The proof proceeds in two parts; In part 1, we construct the sample path ω̃ and the policy

π̃ (as stated by Lemma 3) for times up to t = τ . In part 2, we do the same for t > τ .

Part 1: For time t < τ we construct ω̃ to coincide with ω, i.e., ã(t) = a(t), c̃s(t) = cs(t) and

c̃r(t) = cr(t) for all t < τ . We construct π̃ such that ũ(t) = u(t) for all t < τ . In this case,

the resulting queue lengths under both policies at t = τ are the same, i.e., x̃(τ) = x(τ) and

ỹ(τ) = y(τ).

At time slot t = τ , let ω̃ have the same channel connectivities and arrivals as ω, i.e., let

c̃s(τ) = cs(τ), c̃r(τ) = cr(τ) and ã(τ) = a(τ). Then we construct π̃ at t = τ by selecting the

sequence of controls ũ1(τ), ũ2(τ) and ũ3(τ) as follows:

1- Construction of ũ1(τ). We have the following two cases to consider:

(i) The scheduling control u(t) satisfies Equation (16) at t = τ , i.e.,

u1(τ) = ls : ls ∈ argmax
i∈L:csi (τ)=1

xi(τ).

Then we set ũ1(τ) = u1(τ). Note that ũ1(τ) and u1(τ) affect the SS queue lengths only

and have no effect of the RS queue sizes. It follows that the resulting SS queue lengths

x̃(τ + 1) = x(τ + 1) (ã(τ) = a(τ) by construction), property (S1) holds true for the SS queue

length vector and (B-2) is satisfied at t = τ + 1.

(ii) The scheduling control u(t) does not satisfy Equation (16) at t = τ . Then we set

ũ1(τ) = ls : ls ∈ argmax
i∈L:c̃si (τ)=1

x̃i(τ).

Keeping the construction of ω̃ in mind, we conclude the following (we suppress the time

argument for the subscript to simplify notation):

ˆ̃xũ1(τ) = x̂ũ1(τ)− 1, ˆ̃xu1(τ) = x̂u1(τ) + 1,

where x̂ũ1(τ) > x̂u1(τ) (B-4)

28

From Equation (B-4) and the construction of the exogenous arrivals (i.e., we set ã(τ) =

a(τ)) we conclude that property (S3) holds true for the SS queue length vector (i.e., x̃(τ + 1)

is obtained from x(τ +1) by performing a balancing interchange of two components ũ1(τ) and

u1(τ)) and (B-2) is satisfied at t = τ + 1.

2- Construction of ũ2(τ) and ũ3(τ). We have the following two cases to consider:

(i) The scheduling control u(t) satisfies Equation (17) at t = τ , i.e.,

u2(τ) = sr : sr ∈ argmax
i∈I

cri (τ),

where I = argmin
j∈{1,...,K}

yj(τ).

Then we set ũ2(τ) = u2(τ) and ũ3(τ) = u3(τ). The resulting RS queue sizes ỹ(τ+1) = y(τ+1).

Property (S1) holds true for the RS queue length vector and (B-3) is satisfied at t = τ + 1.

(ii) The scheduling control u(t) does not satisfy Equation (17) at t = τ . Then we set

ũ2(τ) = sr : sr ∈ argmax
i∈I

cri (τ),

where the set I is defined in case (i) above. We also set ũ3(τ) = u3(τ). In this case, the RS

queue lengths satisfy (for all feasible selections of u3(τ)) the following:

ỹũ2(τ+1) = yũ2(τ+1) + 1, ỹu2(τ+1) = yu2(τ+1)− 1,

where yũ2(τ + 1) < yu2(τ + 1). (B-5)

Equation (B-5) suggests that ỹ(τ +1) is obtained from y(τ +1) by performing a balancing

interchange of two components ũ2(τ) and u2(τ). In this case, property (S3) holds true for the

RS queue length vector and (B-3) is satisfied at t = τ + 1.

In cases (1-) and (2-) above, we constructed the policy π̃ for time slot t = τ . We also showed

that Relations (B-2) and (B-3) are satisfied for time slot t = τ + 1. The above concluded the

construction of policy π̃ upto time slot t = τ . Next (in part 2), we will construct π̃ for time

slots t > τ . Furthermore, starting from a preferred state at t = τ + 1, we will show using

forward induction that Relations (B-2) and (B-3) are satisfied for all time slot t > τ .

