
 
 
 
 
 
 
 
 
 
 

AUTOMATED READING ASSISTANCE SYSTEM USING  
POINT-OF-GAZE ESTIMATION 

 
 
 
 
 

by 
 
 
 
 
 

Jeffrey J. Kang 
 
 
 
 
 
 

A thesis submitted in conformity with the requirements  
for the degree of Master of Applied Science, 

Graduate Departments of the Edward S. Rogers Sr. Department of Electrical and 
Computer Engineering 

and the Institute of Biomaterials and Biomedical Engineering, 
University of Toronto 

 
 
 
 

Copyright © by Jeffrey J. Kang 2006
 



 

 

 
ii 

 
Automated Reading Assistance System Using Point-of-Gaze Estimation 

 
Jeffrey J. Kang 

 
Master of Applied Science 

 
Edward S. Rogers Sr. Department of Electrical and Computer Engineering 

 
Institute of Biomaterials and Biomedical Engineering 

 
University of Toronto 

 
2006 

 

Abstract 
 

Head-mounted and remote point-of-gaze estimation methodologies were used in 

an automated reading assistant to vocalize unknown words in real-time.  Points-of-gaze 

were mapped onto stationary and moving reading material using homographic mappings 

established from point correspondences between the reading material and images from a 

scene camera.  Points-of-gaze on reading material were used to measure the processing 

time of each viewed word.  Unknown words were detected based on processing time 

length.  Viewed words could be uniquely identified when words on the reading material 

were separated by more than 15 mm.  In a pilot study of four subjects, using remote 

point-of-gaze estimation and stationary reading material, the detector achieved a 

detection rate of 89% with a false alarm rate of 11%.  In a pilot study with two subjects, 

using head-mounted point-of-gaze estimation to allow free head movement, the 

automated reading assistant provided vocalization for 94% of unknown words and 10% 

of known words. 
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Chapter 1  

Introduction 

During reading, we visually examine words and convert letters to sounds via 

cognitive processing that activates word recognition.  For skilled readers, this conversion 

is usually swift and effortless.  However, for unskilled readers, such as children or 

students of a foreign language, the ability to perform these conversions is under-

developed.  We acquire this ability through repetitive exposure to word-to-sound 

mappings (Bettelheim and Zelan, 1982; Adams, 1990), usually mediated by a skilled 

reader (e.g. a teacher or a parent).  

Word-to-sound mappings in the English language are governed by a set of 

grapheme (letter unit) to phoneme (sound unit) conversion rules.  However, grapheme-

to-phoneme conversions in English are characterized by many irregularities and 

inconsistencies.  When a conversion cannot be successfully completed due to insufficient 

reader skill or irregular spelling, the reader must seek assistive intervention to learn the 

proper word pronunciation.  Assistance of this nature facilitates the learning of new 

word-to-sound mappings. 

This thesis presents the development of a system to detect when a reader 

encounters reading difficulty and provide automated reading assistance. 
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1.1 Monitoring Reading through Eye-tracking 

The reading process has long been studied using eye-tracking technologies.  

During reading, we extract information embedded in text by fixating on a series of points.  

We then integrate information from these points to facilitate the visual perception that 

leads to cognition.  The location of the point of fixation within the visual field, 

commonly referred to as the point-of-gaze, is a function of eye position.  The process of 

moving the point-of-gaze through the visual field is facilitated by fast eye movements 

called saccades.  These eye movements can be regarded as the overt manifestation of 

both conscious and subconscious shifts in visual attention.  By observing eye movements, 

we may infer intent, study visual perception, and gain an understanding of the underlying 

cognitive processes.  Eye-tracking technologies provide a means by which we may 

observe eye position, and hence estimate the point-of-gaze.  In the context of reading, 

estimating the point-of-gaze can provide information regarding the processing time of 

each word. 

 
1.2 Point-of-Gaze Estimation Applications 

Eye-tracking, for the purpose of point-of-gaze estimation, has been used in a 

variety of applications, which can be divided into two broad categories: the study of 

visual attention in response to visual stimuli and the development of input devices to 

facilitate human-machine interaction.  A study of selective visual attention was 

performed to quantify mood disorders (Yu and Eizenman, 2004; Eizenman et al., 2003).  

