
Talos: Neutralizing Vulnerabilities with Security
Workarounds for Rapid Response

Zhen Huang Mariana D’Angelo Dhaval Miyani David Lie
University of Toronto

{z.huang,mariana.dangelo,dhaval.miyani}@mail.utoronto.ca,lie@eecg.toronto.edu

Abstract—There is often a considerable delay between the
discovery of a vulnerability and the issue of a patch. One way to
mitigate this window of vulnerability is to use a configuration
workaround, which prevents the vulnerable code from being
executed at the cost of some lost functionality – but only if one
is available. Since application configurations are not specifically
designed to mitigate software vulnerabilities, we find that they
only cover 25.2% of vulnerabilities.

To minimize patch delay vulnerabilities and address the
limitations of configuration workarounds, we propose Security
Workarounds for Rapid Response (SWRRs), which are designed
to neutralize security vulnerabilities in a timely, secure, and un-
obtrusive manner. Similar to configuration workarounds, SWRRs
neutralize vulnerabilities by preventing vulnerable code from
being executed at the cost of some lost functionality. However,
the key difference is that SWRRs use existing error-handling
code within applications, which enables them to be mechanically
inserted with minimal knowledge of the application and minimal
developer effort. This allows SWRRs to achieve high coverage
while still being fast and easy to deploy.

We have designed and implemented Talos, a system that
mechanically instruments SWRRs into a given application, and
evaluate it on five popular Linux server applications. We run ex-
ploits against 11 real-world software vulnerabilities and show that
SWRRs neutralize the vulnerabilities in all cases. Quantitative
measurements on 320 SWRRs indicate that SWRRs instrumented
by Talos can neutralize 75.1% of all potential vulnerabilities
and incur a loss of functionality similar to configuration work-
arounds in 71.3% of those cases. Our overall conclusion is
that automatically generated SWRRs can safely mitigate 2.1×
more vulnerabilities, while only incurring a loss of functionality
comparable to that of traditional configuration workarounds.

I. INTRODUCTION

Patches are the commonly-accepted solution for completely
preventing a security vulnerability from being exploited.
Patches fix security vulnerabilities and, in most cases, do so
with no loss of functionality or performance for the applica-
tion. However, despite their benefits, patches are not perfect.

An often ignored drawback of patches is the pre-patch
window of vulnerability that exists between the time a vul-
nerability is discovered and the time a patch is issued. This
vulnerability window is inherent to security patches because
patches must be manually created and tested, which takes
time and effort to do correctly. Although a large number
of techniques have been proposed to automatically generate
patches to fix vulnerabilities [31], [32], [39], [44], [48], [58],
[59], to the best of our knowledge, none have been widely
adopted in practice. As a recent study [49] and our own
findings in Section II demonstrate, the length of this window

can be significant, and is unlikely to decrease on average
due to the complexity of creating a security patch. While
the risk of exploitation during the pre-patch window can
be reduced by keeping the vulnerability secret, this is just
security-through-obscurity. As the highly active market of
zero-day vulnerabilities demonstrates, there is no shortage of
instances where attackers may be aware of and be able to
exploit vulnerabilities during this window [23].

While the period before a vulnerability is known can be
reduced by better vulnerability detection and software engi-
neering practices, we believe we can address the window of
vulnerability that exists between the time the vulnerability is
known to the developer (or to the public) and when the patch
is issued. To do this, we take inspiration from configuration
workarounds, which are a commonly used mechanism to
address the pre-patch window of vulnerability. Configuration
workarounds disable functionality related to the vulnerable
code so that it cannot be triggered by an attacker. For example,
the Android Stagefright bug, discovered in 2015, is a perfect
example of this. This remote code execution vulnerability,
which affected almost 1 billion devices, was discovered as
early as April 2015, although not publicly disclosed until July.
A patch was not available until August 2015, several months
after the vulnerability was discovered, and even at the time of
writing, many smartphones models still do not have a usable
patch [42], [43]. Fortunately, the worst methods of exploitation
via a malicious MMS can be prevented by configuring the
MMS client on the phone to not automatically download media
files from MMS messages. In exchange for some minor loss of
functionality, the configuration workaround protects the user
from the exploitation of a very serious vulnerability.

However, configuration workarounds are far from ideal
for mitigating security vulnerabilities. Again, as we show
in Section II, configuration workarounds have low coverage
– there are many vulnerabilities for which no configuration
workaround exists because there is no configuration option
that can disable the vulnerability. Configuration options are
designed to allow users to easily alter the behaviour of a
program, and thus only cover functionality that most users
would like to enable or disable. Thus it is hardly surprising
that very few vulnerabilities have configuration workarounds,
and it essentially becomes a matter of random serendipity
whether a vulnerability can be neutralized with a configuration
workaround or not.

Motivated by the problems of the pre-patch vulnerabil-

ity window and the low coverage of configuration work-
arounds, we propose Security Workarounds for Rapid Re-
sponse (SWRRs), workarounds that can be mechanically gener-
ated to address a large percentage of vulnerabilities. The main
challenge in designing SWRRs is that they must work in a
broad range of circumstances. By their nature, vulnerabilities
are not known a priori, and thus SWRRs must work for
any vulnerability that can occur. Another challenge is that
vulnerabilities can occur anywhere in an application, and be
related to almost any type of functionality, but an SWRR
must ensure that the application continues to work after the
SWRR is applied. Thus, we design SWRRs to be simple
and generic, relying on very few assumptions about either
applications or vulnerabilities. The cost of this generality is
that, like configuration workarounds, users must be willing to
accept some minor loss of functionality in return for protection
from a vulnerability until a patch is issued.

Our key insight for making SWRRs generic and cheap to
deploy is that application error-handling code, whose purpose
is to gracefully return an application to a good state when
an unexpected error arises, can be found and invoked using
static analysis. Based on this insight, we have designed and
implemented a system called Talos, which detects such error-
handling code using static analysis and adds SWRRs into a
given application. Each SWRR prevents the execution of code
where a vulnerability is located, and calls the error-handling
code instead. With Talos, developers can deploy SWRRs either
as patches or in-place as part of an application so that they
can be activated with run-time loadable configurations.

In summary, SWRRs provide benefits for both software
developers and users at a small cost. For the cost of having to
run Talos and issue the resulting patch, software developers
benefit by having a solution that protects their users; this
affords them more time and less immediate pressure to create,
test, and deploy a patch. Users benefit by having a solution
that protects them during the pre-patch vulnerability window
at the cost of having to accept some loss of functionality.
In addition, in cases where users cannot install a patch for
compatibility reasons or where no patch exists because the
software is no longer supported, users can still use an SWRR
to protect themselves.
This paper makes the following contributions:

1) We propose SWRRs, which provide a low-cost way for
software developers to quickly protect users during the
pre-patch vulnerability window.

2) We design and implement a software tool called Talos
to demonstrate that SWRRs can be practically deployed.
To safely continue the execution of an application,
Talos heuristically identifies error-handling code in the
program and transfers execution to those paths to avoid
having to execute vulnerable code.

3) We evaluate the effectiveness and coverage of the
SWRRs inserted by Talos into 5 popular applications.
When tested against 11 vulnerabilities, SWRRs gener-
ated by Talos successfully neutralize the vulnerabilities
in all cases. Empirical tests on 320 Talos-generated

TABLE I
SECURITY PATCH STATISTICS.

App. Vulns. Delay (Days) SLOC Funcs Files
lighttpd 27 54 49 2 2
apache 30 61 47 2 2
squid 46 73 64 6 3
proftpd 16 9 95 4 2
sqlite 12 62 17 4 3
AVERAGE 26 52 54 4 2

SWRRs show that they can achieve an effective coverage
that is 2.1× that of traditional configuration work-
arounds.

We begin in Section II with a study based on data we
collected that demonstrates the motivation behind SWRRs.
Then we give an overview of SWRRs in Section III and
describe Talos, our tool for automatically inserting SWRRs
into application source code, in Section IV. We provide details
about the implementation of Talos in Section V. We then
evaluate the SWRRs that Talos instruments into applications
in Section VI. We discuss the limitations and other issues of
SWRRs in Section VII. We then provide a comparison with
related work in Section VIII and conclude in Section IX.

II. MOTIVATION

A. The pre-patch vulnerability window

We begin with a study of the lifecycle and complexity
of software patches for recent security vulnerabilities. The
vulnerabilities used in our study were collected from various
sources, including common vulnerability databases [6], [8],
[13], [17], vendor-specific security bulletins [2], [7], [12], and
software bug databases [5], [10], [16].

For our study, we need information on the disclosure date
of vulnerabilities, the release/commit date of patches, and the
source code of the patches. Hence we choose open-source
applications that are popular, reasonably complex, mature,
being actively developed and maintained, and have a decent
number of vulnerabilities. For each application, we selected
as many vulnerabilities as possible that have the required
information for manual examination. Our results are shown
in Table I. Column “Vulns.” shows the number of examined
vulnerabilities. Column “Delay” shows the average number
of days between the disclosure of security vulnerabilities and
the release of corresponding software patches. We obtain the
date when a vulnerability is disclosed from either an official
vulnerability disclosure or the bug report for the vulnerability.
For some vulnerabilities, we could not find an official dis-
closure date, so we approximate this using the earliest dated
document in which they are referenced. From the collected
data, we can see that it takes considerable time to release
a patch and the size of the pre-patch vulnerability window is
significant, averaging around 1.5 months after the vulnerability
is disclosed.

We find that 43.4% of the vulnerabilities were patched
within 7 days after the vulnerabilities were disclosed, 23.3% of

2

them were patched between 7 days and 30 days, and 33.3% of
them were patched after 30 days. Similarly, a recent study on
the lifecycle of security vulnerabilities in operating systems
and web browsers shows that among open source vendors,
65% of the vulnerabilities were patched within 7 days, 9%
of them were patched between 7 days and 30 days, and 18%
of them were patched after 30 days [49]. Both our study and
their study indicate that a significant number of vulnerabilities
were patched after 30 days.

To understand the bottleneck in releasing a patch, we break
the task of releasing a patch into steps including vulnerability
triage, constructing a patch, and regression test. We study
the time spent in each step by examining the bug reports of
vulnerabilities. Unfortunately, we were only able to locate the
bug reports for 21 of the vulnerabilities that are shown in
Table I.

As most of these bug reports do not contain the time when
a developer was assigned or when a tester was assigned, we
conservatively assign the period of time between when the bug
is reported and when the first patch attempt is created as the
time spent for vulnerability triage, the period of time between
when the first patch attempt is created and when the last patch
attempt is created as the time spent to construct a patch, and
the period of time between when the last patch attempt is
created and when the patch is committed as the time spent for
regression test.

