Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl
				00	00	
		0000	00	00	00	
			00			

Service Rate Determination for Group of Users with Random Connectivity Sharing A Single Wireless Link

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim

Systems and Computer Engineering-Carleton University Email: {hussein, ioannis, jtalim}@sce.carleton.ca

May 31, 2007

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition	Two-User Case		Results	Conclusion and Future Wor
				00	00	
		0000	00	00	00	

Objective and Motivation

- **Problem Definition**
- Two-User Case
- Extension to L Users
- Results

Conclusion and Future Work

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

<ロ> <四> <四> <日> <日> <日</p>

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl
	•					
		0000	00	00	00	
			00 0		0000	
Objectiv	e					

Develop a stochastic model to find the average service rate per user in a wireless system.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl
	•					
		0000	00	00	õo	
			00		0000	
Objectiv	e					

- Develop a stochastic model to find the average service rate per user in a wireless system.
- Obtain the long run server sharing policy that achieve the required QoS per each class of users.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation • •	Problem Definition 0 0000	Two-User Case 0 00 00	Extension to <i>L</i> Users 00 00	Results 00 00 0 0000	Conclusion and Future Worl o o
Objectiv	e					

- Develop a stochastic model to find the average service rate per user in a wireless system.
- Obtain the long run server sharing policy that achieve the required QoS per each class of users.
- Provide a closed form formulation that facilitates a clear understanding of the system behavior in such environment.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation o	Problem Definition 0 0000	Two-User Case	Extension to <i>L</i> Users 00 00	00 00 0	Conclusion and Future Worl 0 0 0
Objectiv	e		0		0000	

- Develop a stochastic model to find the average service rate per user in a wireless system.
- Obtain the long run server sharing policy that achieve the required QoS per each class of users.
- Provide a closed form formulation that facilitates a clear understanding of the system behavior in such environment.
- Study some of the popular scheduling regimes (e.g., Fair Scheduler and Equal Shares Scheduler) using the devised model and the obtained closed form formulation.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein, Service Rate Determination for Group of Users with Random Connectivity Sharing A Single Wireless Link

A 30 b

Outline Objective and Motivation	Problem Definition 0	Two-User Case 0	Extension to L Users	Results 00	Conclusion and Future Wor
•		00 00 0		00 0 0000	
Motivation and Significance					

This work was motivated by the need for a closed form formula that enables us to determine the long run average share of resources required to fulfill the QoS requirements specified by users.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

→ < ∃ →</p>

Outline Objective and Motivation	Problem Definition 0	Two-User Case 0	Extension to L Users	Results 00	Conclusion and Future Wor
•		00 00 0		00 0 0000	
Motivation and Significance					

- This work was motivated by the need for a closed form formula that enables us to determine the long run average share of resources required to fulfill the QoS requirements specified by users.
- The approach should have low computation complexity as compared to dynamic methodologies.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Wor
				00	00	
	•					
Motivati	on and Significance					

- This work was motivated by the need for a closed form formula that enables us to determine the long run average share of resources required to fulfill the QoS requirements specified by users.
- The approach should have low computation complexity as compared to dynamic methodologies.
- This method could be used as a guideline as well as a benchmarking tool for the dynamic scheduling policies especially when service differentiation is required.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Wor
				00	00	
	•					
Motivati	on and Significance					

- This work was motivated by the need for a closed form formula that enables us to determine the long run average share of resources required to fulfill the QoS requirements specified by users.
- The approach should have low computation complexity as compared to dynamic methodologies.
- This method could be used as a guideline as well as a benchmarking tool for the dynamic scheduling policies especially when service differentiation is required.
- It also can be used to extend any existing policy to enable it to handle different QoS levels.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim 🦳 Systems and Computer Engineering-Carleton University Email: {hussein, i

A (1) > (1) > (1)

Outline	Objective and Motivation	Problem Definition	Two-User Case		Conclusion and Future Worl
		•			
		0000			
			00		
				0000	
Problem	Definition				

To develop a solvable stochastic model for a group of users, with random connectivity, sharing a single wireless link;

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

A (1) > A (1) > A

Outline Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl
	•		00	00	
	0000	00	00	00	
		00			
Problem Definition					

To develop a solvable stochastic model for a group of users, with random connectivity, sharing a single wireless link;

 Solve this model for the average service rate per user as a function of its channel connectivity and its service level requirements.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

(b) A (B) b

Outline Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl
	•		00	00	
	0000	00	00	00	
				0000	
Problem Definition					

To develop a solvable stochastic model for a group of users, with random connectivity, sharing a single wireless link;

- Solve this model for the average service rate per user as a function of its channel connectivity and its service level requirements.
- Find the long run server shares allocation that will yield the required service differentiation for any channel conditions.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein, Service Rate Determination for Group of Users with Random Connectivity Sharing A Single Wireless Link

▶ < ∃ >

Outline Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl
	•		00	00	
	0000	00	00	00	
				0000	
Problem Definition					

To develop a solvable stochastic model for a group of users, with random connectivity, sharing a single wireless link;

- Solve this model for the average service rate per user as a function of its channel connectivity and its service level requirements.
- Find the long run server shares allocation that will yield the required service differentiation for any channel conditions.
- Study the effect of channel connectivity and service differentiation parameters on the server allocation.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein, Service Rate Determination for Group of Users with Random Connectivity Sharing A Single Wireless Link

Outline Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl			
			00	00				
	0000							
		00						
				0000				
Model Description and Basic Assumptions								

The Model

The wireless system is modelled by L queues, that correspond to L users, competing for the service of a single server with constant capacity C;

Stochastic modeling is used.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

(b) A (B) b

Outline Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl			
			00	00				
	0000							
		00						
				0000				
Model Description and Basic Assumptions								

The Model

The wireless system is modelled by L queues, that correspond to L users, competing for the service of a single server with constant capacity C;

- Stochastic modeling is used.
- ► The queues have random connectivity to the server, with connectivity vector π = [π₁, π₂, ..., π_L].