Results of the study showed that depressed subjects exhibited a bias in attention towards 

sad images.  Another study investigated how children with childhood-onset 
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schizophrenia and attention-deficit/hyperactivity disorder viewed and perceived thematic 

imagery (Karatekin and Asarnow, 1999).  The results suggested that schizophrenic 

children have impaired selective visual attention.  Analysis of point-of-gaze in marketing 

research has been used to evaluate the effectiveness of advertisements in attracting visual 

attention (Loshe, 1997).  Similarly, an evaluation of user interfaces has shown that 

poorly-designed interfaces result in inefficient visual search behaviour among users 

(Goldberg and Kotval, 1999).  Eye-tracking has also been used extensively in the study 

of reading behaviour, as cognitive processing of text requires visual examination 

facilitated by sequential changes in point-of-gaze (Rayner, 1998).  

 As an input modality, point-of-gaze estimation is currently being used within Dr. 

Eizenman’s research group to develop a visual aid that allows patients with age-related 

macular degeneration to control a magnifier on a computer screen using only eye 

movements.  Point-of-gaze estimation has also been used to create input devices for 

physically impaired computer users (Hutchinson et al., 1989).  In a more general case, 

point-of-gaze has been considered as one component of multimodal human-computer 

interfaces to relieve the input bottleneck created by dependence on keyboards and “mice” 

(Sharma et al., 1998). 

 
1.3 Point-of-Gaze Estimation Methodology 

When we observe a target of interest within the scene, light from the targeted 

object is focused by the cornea and the lens of the eye such that an image of the object 

falls upon the retina.  The retina contains photoreceptor cells which convert light to 

neural signals.  To make detailed observations, eye movements are made to direct the 

image of the target onto the highest acuity region of the retina known as the fovea, which 
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extends over 0.6 to 1 degree of visual angle (Young and Sheena, 1975).  The visual axis 

is defined as the line that passes through the centre of the fovea and the nodal point of the 

eye (Figure 1.1).  The point-of-gaze is then defined as the point of intersection of the 

visual axes of both eyes within the scene.  When the scene is a planar object such as a 

computer screen or the page of a book, the point-of-gaze can be simplified as the 

intersection of the visual axis of one eye with the scene plane. 

 

 

Figure 1.1: Diagram of the eye, adapted (Wilhelm et al., 2001). 

 
Eye-tracking provides a means to determine eye position, from which the visual 

axis can be reconstructed.  Modern eye-tracking systems are generally video-based, 

employing cameras to image the eye.   Eye position is inferred from the measured image 

locations of eye landmarks such as the pupil centre, iris centre and iris-sclera boundary.  

A popular approach to estimating eye position, adopted by Dr. Eizenman’s research 

group, uses measurements of the pupil centre and one or more “corneal reflections.”  A 

corneal reflection is generated by placing a discrete light source in front of the eye.  Light 
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from this source reflects off of the outer corneal surface, which acts as a convex mirror, 

forming the corneal reflection as a virtual image of the source.  This virtual image is also 

known as the first Purkinje image (Young and Sheena, 1975).  Typically, near infra-red 

light sources are used for this purpose as they do not interfere with vision.  The relative 

image locations of the corneal reflections and pupil centre are used to infer eye position.   

Video-based eye-trackers using the pupil centre and corneal reflection approach 

can be classified into two categories: head-mounted and remote.  In head-mounted 

systems, the light sources and the camera which images the eye are worn on the subject’s 

head.  Hence, the subject’s head movement is not constrained.   In remote systems, eye-

tracking components are placed remotely and nothing is worn by the subject.  However, 

head movement is constrained to the field of view of the remote-placed camera.  Remote 

systems reduce subject fatigue and are more suitable for some investigations such as 

those involving young children. 

 
1.4 Objectives 

The objective of this thesis is to develop an automated reading assistance system 

that detects when a reader experiences reading difficulty, i.e. encounters an unknown 

word, and renders assistance by vocalizing the unknown word.  This system requires two 

major components: 

• The means to identify, in real-time, the word being read. 

• The means to detect when an unknown word has been encountered by the reader. 

A further requirement is for the system to operate within a natural reading setting, such 

that it may be used in a teaching capacity. 
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1.5 Structure of this Document 

Chapter 2 describes the formulation and implementation of a system to determine 

the viewed word using a head-mounted eye-tracker.  Chapter 3 proposes a method to 

allow the viewed word to be determined using a remote point-of-gaze estimation system.  

Chapter 4 develops detection criteria for automatically determining reader difficulty by 

analyzing the time spent viewing each word.  Chapter 5 describes an experiment in 

which the viewed word is automatically vocalized when reader difficulty is detected.  