For these vulnerabilities, we find that the time and effort
spent in constructing a patch is very significant. For the 8
vulnerabilities that took more than one day to create a patch,
89% of the time was spent in constructing a patch. And 9 of the
vulnerabilities took between two to six attempts to patch cor-
rectly. Particularly the bug report of one proftpd vulnerability
(CVE-2012-6095 [4]) contains five patch attempts, of which
the last patch attempt was created 96 days after the first patch
attempt was created, and 29 comments from the developer
and the testers, of which the comments from the developer
along the time line include “This updates the previous patch
...”, “This patch builds on the previous one ...”, “I’ve just
committed more changes ...”, “Hopefully the combination of ...
addresses the remaining issues.”, “Unfortunately I don’t have
a good/easy fix/solution for this yet.”, and one of the very last
comments from the testers is still “I’m afraid I found a bug
in ...”.

To understand further why constructing a patch is non-
trivial, we further study the complexity of the patches, which
are available for all the vulnerabilities shown in Table I. We
use column “SLOC” to show the number of lines of source
code in patches, column “Funcs” to show the number of
functions that are changed by patches, and column “Files”
to show the number of source code files that are changed
by patches. We find that on average patches consist of 54
lines of source code and span 4 functions in 2 source code
files. This suggests that on average, patches involve non-trivial
changes to the application code. As a result, the vulnerability
window is likely inherent to patches, as time must be spent by
human engineers to understand the vulnerability, design and

TABLE II
CONFIGURATION WORKAROUND STATISTICS.

App. Options Vulns. Workaround Period
lighttpd 88 27 14.8% 2005-14
apache 74 42 16.7% 2002-14
squid 174 30 6.7% 2001-15
proftpd 28 20 20.0% 2004-13
IE 33 31 54.8% 2000-14
Office 325 32 37.5% 2000-11

implement the fix, and finally test and review the patch before
release. Due to our need for detailed bug reports and source
code patches in performing this study, we were restricted to
open-source applications. However, we found no evidence that
these conclusions are restricted to open-source projects, and
so we believe they should apply equally to both open- and
closed-source applications.

B. Configuration workaround coverage of vulnerabilities

Since configuration workarounds represent the current best
solution for mitigating the vulnerability window, we also
present our study of configuration workarounds for recent
security vulnerabilities. We define a configuration workaround
as any vulnerability mitigation that involves modifying the
configuration of the application (i.e., configuration options
supported by the application) and exclude many other common
fixes such as patching the application binary, disabling the
application, or placing the vulnerability out of the reach of
attackers (e.g., tightening firewall rules).

For this study, we add two popular closed-source applica-
tions: Internet Explorer and Microsoft Office. We also exclude
sqlite because sqlite does not support any configuration op-
tions. For each application, we again randomly select a number
of vulnerabilities and search both the software vendors’ web-
sites and Internet to determine if a configuration workaround
is available. We tabulate the percentage of vulnerabilities
examined for which we were able to find a configuration
workaround as well as the time period over which the manually
examined vulnerabilities were reported. We also tabulate the
number of configuration options for each application. Table II
presents the results. Column “Options” shows the number
of configuration options that each application has. Column
“Workaround” shows the percentage of vulnerabilities that
have configuration workarounds. Column “Period” shows the
earliest and latest time when the vulnerabilities are reported.
For IE and Office, we cite the number of configuration
options measured by Ocasta [30]. For other applications, we
obtain the list of their configuration options from their source
code using either static analysis, manual examination, or user
documentation. While it is difficult to say whether a small
number of configuration options indicates that each option
covers a large amount of code, in general we can see that
the number of configuration options is usually small.

We observe several trends in the results of our study.
First, configuration workarounds are listed for every appli-
cation in our study. This shows that the use and disclosure

3

of configuration workarounds is widespread across software
projects. Second, the percentage of vulnerabilities that have
workarounds is relatively low – a weighted average (by # of
vulnerabilities) shows that only 25.2% of the vulnerabilities
have configuration workarounds. As a result, the cases where
a security vulnerability can be neutralized with an existing
configuration workaround is quite uncommon.

Qualitatively, we find that many configuration workarounds
disable an entire “module” of functionality that was associated
with the vulnerable code. This suggests that many configura-
tion workarounds cause some collateral damage; they not only
disable the vulnerable code, but may also unnecessarily disable
other non-vulnerable functionality. For example, vulnerability
CVE-2011-4362 in lighttpd [11] is the result of an incorrect
bounds check in the code that is only called during base64
decoding of credentials for HTTP basic authentication. How-
ever, the posted configuration workaround disables all types of
authentication because it is the only configuration option that
can prevent the vulnerable code from being executed. This
means that other types of authentication that do not rely on
base64 decoding, such as digest and NTLM authentication,
are needlessly disabled. In general, the coarseness of the con-
figuration options means that the configuration workarounds
frequently disable more functionality than is strictly necessary.

Objectively speaking, it is not a complete surprise that
configuration workarounds, while widespread in their usage
across applications, are generally applicable to a minority
of vulnerabilities and might only be able to disable code
at a coarse granularity. Having fewer configuration options
simplifies testing and generally improves usability, motivating
developers to minimize the configurability of their applica-
tions. There are likely many regions of code that cannot be
disabled by the limited number of configuration options, result-
ing in many vulnerabilities for which there is no configuration
workaround.

III. OVERVIEW

A. SWRR objectives

From our study of configuration workarounds we found that
while configuration workarounds are commonly used, they
have very low coverage of vulnerabilities, thus reducing their
utility. Despite this, the reason why configuration workarounds
are still used is that they impose no additional effort on the part
of the developer. In essence, they provide a small, but tangible
benefit for free. While it might seem obvious that a special
purpose mechanism like SWRRs can improve on the coverage
of configuration workarounds, we remain cognizant that to be
competitive, they must at the same time impose little or no
engineering cost. Furthermore, as a temporary alternative to a
patch, they must be quick to generate as compared to construct
a patch. We achieve low-effort by automatically generating
SWRRs with a static analysis tool called Talos. However,
if designed improperly, an automatically generated SWRR
may do more harm than a manually created configuration
workaround. As a result, we state the following objectives for
our design of Talos and the SWRRs it creates:

• Security: An SWRR should neutralize its intended vul-
nerability and, in doing so, it should not introduce new
bugs or vulnerabilities.

• Effective Coverage: SWRRs should be able to cover
many more vulnerabilities than configuration work-
arounds. Effective coverage is a product of two com-
ponents: (1) the number of vulnerabilities whose code
SWRRs can disable (which we call “basic coverage”),
and (2) the percentage of SWRRs that, when enabled,
result in a minor loss of functionality similar to what
would be expected from a configuration workaround.

• Low Cost: SWRRs are mechanically inserted into an
application using Talos, thus minimizing the engineering
effort required to use SWRRs. In cases where a binary
SWRR patch cannot be issued, it should be possible
to perform “in-place” deployment of SWRRs, similar
to deployment of configuration workarounds, and with
minimal performance overhead.

Configuration workarounds are very unlikely to introduce
new bugs or vulnerabilities since they have been tested; we
expect the same behaviour from SWRRs, however, we limit
our security objective to avoiding vulnerabilities that can
compromise the confidentiality and integrity of a program. It
is possible and acceptable for Talos to create an SWRR that
causes the application to terminate, even though this creates
a potential denial-of-service vulnerability. We believe this is
acceptable because most state-of-the-art vulnerability mitiga-
tion techniques (such as Address Space Layout Randomization
(ASLR), Control Flow Integrity (CFI), and non-executable
stacks) aim to turn memory corruption exploits or malicious
control flow transfers into program crashes, which also result
in the termination of the program [20], [36], [47], [55], [62],
[63]. As a result, our design of SWRRs aims to completely
avoid confidentiality and integrity vulnerabilities in exchange
for some (small) probability of introducing a denial-of-service
vulnerability.

A full patch requires at least the same or more effort to
generate than an SWRR. This is because a full patch must
preserve all the functionality of the application while SWRRs
explicitly allow some loss of functionality. Specifically, to
create a full patch, a developer needs to understand the
exact cause of the vulnerability and all the conditions under
which the vulnerability is triggered. In addition, the developer
needs to design and implement new code that retains all
desired functionality of the old code but does not contain
the vulnerability. In contrast, Talos only requires knowing the
function in which the vulnerable code is located, which can
usually be obtained from a crash report.

The difference in effort is dependent on the complexity
of the vulnerability. The amount of effort to create a full
patch generally increases as the complexity of the vulnerability
increases. On the contrary, the amount of effort to generate an
SWRR is essentially constant, as it just requires knowing the
function that contains the vulnerable code, and the effort to
get this information is independent of the complexity of the
vulnerability. Consequently, the more complex the vulnerabil-

4

ity is, the larger the difference in effort will be. For simple
vulnerabilities, the difference in effort might be small, but the
results in Table I suggest that a fair number of vulnerabilities
can be quite complex.

B. SWRR deployment

There are two possible deployment methods for SWRRs.
In the first deployment method of SWRR, which we call in-
place deployment, Talos is run on the application code base
before it is released. Talos inserts an SWRR check into every
function in the application. Each SWRR check reads and
checks a corresponding SWRR option in an accompanying
SWRR configuration file. This allows the application developer
to selectively disable code in an application without having to
replace the binary by pushing out a new SWRR configuration
file instead. Alternatively, the user may change the config-
uration file to enable the appropriate SWRR if they know
which function the vulnerability occurs in. In-place SWRR
deployment is useful in scenarios where runtime performance
is not critical or in scenarios where updating binaries is
difficult, such as in smartphones or other embedded devices.

In the second deployment method of SWRR, which we call
patch-based deployment, the application developer will run
Talos on the application code base when they learn of a new
vulnerability, passing Talos the information it requires about
the vulnerability. Talos will then insert code that will disable
the vulnerable function(s) and trigger error-handling code to
return the application to a good state. The application devel-
oper will then compile the instrumented code and issue the
resulting binary as a temporary patch to users. The application
developer can perform minimal testing on the temporary patch
as SWRRs are unlikely to cause serious loss of functionality
in most cases, which is shown in our evaluation.

Using an SWRR requires that the location of the vulnerabil-
ity be known. We argue that this is a reasonable requirement
– by the time a vulnerability is discovered and confirmed, the
location of the vulnerable code is generally known, albeit a
proof-of-concept exploit is often not publicly available. For
example, many of the CVE vulnerability reports we used in
our experiments specifically list the function in which the
vulnerability is located.

Each of the two SWRR deployment methods has its own
pros and cons. In-place deployment frees the developer from
the need to re-compile the code and roll-out new code, but
imposes a a slight increase of code size and minor perfor-
mance overhead, as we will show in Section VI. Patch-based
deployment on the other hand has no code size or runtime
overhead, but requires new binary code to be distributed and
installed.