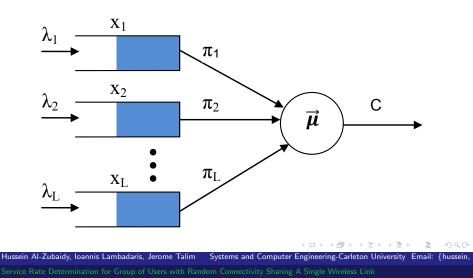
Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl			
			00	00				
	0000							
		00						
				0000				
Model Description and Basic Assumptions								

The Model

The wireless system is modelled by L queues, that correspond to L users, competing for the service of a single server with constant capacity C;

- Stochastic modeling is used.
- ► The queues have random connectivity to the server, with connectivity vector π = [π₁, π₂, ..., π_L].
- ► Each queue is connected (π_i = 1) with probability q_i: i ∈ I, where II = {1, 2, ..., L} is the set of all queues in the system, and not-connected (π_i = 0) with probability 1 − q_i.


Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

(日) (日) (日)

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl
				00	00	
		0000	00	00	00	
			00			

Model Description and Basic Assumptions

A Model For L Users Sharing One Wireless Link

Outline Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl			
			00	00				
	0000							
		00						
				0000				
Model Description and Basic Assumptions								

► L active users in the system.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl		
				00	00			
		0000						
			00					
					0000			
Model D	Model Description and Basic Assumptions							

- L active users in the system.
- Symmetrical arrival process with arrival rates (λ_i = λ for all i ∈ I) that are large enough to keep non-empty queues at all the times.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Wor		
			00	00			
	0000						
				0000			
Model Description and Basic Assumptions							

- L active users in the system.
- Symmetrical arrival process with arrival rates (λ_i = λ for all i ∈ I) that are large enough to keep non-empty queues at all the times.
- ► The server has a constant capacity (C) that can be shared by connected queues simultaneously.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl			
			00	00				
	0000							
		00						
				0000				
Model Description and Basic Assumptions								

- L active users in the system.
- Symmetrical arrival process with arrival rates (λ_i = λ for all i ∈ I) that are large enough to keep non-empty queues at all the times.
- The server has a constant capacity (C) that can be shared by connected queues simultaneously.
- ► Independent connectivity, i.e., π_i independent of π_j for all $i, j \in \mathbb{I}, i \neq j$.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

- ∢ ≣ →

Outline Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl			
			00	00				
	0000							
		00						
				0000				
Model Description and Basic Assumptions								

- L active users in the system.
- Symmetrical arrival process with arrival rates (λ_i = λ for all i ∈ I) that are large enough to keep non-empty queues at all the times.
- The server has a constant capacity (C) that can be shared by connected queues simultaneously.
- ▶ Independent connectivity, i.e., π_i independent of π_j for all $i, j \in \mathbb{I}, i \neq j$.
- The service rate received by queue *i* at any given time depends on the connectivity vector.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline Objective and Motivat	ion Problem Definition	Two-User Case		Results	Conclusion and Future Worl			
			00	00				
	0000							
		00						
				0000				
Model Description and Basic Assumptions								

We define the following parameters to be used in the proposed model

• x_i the queue length of queue *i* at time epoch *t*.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

▲ 同 ▶ → 三 ▶

Outline Objective and Motivation	Problem Definition	Two-User Case		Results	Conclusion and Future Worl	
			00	00		
	0000					
		00				
				0000		
Model Description and Basic Assumptions						

We define the following parameters to be used in the proposed model

- > x_i the queue length of queue *i* at time epoch *t*.
- μ_i the average service rate experienced by queue *i*.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl
				00	00	
		0000				
			00			
					0000	
Model E	Description and Basic Assun	nptions				

We define the following parameters to be used in the proposed model

- x_i the queue length of queue *i* at time epoch *t*.
- μ_i the average service rate experienced by queue *i*.
- $\blacktriangleright \vec{\boldsymbol{\mu}} = [\mu_1, \mu_2, \dots, \mu_L].$

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl
				00	00	
		0000				
					0000	
Model D	Description and Basic Assun	nptions				

We define the following parameters to be used in the proposed model

- x_i the queue length of queue *i* at time epoch *t*.
- μ_i the average service rate experienced by queue *i*.

$$\blacktriangleright \vec{\boldsymbol{\mu}} = [\mu_1, \mu_2, \dots, \mu_L].$$

▶ $m_i \in [0, 1]$ the average share of the server assigned to queue *i*.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

A 30 b

Outline	Objective and Motivation	Problem Definition			Conclusion and Future Wor
				õõ	

• Two users (i.e., L=2) sharing the same wireless link.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

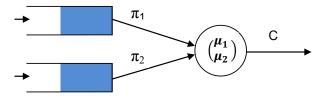
< ロ > < 同 > < 回 > < 回

Outline	Objective and Motivation	Problem Definition				Conclusion and Future Worl
				00	00	
		0000	00	00	00	
			00			

- Two users (i.e., L=2) sharing the same wireless link.
- User *i* is said to be **connected** when $\pi_i = 1$ with probability q_i .