The main contributions of the thesis are summarized and directions for future work are 

proposed at the end of the chapter. 
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Chapter 2  

Determining the Viewed Word 

During reading, text processing is facilitated by visual examination of words 

falling on the high resolution area of the fovea.  Therefore, to determine the word being 

processed, an estimate of point-of-gaze is required.  To perform this estimation while 

allowing unconstrained head movement, it is necessary to use a head-mounted eye-

tracker.  This chapter describes a system that uses estimates of point-of-gaze made by a 

head-mounted eye-tracker to determine the viewed word. 

Section 2.1 develops a method to map the point-of-gaze obtained from a head-

mounted eye-tracker to a point on reading material with arbitrary pose.  Section 2.2 

presents the implementation of a system that performs the described mapping technique 

to determined the viewed word. 

 
2.1 Mapping the Point-of-Gaze to the Reading Material 

When using head-mounted eye-trackers, eye position is generally measured with 

respect to a coordinate system defined relative to the head (head coordinate system).  

Hence, point-of-gaze is estimated with respect to a moving frame of reference as the 

head moves.  However, points of interest on an object, such as the position of words on 
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reading material, are defined with respect to an object coordinate system that does not 

move, or moves independently of the head.  Therefore, to identify what the subject is 

looking at, the relationship between the head coordinate system and the object coordinate 

system must be known. 

 One solution to this problem is to measure head pose relative to the object 

coordinate system using a position sensor (Allison et al., 1996), from which a Euclidean 

transformation between the head coordinate system and the object coordinate system can 

be obtained.  The main drawback of this approach is that the sensor must be calibrated 

with respect to a static object coordinate system.  In other words, if the object coordinate 

system is defined with respect to reading material, the reading material may not move. 

Another approach requires placing a camera on the head to image the scene 

containing the points of interest (Yu and Eizenman, 2004); in the discussion to follow, 

we refer to this camera as the scene camera.  The position of the scene camera’s imaging 

plane within the head coordinate system is constant, yielding a constant relationship 

between the head coordinate system and the scene camera’s image coordinate system.  

This allows eye position to be easily transformed to a point-of-gaze within the scene 

camera’s image coordinate system.  Previous research has shown that using point 

correspondences between sets of images, points-of-gaze can be mapped to a reference 

image upon which points of interest are defined (Yu and Eizenman, 2004).  In this 

chapter, we show that by using point correspondences between a scene image and the 

reading material, we can directly establish a mapping between the image coordinate 

system and the object coordinate system.  Furthermore, the object coordinate system does 

not need to be static, and can be defined with respect to moving reading material.  This 
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enables point-of-gaze estimates to be mapped onto reading material with arbitrary pose.  

The range of motion of the reading material is constrained to the field of view of the 

scene camera.  

 A method to obtain the mapping between the image coordinate system and the 

object coordinate system is described in the sections to follow by modeling the scene 

camera as a pinhole camera.  We begin this description with a review of projective 

geometry and the pinhole camera model. 

 
2.1.1 Projective Geometry 

A camera projection is a mapping between the Euclidean 3-space ( 3 ) of a scene 

and the Euclidean 2-space ( 2 ) of an image.  Projective geometry is used to allow the 

relationship between coordinates in 3  and 2  to be represented linearly in matrix form.  

To use projective geometry, coordinates in Euclidean space n , referred to as 

inhomogeneous coordinates, must be expressed in projective space n+1P  as homogeneous 

coordinates.  Homogeneous coordinates are only uniquely defined up to a scalar, 

hereafter denoted by a scale factor S; the coordinates S(a, b, c)T  in 3P  are considered to 

be the same homogeneous coordinate for any non-zero S.  An inhomogeneous coordinate 

is converted to a homogenous coordinate by augmenting the vector with a final 

coordinate of 1.  Hence, the 2  inhomogeneous coordinate (x, y)T can be expressed as 

the 3P  homogeneous coordinate S(x, y, 1)T.  

Using projective geometry, we define P as a 3×4 homogeneous camera projection 

matrix, which relates an arbitrary 3D object point M = (X, Y, Z, 1)T in the object 
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coordinate system to a 2D image point m = (x, y, 1)T in the image coordinate system via 

the linear mapping described by (Faugeras, 2001):  

x
S y

1

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

P3×4 

X
Y
Z
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.        (2.1) 

or simply as 

Sm = PM         (2.2) 
  
where S is an arbitrary scalar.  Hence, P is only defined up to a scale factor. 
 