As the main goal of SWRR is to provide a rapid response
when a vulnerability is newly discovered, we use Figure 1 to
illustrate the similarities and differences in the steps required
for the two SWRR deployment methods and the conventional
method of releasing a full patch. In the figure, the workflows of
different approaches are distinguished with the use of different

Vulnerability Triage

Use Talos to identify the
SWRR for the location of

vulnerability

Run regression test to
ensure no functionality is

broken

Activate the identified SWRR
in installed applications

Apply the patch to
installed applications

 A vulnerability is discovered.

 The vulnerability is mitigated.

 The vulnerability is fixed.

Full patch

In-place SWRR

Patch-based SWRR

Find the location of the vulnerability

Find the cause of the
vulnerability

Construct a patch

Use Talos to generate an
SWRR for the location of

vulnerability

Release the patch

Release the SWRR

 Apply the released SWRR to
installed applications

Fig. 1. The comparison of the different approaches to addressing a newly
discovered vulnerability.

types of arrows. The legends used in the figure are explained
in the dotted box at the bottom of the figure.

Regardless of which method is used to address the vul-
nerability, the discovery of a new vulnerability always starts
with triage and finding the location of the vulnerability. After
that, each method consists of different steps. First, releasing
a patch requires software developers to find the cause of the
vulnerability and to construct a patch, which can require a
considerable amount of developer effort and time. In addition,
since full patches must not break existing functionality, regres-
sion tests must be performed. Furthermore, the vendor must
release the patch and end-users must install the patch. Second,
in-place SWRR deployment requires developers to identify the
SWRR that can mitigate the vulnerability, which can be done
by simply running Talos, and end-users to activate the SWRR
by installing the new SWRR configuration file or enabling
the appropriate SWRR configuration option. Finally, patch-
based SWRR deployment requires developers to generate an
SWRR specifically for the vulnerability, which is also done
by running Talos, vendors to release the SWRR as a patch,
and end-users to install the SWRR patch. Note that at the
end, the conventional approach of releasing a patch will fix
the vulnerability, while both SWRR deployment methods only
mitigate the vulnerability. However, both SWRR deployment
methods require fewer steps and the steps that they require are
simpler and less time-consuming than those of a full patch, due
to the nature of their purposes and the aid of an automated
tool like Talos.

C. The error-handling code intuition

Talos must insert SWRRs that neutralize vulnerable func-
tions without violating security, Further, it must do this without
needing to understand complex program-specific semantics.
As a result, Talos is almost completely application-agnostic,
requiring only a small amount of application-specific infor-

5

mation from developers. The key to enabling Talos to do this
is to find an application characteristic that (1) is present and
similar across nearly all applications, and (2) can allow Talos
to recover from the unexpected redirection of execution to
avoid vulnerable code.

Our intuition is that code whose purpose is to handle un-
expected or abnormal error conditions fits these requirements.
First, error-handling is found in nearly every type of appli-
cation. Essentially any sufficiently complex application that
interacts with its environment must gracefully handle unex-
pected situations such as invalid inputs, inadequate resources,
or unexpected delays that it encounters; this is generally
accomplished with what we generically refer to as error-
handling code. Second, error-handling code is designed to be
invoked when the application encounters these unexpected or
abnormal situations and thus, by nature, it must conservatively
return the application back to a known state. In fact, the
majority of error-handling code takes great pains to try to
avoid violating confidentiality by leaking sensitive information
or violating integrity by corrupting data. Instead, most error-
handling code remedies an abnormal situation by aborting the
current task and cleaning up any intermediate state or, in the
worst case, gracefully halting the application if continuation is
not possible. As a result, the intuition behind the goals of error-
handling code fits well with the security goal of protecting the
confidentiality and integrity of applications.

IV. TALOS

We now describe how Talos inserts SWRRs into application
code without introducing new security vulnerabilities. First, we
explain how Talos sets about instrumenting an application with
SWRRs. Then, we detail the heuristics Talos uses to identify
error-handling code within an application for the purposes of
SWRR instrumentation.

A. Inserting SWRRs

When designing Talos, we had to decide on the granularity
of code that each inserted SWRR should enable or disable. The
granularity of code that is protected by each SWRR has a bear-
ing on its security and unobtrusiveness. This is because error-
handling code can broadly be classified into two categories:
intra-procedural error-handlers that operate completely within
a function, and inter-procedural error-handlers that are unable
to completely handle the error within the function and must
expose the error to the function’s caller. The error handlers
in the former category are difficult for Talos to use as they
are tightly coupled with the path within the function used to
invoke the error-handling path. For example, they may free
memory that they know was allocated on the path leading
to the error-handling code, or conversely fail to free memory
since they know the paths leading to the error-handling code
did not allocate it. If Talos redirects execution to such an error-
handling path without understanding the internal semantics of
the function, it could result in a double-free bug.

However, inter-procedural error-handling code that exposes
the error to the caller must be more conservative because it

1 int example_function(...) {
2 /* SWRR inserted at top of function */
3 if (SWRR_enabled(<SWRR_option>))
4 return <e r ror code >;
5
6 /* original function body */
7 ...
8 }

Listing 1. SWRR instrumentation - In-place Deployment

1 int example_function(...) {
2 /* SWRR inserted at top of function */
3 return <e r ror code >;
4
5 /* original function body */
6 ...
7 }

Listing 2. SWRR instrumentation - Patch-based Deployment

must be written in such a way that correctness guarantees are
met independently of the calling context. As a result, such
error-handling code often seeks to ensure that modifications
made to application state by the function are undone and that
an appropriate value is returned to the caller so that the caller
can then handle the failure. For example, an input sanitization
function that fails due to an out-of-memory error might free
any resources acquired up to that point and then return an error
code to the caller so that the caller can conservatively reject
the unsanitized input. This intuition implies that functions that
contain such error-handling code can safely do nothing as
long as the caller is notified that the function has encountered
an error. As a result, Talos instruments SWRRs to enable or
disable code at the granularity of a function. While there is
no guarantee that this intuition is always true, we find that
it does hold for a large number of cases allowing Talos to
instrument applications with SWRRs that are secure and pro-
vide better effective coverage than configuration workarounds
as we demonstrate in our evaluation in Section VI.

Given that an SWRR option should control the execution
of a function, instrumenting a function with an SWRR is
fairly straightforward. To instrument a function, Talos adds
the code in Listing 1 or Listing 2 to the function, depending
on whether in-place deployment or patch-based deployment is
used. For in-place deployment, a check is first performed on
line 3 to determine whether the corresponding SWRR option
(SWRR option) is enabled; if it is, the entire function body is
skipped and the error code (error code) that has been statically
extracted from the error-handling code is returned to the caller
on line 4. In this section, the text will mostly assume in-place
deployment since it is the slightly more complex of the two
options.

Since a suitable error code must be found for each function
instrumented with an SWRR, Talos can only instrument a
function if: (1) it can determine if the function has inter-
procedural error-handling code, and (2) it can extract the
value that the error-handling code returns to be used as the

6

procedure FIND FUNCTIONS(Functions)
to instrument← ∅
SWRR map← ∅
for f ∈ Functions do . Apply 2 main heuristics

if error logging(f) then
to instrument← {f, error code(f)}
SWRR map← {f, new option()}
remove(Functions, f)

else if NULL return(f) then
to instrument← {f,NULL}
SWRR map← {f, new option()}
remove(Functions, f)

end if
end for
for f ∈ Functions do . Apply 2 extension heuristics

if f ′ = propagate(f, to instrument) then
SWRR map← f, new option()}
to instrument← {f, error code(f ′)}
remove(Functions, f)

end if
end for
for f ∈ Functions do

if f ′ = indirect(f, to instrument) then
SWRR map← {f, option(f ′)}

end if
end for

return {to instrument, SWRR map}
end procedure

Fig. 2. Talos algorithm for identifying functions to instrument.

error code. While other work has used dynamic profiling
to try to identify error-handling code [52], this requires a
comprehensive suite of test inputs to find all error-handling
code. We assume this is not always available, so to maintain
a low deployment cost, Talos relies exclusively on static
analysis. Talos thus uses several heuristics based on common
programming idioms that are indicative of error-handling code.

The procedure Talos uses for deciding which functions in
an application to instrument has several stages as illustrated in
Figure 2. The procedure takes as input the set of all functions
in the application; it returns a set of functions capable of
being instrumented as well as a map of functions to their
corresponding SWRR options. Talos first iterates over each
function, applying the two main heuristics used to statically
detect if the function has error-handling code. If such code
is detected, then Talos adds the function along with the
error code extracted from the error-handling code to the set
of functions it will instrument and removes it from further
consideration. In addition, Talos creates a new SWRR option
for the function and adds it to the SWRR option-to-function
map it maintains. After all functions have been checked with
the two main heuristics, Talos then applies the two “extension”
heuristics to identify cases where it can extend error-handling
code into a function’s caller or callee. Talos uses the error

TABLE III
NUMBER OF FUNCTIONS AND NUMBER OF ERROR-LOGGING FUNCTIONS.

App. Functions Error Funcs.
lighttpd 665 1
apache 2,082 4
squid 1,346 1
proftpd 1,092 1
sqlite 1,562 3

propagation heuristic to identify cases where the error code
for a function can be used in an SWRR for the callers of
the function, even if the callers themselves do not have error-
handling code. Finally, Talos also uses the indirect heuristic
to identify any remaining cases where a function doesn’t have
error-handling code but can be disabled by a caller (or callers)
that have been instrumented by an SWRR. In these cases, the
SWRR map is updated so that this function is also associated
with the SWRR option of its caller(s).

B. Main heuristics

We first describe the two main heuristics Talos uses to iden-
tify error-handling code in functions. We will then describe the
two extension heuristics.

1) Error-logging function heuristic: The first heuristic is
used to identify program paths that call error-logging func-
tions. Error-logging functions are called to log information
when the application encounters an error. To use this heuristic,
Talos requires developers to specify the error-logging functions
in an application. For each of the surveyed applications,
Table III lists the total number of functions and the number of
error-logging functions, where we have manually identified
the latter by inspecting the source code. We can see that,
even in fairly large applications with hundreds or thousands
of functions, many applications have very few and, in many
cases, only one error-logging function. Anecdotally, we also
find that if there is more than one function, they are still
often easy to find because they are all declared within a single
header-file in the application source code. Thus, we feel that
the effort required for developers to specify the error-logging
functions in an application is quite reasonable.