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

A (1) > A (1) > A


Outline	Objective and Motivation	Problem Definition				Conclusion and Future Worl
				00	00	
		0000	00	00	00	
			00			

- Two users (i.e., L=2) sharing the same wireless link.
- User *i* is said to be **connected** when $\pi_i = 1$ with probability q_i .
- ► User *i* is said to be **not connected** $(\pi_i = 0)$ with probability $1 q_i$.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition				Conclusion and Future Wor
				00	00	
		0000	00	00	00	
			00			

- Two users (i.e., L=2) sharing the same wireless link.
- User *i* is said to be **connected** when $\pi_i = 1$ with probability q_i .
- User *i* is said to be **not connected** $(\pi_i = 0)$ with probability $1 q_i$.
- The system is modelled by two queues sharing one server:

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

/⊒ > < ∃ >

Outline	Objective and Motivation	Problem Definition				Conclusion and Future Wor
			•	00	00	
					0000	
A	Consider Data Datamaination	_				

Service Rate Determination

Service Rate for Queue1:

 $\mu_1 = Cq_1(1-q_2) + Cm_1q_1q_2 \quad \text{packets per second} \\ = C(q_1 - q_1q_2 + m_1q_1q_2) \quad (1)$

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

- 4 同 6 4 日 6 4 日 6

Outline	Objective and Motivation	Problem Definition				Conclusion and Future Wor
			•	00	00	
			00			
					0000	
Average	Service Rate Determination					

Service Rate Determination

Service Rate for Queue1:

$$\mu_1 = Cq_1(1-q_2) + Cm_1q_1q_2$$
 packets per second
= $C(q_1 - q_1q_2 + m_1q_1q_2)$ (1)

Service Rate for Queue2:

 $\mu_2 = Cq_2(1-q_1) + Cm_2q_1q_2 \text{ packets per second}$ $= C(q_2 - q_1q_2 + m_2q_1q_2)$ (2)

< 回 > < 三 > < 三 >

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline Objective and Motiv	vation Problem Definition				Conclusion and Future Wor
			00	00	
		0			
		00			
				0000	
Server Sharing requirement					

Server Shares $(m_1 \text{ and } m_2)$

• Assume differentiated service with rate ν .

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

イロト イポト イヨト イヨ

Outline Objective and Motivation	Problem Definition				Conclusion and Future Wor
			00	00	
		0			
				0000	
Server Sharing requirement					

Server Shares $(m_1 \text{ and } m_2)$

- Assume differentiated service with rate ν.
- Such a policy will assign service to both queues according to: $\mu_1 = \nu \mu_2$.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

(人間) トイヨト イヨト

Outline Objective and Motivatior	Problem Definition				Conclusion and Future Wor
			00	00	
	0000	00	00	00	
		00			
Server Sharing requirement					

Server Shares $(m_1 \text{ and } m_2)$

- Assume differentiated service with rate ν .
- Such a policy will assign service to both queues according to: $\mu_1 = \nu \mu_2$.

► Hence:

$$C(q_1 - q_1q_2 + m_1q_1q_2) = \nu C(q_2 - q_1q_2 + m_2q_1q_2) (1 - m_1) - \nu (1 - m_2) = \frac{q_1 - \nu q_2}{q_1q_2}$$
(3)

・ 同 ト ・ ヨ ト ・ ヨ ト

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline Objective and Motivation o	Problem Definition 0		Extension to <i>L</i> Users	Results 00	Conclusion and Future Wor o
		• •		00 0 0000	
				0000	
Server Sharing requirement					

Server Shares $(m_1 \text{ and } m_2)$

- Assume differentiated service with rate ν .
- Such a policy will assign service to both queues according to: $\mu_1 = \nu \mu_2$.
- Hence:

$$C(q_1 - q_1q_2 + m_1q_1q_2) = \nu C(q_2 - q_1q_2 + m_2q_1q_2) (1 - m_1) - \nu (1 - m_2) = \frac{q_1 - \nu q_2}{q_1q_2}$$
(3)

The second equation required is; since it is not possible to assign more that 100% of the server capacity.

$$m_1 + m_2 = 1$$
 where $0 \le m_i \le 1$ (4)

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein, i

Outline Objective and Motivation	Problem Definition				Conclusion and Future Wor
			00	00	
	0000	00	00	00	
				0000	
Server Sharing requirement					

Server Shares $(m_1 \text{ and } m_2)$ cont.

► Solving (3) and (4) for m_1 and m_2 yields $m_1 = \frac{1}{1+\nu} \left(1 - \frac{q_1 - \nu q_2}{q_1 q_2}\right), \quad 0 \le m_1 \le 1$ (5) $m_2 = \frac{1}{1+\nu} \left(\nu + \frac{q_1 - \nu q_2}{q_1 q_2}\right), \quad 0 \le m_2 \le 1$ (6)

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

伺 ト イヨト イヨト

Outline Objective and Motivation	Problem Definition				Conclusion and Future Wor
			00	00	
	0000	00	00	00	
				0000	
Server Sharing requirement					

Server Shares $(m_1 \text{ and } m_2)$ cont.