Part 2: We use induction to complete part 2 of our proof. The sample path ω̃ and the policy

π̃ are already defined for t ≤ τ . To complete the induction argument, we assume that π̃ and

29

ω̃ are defined up to time n− 1 ≥ τ and that relations (B-2) and (B-3) are satisfied at t = n,

i.e., x̃(n) 4 x(n) and ỹ(n) 4 y(n). We will show that at time slot n, π̃ can be constructed

such that relations (B-2) and (B-3) are satisfied at t = n + 1. To do that, we have to show

that either (S1), (S2) or (S3) holds for both x(t) and y(t) at time slot t = n+ 1.

We consider next three cases that correspond to properties (S1), (S2) and (S3) of the vector

x(n). For each one of these cases, we consider three sub-cases that correspond to properties

(S1), (S2) and (S3) of the vector y(n).

1- x̃(n) ≤ x(n) (i.e., property (S1) holds for x(t)). We set ã(n) = a(n) and c̃s(n) = cs(n).

We set ũ1(n) = u1(n). The SS queue lengths satisfy (S1), i.e., x̃(n+ 1) ≤ x(n+ 1), and (B-2)

holds at t = n + 1. The controls ũ2(n) and ũ3(n) are construction below and the RS queue

lengths are computed as follows:

(a) ỹ(n) ≤ y(n) (i.e., property (S1) holds for y(t)). We set c̃r(n) = cr(n). We also set the

controls ũ2(n) = u2(n) and ũ3(n) = u3(n). In this case, (S1) is satisfied again and Relation

(B-3) holds at t = n+ 1.

(b) ỹ(n) is a 2-component permutation of y(n) (i.e., property (S2) holds for y(t)). Let

RS queues i and j be the indices of the two permuted queues. Then let c̃ri (n) = crj(n),

c̃rj(n) = cri (n) and c̃rk(n) = crk(n), ∀k 6= i, j. We construct the control u2(n) as follows:

ũ2(n) =

i if u2(n) = j

j if u2(n) = i

k if u2(n) = k,∀k 6= i, j

(B-6)

Similarly, the control u3(n) is constructed as follows:

ũ3(n) =

i if u3(n) = j

j if u3(n) = i

k if u3(n) = k,∀k 6= i, j

(B-7)

From the construction of π̃, it can be easily shown that property (S2) is satisfied again for

RS queues at time t = n+ 1 and (B-3) follows.

(c) ỹ(n) is obtained from y(n) by performing a balancing interchange as described by

Equation (12) (i.e., property (S3) holds for y(t)). Let i and j be the indices of the two RS

30

queues involved in the balancing interchange, such that yi(n) ≥ yj(n) + 1. We consider the

following two cases:

(i) yi(n) = yj(n) + 1. Then ỹi(n) = yj(n) and ỹj(n) = yi(n). This case corresponds to case

(1b) above and the same construction of ω̃ and π̃ apply. The resulted queue lengths at

t = n+ 1 will satisfy property (S2) and (B-3) follows.

(ii) yi(n) > yj(n) + 1. We set c̃r(n) = cr(n) and ũ2(n) = u2(n).

If “crj(n) = 1, crk(n) = 0, ∀k 6= j and yj(n) ≤ 0”3 (i.e., queue j is the only connected

RS queue which happens to be empty), then u3(n) = 0 (i.e., forced idling) according

to feasibility constraint (7). Then we set ũ3(n) = j, which is a feasible control since

ỹj(n) = yj(n) + 1 according to Equation (12). The resulted RS queue length vector in

this case satisfies (S1), i.e., ỹ(n+ 1) ≤ y(n+ 1), and (B-3) follows.

Else, i.e., yj(n) > 0 and/or there are other connected queues in the stack, then we set

ũ3(n) = u3(n). This action preserve property (S3) and Equation (B-3) hold at t = n+1.

This concludes the construction of ω̃ and π̃ for case (1) during time slot t = n.

2- x̃(n) is a 2-component permutation of x(n) (i.e., property (S2) holds for x(t)).