The presence of an error-logging function is indicative of
error-handling code. However, recall that Talos requires the
error-handling code to be inter-procedural, which means that
it must also signal the error to the function’s caller. Thus,
to identify such code using an error-logging function, Talos
requires the following: (1) the error-handling code must call
an error-logging function, (2) the error-handling code must
return a constant value, and (3) the error-logging function and
return statement must be guarded by a conditional branch. A
conditional check that dominates the error-logging function
indicates that the path will only be taken under specific
circumstances and a constant return value is required for
the current function to signal to its caller that it terminated
with an abnormal condition. Listing 3, which shows error-
handling code in Apache 2.2.19, illustrates how real code
fits this heuristic. The error-handling code is only executed

7

1 if (name == NULL) {
2 /* Apache’s error logging function */
3 ap_log_error(APLOG_MARK, APLOG_ERR, 0, NULL, "Internal

error: pcfg_openfile() called with NULL
filename");

4 return APR_EBADF; /* indicates to caller that error
occured */

5 }

Listing 3. Error-logging code example from Apache

when condition (name == NULL) is true. It then calls the
logging function ap_log_error() and returns the constant
value APR_EBADF to its caller, which indicates that it cannot
proceed because of a bad filename.

Talos instruments such functions to always return a constant
return value consistent with the error-handling code when the
SWRR is activated (i.e. in place of error code) in Listing 1.

2) NULL return heuristic: If the error-logging heuristic
does not identify the presence of error-handling code, Talos
next uses the NULL return heuristic. The intuition behind this
heuristic is that when a function that normally returns a pointer
returns NULL instead, it indicates that the function could not
successfully perform its normal operation. This may happen
due to an unexpected error or due to an invalid input.

Talos would instrument such functions with an SWRR that
returns NULL as its error code. However, Talos must be
conservative because not all functions can legally return a
NULL to their callers. If an SWRR were to force such a
function to return NULL, the caller may dereference the value
without checking for NULL and crash the program. To infer
whether a function can return NULL or not, Talos checks that
there is at least one instance of a call to the function where
the caller checks the return value against NULL. The reason
Talos does not do this for all call sites is that in some cases, the
check for NULL may be hard to detect. For example, consider
the case where the caller writes the returned pointer value to
a linked list and then the value is only checked against NULL
when it is dequeued from the linked list.

C. Extension heuristics

We now discuss the two heuristics that Talos uses to extend
coverage from functions that have identified error-handling
code to those that do not.

1) Error propagation heuristic: This heuristic is based on
the observation that many times the error code returned by
a function is used as a return value by the caller of such
functions. This has the effect of propagating error codes up
the call chain and, as a result, can be used to detect the correct
error codes for both callees and callers of a function.

This error propagation manifests in three ways. First,
we find that some functions have an execution path
that calls another function and simply uses the return
value of the function call as their own return value.
As illustrated by a simplified code snippet from lighttpd
in Listing 4, config_insert_values_global calls

config_insert_values_internal and uses the re-
turn value of the callee as its own return value at
line 3. As a consequence, the error code of -1 for
config_insert_values_internal, identified by Ta-
los using the error-logging heuristic at line 10, can be used as
the error code for config_insert_values_global.

Second, the error code can also be translated before it is
propagated up the call chain, as illustrated again in Listing 4.
Here, mod_secdownload_set_defaults checks the re-
turn value of a call to config_insert_values_global
at line 17 and returns a constant value HANDLER_ERROR
at line 18 if the return value from config_insert_
values_global indicates an error. Unlike in the first
case, mod_secdownload_set_defaults does not use
the return value of config_insert_values_global
directly, but translates it to its own error code if the callee
returns an error. To identify this kind of error propagation,
Talos looks for a statement that returns a constant and is
control-dependent on the return value of a function call.
Talos then checks: (1) whether the function in the predicate
has been previously identified as having error-handling code,
and (2) whether the identified error code can satisfy the
predicate of the control dependency. If so, the returned value
becomes the error code for the function and Talos marks
the function as eligible for SWRR instrumentation. In the
example, Talos identifies HANDLER_ERROR as the error code
for mod_secdownload_set_defaults.

Third, the error code can be inferred down the call chain
as shown in the code of http_request_parse in Listing
4. http_request_parse has an error path that calls an
error logging function when the return value of the call to
request_check_hostname is not zero. From this, Talos
infers that the error code of request_check_hostname
must be a non-zero value. To identify this kind of error
propagation, Talos checks if any identified error path is control
dependent on the value of a predicate involving the return
value of a function call. If it is, Talos tries to find a constant
value that can satisfy the predicate and then uses that con-
stant value as the error code of the callee of the function.
For this example, Talos identifies 1 as the error code for
request_check_hostname.

2) Indirect heuristic: If a function is only called by func-
tions that have been identified as eligible for instrumentation,
Talos takes advantage of the fact that by disabling all the
callers of the function, the function itself can be disabled by
SWRRs. In these cases, Talos does not insert any instrumenta-
tion into these functions, but simply updates the SWRR map
to indicate that the function in question can be disabled by
activating one or more other SWRRs.

V. IMPLEMENTATION

We have implemented a prototype of Talos. Due to the
fact that Talos needs a program’s call graph to find locations
for SWRR insertion, our prototype instruments a program in
two phases, as shown in Figure 3. The first phase analyzes
the source code of the program and is implemented as an

8

1 int config_insert_values_global(....) {
2
3 return config_insert_values_internal(....);
4 }
5
6 int config_insert_values_internal(....) {
7
8 if (....) {
9 log_error_write(....); // error logging

10 return -1;
11 }
12
13 }
14
15 SETDEFAULTS_FUNC(mod_secdownload_set_defaults) {
16
17 if (0 != config_insert_values_global(....)) {
18 return HANDLER_ERROR;
19 }
20
21 }
22
23 int http_request_parse(....) {
24
25 if (0 != request_check_hostname(....)) {
26 log_error_write(....); // error logging
27 return 0;
28 }
29
30 }

Listing 4. Error propagation example from lighttpd

Analyze

Source Code

Annotations

Add SWRRs to

Source Code Call Graph

Control

Dependency

Source Code

with SWRRs

Source

Code

Fig. 3. Workflow of Talos

analysis pass of LLVM using 1,823 lines of C/C++ code,
while the second phase adds SWRRs to the source code and
is implemented using 1,852 lines of Python code. In the first
phase, Talos takes as input the source code of a program and
the annotation of the error logging functions of the program,
analyzes the source code using static analysis, and outputs: the
program’s call graph, the control dependency of each statement
of the program, whether each statement is followed by a return,
the start line number of each function, and the line number
of each statement. In the second phase, it adds SWRRs to as
many functions as possible in the source code based on the
output of the first phase.

During our implementation, we found that function calls
using function pointers are frequently used by applications,
particularly to invoke the functionality of loadable modules.
Loadable modules are often used as a configuration work-
around for vulnerabilities, so we expect that SWRRs should
work for these as well. We note that these kinds of function
calls usually use function pointers embedded as fields of some
C/C++ structures. To identify the caller and callee of a function
call using a function pointer, we match a call to a function
pointer field of a structure, by identifying the assignment or

initialization of the same field. This method is imprecise, but
we did not notice any issue with it in practice.

To identify error-handling code that can be used for SWRRs,
we need to find out whether a call to an error logging function
is followed by a return statement. At first, we tried to label
such cases when a call is followed by a return statement within
the same basic block of the call. However, we found that
LLVM merges all occurrences of return statements within a
function into a single return at the end of the function and
replaces all other return statements with branch statements.
Sometimes a return is translated into a chain of unconditional
branch statements that lead to the only return statement of
a function. Hence a call to an error logging function and
the return statement following it sometimes do not belong
to the same basic block. Furthermore, some applications’
error logging function is actually a macro defined as an if
statement, so the call to the error logging function and the
return statement belong to two different basic blocks. As a
consequence, we label a call as being followed by a return
when the call is on a path that unconditionally leads to a
return statement.

VI. EVALUATION

We evaluate how well SWRRs created by Talos meet the
three objectives we laid out in Section III. First, we evaluate
the security of SWRRs by testing them against 11 real-world
vulnerabilities in five popular applications: two web servers, a
web cache/proxy, an ftp server, and one database application.
We then evaluate the effective coverage by measuring the basic
coverage of SWRRs and the rate of unobtrusive SWRRs. We
define “unobtrusive SWRR” as an SWRR that only disables
minor application functionality while leaving the majority of
an application’s functionality intact, much like a configuration
workaround, and an “obtrusive SWRR” as an SWRR that
disables the majority of an application’s functionality, making
it unusable. Thus, the basic coverage of SWRRs is reduced
to their effective coverage by the percentage of SWRRs that
are obtrusive. Finally, we evaluate the performance cost of
SWRRs when using in-place deployment.

All our evaluations were conducted on a 4-core 3.4GHz
Intel Core i7-2600 workstation, with 16GB RAM, 3TB of
SATA hard drive and running 64-bit Ubuntu 12.04.

A. Security

This evaluation answers the question: “Do SWRRs suc-
cessfully neutralize vulnerabilities without introducing new
vulnerabilities?” To test an SWRR, we need one vulnerability
that is covered by the SWRR; to check whether an SWRR
neutralizes a vulnerability, we also need an exploit for that
vulnerability. These two requirements limit the number of
SWRRs that can be evaluated in detail, and it also requires
non-trivial manual effort to check whether new vulnerabilities
are introduced. Nevertheless, we make our best effort to
find as many vulnerabilities as possible that could be used
for this evaluation. The resulting 11 vulnerabilities, disclosed

9

between 2010 and 2015, are used to evaluate the five popular
applications as shown in Table IV.

To validate security, we check if the SWRR neutralizing
the vulnerability successfully thwarts an exploit of the vul-
nerability. To test whether the exploit is neutralized or not,
we either use a published exploit or create a proof-of-concept
exploit if no published exploit is available. We verify that
the exploit works on the unprotected application and then
enable protection using the appropriate SWRR option and try
the exploit again. If the exploit fails, we say the SWRR has
protected the security of the application.

We can also test whether an SWRR is unobtrusive or
not. To do this, we first classify the functionality of each
application into two categories, major and minor, by studying
its user documentation. We then design two sets of test inputs,
major and minor, to exercise as much the application’s major
functionality and minor functionality as possible. For each
application, we make use of the existing test suite of an
application if such a test suite is available. Otherwise we
make our best effort to create our own sets of test inputs and
test suite. We then use this test suite to determine if no or
only minor functionality is lost, in which case the SWRR is
unobtrusive; if major functionality is also lost, the SWRR is
obtrusive.