► Solving (3) and (4) for m_1 and m_2 yields $m_1 = \frac{1}{1+\nu} (1 - \frac{q_1 - \nu q_2}{q_1 q_2}), \quad 0 \le m_1 \le 1$ (5) $m_2 = \frac{1}{1+\nu} (\nu + \frac{q_1 - \nu q_2}{q_1 q_2}), \quad 0 \le m_2 \le 1$ (6)

• Substituting m_1 and m_2 in (1) and (2) above we get

$$\mu_1 = \frac{C\nu}{1+\nu}(q_1 + q_2 - q_1q_2) \tag{7}$$

$$\mu_2 = \frac{C}{1+\nu}(q_1+q_2-q_1q_2) \tag{8}$$

(過) (ヨ) (ヨ)

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline Objective and Motivation	Problem Definition				Conclusion and Future Worl
			00	00	
	0000	00	00	00	
				0000	
Server Sharing requirement					

Server Shares $(m_1 \text{ and } m_2)$ cont.

• Solving (3) and (4) for m_1 and m_2 yields $m_1 = \frac{1}{1+\nu} \left(1 - \frac{q_1 - \nu q_2}{q_1 q_2}\right), \quad 0 \le m_1 \le 1$ (5)

$$m_2 = \frac{1}{1+\nu} \left(\nu + \frac{q_1 - \nu q_2}{q_1 q_2}\right), \quad 0 \le m_2 \le 1$$
 (6)

• Substituting m_1 and m_2 in (1) and (2) above we get

$$\mu_1 = \frac{C\nu}{1+\nu} (q_1 + q_2 - q_1 q_2) \tag{7}$$

$$\mu_2 = \frac{C}{1+\nu}(q_1+q_2-q_1q_2) \tag{8}$$

Assign all the resources to the connected user when there is one connected user, and divide the resources between the two users according to (5) and (6) when both users are connected.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition				Conclusion and Future Worl
				00	00	
			00			
					0000	
Fair Sche	eduler					

Fair Scheduler

▶ $\nu = 1$, i.e., $\mu_1 = \mu_2$.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

<ロ> <四> <四> <日> <日> <日</p>

Outline	Objective and Motivation	Problem Definition				Conclusion and Future Worl
				00	00	
			0			
					0000	
Fair Sch	eduler					

Fair Scheduler

▶
$$\nu = 1$$
, i.e., $\mu_1 = \mu_2$.

The server share for the two users will be given by

$$m_1 = \frac{1}{2}(1 - \frac{q_1 - q_2}{q_1 q_2}), \quad 0 \le m_1 \le 1$$
 (9)

$$m_2 = \frac{1}{2}(1 + \frac{q_1 - q_2}{q_1 q_2}), \quad 0 \le m_2 \le 1$$
 (10)

< ロ > < 回 > < 回 > < 回 > < 回 >

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition				Conclusion and Future Worl
				00	00	
			00			
					0000	
Fair Sch	eduler					

Fair Scheduler

▶
$$\nu = 1$$
, i.e., $\mu_1 = \mu_2$.

The server share for the two users will be given by

$$m_1 = rac{1}{2}(1 - rac{q_1 - q_2}{q_1 q_2}), \quad 0 \le m_1 \le 1$$
 (9)

$$m_2 = \frac{1}{2}(1 + \frac{q_1 - q_2}{q_1 q_2}), \quad 0 \le m_2 \le 1$$
 (10)

▶ Then (7) and (8) will be reduced to

$$\mu_1 = \mu_2 = \frac{C}{2}(q_1 + q_2 - q_1q_2) \tag{11}$$

イロト イポト イヨト イヨト

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

outline objective and motivation i robicin Demittion i mo oser ea	Se Extension to L Users	Results	Conclusion and Future Worl
	00	00	
00			
		0000	
Fair Scheduler			

Fair Scheduler Cont.

This formula can be used to determine the average service rate experienced by each user when applying a fair scheduling policy.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

3

Outline	Objective and Motivation	Problem Definition			Conclusion and Future Worl
		0000			
			00		
				0000	
Fair Sch	eduler				

Fair Scheduler Cont.

- This formula can be used to determine the average service rate experienced by each user when applying a fair scheduling policy.
- It can also be used as a benchmarking tool to evaluate the fairness level of already in use scheduling policies.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition				Conclusion and Future Wor
				00	00	
			•		0000	
Equal S	hares Scheduler					

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

<ロ> <四> <四> <日> <日> <日</p>

Outline Objective an	d Motivation Problem Definitior				Conclusion and Future Wor
			00	00	
		00			
		•		0000	
Equal Shares Schedule	er				

• $m_1 = m_2 = 1/2$, i.e., divide the resources equally between the two users.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline Objective an	d Motivation Problem Definitior				Conclusion and Future Wor
			00	00	
		00			
		•		0000	
Equal Shares Schedule	er				

- ▶ $m_1 = m_2 = 1/2$, i.e., divide the resources equally between the two users.
- Example: Round Robin in wireline networks.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

A (1) > A (2) > A

Outline	Objective and Motivation	Problem Definition				Conclusion and Future Wor
				00	00	
			•		0000	
Equal Sh	ares Scheduler					