 
2.1.2 Pinhole Camera Model 

 Using the perspective projection model that characterizes a pinhole camera, the 

camera projection matrix P can be described as (Hartley and Zisserman, 2003): 

 P = K[R T].          (2.3) 

The matrix P encapsulates two transformations.  The first is a Euclidean transformation, 

specified by a rotation, R = 
11 12 13

21 22 23

31 32 33

r r r
r r r
r r r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, and a translation T = 
x

y

z

t
t
t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, which transforms 

the 3D object point from the object coordinate system (axes denoted by X, Y, Z; origin 

denoted by O) to a camera-centred coordinate system (axes denoted by Xcam, Ycam, Zcam; 

origin denoted by Ocam).  R and T are often referred to as the extrinsic camera parameters.  

For brevity, the camera-centred coordinate system will be referred to as simply the 

camera coordinate system.  Ocam corresponds to the camera’s optical centre and is also 

commonly referred to as the camera’s nodal point.  The principal axis of the camera 

points straight down the Zcam axis, while the imaging plane is parallel to the Xcam-Ycam 
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plane.  Figure 2.1 shows the relationship between the camera coordinate system and the 

object coordinate system. 

 
Figure 2.1: Relationship between camera coordinate system and object 

coordinate system. 
 

 The second transformation encapsulated in P is the perspective projection that 

transforms a 3D point described in the camera coordinate system to a 2D image point on 

the imaging plane.  This perspective projection is fully described by K, called the 

intrinsic camera matrix.  K is given by: 

K = 
x 0

y 0

α 0 x
0 α y
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  

where (x0, y0) specifies the camera’s principal point in the 2D image coordinate system 

of the imaging plane (in pixels); the principal point is the intersection of the camera’s 

principal axis and the imaging plane; and αx and αy represent the focal length in pixels in 

the x and y directions, respectively.  We obtain αx and αy using 

 αx =  
x

f
p

, and         (2.4) 

Ycam 

Zcam

Xcam 

camera 
centre 

imaging  
plane 

principal 
axis 

principal point 

Object 
Coordinate  
System 

Ocam 

Camera  
Coordinate  
System 

O 

R, T 

Z

Y 

X 
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αy = 
y

f
p

,         (2.5) 

where f is the focal length of the camera in length units (typically in mm), while px and py 

specify size of each pixel on the imaging plane (in mm/pixel) in the x and y directions, 

respectively. 

Although simple, the projective projection model of pinhole cameras accurately 

describes the geometry and optics of most modern CCD cameras (Faugeras, 2001).  

Using projective geometry, we can project an arbitrary 3D object point to a 2D image 

point using a linear mapping. 

 
2.1.3 Homographic Mapping 

 The point-of-gaze estimation system provides the point-of-gaze as a 2D image 

point, m, from which we wish to find the corresponding 3D scene point M.  From (2.2), 

we know that M can be calculated using 

M = SP-1m.         (2.6) 

Given a number of correspondences between 3D scene points Mi and 2D image points mi, 

Mi ↔  mi, it is possible to calculate P.  It can be shown that each point correspondence 

leads to two equations for the elements of P (Hartley and Zisserman, 2003).  Since the 

matrix P has 12 elements, and 11 degrees of freedom (ignoring scale), 6 point 

correspondences are needed to solve for P. 

P provides the mapping between an arbitrary 3D object point and its 

corresponding 2D image point.  Now consider a special case when 3D object points are 

constrained to the 2D surface of our reading material (e.g. a page of a book or a reading 

card).  Without loss of generality, we can assume that the 2D surface is on the plane Z=0 
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of the object coordinate system, i.e. M = (X, Y, 0, 1)T (Zhang, 1999).  From (2.1) and 

(2.3), we have 

Sm = K[R T]

X
Y
0
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = 
x 0

y 0

α 0 x
0 α y
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11 12 x

21 22 y

31 32 z

r r t
r r t
r r t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X
Y
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.   (2.7) 

We can omit the Z coordinate from M and use the notation M '  = (X, Y, 1) T to describe a 

point on this 2D surface.  It then follows that a 2D object point M '  and its corresponding 

image point m are related by a linear mapping 

 Sm = HM '.         (2.8) 

H is a 3×3 matrix given by: 

 H = 
11 12 13

21 22 23

31 32 33

h h h
h h h
h h h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = λ
x 0

y 0

α 0 x
0 α y
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11 12 x

21 22 y

31 32 z

r r t
r r t
r r t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.   (2.9) 

Since the point m is only defined up to a scale factor S, H is also only defined up to a 

scale factor λ.  This matrix describes a plane projective transformation and is commonly 

referred to as a homography.  Given m, a 2D image point, we can find M ' , the 

corresponding object point, using  

M '  = SH-1m.         (2.10) 