Let i and j be the indices of the two permuted SS queues. Then let c̃si (n) = csj(n),

c̃sj(n) = csi (n) and c̃sk(n) = csk(n),∀k 6= i, j. Similarly, ãi(n) = aj(n), ãj(n) = ai(n) and

ãk(n) = ak(n), ∀k 6= i, j. We construct the control u1(n) as follows:

ũ1(n) =

i if u1(n) = j

j if u1(n) = i

k if u1(n) = k,∀k 6= i, j

(B-8)

From Equation (B-8), it can be easily shown that, at time t = n+ 1, property (S2) holds

again for x̃(n + 1) and x(n + 1), and (B-2) is satisfied. Analogous to case (1-) above, We

consider three cases for the construction of u2(n) and u3(n) that correspond to (S1), (S2) and

(S3) properties of the vector y(n).

3Note that j = 0, the ‘dummy’ queue, is not excluded; therefore, yj(n) < 0 is possible in that particular
case.

31

a) ỹ(n) ≤ y(n),

b) ỹ(n) is a 2-component (i, j) permutation of y(n), and

c) ỹ(n) is obtained from y(n) by performing a balancing interchange, of components i and

j, as described by Equation (12).

The construction of ω̃ and π̃ in cases (2a), (2b) and (2c) is analogous to that presented

in cases (1a), (1b) and (1c) respectively, and the resulted RS queue length vector ỹ(n + 1)

satisfies (B-3) at t = n+ 1.

3- x̃(n) is obtained from x(n) by performing a balancing interchange as described by

Equation (12) (i.e., property (S3) holds for x(t)). Let i and j be the indices of the two SS

queues involved in the balancing interchange, such that xi(n) ≥ xj(n) + 1. We consider the

following two cases:

(i) xi(n) = xj(n)+1. Then x̃i(n) = xj(n) and x̃j(n) = xi(n). This case corresponds to case

(2-) above and the same construction of ω̃ and π̃ apply. The resulted queue lengths at

t = n+ 1 will satisfy property (S2) and (B-3) follows.

(ii) xi(n) > xj(n) + 1. We set ã(n) = a(n) and c̃s(n) = cs(n).

If “csj(n) = 1, csk(n) = 0,∀k 6= j and xj(n) ≤ 0”4 (i.e., queue j is the only connected

SS queue, which happens to be empty), then u1(n) = 0 (i.e., forced idling) according

to feasibility constraint (7). Then we set ũ1(n) = j. This is a feasible control since

x̃j(n) = xj(n) + 1 according to Equation (12). The resulted SS queue length vector in

this case satisfies (S1), i.e., x̃(n+ 1) ≤ x(n+ 1), and (B-2) is satisfied at t = n+ 1.

Else, i.e., if xj(n) > 0 and/or there are other connected queues in the stack, then we

set ũ1(n) = u1(n). This action preserve property (S3) and Equation (B-2) is satisfied at

t = n+ 1.

In this case, as with the previous cases, there are three cases to consider for the construction

of u2(n) and u3(n) which correspond to (S1), (S2) and (S3) properties of the vector y(n).

Again, the construction of ω̃ and π̃ in these cases is analogous to that presented before in

4xj(n) < 0 is possible only when j = 0.

32

cases (1a), (1b) and (1c). The same conclusion regarding the resulted RS queue length vector

ỹ(n+ 1) is drawn.

This concludes the construction of the policy π̃ at t = n, for n > τ . We have shown that

this policy resulted in queue length vectors x(n+1) and y(n+1) that satisfy Equations (B-2)

and (B-3) respectively. Note that policy π̃ ∈ Πu2
τ by construction in Part 1; its dominance

over π follows from relation (21).

Proof for Lemma 4. The proof of this lemma is analogous to that of Lemma 3. We start from

an arbitrary policy π ∈ Πu2
τ and a sample path ω = (x(1),y(1), cs(1), cr(1), a(1), . . .). The

proof proceeds in two parts; In part 1, we construct the sample path ω̃ and the policy π̃ (as

stated by Lemma 4) for t ≤ τ . In part 2, we do the same for t > τ .

Part 1: For time t < τ we construct ω̃ to coincide with ω, i.e., ã(t) = a(t), c̃s(t) = cs(t) and

c̃r(t) = cr(t) for all t < τ . We construct π̃ such that ũ(t) = u(t) for all t < τ . In this case,

the resulting queue lengths under both policies at t = τ are the same, i.e., x̃(τ) = x(τ) and

ỹ(τ) = y(τ).