- $m_1 = m_2 = 1/2$, i.e., divide the resources equally between the two users.
- Example: Round Robin in wireline networks.
- The average service rates in this case is:

$$\mu_1 = Cq_1(1 - \frac{q_2}{2}) \tag{12}$$

$$\mu_2 = Cq_2(1 - \frac{q_1}{2}) \tag{13}$$

A (1) > (1) > (1)

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition				Conclusion and Future Wor
				00	00	
			•		0000	
Equal Sh	ares Scheduler					

- $m_1 = m_2 = 1/2$, i.e., divide the resources equally between the two users.
- Example: Round Robin in wireline networks.
- The average service rates in this case is:

$$\mu_1 = Cq_1(1 - \frac{q_2}{2}) \tag{12}$$

$$\mu_2 = Cq_2(1 - \frac{q_1}{2}) \tag{13}$$

A (1) > A (1) > A

The policy will result in a service differentiation that is highly dependent on the channel quality.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein, i Service Rate Determination for Group of Users with Random Connectivity Sharing A Single Wireless Link

Outline	Objective and Motivation	Problem Definition				Conclusion and Future Wor
				00	00	
			•		0000	
Equal Sh	ares Scheduler					

- $m_1 = m_2 = 1/2$, i.e., divide the resources equally between the two users.
- Example: Round Robin in wireline networks.
- The average service rates in this case is:

$$\mu_1 = Cq_1(1 - \frac{q_2}{2}) \tag{12}$$

$$\mu_2 = Cq_2(1 - \frac{q_1}{2}) \tag{13}$$

▲ @ ▶ ▲ @ ▶ ▲

- The policy will result in a service differentiation that is highly dependent on the channel quality.
- This policy is fair only if $q_1 = q_2$.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein, Service Rate Determination for Group of Users with Random Connectivity Sharing A Single Wireless Link

Outline	Objective and Motivation	Problem Definition	Two-User Case		Results	Conclusion and Future Worl
				00	00	
		0000	00	00	00	
			00			

Extension to L Users

▶ There are *L* users in the system.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

<ロ> <四> <四> <日> <日> <日</p>

Outline Objective and Motivation	Problem Definition	Two-User Case	Results	Conclusion and Future Worl
	0000			
		00		
			0000	

Extension to L Users

- ▶ There are *L* users in the system.
- $\mathbb{I} = \{1, 2, \dots, L\}$ is the set of all users in the system.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

イロト イポト イヨト イヨト

Outline	Objective and Motivation	Problem Definition	Two-User Case		Conclusion and Future Worl
		0000			
			00		
				0000	

Extension to L Users

- There are L users in the system.
- $\mathbb{I} = \{1, 2, \dots, L\}$ is the set of all users in the system.
- *M*^(n,i) ⊆ I is a subset of I that contains the element {*i*} plus *n* other elements of I.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl	
				•0	00		
		0000	00	00	00		
					0000		
Average Service Rate Determination							

Average Service Rate For User *i*

$$\mu_{i} = C \left[q_{i} \cdot \prod_{l \in \mathbb{I} \setminus \{i\}} (1 - q_{l}) + \sum_{\forall \mathcal{M}^{(1,i)} \subset \mathbb{I}} \left(\frac{m_{i}}{\sum_{j \in \mathcal{M}^{(1,i)}} m_{j}} \prod_{k \in \mathcal{M}^{(1,i)}} q_{k} \prod_{l \in \mathbb{I} \setminus \mathcal{M}^{(1,i)}} (1 - q_{l}) \right) + \sum_{\forall \mathcal{M}^{(2,i)} \subset \mathbb{I}} \left(\frac{m_{i}}{\sum_{j \in \mathcal{M}^{(2,i)}} m_{j}} \prod_{k \in \mathcal{M}^{(2,i)}} q_{k} \prod_{l \in \mathbb{I} \setminus \mathcal{M}^{(2,i)}} (1 - q_{l}) \right) + \dots + \sum_{\forall \mathcal{M}^{(n,i)} \subset \mathbb{I}} \left(\frac{m_{i}}{\sum_{j \in \mathcal{M}^{(n,i)}} m_{j}} \prod_{k \in \mathcal{M}^{(n,i)}} q_{k} \prod_{l \in \mathbb{I} \setminus \mathcal{M}^{(n,i)}} (1 - q_{l}) \right) + \dots + \sum_{j \in \mathbb{I}} m_{j} \prod_{k \in \mathbb{I}} q_{k} \right], \quad \forall i \in \mathbb{I}, n < L - 1 \qquad (14)$$

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Wor	
				00	00		
			00				
					0000		
Average Service Rate Determination							

Server Shares Determination

• Using the service criterion $\nu_1 \mu_1 = \nu_2 \mu_2 = \ldots = \nu_L \mu_L$.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

イロト イポト イヨト イヨト

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Wor
				00	00	
					0000	
Average	Service Rate Determinatio	n				

Server Shares Determination

- Using the service criterion $\nu_1\mu_1 = \nu_2\mu_2 = \ldots = \nu_L\mu_L$.
- Equating μ_1 and μ_j for each $j \in \mathbb{I} \setminus \{1\}$ will result in L-1 equations with L unknowns.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Wor
				00	00	
					0000	
Average	Service Rate Determinatio	n				