There are many methods described in literature to solve for H (Tsai et al., 1982; Zhang, 

1999; Criminisi et al., 1999).  We employ a method called the Direct Linear 

Transformation algorithm (Hartley and Zisserman, 2003). 
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2.1.4 Direct Linear Transformation Algorithm 

 In this section, the Direct Linear Transformation (DLT) algorithm is used to solve 

for H.  First, we establish N correspondences between scene points Mi ' = (Xi ' , Yi ' , 1)T 

and image points mi = (xi, yi, 1)T, where i = 1…N.  From (2.10), the relationship between 

mi and Mi ' may be expressed as a vector cross product 

 Smi × H Mi '  = 0         (2.11) 

from which we can derive two linearly independent equations in the elements of H: 

 h11xi + h12yi + h13 – h31xiXi '  – h32yiXi '  – h33Xi '  = 0    (2.12) 

 h21xi + h22yi + h23 – h31xiYi '  – h32yiYi '  – h33Yi '  = 0.    (2.13) 

If we have N point correspondences, then from (2.12) and (2.13) we can write the 

following equation to solve for the elements of H: 

Ah = 

1 1 1 1 1 1 1

1 1 1 1 1 1 1

2 2 2 2 2 2 2

2 2 2 2 2 2 2

N N N N N N N

N N N N N N N

x y 1 0 0 0 -x X ' -y X ' -X '
0 0 0 x y 1 -x Y ' -y Y ' -Y '
x y 1 0 0 0 -x X ' -y X ' -X '
0 0 0 x y 1 -x Y ' -y Y ' -Y '

x y 1 0 0 0 -x X ' -y X ' -X '
0 0 0 x y 1 -x Y ' -y Y ' -Y '

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11

12

13

21

22

23

31

32

33

h
h
h
h
h
h
h
h
h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 0 (2.14) 

where h is a column vector containing the elements of H.  We ignore the trivial solution 

of h = 0.  The non-zero solution for h is the null-space of A. 

Since h has 9 elements and 8 degrees of freedom (ignoring scale), a unique and 

exact solution for h exists when A has rank 8.  We obtain 2 equations in the elements of 

h from each point correspondence; thus, A has rank 8 when there are 4 point 

correspondences (N = 4) and no 3 Mi '  are collinear.  The presence of 3 collinear points 
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represents a degenerate configuration in which the 8 equations in the elements of h are 

not independent; hence A has rank < 8.  

When there are more than 4 point correspondences, the system Ah = 0 is over-

determined.  The degenerate configuration is avoided in the general case for N > 4 when 

no (N - 1) of the N Mi 'points are collinear.  If the measurements for Mi '  and mi are exact 

such that (2.6) is obeyed, then A still has rank 8.  However, if the measurements are 

noisy, then A has rank > 8 and no exact non-zero solution for h exists.  The DLT 

algorithm finds an approximate solution for h by minimizing the vector norm ||Ah||.  An 

additional constraint ||h|| = 1 is imposed to avoid the trivial solution h = 0.  It can be 

shown that the solution to this minimization problem is the eigenvector of ATA 

corresponding to the smallest eigenvalue.  Equivalently, the solution is the unit singular 

vector corresponding to the smallest singular value of A, which can be found by 

performing the singular value decomposition of A.  We rearrange the elements of h to 

reconstruct H.  Using H, we can map the point-of-gaze provided by the eye-tracker as an 

image point to its corresponding point on the 2D surface of the reading material, 

described with respect to the object coordinate system. 

 
2.2 System Description 

In this section we describe a system that performs the mapping method described 

in Section 2.1 to determine the viewed word.  We begin with an overview of the overall 

system architecture and its major components.  This overview is followed by a 

description of a system implemented using a video-based head-mounted eye-tracker 

developed in Dr. Eizenman’s research group. 
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2.2.1 System Overview 

A block diagram of the system is presented in Figure 2.2, showing the 

decomposition of the system, and the flow of data between the components.  The eye-

tracker initiates the flow of data by capturing the image of the eye and the image of the 

scene containing the reading material.  The scene image represents the visual field of the 

subject.  The eye-tracker estimates a direction of gaze by analyzing the eye image, and 

calculates a point-of-gaze, POGI = (xpog, ypog, 1)T in the image coordinate system of the 

scene image, where xpog and ypog have units of pixels.  To relate POGI to a point in the 

object coordinate system of the reading material, POGR = (Xpog, Ypog, 1)T, where Xpog 

and Ypog have units of length (e.g. mm), the position of the reading material within the 

scene image must be known.  This position is established by analyzing the scene image 

to locate image points that correspond to known points on the reading material.  From a 

set of point correspondences, a mapping between arbitrary image points and their 

corresponding reading material points is calculated.  The point POGI is then mapped to 

POGR as shown in Figure 2.3. 
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Figure 2.2: Block diagram of the system to determine the viewed word.  
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Figure 2.3: Mapping the point-of-gaze from the scene image to the reading 
material. 