At time slot t = τ , let c̃s(τ) = cs(τ), c̃r(τ) = cr(τ) and ã(τ) = a(τ). Then for the

construction of π̃ at t = τ , we set ũ1(τ) = u1(τ) and ũ2(τ) = u2(τ), where u1(τ) and u2(τ) are

most balancing controls. Then property (S1) holds true for the SS queue length vector and

(B-2) is satisfied at t = τ + 1. We construct ũ3(τ) as follows:

(i) If the scheduling control u(t) satisfies Equation (18) at t = τ , i.e.,

u3(τ) = lr : lr ∈ argmax
j∈K:crj (τ)=1

(yj(τ) + vrj (τ)).

Then we set ũ3(τ) = u3(τ). Since ũ2(τ) = u2(τ) by construction, it follows that the resulting

RS queue lengths ỹ(τ +1) = y(τ +1); property (S1) holds true for the RS queue length vector

and (B-3) is satisfied at t = τ + 1.

(ii) The scheduling control u(t) does not satisfy Equation (18) at t = τ . Then we set

ũ3(τ) = lr : lr ∈ argmax
j∈K:crj (τ)=1

(yj(τ) + vrj (τ)).

The RS queue lengths in this case satisfies the following (we suppress the time argument for

33

the subscript to simplify notation):

ỹũ3(τ+1) = yũ3(τ+1)− 1, ỹu3(τ+1) = yu3(τ+1) + 1,

where yũ3(τ + 1) > yu3(τ + 1) (B-9)

From Equation (B-9) we conclude that property (S3) holds true, i.e., ỹ(τ + 1) is obtained

from y(τ + 1) by performing a balancing interchange of two components ũ3(τ) and u3(τ), and

(B-3) is satisfied at t = τ + 1.

The above concludes the construction of policy π̃ for time slot t ≤ τ . By construction,

π̃ has the MB property during time slot τ . We showed that Relations (B-2) and (B-3) are

satisfied for time slot t = τ + 1. Next (in part 2), we will construct π̃ for time slots t > τ .

Furthermore, starting from a preferred state at t = τ+1, we will show using forward induction

that Relations (B-2) and (B-3) are satisfied for all time slot t > τ .

Part 2: we assume that π̃ and ω̃ are defined up to time n− 1 ≥ τ and that relations (B-2)

and (B-3) are satisfied at t = n, i.e., x̃(n) 4 x(n) and ỹ(n) 4 y(n). We will show that at time

slot n, π̃ can be constructed such that relations (B-2) and (B-3) are satisfied at t = n+ 1.

There are three cases to be considered. These cases correspond to properties (S1), (S2)

and (S3) of the vector x(n). For each one of these cases, we consider three sub-cases that

correspond to properties (S1), (S2) and (S3) of the vector y(n). The construction of ω̃ and π̃

for all these cases is the same as the construction carried out in Part 2 of the proof for Lemma

3 and it will not be repeated here. Same conclusions are valid here, i.e., relations (B-2) and

(B-3) are satisfied at t = n+ 1.

Part 1 and Part 2 above provide a complete description of the policy π̃ at t = n, for n > τ .

This policy resulted in queue length vectors x(n+1) and y(n+1) that satisfy Equations (B-2)

and (B-3) respectively. Note that policy π̃ ∈ Πτ by construction in Part 1; its dominance over

π follows from relation (21).

References

[1] Y. Hong, W. Huang, F. Chiu, and C. C. J. Kuo, Cooperative communications in resource-

constrained wireless networks, IEEE Signal Processing Magazine, vol. 24, pp. 4757, May

34

2007.

[2] A. Sendonaris, E. Erkip and B. Aazhang, ”User Cooperation Diversity–Part I: System

Description,” IEEE Transactions on Communications, vol. 51, no. 11, pp. 1927-1938, 2003.

[3] N. Laneman, D. N. C. Tse and G. W. Wornell, ”Cooperative Diversity in Wireless Net-

works: Efficient Protocols and Outage Behaviour,” IEEE Trans. Inform. Theory, vol. 50,

pp: 3062–3080, 2004.

[4] A. Nosratinia, T.E. Hunter, A. Hedayat, “ Cooperative Communication in Wireless Net-

works,” IEEE communications Magazine, 2004.

[5] A. Sendonaris, E. Erkip, and B. Aazhang, Increasing uplink capacity via user cooperation

diversity, in Proc. of IEEE International Symposium on Information Theory, (Cambridge,

USA), Aug. 1998.

[6] V. Stankovic, A. Host-Madsen, and Z. Xiong, Cooperative diversity for wireless ad hoc

networks, IEEE Signal Processing Magazine, vol. 23, pp. 3749, Sep. 2006.