Server Shares Determination

- Using the service criterion $\nu_1\mu_1 = \nu_2\mu_2 = \ldots = \nu_L\mu_L$.
- Equating μ_1 and μ_j for each $j \in \mathbb{I} \setminus \{1\}$ will result in L-1 equations with L unknowns.
- ► The Lth equation needed to solve this system of equations for m₁, m₂,..., m_L is

$$\sum_{i=1}^{L} m_i = 1 \quad \text{for all} \quad 0 \le m_i \le 1 \tag{15}$$

A > < > > < >

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline Objective and Moti o o	vation Problem Definition 0 0000	Two-User Case 0 00 00	Extension to L Users $\circ \circ$ $\circ \circ$	Results 00 00 0000	Conclusion and Future Worl o o
Three Users Example				0000	

Three Users Example

• When L = 3, equation (14) will be reduced to

$$\mu_{i} = C \left[q_{i} \prod_{l \in I \setminus \{i\}} (1 - q_{l}) + \sum_{\forall \mathcal{M}^{(1,i)} \subset I} \left(\frac{m_{i}}{\sum_{j \in \mathcal{M}^{(1,i)}} m_{j}} \prod_{k \in \mathcal{M}^{(1,i)}} q_{k} \prod_{l \in I \setminus \mathcal{M}^{(1,i)}} (1 - q_{l}) \right) + \frac{m_{i}}{\sum_{j \in I} m_{j}} \prod_{k \in I} q_{k} \right]$$

$$(16)$$

< ロ > < 同 > < 回 > < 回

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline Obje	ctive and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl
				00	00	
				00		
					0000	
Three Users B	xample					

• The service rate for user 1 (μ_1) is given by

$$\mu_{1} = C \Big[q_{1}(1-q_{2})(1-q_{3}) + \frac{m_{1}}{m_{1}+m_{2}} q_{1}q_{2}(1-q_{3}) \\ + \frac{m_{1}}{m_{1}+m_{3}} q_{1}q_{3}(1-q_{2}) + \frac{m_{1}}{m_{1}+m_{2}+m_{3}} q_{1}q_{2}q_{3} \Big]$$
(17)

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

< ロ > < 同 > < 回 > < 回 >

Outline Obje	ctive and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl
				00	00	
				00		
					0000	
Three Users B	xample					

• The service rate for user $1 (\mu_1)$ is given by

$$\mu_{1} = C \Big[q_{1}(1-q_{2})(1-q_{3}) + \frac{m_{1}}{m_{1}+m_{2}} q_{1}q_{2}(1-q_{3}) \\ + \frac{m_{1}}{m_{1}+m_{3}} q_{1}q_{3}(1-q_{2}) + \frac{m_{1}}{m_{1}+m_{2}+m_{3}} q_{1}q_{2}q_{3} \Big] \quad (17)$$

Since $\mathcal{M}^{(1,i)} \in \Big\{ \{1,2\}, \{1,3\} \Big\}.$

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

< ロ > < 同 > < 回 > < 回

Outline Objective and Motiv	vation Problem Definition	Two-User Case			Conclusion and Future Worl
			00	00	
			00		
		00			
				0000	
Three Users Example					

• The service rate for user 1 (μ_1) is given by

$$\mu_{1} = C \Big[q_{1}(1-q_{2})(1-q_{3}) + \frac{m_{1}}{m_{1}+m_{2}} q_{1}q_{2}(1-q_{3}) \\ + \frac{m_{1}}{m_{1}+m_{3}} q_{1}q_{3}(1-q_{2}) + \frac{m_{1}}{m_{1}+m_{2}+m_{3}} q_{1}q_{2}q_{3} \Big]$$
(17)

• Since
$$\mathcal{M}^{(1,i)} \in \left\{ \{1,2\}, \{1,3\} \right\}$$
.

• μ_2 and μ_3 can be obtained in the same manner.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

A (1) > A (1) > A

Outline Objective and Motiv	vation Problem Definition	Two-User Case			Conclusion and Future Worl
			00	00	
			00		
		00			
				0000	
Three Users Example					

• The service rate for user 1 (μ_1) is given by

$$u_{1} = C \Big[q_{1}(1-q_{2})(1-q_{3}) + \frac{m_{1}}{m_{1}+m_{2}} q_{1}q_{2}(1-q_{3}) \\ + \frac{m_{1}}{m_{1}+m_{3}} q_{1}q_{3}(1-q_{2}) + \frac{m_{1}}{m_{1}+m_{2}+m_{3}} q_{1}q_{2}q_{3} \Big]$$
(17)

• Since
$$\mathcal{M}^{(1,i)} \in \left\{\{1,2\},\{1,3\}\right\}$$
.

• μ_2 and μ_3 can be obtained in the same manner.

► Using Service differentiation criteria such as µ₁ = ν₂µ₂ and µ₁ = ν₃µ₃ will yield two equations and three varables.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

(日) (日) (日)

Outline Objective and Motivation	on Problem Definition	Two-User Case			Conclusion and Future Wor
			00	00	
	0000	00	00	00	
		00			
Three Users Example					

• The service rate for user 1 (μ_1) is given by

$$u_{1} = C \Big[q_{1}(1-q_{2})(1-q_{3}) + \frac{m_{1}}{m_{1}+m_{2}} q_{1}q_{2}(1-q_{3}) \\ + \frac{m_{1}}{m_{1}+m_{3}} q_{1}q_{3}(1-q_{2}) + \frac{m_{1}}{m_{1}+m_{2}+m_{3}} q_{1}q_{2}q_{3} \Big]$$
(17)

• Since
$$\mathcal{M}^{(1,i)} \in \left\{\{1,2\},\{1,3\}\right\}$$
.