 
 

Reading materials are uniquely identified by affixed barcodes, which are later 

recovered from the scene image.  After the reading material is identified, a lookup table 

containing the reading material’s words is consulted.  This table describes the position of 

each word with respect to the reading material.  The viewed word is determined as a 

word that matches the position of the point-of-gaze, POGR. 

 
2.2.2 Video-based Head-mounted Eye-tracker 

The head-mounted video-based eye-tracker consists of an imaging unit mounted 

on a head-band carrying an eye-tracker assembly and a scene camera, and a PC-based 

processing unit.  The eye-tracker assembly consists of three primary components: a small 

infra-red (IR) CCD video camera (eye camera), two IR light-emitting diodes (LEDs), and 

a hot mirror that allows visible light to pass through while reflecting IR light.  The two 

IR LEDs are mounted above the right eye; light is reflected by the angled hot mirror onto 

the eye, providing illumination and generating the two corneal reflections.  Images of the 

eye are reflected by the hot mirror up to the eye camera which is also positioned above 

POGI 
POGR 

X 

Y 

x 

y 

Scene image containing 
reading material Reading material 

Mapping 
A B C

A   B   C 



CHAPTER 2: DETERMINING THE VIEWED WORD 

 

 
19 

the eye.  The scene camera is a CCD video camera that images the field of view of the 

subject.  A photograph of the eye-tracker is shown in Figure 2.4. 

 

  

Figure 2.4: Photograph of the head-mounted video-based eye tracking system. 

 
The processing unit is a PC workstation that performs image processing, data 

logging, point-of-gaze estimation, and other computational tasks.  Images from the eye 

camera are captured at a rate of 50 Hz.  Each image is processed to locate the corneal 

reflections and the pupil centre, as shown in Figure 2.5.  The relative positions of these 

eye features are used to estimate the point-of-gaze on the image captured from the scene 

camera. 

 

 

Figure 2.5: Sample image of the eye with located corneal reflections and pupil 
centre. 
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2.2.3 Generating Point Correspondences 

The task of automatically locating corresponding points from images is a classic 

problem in machine vision and photogrammetry, and is frequently referred to as the 

correspondence problem (Marr and Poggio, 1976; Longuet-Higgins, 1981; Mouaddib, E. 

et al., 1997).  A common approach to automating the measurement and identification of 

image points is to place coded targets within the scene (Ganci and Handley, 1998; Ahn et 

al., 2001).  These targets are easily located in images using image processing techniques 

and allow image points to be precisely measured. 

We adopt an approach using N circular coded targets, which are placed on the 2D 

surface of the reading material at known positions Mi ', where i = 1…N, and N ≥ 4.  

During reading, the scene camera images the reading material and the coded targets.  

From the scene camera images we estimate mi, the pixel positions of the targets.  This 

establishes the N point correspondences from which H is calculated.  Figure 2.6 shows a 

sample reading card displaying 4 targets. 

 

 

Figure 2.6: Sample reading card with circular coded targets placed at the corners. 
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2.2.4 Evaluation of Mapping Accuracy 

The mapping method presented above assumes that the scene camera is an ideal 

pinhole camera that projects scene points to image points via the linear relation described 

by (2.1).  In reality, camera lenses introduce non-linear distortions to the projection.  

These distortions cause image points to deviate from the coordinates predicted under the 

pinhole camera model.  Furthermore, image points cannot be measured exactly.  Hence, 

the measured image point  i i i
T= (x  y , 1),m  will deviate from the theoretical image point 

 i i i
T= (x  y , 1),m .  We estimate the homography H using a set of correspondences 

between im and Mi ' by minimizing the algebraic distance ||Ah|| given in (2.14).  In this 

section, we quantify the errors associated with mapping the point-of-gaze using a 

homography estimated from distorted, noisy image points.  

To evaluate mapping performance in a typical experimental setup using reading 

cards like the one shown in Figure 2.6, we constructed a validation card containing 9 

targets (see Figure 2.7) located at known reading material coordinates Mi ' (i = 1…9).  

