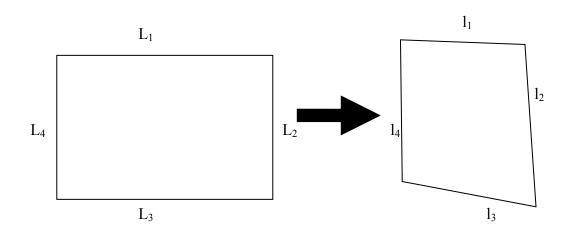
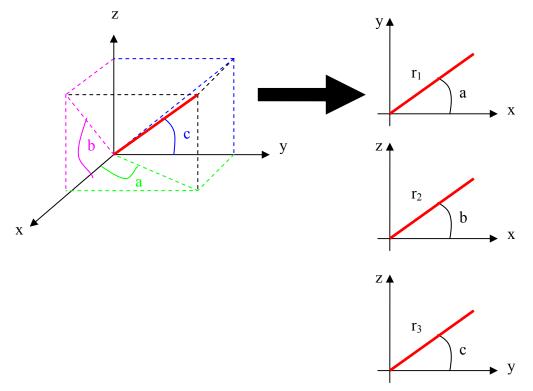
Consider the general form of the problem: the arbitrary, three-dimensional rotation of a rigid rectangle with sides of known lengths L_i . The observed lengths of the rotated body are l_i . Since all L_i are known, all (X_i, Y_i) are also known by arbitrarily assigning a coordinate basis. Further, in the rotated form, (x_i, y_i) are known (and, therefore, l_i). Thus, the only unknowns are z_i . (NOTE: Upper case letters always refer to the two-dimensional figure, whereas lower case letters refer to the rotated image. Also note that the rotated image may always be arranged such that one rotational component, about either the x or y axis, of one edge is zero.)



Next, consider the arbitrary rotation of any line segment in three dimensions by decomposing the rotations into their two-dimensional components. The line segment created by the rotated object projects a length r_i into each plane and is related to the initial length by some angle of orientation *a*, *b*, or *c*, depending on the plane.



Finally, the true three-dimensional length R of each line segment is known and is related to all r_i by

(1)
$$R = \sqrt{r_1^2 + r_2^2 + r_3^2}$$
.

Thus, simple geometry is required to extract the *z*-coordinate of each corner pixel in the rotated image. The *z*-coordinate is dependent on each of the angles of rotation *a*, *b*, and *c* such that they must all be found simultaneously, yielding a system of seven equations (below) and seven unknowns (*a*, *b*, *c*, r_1 , r_2 , r_3 , and *z*) for each line segment.

(2)
$$a = \tan^{-1}\left(\frac{y}{x}\right),$$
 (3) $r_1 = \frac{x}{\cos(a)}$

(4)
$$b = \tan^{-1}\left(\frac{z}{x}\right),$$
 (5) $r_2 = \frac{x}{\cos(b)}$

(6)
$$c = \tan^{-1}\left(\frac{z}{y}\right),$$
 (7) $r_3 = \frac{y}{\cos(c)}$