• μ_2 and μ_3 can be obtained in the same manner.

- Using Service differentiation criteria such as $\mu_1 = \nu_2 \mu_2$ and $\mu_1 = \nu_3 \mu_3$ will yield two equations and three varables.
- ► The third equation required to solve the system of equations is

$$m_1 + m_2 + m_3 = 1$$

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl
				00	00	
		0000	00	00	00	
			00			

Results and Discussion

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

< ロ > < 回 > < 回 > < 回 > < 回 >

э

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl
				00	00	
		0000	00	00	00	

Results and Discussion

• Two users case,
$$L = 2$$
.

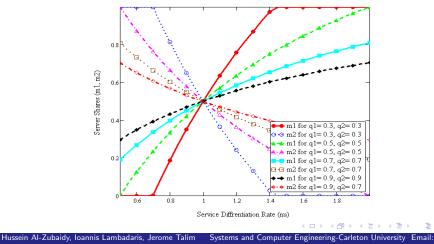
• Normalized capacity, i.e., C = 1.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Worl
				00	00	
		0000	00	00	00	
			00			

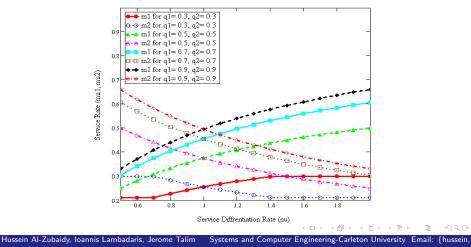
Results and Discussion


- Two users case, L = 2.
- Normalized capacity, i.e., C = 1.
- Study the allocation policy by finding μ_i and m_i under different working scenarios.

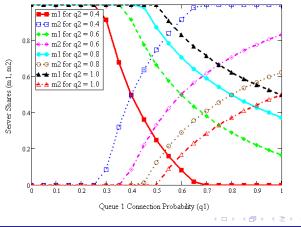
Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

A (1) > A (1) > A

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Wo
				00	0	
			00			
					0000	
C 1. 1	Summer student Channels					


Case 1: Symmetrical Channels; $q_1 = q_2$ Service Share (m_i) vs. Service Differentiation Rate (ν)

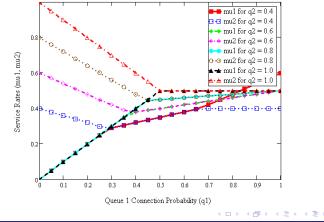
{hussein.


Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Wo
				00	00	
					0000	
C 1						

Case 1: Symmetrical Channels; $q_1 = q_2$ Average Service Rate (μ_i) vs. Service Differentiation Rate (ν)

Outline Ol	ojective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Wor
				00	00	
		0000	00	00	00	
			00			
Case 2 [,] Eai	r Scheduler ($\nu = 1.0$)					

Case 2: Fair Scheduler ($\nu = 1.0$) Service Share (m_i) vs. User1 Connection Probability (q_1)



Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein, Service Rate Determination for Group of Users with Random Connectivity Sharing A Single Wireless Link

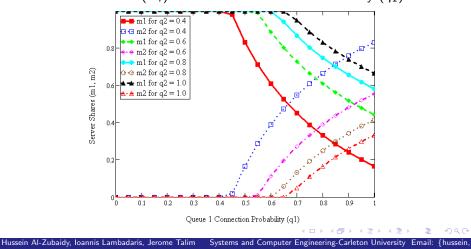
Outline Objective and Motivat	on Problem Definition	Two-User Case			Conclusion and Future Wor
			00	00	
				00	
				0000	
Case 2: Fair Scheduler ($ u = 1.0$))				

Case 2: Fair Scheduler ($\nu = 1.0$)


Average Service Rate (μ_i) vs. User1 Connection Probability (q_1)

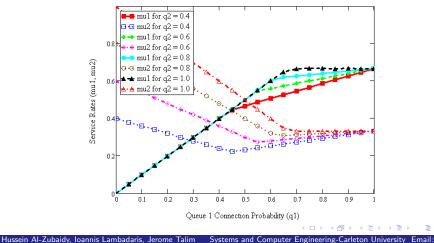
Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein, Service Rate Determination for Group of Users with Random Connectivity Sharing A Single Wireless Link

Outline Objective and	d Motivation Problem Definition	Two-User Case			Conclusion and Future Wor
			00	00	
		00		•	
				0000	
Case 3: Equal Shares	Scheduler $(m_1 = m_2 = 0.5)$				


Case 3: Equal Shares Scheduler $(m_1 = m_2 = 0.5)$ Average Service Rate (μ_i) vs. User1 Connection Probability (q_1)

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein, Service Rate Determination for Group of Users with Random Connectivity Sharing A Single Wireless Link

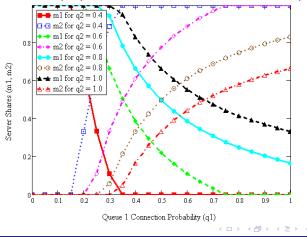
Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Wor
				00	00	
			00			
					0000	
Case 4	Differentiated Services: u -	2.0 and u = 0.5				


Case 4: Differentiated Services; $\nu = 2.0$ Service Share (m_i) vs. User1 Connection Probability (q_1)

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Wor
				00	00	
		0000	00	00	00	
			00			
					0000	
Case 4	Differentiated Services: $\nu =$	2.0 and $\nu = 0.5$				

Case 4: Differentiated Services; $\nu = 2.0$

Average Service Rate (μ_i) vs. User1 Connection Probability (q_1)

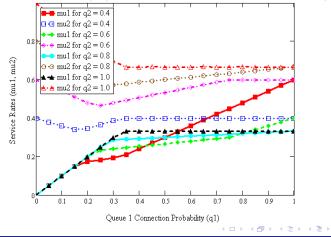


{hussein.