[7] “MMR Harmonized Contribution on 802.16j (Mobile Multihop Relay) Usage Models,”

Document No. IEEE 802.16j-06/015, Sep. 2006.

[8] J. P. Castro, All IP in 3G CDMA Networks. USA: John wiley & Sons Inc., 2004.

[9] S. M. Ross, Stochastic Processes, 2nd ed. New York: Wiley, 1996.

[10] Z. Roseburg, P. Varaiya, J. Walrand, “Optimal Control of Service in Tandem Queues,”

IEEE Trans. Auto. Control. AC27:600–610 (1982).

[11] Y. Shi, W. Zhang, K. B. Latief, “Cooperative Multiplexing and Scheduling in Wireless

Relay Networks,” in Proc. IEEE International Conference on Communications (ICC 08),

2008.

[12] C.Y. Hong, A.C. Pang, “Link Scheduling with QoS Guarantee for Wireless Relay Net-

works,” IEEE Conference on Computer Communications (INFOCOM), Rio De Janeiro,

Brazil, 2009.

35

[13] A. Bletsas, H. Shin, and M. Z.Win, Cooperative communications with outage optimal

opportunistic relaying, IEEE Trans. on Wireless Commun., vol. 6, pp. 34503460, Sep. 2007.

[14] T. C.-Y. Ng and W. Yu, Joint optimization of relay strategies and resource allocations in

cooperative cellular networks, IEEE Journal on Selected Areas in Commun., vol. 25, pp.

328339, Feb. 2007.

[15] V. Sreng, H. Yanikomeroglu, and D. Falconer, Relay selection strategies in cellular net-

works with peer-to-peer relaying, in IEEE Vehicular Technology Conf. (VTC03-Fall), Oct.

2003, pp. 19491953.

[16] M. Yu and J. Li, Is amplify-and-forward practically better than decode-and- forward or

vice versa? in IEEE Inter. Conf. Acoustics, Speech, and Signal Processing, (ICASSP 05),

vol. 3, Mar. 2005, pp. 365368.

[17] A. Host-Madsen and J. Zhang, Capacity bounds and power allocation for wireless relay

channels, IEEE Trans. Information Theory, vol. 51, no. 6, pp. 20202040, June 2005.

[18] M. Chen, S. Serbetli, and A. Yener, Distributed power allocation for parallel relay net-

works, IEEE Global Telecommunication Conf. (GLOBECOM 05), vol. 3, Nov. 2005, pp.

11771181.

[19] D. Stoyan, Comparison Methods for Queues and other Stochastic Models, J. Wiley and

Sons, Chichester, 1983.

[20] T. Lindvall, Lectures on the coupling method, New York: Wiley(1992).

[21] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel queues with

randomly varying connectivity”. IEEE Transactions on Information Theory, Vol. 39,

Issue 2, Page(s):466 - 478, March 1993.

[22] N. Bambos and G. Michailidis, “On the stationary dynamics of parallel queues with

random server connectivities”. Proceedings of 34th Conference on Decision and Control

(CDC), New Orleans, LA (1995) pp. 3638-3643.

36

[23] N. Bambos and G. Michailidis, “On parallel queueing with random server connectivity

and routing constraints,” Probability in Engineering and Informational Sciences, v.16, pp.

185-203, 2002.

[24] A. Ganti, E. Modiano and J. N. Tsitsiklis, “Optimal Transmission Scheduling in Sym-

metric Communication Models With Intermittent Connectivity”. IEEE Transactions on

Information Theory, Vol. 53, Issue 3, March 2007.

[25] H. Al-Zubaidy, I. Lambadaris and I. Viniotis, “Optimal Resource Scheduling in Wire-

less Multi-service Systems With Random Channel Connectivity,” IEEE Globecom ’09,

Honolulu, HI, USA, Dec. 2009.

[26] R. Lidl and G. Pilz, Applied abstract algebra, 2nd edition, Undergraduate Texts in Math-

ematics, Springer, (1998).

[27] J. Walrand, “A note on optimal control of a queuing system with two heterogeneous

servers,” Systems and Control Letters, 4: 131–134, 1984.

[28] P. Nain, P. Tsoucas and J. Walrand, “Interchange arguments in stochastic scheduling”,

Journal of Applied Probability, Vol 27: 815-826, 1989.