Our results are summarized in Table IV, which also gives
the heuristic used to instrument the SWRR that neutralizes
the vulnerability, as well as whether availability is violated.
Column “Security?” shows whether the exploit against a
vulnerability is successfully neutralized by SWRR without in-
troducing new vulnerabilities. Column “Unobtrusive?” shows
whether the SWRR is unobtrusive. SWRRs successfully neu-
tralize the exploits for all 11 vulnerabilities and in 8 cases there
is no or only minor loss of functionality, making these SWRRs
unobtrusive. We provide details on all 11 cases below. For the
3 cases where a posted configuration workaround also exists
for the vulnerability, we compare the SWRRs unobtrusiveness
with that of the configuration workaround.

lighttpd - CVE-2011-4362. This vulnerability allows a remote
attacker to cause an out-of-bounds memory error [11]. The
function base64_decode takes an untrusted char* and
performs a base 64 decode during HTTP basic authentication
by using each character in the untrusted string as a lookup
into a table in memory. As char* is signed, an attacker
could specify negative values and read memory from outside
of the table. base64_decode has error-handling code that
returns NULL, so Talos instruments the function with an
SWRR that returns NULL, which successfully neutralizes the
vulnerability. Since base64 decoding is disabled, all requests
for basic HTTP authentication fail as if the password failed
to decode properly. However, lighttpd functions completely
normally (including other forms of authentication) as long
as basic HTTP authentication is not used. This imposes less
loss of functionality than the posted configuration workaround,
which disables all forms of authentication. Thus, Talos pro-
vides security and provides an unobtrusive SWRR for the

TABLE IV
SECURITY OF SWRRS.

App. CVE ID Heuristics Security? Unobtrusive?
lighttpd CVE-2011-4362 NULL

Return
Yes Yes

lighttpd CVE-2012-5533 Indirect Yes No
lighttpd CVE-2014-2323 Error-

Propagation
Yes No

apache CVE-2014-0226 Error-
Logging

Yes Yes

squid CVE-2009-0478 Indirect Yes No
squid CVE-2014-3609 Error-

Logging
Yes Yes

sqlite CVE-2015-3414 Error-
Propagation

Yes Yes

sqlite OSVDB-119730 Error-
Logging

Yes Yes

proftpd OSVDB-69562 Error-
Propagation

Yes Yes

proftpd CVE-2010-3867 Error-
Logging

Yes Yes

proftpd CVE-2015-3306 Error-
Logging

Yes Yes

vulnerability.

lighttpd - CVE-2012-5533. This vulnerability allows
a remote attacker to cause an infinite loop via a
specially crafted HTTP connection header. The func-
tion http_request_split_value splits the fields
in an HTTP connection header into an array, but
can get into an infinite loop due to the vulnerabil-
ity. http_request_split_value does not have error-
handling code, but its caller does have error-handling code
that returns 0; Talos instruments the caller and successfully
neutralizes the vulnerability, however, the side-effects of this
are severe, as it causes all HTTP requests to be denied, because
the caller is the main function that processes HTTP requests.
As a result, while the SWRR provides security, because the
SWRR is enabled for all HTTP requests, lighttpd is unable
to respond to any HTTP request so there is a major loss of
functionality.

lighttpd - CVE-2014-2323. This vulnerability allows a remote
attacker to execute an arbitrary SQL command via a specially
crafted hostname in the host header of an HTTP request. The
vulnerable function request_check_hostname checks
the validity of hostnames, but it fails to deny hostnames that
contain SQL commands. The caller of the function has an
error path that calls an error logging function when the return
value of the function is not zero, so Talos instruments the
function with an SWRR that returns 1, which successfully
neutralizes the vulnerability. As a side-effect of activating the
associated SWRR, any HTTP request that specifies a hostname
(as opposed to an IP address) will receive a “400 - Bad
Request” error response. While the SWRR provides security,
because the vulnerable code is used for all HTTP requests
with a hostname, which is in most cases the vast majority of
requests, there is a major loss of functionality.

apache httpd - CVE-2014-0226. A race condition in the

10

mod_status module allows an attacker to retrieve sensitive
information [3]. The function status_handler displays
administrative information about a web server, such as the
web server’s performance and overhead, as a web site. It does
not synchronize the use of data that can be modified concur-
rently by a different thread. status_handler has error-
handling code that calls an error logging function and returns
HTTP_INTERNAL_SERVER_ERROR, so Talos instruments
the function with an SWRR that returns the error code, which
successfully neutralizes the vulnerability. As a side-effect, all
requests to the mod_status module return an error because
status_handler is called in response to all requests to
the module, but the application will continue to execute
and respond to other requests normally. This vulnerability
has a posted configuration workaround, which disables the
entire mod_status module, with the exact same loss of
functionality as Talos’ automatically generated SWRR. As a
result, Talos provides security with an unobtrusive SWRR for
this vulnerability.

squid - CVE-2009-0478. An integer overflow vulnerability
allows a remote attacker to cause a denial-of-service by send-
ing an HTTP request with a crafted HTTP protocol version
number [18]. The function httpMsgParseRequestLine
converts the HTTP version number of an HTTP request
from a string to an integer, but it uses a signed integer
to store the converted version number. As a result, a very
large version number will cause an integer overflow and
crash the server. httpMsgParseRequestLine does not
have error-handling code, but its caller does (returns NULL);
Talos instruments the caller, which successfully neutralizes the
vulnerability. However, the side-effects of this are severe, as it
causes all HTTP requests to be denied as every request must be
parsed by httpMsgParseRequestLine and calls to this
function always generate an error with the SWRR enabled.
While the SWRR provides security, because the vulnerable
code is used for all HTTP requests, squid is unable to respond
to any HTTP request so there is a major loss of functionality.

squid - CVE-2014-3609. A missing validity check on the
byte range specification of an HTTP request allows a remote
attacker to cause a denial-of-service by sending an HTTP
request with a specially crafted byte range specification [19].
The function httpHdrRangeSpecParseCreate parses
the byte range specification of HTTP requests, but it does
not correctly check the validity of the length calculated from
certain byte range specifications and can cause the server
to crash. httpHdrRangeSpecParseCreate has error-
handling code that calls an error logging function and returns
NULL, so Talos instruments this function with an SWRR
that returns NULL, which successfully neutralizes the vul-
nerability. This causes the server to ignore the byte range
specification from the client and always serve the full-length
of the content. No confidential information is leaked since the
client would have received the full-length content anyways
if it had not specified a byte range. This vulnerability has a
posted configuration workaround, which implements a filter

that rejects requests with suspicious byte ranges. The loss
of functionality is similar to the SWRR – only requests that
specify byte ranges are affected in either case. Talos preserves
security in this case with an unobtrusive SWRR.

sqlite - CVE-2015-3414. A vulnerability in the code that
parses collation-sequence names in SQL commands al-
lows an attacker to cause memory corruption. The func-
tion sqlite3ExprAddCollateString allocates mem-
ory for parsed collation-sequence names, but may use unini-
tialized memory when parsing a specially crafted collation-
sequence name. sqlite3ExprAddCollateString does
not have error-handling code and simply uses the return
value of function sqlite3ExprAddCollateToken as its
own return value. Due to imprecise static analysis, Talos in-
correctly identifies that sqlite3ExprAddCollateToken
could return NULL, although it is carefully written to al-
ways return a valid pointer. As a consequence, Talos instru-
ments the function with an SWRR that returns NULL. Since
sqlite3ExprAddCollateString should not be able to
return NULL, the caller does not check the return value before
dereferencing it causing sqlite to crash. If collation is not used,
sqlite continues to operation normally, and since collation is
not part of the core functionality of sqlite, we call this a minor
loss of functionality. If restarted, sqlite continues to function
normally.

sqlite - OSVDB-119730. An attacker can cause a memory
error in sqlite with the meta command trace, which turns
on or off the tracing of the execution of commands. The
function do_meta_command processes all meta commands,
which allows users to specify different settings when executing
commands. It does not set a pointer to NULL after the
memory which it references has been deallocated, and thus can
cause a use-after-free memory error. do_meta_command
has error-handling code that calls an error logging function
and returns 1, so Talos instruments the function with an
SWRR that returns 1; this causes sqlite to return an error
to the meta command request. As a result, Talos protects the
security of sqlite against this vulnerability. However, because
do_meta_command is disabled, all other meta commands
will also return an error, and thus the availability of all meta
commands is violated. However, because this is only confined
to meta commands, which are not part of the core functionality
of sqlite, this SWRR is unobtrusive.

proftpd - OSVDB-69562. A backdoor that allows a remote
attacker to access a root shell was planted into the source
code of ProFTPD when ProFTPD’s FTP server and mirrors
were compromised [14]. The backdoor was added to func-
tion pr_help_add_response, which creates responses to
HELP command, so that a HELP command with a specific
argument would cause ProFTPD to execute a shell that can
be accessed remotely. The caller of the function has error-
handling code that calls an error logging function when the
return value of the function is not zero, so Talos instruments
the function with an SWRR that returns 1, which successfully
neutralizes the vulnerability. As a result, the security and

11

TABLE V
BASIC COVERAGE OF SWRRS.

App. Protected Logging. Pointer. Prop. Indirect
lighttpd 89.8% 23.6% 1.5% 17.6% 47.1%
apache 77.5% 14.0% 11.9% 20.7% 30.9%
squid 76.6% 18.1% 5.6% 6.3% 46.4%
proftpd 86.1% 32.7% 13.6% 12.9% 26.9%
sqlite 45.3% 2.0% 6.5% 14.4% 22.4%
AVERAGE 75.1% 18.1% 7.8% 14.4% 34.7%

availability of the application are preserved. However, as in the
previous case, ProFTPD will respond to all HELP commands
with the error message “Unknown command” thus impacting
the availability of the HELP facility. However, all other FTP
commands continue to function normally. As a result, this is
considered an unobtrusive SWRR.

proftpd - CVE-2010-3867. Multiple vulnerabilities in the
mod_site_misc module allow a remote attacker to perform
various directory and file operations using mod_site_misc
commands without authentication. All vulnerable functions,
such as site_misc_mkdir that creates a directory on the
server upon users’ requests, have error-handling code that calls
an error logging function and returns NULL; Talos instruments
each of these functions with an SWRR that returns NULL
and when all of the SWRRs corresponding to these functions
are enabled, ProFTPD returns an error for all the vulnerable
mod_site_misc commands. Other than this side-effect,
users can continue to use all other FTP commands and thus
the SWRRs provide security and are unobtrusive.

proftpd - CVE-2015-3306. Multiple vulnerabilities in the
mod_copy module allow a remote attacker to read and write
arbitrary files with mod_copy commands without authenti-
cation. Similar to CVE-2010-3867, all vulnerable functions
(such as copy_copy, which copies files between different
locations on the server) have error-handling code that calls an
error logging function and returns NULL; Talos instruments
each of these with an SWRR that returns NULL when enabled.
Again, when the SWRR is activated, ProFTPD returns an error
in response to all the vulnerable mod_copy commands. There
are no other side effects and ProFTPD continues to work as
expected, thus the SWRR provides security and is unobtrusive.