The card was held in a typical reading pose and imaged by the scene camera of the eye-

tracker.  Head movements and reading card movements were made to simulate the 

motions expected during a reading task.  A sequence of 1000 scene images was captured 

and the image coordinates of the targets im  (i = 1…9) were recovered from each image. 

For each image, the 4 point correspondences at the corners of the validation card, 

Mi ' ↔  mi (i = 1…4), were used to estimate the homography H.  This represents the 

configuration of 4 targets shown in the sample reading card.  This homography was used 

to map the remaining 5 image points im  (i = 5…9) to the corresponding reading material 
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points H-1
im .  Using the sequence of 1000 scene images, a total of 5000 points were 

mapped in this manner.  For each mapped point, a mapping error, defined as the 

Euclidean distance between Mi ' and H-1
im  (i = 5…9), was calculated.  Figure 2.8 shows 

a histogram of the mapping errors. 

 

 

Figure 2.7: Validation card containing nine circular coded targets. 
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Figure 2.8: Histogram of mapping errors. 
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 The RMS mapping error for the 5000 points was found to be 2.29 mm.  More 

than 98% of the points yield a mapping error less than 5 mm.  To put the magnitude of 

the mapping error into proper context, we can compare it to the magnitude of the point-

of-gaze estimation error.  Recall that the head-mounted eye-tracker provides gaze-angle 

estimates with an accuracy of approximate one degree of visual angle.  When the reading 

material is placed 60 cm from the eye (a typical reading distance), the error in the gaze 

angle corresponds to approximately 10 mm on the reading material.  The maximum error 

in the mapped point-of-gaze estimate is bounded by the sum of the estimation error and 

the mapping error.  When designing or selecting reading material for use with the system, 

this upper bound is the minimum separation required between words to allow the viewed 

word to be uniquely identified.  For example, if we assume the point-of-gaze estimation 

error to be a constant 10 mm and the mapping error to be less than 5 mm, we would 

expect word separations of 15 mm to be sufficient to allow proper identification of the 

viewed word. 

 
2.2.5 Determining the Viewed Word 

Using the described mapping procedure, we obtain a point-of-gaze in the object 

coordinate system attached to the reading material.  To identify the viewed word based 

on this point-of-gaze, we need to identify the reading material and also know, in advance, 

the position of each word within the object coordinate system.   

Figure 2.9 shows the sample reading card with an 8-bit barcode.  In a typical 

experiment using reading cards, we do not expect the number of unique cards to exceed 

50.  A barcode of 6-bits is sufficiently long to identify up to 64 (26) unique reading cards.  
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A start bit and a stop bit are used to facilitate extraction of the barcode from the scene 

image. 

The barcode is placed at a known position in the object coordinate system.  Using 

the estimated homography, the image position of the centre of the start bit can be 

calculated.  This pixel coordinate provides a starting point for the image processing 

algorithm used to recover the bit-values of the barcode.  The width of each bit of the 

barcode on the reading material is set to 20 mm.  Since the mapping error is expected to 

be less than 5 mm, this width ensures that the image processing algorithm begins within 

the boundaries of the start bit.  Using this method, the barcode can be extracted from the 

scene image efficiently and reliably.  The barcode is subsequently decoded to yield a 

“reading material ID.”   

 

 
 

Figure 2.9: Sample reading card with binary barcode. 

 
Once the reading material is identified, the viewed word is identified via a lookup 

table containing the contents of each piece of reading material.  The structure of this 

lookup table can be conceptualized as a three-dimensional grid (see Figure 2.10) with 

indices: row, column, and “reading material ID.”  Each cell of the grid contains a single 

character. 
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Figure 2.10: Structure of the reading material lookup table. 

 
Using a priori knowledge of the character height and character width (in length 

units), and the point in the object coordinate system that corresponds to the top-left cell, 

the mapped point-of-gaze in the object coordinate system is converted to row and column 

indices.  The “reading material ID” recovered from the barcode represents the third 

lookup table index.  A search into the table for the cell specified by {row, column, 

reading material ID} returns the character corresponding to the point-of-gaze.  The 

viewed word is reconstructed by scanning adjacent cells in the row. 