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Wor
				00	00	
					0000	
Case A:	Differentiated Services: 11-	2.0 and u = 0.5				

Case 4: Differentiated Services; $\nu = 0.5$

Service Share (m_i) vs. User1 Connection Probability (q_1)



Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein, Service Rate Determination for Group of Users with Random Connectivity Sharing A Single Wireless Link

Outline	Objective and Motivation	Problem Definition	Two-User Case			Conclusion and Future Wor
				00	00	
					0000	
Case 4.	Differentiated Services: u -	2.0 and u = 0.5				

Case 4: Differentiated Services; $\nu = 0.5$

Average Service Rate (μ_i) vs. User1 Connection Probability (q_1)

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein, Service Rate Determination for Group of Users with Random Connectivity Sharing A Single Wireless Link

Outline	Objective and Motivation	Problem Definition	Two-User Case			
			0 00 00	00 00	00 00 0	• • •
Conclusi	on					

► The devised methodology can be used to find a closed form solution for the server sharing in wireless environment.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

A (1) > A (1) > A

Outline Objective and Motivation	Problem Definition	Two-User Case			
			00	00	•
		00			
				0000	
Conclusion					

- The devised methodology can be used to find a closed form solution for the server sharing in wireless environment.
- Solving the model require much less computational complexity than the dynamic counter parts.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

b) A (E) b)

Outline	Objective and Motivation o	Problem Definition 0 0000	Two-User Case o oo oo	Extension to <i>L</i> Users 00 00	00 00 0	Conclusion and Future Worl o o
Conclusi	on		0		0000	

- The devised methodology can be used to find a closed form solution for the server sharing in wireless environment.
- Solving the model require much less computational complexity than the dynamic counter parts.
- The results proved that assigning equal shares of the server capacity to all users in a wireless system with independent random channel connectivity resulted in service differentiation that is highly dependent on the relative channel quality.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein, Service Rate Determination for Group of Users with Random Connectivity. Sharing A Single Wireless Link

Outline	Objective and Motivation o	Problem Definition 0 0000	Two-User Case o oo oo	Extension to <i>L</i> Users 00 00	00 00 0	Conclusion and Future Worl o o
Conclusi	on		0		0000	

- The devised methodology can be used to find a closed form solution for the server sharing in wireless environment.
- Solving the model require much less computational complexity than the dynamic counter parts.
- The results proved that assigning equal shares of the server capacity to all users in a wireless system with independent random channel connectivity resulted in service differentiation that is highly dependent on the relative channel quality.
- It is also shown that fairness can only be achieved within a limited range of the channels' parameters. This range can be quantified using the proposed approach.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline Objective and Motivation o o	Problem Definition 0 0000	Two-User Case 0 00 00 0	Extension to <i>L</i> Users 00 00	Results 00 00 0 0000	Conclusion and Future Wor o o
Future Work					

Future Work

The assumption of symmetrical arrivals can be relaxed, by modifying the model to account for the effect of the different arrivals, and study the effect of the arrival process on the server sharing policy and hence on QoS.

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition	Two-User Case		
		0000			•
			00		
				0000	
Future V	Vork				

Future Work

- The assumption of symmetrical arrivals can be relaxed, by modifying the model to account for the effect of the different arrivals, and study the effect of the arrival process on the server sharing policy and hence on QoS.
- The two-state channel model can be extended to a Finite State Markov Channel model. This will introduce more complexity to the model. Nevertheless, this will be a very interesting case to study, since most of the concurrent wireless systems use rate adaptation (i.e., adapting the rate to the channel conditions).

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein, Service Rate Determination for Group of Users with Random Connectivity Sharing A Single Wireless Link

Outline	Objective and Motivation	Problem Definition	Two-User Case		
		0000			•
			00		
				0000	
Future V	Vork				

Future Work

- The assumption of symmetrical arrivals can be relaxed, by modifying the model to account for the effect of the different arrivals, and study the effect of the arrival process on the server sharing policy and hence on QoS.
- The two-state channel model can be extended to a Finite State Markov Channel model. This will introduce more complexity to the model. Nevertheless, this will be a very interesting case to study, since most of the concurrent wireless systems use rate adaptation (i.e., adapting the rate to the channel conditions).
- The results can be used to study the long run fairness of some existent schedulers in wireless environment.

→ < Ξ →</p>

Hussein Al-Zubaidy, Ioannis Lambadaris, Jerome Talim Systems and Computer Engineering-Carleton University Email: {hussein,

Outline	Objective and Motivation	Problem Definition	Two-User Case			
				00	00	
			00			•
					0000	
Discuss	ion					

Thank You

Discussion

Hussein Zubaidy

www.sce.carleton.ca/~hussein/

<ロ> <同> <同> < 回> < 回>

Ξ.

Discussion [8ex] Hussein Zubaidy [4ex] www.sce.carleton.ca/~hussein/

Thank You