B. Effective coverage

In this section, we aim to answer the question “What is the
percentage of vulnerabilities that can be mitigated with an
unobtrusive SWRR?” To answer this question, we perform
a quantitative measurement of the two components that make
up the effective coverage of SWRRs: the basic coverage and
the rate of unobtrusive SWRRs.

Basic Coverage. To evaluate basic coverage, we measure the
number of functions where Talos can find an error-handling
path and identify an error-handling code to return, which is
used to insert an SWRR. This measurement across the five
applications is shown in Table V. The first “Protected” column

shows the total percentage of functions that are protected by
SWRRs in each application. The remaining four columns then
provide a breakdown by the percentage of functions that are
protected by each of the four heuristics. If we assume that
potential vulnerabilities are uniformly distributed across func-
tions in the application, then the percentage in the Protected
column gives the basic coverage for the application, which is
the likelihood that a potential vulnerability can be disabled by
an SWRR.

As Talos uses error-handling to infer the value that should
be returned by an activated SWRR, the coverage depends very
heavily on how much error-handling code is present in the
application and how well Talos’ heuristics can identify the
error-handling code. Among the five applications, sqlite has
the lowest basic coverage of 45.3% as well as a very low
percentage of error-logging paths. In addition, sqlite has the
lowest percentage of functions that can be protected indirectly.
This is likely because sqlite has a simpler call graph than the
other applications.

On the other hand, lighttpd has the highest basic coverage
of 89.8% because it has a particularly high percentage of
error logging paths as well as a high percentage of func-
tions that can be protected indirectly. Unlike lighttpd, proftpd
(the application that has the second highest coverage) has a
high percentage of error-logging paths and NULL-returning
functions, but has a lower percentage of functions that can be
protected indirectly.

Overall, we can see that Talos has a basic coverage of 75.1%
across all applications and that each technique used by Talos
plays an essential role in achieving the high coverage, although
each one might have a different impact on the coverage for
different applications. We also find that the majority of the
functions can be directly protected by Talos.

Rate of unobtrusive SWRRs. We wish to evaluate the
unobtrusiveness of SWRRs over a large number of SWRRs.
To do this, we perform an experiment where we enable a
large number of SWRRs and test whether they result in minor,
major, or no loss of functionality. To make it easy to test
a large number of SWRRs, we instrument each application
for in-place deployment so that we can activate each SWRR
simply by changing configurations. To ensure that all the
SWRRs under our test are indeed executed, we first find out
which functions are executed for the major and minor func-
tionality test inputs used in Section VI-A, and then randomly
choose approximately 25% of the SWRRs corresponding to
the executed functions to focus on in the interests of time. In
total we choose 320 SWRRs across all of the applications, as
shown in Table VI. We then individually enable each of the
selected SWRRs and run the test suite for the application. If
the application passes both sets of test inputs or passes the
major test inputs but fails the minor test inputs, we consider
that the SWRR is unobtrusive. Otherwise, we consider the
SWRR is obtrusive.

The results are tabulated in Table VI. Column “#SWRRs”
shows the number of tested SWRRs for each application.

12

TABLE VI
RATE OF UNOBTRUSIVE SWRRS.

App. #SWRRs Unobtrusive
lighttpd 40 70.0%
apache 85 88.2%
squid 65 69.2%
proftpd 90 64.4%
sqlite 40 55.0%
AVERAGE 64 71.3%

Column “Unobtrusiveness” shows the percentage of tested
SWRRs that are unobtrusive. A weighted average shows that
71.3% of the SWRRs tested are unobtrusive, and thus preserve
the major functionality of the application. No application had
a rate of unobtrusive SWRRs below 50% indicating that the
majority of SWRRs are unobtrusive.

While one might believe that the rate of unobtrusive SWRRs
is a function of the choice to use SWRRs to disable entire
functions or the use of indirect protection, our analysis of
some of the results indicates that this is not a major factor.
Rather, if the vulnerability is located in the core functionality
of an application, it is unlikely that disabling code, even at a
finer granularity, will preserve the major functionality of the
application. Thus, the main factor for unobtrusiveness is the
location of the vulnerability, which is out of Talos’ control.
Essentially, our findings indicate that commonly executed code
tends to have a higher rate of error-handling code, meaning
there are more SWRRs located in commonly executed code
with major functionality.

In combining the average basic coverage with the average
rate of unobtrusive SWRRs, we arrive at an effective coverage
of 53.5%, which gives the percentage of potential vulnerabil-
ities that have an unobtrusive SWRR. This is a significant
2.1× improvement over the 25.2% coverage currently offered
by configuration workarounds.

C. Overhead

When SWRRs are instrumented for in-place deployment,
they can incur runtime overhead because they will check
whether their corresponding configuration is activated at run-
time every time the function into which they are instrumented
is executed. When SWRRs are instrumented for patch-based
deployment, there is no additional runtime overhead because
there is no such check. Table VII gives the overhead of SWRRs
for in-place deployment, measured by the number of lines of
source code added by Talos and the number of corresponding
source files modified by Talos. Column “App.” shows the name
of the application. Column “LOC” and “Files” show the num-
ber of lines of code and the number of original source files,
respectively. Column “Added LOC” shows the percentage of
the lines of source code added by Talos, and column “Modified
Files” shows the percentage of corresponding source files
modified by SWRRs. Column “Runtime” shows the runtime
performance overhead of SWRRs. The last row shows the
average for all columns.

TABLE VII
OVERHEAD OF SWRR.

App. LOC Added
LOC Files Modified

Files Runtime

lighttpd 46,792 1.9% 79 92.4% 0.6%
apache 135,856 2.2% 191 75.9% 2.3%
squid 70,407 2.4% 119 84.0% 1.5%
proftpd 69,808 2.9% 64 93.8% 1.2%
sqlite 153,020 0.8% 2 100% 1.0%
AVERAGE 95,176 2.0% 91 89.2% 1.3%

On one hand, we can see that Talos adds on average
2% more lines of source code to implement SWRRs in
applications. Given the high coverage achieved by Talos, this
indicates that Talos has a very small footprint for each SWRR.
On the other hand, the percentage of source files changed by
Talos in order to add SWRRs is on average 89%. This indicates
that the functions protected by SWRRs are distributed among
most of the source files.

To measure the runtime performance overhead of SWRRs,
we use standard benchmarks for each application if a stan-
dard benchmark is available, otherwise we write our own
benchmark. For each application, we compare the performance
of a version of the application that is hardened by SWRRs
with a version that is not. We run each benchmark three
times for each application and use the average of the three
measurements. To have a fair comparison, we run the hardened
version of each application with all SWRRs disabled, which
has the same functionality of the original application but with
the added execution of the SWRRs.

For web servers including lighttpd and apache, we use
ApacheBench [1]. For the squid cache proxy, we also use
ApacheBench, but we enable the use squid as web proxy in
its settings. We use the throughput as the performance metric
for these three applications. Roughly SWRRs reduce their
throughput by 2%.

For ftp servers including proftpd, we use the ftp benchmark
included with pyftpdlib [15], which measures the transfer
rate for both file uploads and downloads. SWRRs reduce
the transfer rate for file uploads by only 1.2%, and have a
negligible impact on file downloads.

For sqlite, we created our own benchmark, which is based
on the description of a series of SQL database performance
tests on sqlite’s official web site [9]. It consists of over
70,000 SQL commands to create table, drop table, insert data,
update data, query data, delete data, and perform database
transactions. The benchmark measures the total execution
time of all these SQL commands on sqlite database tables
containing from 10,000 to 25,000 records of data. SWRRs
incur a performance overhead of 1.0% on sqlite. On average
in-place deployment of SWRRs has a very small runtime
performance overhead of 1.3% for all five applications.

VII. DISCUSSION

We begin by discussing the the limitations of SWRRs and
then other operational issues associated with the deployment

13

of SWRRs.

A. Limitations

The ability of SWRRs to neutralize vulnerabilities without
security violations is limited by the assumption that applica-
tions correctly implement error-handling code. Naturally, this
is not the case – applications developers may fail to identify
and handle errors, or even if they do handle them, they may
handle them incorrectly, as previous work has shown [29],
[61]. Unfortunately, there is little that Talos can do if the error-
handling code it calls contains bugs. We hope, as previous
work has also implored, that developers should pay more
attention to the correctness of error-handling code. While it
is not invoked very often, when unexpected errors arise error-
handling code is the last line of defense the application has
against catastrophic failures.

Another obvious limitation is that Talos has no control over
where vulnerabilities occur. As illustrated in lighttpd (CVE-
2012-5533) and squid (CVE-2009-0478), if the vulnerability
occurs in a key function that is used in many operations, then
the availability of the application will be severely impacted.
Fortunately, this appears to be the less common case (only
3 out of 11 cases in our experiments). We speculate that
this is likely due to bugs and vulnerabilities occurring in
less commonly executed code, as that code receives fewer
opportunities for testing and has less chance of having a bug
triggered in production use.

Currently Talos does not leverage the structured exception
handling that is used in programming languages such as C++
and Java. However, Talos can be easily extended to do so,
since exception handling makes error-handling code explicit,
making it even easier for Talos to locate and use error-handling
code in the application. In these cases, Talos can look for a
type of exception that can be safely used to abort the execution
of a function and generate an SWRR that throws the exception
as the mechanism to prevent the execution of the function. To
identify the exception that can be used, Talos can examine
which exception is caught by existing exception handlers in
the function or which exception is thrown by the function. If
Talos cannot locate this kind of exception in the function itself,
it can look for it in the callers of the function. We believe that
leveraging structured exception handling would be interesting
future work to explore.

B. Other Issues

Another question is whether SWRRs and their use can
decrease the security of an application in other ways, or
whether the SWRRs themselves can be circumvented by
an attacker even when activated. For example, even if the
user activates an SWRR, an attacker can still corrupt the
value of an SWRR option and re-enable the vulnerable code.
While this is possible, we believe it sufficiently raises the
bar for the attacker, as she must have a memory corruption
vulnerability that is not in the function(s) disabled by the
activated SWRR(s). In other words, to exploit an SWRR, the
attacker needs a zero-day memory corruption vulnerability.

Given the nature of most memory corruption vulnerabilities,
it would be likely that an attacker who has access to such a
vulnerability would just use it to compromise the application
directly rather than use it to disable an SWRR.

In the rare instance that a memory corruption vulnerability
doesn’t allow remote code execution but can still corrupt an
SWRR option, the attacker now has the ability to activate
or deactivate SWRRs, allowing them to re-enable disabled
functions or disable enabled ones. As discussed above, they
could thus silently re-enable vulnerabilities, or they could
prevent code from being executed if the application has
no known vulnerabilities. However, as we have shown in
this paper, activated SWRRs generally do not cause security
vulnerabilities, and only impact availability. Thus, the most
the attacker can do is to cause a denial of service attack with
a memory corruption vulnerability – which is something they
could likely already do with a memory corruption vulnerability
even in the absence of SWRRs.

VIII. RELATED WORK

Most closely related to the concept of an SWRR are propos-
als that attempt to mitigate security vulnerabilities or software
flaws by altering the execution of an application. These can
be broken down into those that harden the application code
and those that filter inputs to the application.

Hardening application code. Systems that harden application
code to prevent an attacker from exploiting vulnerabilities are
a rich area of research. For example, Software Fault Isola-
tion (SFI) [56] and similar techniques [37], [60], instrument
memory operations with bounds checks to make sure even
erroneous ones cannot corrupt memory. Another approach is
to validate every control transfer with Control Flow Integrity
(CFI) [20], [27], [40], [41], [55], [63], [64]. Compared to
the code instrumentation Talos uses for SWRRs, the code
instrumentation that these systems use is either more complex
in the case of CFI or needs to be called more frequently in the
case of SFI. As a result, these hardening approaches generally
have a higher performance overhead.

Filtering inputs. An alternative to hardening application code
is to detect and filter malicious inputs. In general, these
techniques perform analysis of the application source code
to generate a vulnerability-specific input filter that will detect
inputs that could reach the specified vulnerability. Some pro-
posals detect and drop such inputs [26], [34], [53], [57], while
others convert malicious inputs into benign inputs [33], [46].

For example, Bouncer uses static analysis, combined with
dynamic symbolic analysis, on programs to infer the condi-
tions that inputs must satisfy to exploit a vulnerability and
then craft filters based on these conditions [26]. HEALERS
protects library functions by generating wrappers on them,
which intercept malicious inputs and return an error condition
instead of executing the vulnerable function [53]. It uses
static analysis-guided fault injection to infer predicates on the
input arguments to a function that can cause the function to
crash. HEALERS only works on libraries with a well defined

14

error specification in their API. In contrast, Talos works on
arbitrary internal functions in an application, and thus must
infer error paths and values since it does not assume they are
specified. Shields [57] uses statically extracted information to
generate network filters, which then drop the network packets
that might potentially trigger a vulnerability. Finally, SOAP
heuristically converts malicious inputs into benign inputs [33]
so that an application can still return partial (though sometimes
inconsistent) results. It uses offline-training on benign inputs,
along with input format supplied by its users, to infer critical
fields of the input and the constraints over these critical fields.
Based on these constraints, it rectifies inputs whose critical
fields contain values that violate the constraints.

The major difference between Talos and these approaches is
that they all require some malicious input, i.e. proof-of-concept
exploit, that can trigger a vulnerability. However, we find
that most of times a proof-of-concept exploit is not publicly
available for a disclosed vulnerability, probably due to security
concerns. On the contrary, Talos does not require a proof-of-
concept exploit and requires only the name of a vulnerable
function, which is usually publicly available in vulnerability
databases.

Resuming execution after faults. Another area of related
work tries to improve fault tolerance by allowing an appli-
cation to continue execution after a fault has occurred [24],
[28], [35], [44], [45], [51]. In general, these do not have
the same level of security as Talos as they cannot guarantee
that the recovered application is secure, but they follow the
same principle of detecting an erroneous application state and
redirecting it to some non-erroneous state that Talos uses with
SWRRs.

Failure-Oblivious Computing is proposed to improve the
resilience of server applications after an attack has triggered
memory errors, by augmenting an application to ignore mem-
ory errors [45]. For out-of-bounds memory writes, it simply
discards them. For out-of-bounds memory reads, it redirects
them to a preallocated buffer that contains pre-defined values
that are likely to reduce the possibility of a crash or infinite
loop. Recently, this work was followed by RCV, which further
limits the propagation of the manufactured values within an
application by skipping any system call that tries to use
them [35]. Like Talos, these approaches seek to trigger error-
handling code in the application. The main difference is that
these approaches are simpler in that they guess the values
that will cause this to happen, while Talos uses static analysis
on the application source code to discover the location of
error-handling code and the appropriate place to intercept
and redirect execution to the error-handling code. Another
difference is that these approaches focus on executing past
out-of-bounds memory accesses, while Talos, which disables
individual functions, can handle a broader set of software
faults.

A technique has been proposed to abort the execution of a
function when it overruns a memory buffer, as a consequence
of malicious inputs, and resume the execution right after the

call to the offending function after making a best effort to
undo any side-effect caused by the offending function such as
changing global variables [51]. Their evaluation also indicates
that the program can continue run in many situations. The
challenge of this work is that many times it is difficult if not
impossible to infer what side-effects the partial execution of
a function has caused and how to correctly undo them. Talos
avoids this problem by not executing any part of a function
and simply forcing the function to return an error code to its
caller.

Finding existing workarounds for failures. A recently
emerging area is searching the configuration space of an
application for workarounds for a specific failure. REFRACT
searches for configuration workaround for program fail-
ures [54]. Given a model of the configuration space of a
program and strategies to avoid failures, REFRACT tries to
find a configuration workaround that can avoid the failures
caused by malicious inputs, by repeatedly replaying inputs
that trigger the failures to the program using different sample
configurations. For 6 of 7 Firefox bugs, it successfully found
configuration workarounds. Unlike Talos, REFRACT relies on
the existing configuration space of a program to workaround
a vulnerability. However, our findings show that configura-
tions often do not provide sufficient coverage to workaround
most security vulnerabilities. Talos avoids this limitation by
instrumenting a program with SWRRs, which are designed
specifically to protect the program from being exploited.

Automatic patch generation. A very different approach to
solving the vulnerability problem is to try and ensure that
patches are always available by automatically generating them.

ClearView learns invariants of a program in a training
phase via dynamic analysis. Once the program is deployed,
it monitors for failures and identifies the invariants that are
correlated with the failures. If a vulnerability is discovered, it
uses the extracted invariants and runtime feedback to generate
patches that can be applied to the binaries of the vulnerable
programs [44].

A large body of work also examines the automatic gener-
ation of source code patches using vulnerability reports [31],
[32], [39], [48], [58], [59]. Based on genetic programming,
GenProg takes the source code of a program and a set of test
cases as input to construct patches for bugs in programs [32].
A further study on software repair using GenProg achieves a
wide range of success rates between 5% to 100% for a set of
programs. Combining symbolic execution and constraint solv-
ing, SemFix synthesizes patches using program synthesis [39]
and achieves an average success rate around 51%. Their results
indicate that creating patches for bugs still largely requires
manual work from developers.

On top of fixing vulnerabilities, a recent work aims to
misinform attackers about whether an exploit works or not by
transforming a regular patch into a honey-patch, which adds
additional logic to redirect malicious inputs to a vulnerable
version of a program, so that the exploit targeting the patched
vulnerability appears to be successful to attackers [22].

15

Talos is largely complementary to work on automatic patch
generation. Automatic patch generation faces many of the
same difficulties of inferring and maintaining correctness in-
variants for programs. The difference is that Talos does not aim
to preserve all existing functionality, while automatic patch
generation does.

Characterizing software vulnerabilities. Since software vul-
nerabilities are such a major source of security threats, there
has been a lot of work on characterizing and understanding
software vulnerabilities to determine indicators that might pre-
dict their presence [21], [38], [50]. They measured characteris-
tics such as vulnerability density, defect density, vulnerability
discovery rate, structural complexity of code, code churns, and
developer activities on code; and built models based on the
relationships between them. We mention these as they served
as an inspiration for us to study configuration workarounds to
mitigate such vulnerabilities.

A recent study on the life cycle of software releases [25]
indicates that the rapid-release methodology used by Mozilla
Firefox does not increase the ratio of vulnerabilities in the
code, somewhat contrary to the popular belief that frequent
code changes result in less secure software. Another study has
measured characteristics such as evolution of vulnerabilities
over the years, impacts of vulnerabilities, and access required
for exploits over vulnerabilities and their implications on soft-
ware design, development, deployment, and management [49].

IX. CONCLUSION

We describe the design and implementation of Talos, a sys-
tem that enables safe and precise SWRRs to protect software
vulnerabilities from being exploited by attackers. Our main
conclusion is that SWRRs are a rapid, secure, and low-cost
solution to enable applications to continue to be used until a
patch becomes available. To arrive at this conclusion we test
320 SWRRs in five real world applications and find that the
majority of them are unobtrusive and that 75.1% of potential
vulnerabilities can be disabled by an SWRR. This indicates
that SWRRs can be effective in 2.1× more vulnerabilities
than traditional configuration workarounds. We also reproduce
11 vulnerabilities and their exploits and try them on the
applications with and without SWRRs instrumented by Talos.
We find that in all 11 cases, the security of the application is
upheld and that in 8 cases, the applications retains either all or
most of its functionality (with the exception of the vulnerable
code).

We view Talos as a first step towards addressing the pre-
patch vulnerability window. Given its simple implementation
and conservative assumptions, we find these results encourag-
ing. We believe the best avenue for improving the effectiveness
of SWRRs is improving the identification of error-handling
code or other safe code paths that SWRRs can redirect
execution to, which will give SWRRs better basic coverage
and thus also increase their effective coverage.

ACKNOWLEDGEMENTS

We thank our shepherd Gang Tan and the anonymous
reviewers for their constructive comments. We also thank
Ashvin Goel, Ding Yuan, Michelle Wong, Sukwon Oh for their
helpful suggestions and feedback. Financial support for this
work was provided in part by funds from a Canada Research
Chair and an NSERC Discovery Grant.

REFERENCES

[1] “Apache HTTP server benchmarking tool,” http://apache.org/docs/2.2/
programs/ab.html.

[2] “Apache httpd 2.4 vulnerabilities,” http://httpd.apache.org/security/
vulnerabilities 24.html.

[3] “Apache httpd Vulnerability Exploit,” http://www.exploit-db.com/
exploits/34133.

[4] “Bug 3841 - Possible symlink race when applying UserOwner to newly
created directory,” http://bugs.proftpd.org/show bug.cgi?id=3841.

[5] “Bugzilla For ProFTPD,” http://bugs.proftpd.org.
[6] “Common Vulnerabilities and Exposures,” http://cve.mitre.org.
[7] “Critical Patch Updates and Security Alerts,” http://www.oracle.com/

technetwork/topics/security/alerts-086861.html#SecurityAlerts.
[8] “CVE Details,” http://www.cvedetails.com.
[9] “Database Speed Comparison,” http://www.sqlite.org/speed.html.

[10] “Debian bug tracking system,” http://bugs.debian.org.
[11] “lighttpd Vulnerability Exploit,” http://www.exploit-db.com/exploits/

18295/.
[12] “Microsoft Security Bulletin,” http://technet.microsoft.com/en-us/

security/bulletin/.
[13] “National Vulnerability Database,” http://nvd.nist.gov.
[14] “ProFTPD Backdoor Unauthorized Access,” http://www.osvdb.org/

69562.
[15] “pyftpd - Extremely fast and scalable Python FTP server library,” http:

//code.google.com/p/pyftpdlib/.
[16] “Red Hat Bugzilla,” http://bugzilla.redhat.com.
[17] “SecurityTracker,” http://securitytracker.com.
[18] “Squid Invalid Version Number Vulnerability,” http://security-tracker.

debian.org/tracker/CVE-2009-0478.
[19] “Squid Range Headers Vulnerability Workaround,” http://www.

squid-cache.org/Advisories/SQUID-2014 2.txt.
[20] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-

flow integrity,” in Proceedings of the 12th ACM Conference on
Computer and Communications Security, ser. CCS ’05. New
York, NY, USA: ACM, 2005, pp. 340–353. [Online]. Available:
http://doi.acm.org/10.1145/1102120.1102165

[21] O. H. Alhazmi, Y. K. Malaiya, and I. Ray, “Measuring, analyzing
and predicting security vulnerabilities in software systems,” Comput.
Secur., vol. 26, no. 3, pp. 219–228, May 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.cose.2006.10.002

[22] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser,
“From patches to honey-patches: Lightweight attacker misdirection,
deception, and disinformation,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’14. New York, NY, USA: ACM, 2014, pp. 942–953. [Online].
Available: http://doi.acm.org/10.1145/2660267.2660329

[23] L. Bilge and T. Dumitras, “Before we knew it: An empirical study of
zero-day attacks in the real world,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 833–844. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382284

[24] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezzè,
“Automatic recovery from runtime failures,” in Proceedings of the
2013 International Conference on Software Engineering, ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 782–791. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2486891

[25] S. Clark, M. Collis, M. Blaze, and J. M. Smith, “Moving targets:
Security and rapid-release in firefox,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’14. New York, NY, USA: ACM, 2014, pp. 1256–1266.
[Online]. Available: http://doi.acm.org/10.1145/2660267.2660320

16

[26] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado, “Bouncer:
Securing software by blocking bad input,” in Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Principles, ser. SOSP
’07. New York, NY, USA: ACM, 2007, pp. 117–130. [Online].
Available: http://doi.acm.org/10.1145/1294261.1294274

[27] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Kernels,” in
Proceedings of the 2014 IEEE Symposium on Security and Privacy,
ser. SP ’14. Washington, DC, USA: IEEE Computer Society, 2014,
pp. 292–307. [Online]. Available: http://dx.doi.org/10.1109/SP.2014.26

[28] Q. Gao, W. Zhang, Y. Tang, and F. Qin, “First-aid: Surviving
and preventing memory management bugs during production runs,”
in Proceedings of the 4th ACM European Conference on Computer
Systems, ser. EuroSys ’09. New York, NY, USA: ACM, 2009, pp. 159–
172. [Online]. Available: http://doi.acm.org/10.1145/1519065.1519083

[29] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and B. Liblit, “EIO: Error Handling is Occasionally Correct,”
in Proceedings of the Sixth USENIX Conference on File and Storage
Technologies (FAST ’08), San Jose, CA, February 2008.

[30] Z. Huang and D. Lie, “Ocasta: Clustering configuration settings for
error recovery,” in Dependable Systems and Networks (DSN), 2014 44th
Annual IEEE/IFIP International Conference on, June 2014, pp. 479–
490.

[31] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in Proceedings of the 2012 International Conference on Software
Engineering, June 2012, pp. 3–13.

[32] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” Software Engineering,
IEEE Transactions on, vol. 38, no. 1, pp. 54–72, Jan 2012.

[33] F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. Rinard,
“Automatic input rectification,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 80–90. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337233

[34] F. Long, S. Sidiroglou-Douskos, D. Kim, and M. Rinard, “Sound input
filter generation for integer overflow errors,” in Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’14. New York, NY, USA: ACM, 2014, pp. 439–
452. [Online]. Available: http://doi.acm.org/10.1145/2535838.2535888

[35] F. Long, S. Sidiroglou-Douskos, and M. Rinard, “Automatic runtime
error repair and containment via recovery shepherding,” in Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’14. New York, NY, USA:
ACM, 2014, pp. 227–238. [Online]. Available: http://doi.acm.org/10.
1145/2594291.2594337

[36] Microsoft, “Data Execution Prevention (DEP),” http://support.microsoft.
com/kb/875352/EN-US/, 2006.

[37] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan,
“RockSalt: better, faster, stronger SFI for the x86,” in Proceedings
of the 2012 ACM SIGPLAN conference on Programming Language
Design and Implementation (PLDI), ser. PLDI ’12. New York,
NY, USA: ACM, 2012, pp. 395–404. [Online]. Available: http:
//doi.acm.org/10.1145/2254064.2254111

[38] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, ser. CCS ’07.
New York, NY, USA: ACM, 2007, pp. 529–540. [Online]. Available:
http://doi.acm.org/10.1145/1315245.1315311

[39] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 772–781. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2486890

[40] B. Niu and G. Tan, “Monitor Integrity Protection with Space Efficiency
and Separate Compilation,” in Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’13.
New York, NY, USA: ACM, 2013, pp. 199–210. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516649

[41] ——, “Rockjit: Securing just-in-time compilation using modular
control-flow integrity,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’14.
New York, NY, USA: ACM, 2014, pp. 1317–1328. [Online]. Available:
http://doi.acm.org/10.1145/2660267.2660281

[42] PC Magazine, “Stagefright 2.0 Targets Nearly Every
Single Android Device,” http://mobile.pcmag.com/networking/
60449-stagefright-2-dot-0-targets-nearly-every-single-android-device,
2015.

[43] ——, “There’s (Almost) Nothing You Can Do
About Stagefright,” http://mobile.pcmag.com/news/
58468-theres-almost-nothing-you-can-do-about-stagefright, 2015.

[44] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. Rinard, “Automatically patching
errors in deployed software,” in Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, ser. SOSP ’09.
New York, NY, USA: ACM, 2009, pp. 87–102. [Online]. Available:
http://doi.acm.org/10.1145/1629575.1629585

[45] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S.
Beebee, Jr., “Enhancing server availability and security through failure-
oblivious computing,” in OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation. Berkeley,
CA, USA: USENIX Association, 2004, pp. 21–21.

[46] M. C. Rinard, “Living in the comfort zone,” in Proceedings of
the 22nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications, ser. OOPSLA ’07. New
York, NY, USA: ACM, 2007, pp. 611–622. [Online]. Available:
http://doi.acm.org/10.1145/1297027.1297072

[47] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the Effectiveness of Address-Space Randomization,” in Proceedings
of the 11th ACM Conference on Computer and Communications Security
(CCS), Oct. 2004, pp. 298–307.

[48] H. Shahriar and M. Zulkernine, “Mitigating program security
vulnerabilities: Approaches and challenges,” ACM Computing Surveys,
vol. 44, no. 3, pp. 11:1–11:46, Jun. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2187671.2187673

[49] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory
analysis of software vulnerability life cycles,” in Proceedings of the
34th International Conference on Software Engineering, ser. ICSE
’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 771–781. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337223.2337314

[50] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators
of software vulnerabilities,” IEEE Trans. Softw. Eng., vol. 37, no. 6,
pp. 772–787, Nov. 2011. [Online]. Available: http://dx.doi.org/10.1109/
TSE.2010.81

[51] S. Sidiroglou, G. Giovanidis, and A. Keromytis, “Using execution
transactions to recover from buffer overflow attacks,” 2004. [Online].
Available: citeseer.ist.psu.edu/707478.html

[52] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D.
Keromytis, “Assure: automatic software self-healing using rescue
points,” in ASPLOS ’09: Proceeding of the 14th international conference
on Architectural support for programming languages and operating
systems. New York, NY, USA: ACM, 2009, pp. 37–48.

[53] M. Süßkraut and C. Fetzer, “Robustness and security hardening of
COTS software libraries,” in The 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2007, 25-28
June 2007, Edinburgh, UK, Proceedings, 2007, pp. 61–71. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/DSN.2007.84

[54] J. Swanson, M. B. Cohen, M. B. Dwyer, B. J. Garvin, and J. Firestone,
“Beyond the rainbow: Self-adaptive failure avoidance in configurable
systems,” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: ACM, 2014, pp. 377–388. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635915

[55] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing Forward-Edge Control-Flow
Integrity in GCC & LLVM,” in 23rd USENIX Security Symposium
(USENIX Security 14). San Diego, CA: USENIX Association,
Aug. 2014, pp. 941–955. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/tice

[56] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in ACM SIGOPS Operating Systems
Review, vol. 27, no. 5, 1994, pp. 203–216.

[57] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier,
“Shield: Vulnerability-driven network filters for preventing known
vulnerability exploits,” in Proceedings of the 2004 Conference
on Applications, Technologies, Architectures, and Protocols for

17

Computer Communications, ser. SIGCOMM ’04. New York,
NY, USA: ACM, 2004, pp. 193–204. [Online]. Available:
http://doi.acm.org/10.1145/1015467.1015489

[58] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and
A. Zeller, “Automated fixing of programs with contracts,” in Proceedings
of the 19th International Symposium on Software Testing and Analysis,
ser. ISSTA ’10. New York, NY, USA: ACM, 2010, pp. 61–72.
[Online]. Available: http://doi.acm.org/10.1145/1831708.1831716

[59] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings of the
31st International Conference on Software Engineering, ser. ICSE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 364–374.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2009.5070536

[60] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox for
portable, untrusted x86 native code,” in Security and Privacy, 2009 30th
IEEE Symposium on, 2009, pp. 79–93.

[61] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang, P. U.
Jain, and M. Stumm, “Simple testing can prevent most critical failures:
An analysis of production failures in distributed data-intensive systems,”
in Proceedings of the 11th Symposium on Operating Systems Design and
Implementation (OSDI), 2014, pp. 249–265.

[62] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical Control Flow Integrity and Randomiza-
tion for Binary Executables,” in Security and Privacy (SP), 2013 IEEE
Symposium on, May 2013, pp. 559–573.

[63] M. Zhang and R. Sekar, “Control Flow Integrity for COTS
Binaries,” in Presented as part of the 22nd USENIX Security
Symposium (USENIX Security 13). Washington, D.C.: USENIX, 2013,
pp. 337–352. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/presentation/Zhang

[64] S. Zhang and M. D. Ernst, “Automated diagnosis of software
configuration errors,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 312–321. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486830

18