 
2.3 Summary 

This chapter described a system which determines the viewed word using a head-

mounted eye-tracker that estimates point-of-gaze with respect to a image obtained from a 

scene camera.  Using point correspondences established by using 4 coded targets, it was 

shown that point-of-gaze could be mapped from the image coordinate system of the 

scene camera to the object coordinate system of the reading material with an RMS error 

of 2.29 mm.  This system was designed to tolerate unconstrained movement of the head, 

making it suitable for use within a natural reading setting.  
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In the next chapter, it is shown that if some constraints are placed on head 

movement, then a remote point-of-gaze estimation system can be used to identify the 

viewed word.  Such a system requires no head-mounted components and is more suitable 

for some reading assistance applications. 
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Chapter 3  

Extension to Remote Gaze Estimation 

Chapter 2 described a system to determine the viewed word using a head-

mounted eye-tracker.  This system allows for unconstrained movement of the head, and 

can be used to facilitate automated per-word assistance within a natural reading setting.  

However, the use of the head-mounted eye-tracker is not suitable for applications 

requiring gaze to be monitored over long durations, as is the case for long reading tasks.  

Furthermore, it is not desirable to use head-mounted equipment in applications involving 

children.  If head movement can be constrained to a degree that is still allows for 

reasonable movement required for typical reading tasks, then remote point-of-gaze 

estimation techniques can be applied to identify the viewed word.  

A remote point-of-gaze estimation system with no head-mounted components has 

been developed in Dr. Eizenman’s research group (Guestrin, 2006).  This system 

performs point-of-gaze estimation with respect to a 2D scene object in a static pose.   

This chapter presents a theoretical framework for extending this system to estimate point-

of-gaze with respect to a moving 2D scene object.  Within the context of providing 

automated reading assistance, this development allows the viewed word to be determined 
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using a remote point-of-gaze estimation system while tolerating constrained head 

movement and reading material movement. 

Section 3.1 describes the current remote point-of-gaze estimation system.  Section 

3.2 proposes a method to estimate the motion of a 2D object, such as a reading card, and 

hence how to estimate point-of-gaze with respect to a moving object.  Section 3.3 

evaluates, via simulation, the accuracy of the motion estimation and the corresponding 

effect on point-of-gaze estimation. 

 
3.1 Remote Point-of-Gaze Estimation System 

Like the head-mounted eye-tracker, the remote point-of-gaze estimation uses two 

infra-red (IR) light sources to illuminate the eye and produce two corneal reflections, and 

a video camera to capture images of the eye (eye camera).  The system estimates point-

of-gaze with respect to a fixed coordinate system using the image locations of the pupil 

centre and the corneal reflections.  Since the position of the eye camera is fixed, head 

movement is constrained to the camera’s field of view.  Like the head-mounted eye-

tracker, the accuracy of this system is approximately one degree of visual angle.  Figure 

3.1 shows an implementation of a system which estimates the point-of-gaze on a 

computer screen. 
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. 

Figure 3.1: Remote point-of-gaze estimation system. 

 
In general, the position and orientation of the visual axis of one eye must be 

known to estimate point-of-gaze with respect to a scene plane (e.g. a computer screen).  

Recall that the point-of-gaze is defined as the intersection of the visual axis with this 

plane, where visual axis is a line in space extending from the fovea through the eye’s 

nodal point.  In the case of the head-mounted eye-tracker, point-of-gaze is estimated with 

respect to images from a scene camera attached to the head.  The position of the eye 

relative to the scene plane (the scene camera’s imaging plane) is fixed regardless of head 

movements.  Hence, point-of-gaze can be estimated using only the orientation of the 

visual axis with respect to the head. 

In the case of the remote point-of-gaze estimation system, to accommodate head 

movement relative to the immotile scene plane, no assumptions are made about the 

position of the eye.  Hence, both the orientation of the visual axis and the location of one 

point on the visual axis must be estimated with respect to a fixed coordinate system.  The 

scene plane is assumed to coincide with the planar surface of an object such as a 

computer screen or a reading card; this object will henceforth be referred to as the 2D 

scene object.  

IR LEDs 

eye camera 

computer screen 
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A right-handed 3D Cartesian coordinate system (with axes X, Y, Z and origin O in 

Figure 3.2) is defined such at the 2D scene object is centred at the origin and occupies the 

plane Z=0.  Using the terminology introduced in Chapter 2, this coordinate system will 

be referred to as the object coordinate system.  Points of interest, such as the positions of 

words on the reading material, are defined relative to the object coordinate system. 

The remote point-of-gaze estimation system uses a spherical corneal model.  The 

nodal point of the eye is assumed to be coincident with the centre of corneal curvature.  

The system provides estimate of the point-of-gaze (P) and the centre of corneal curvature 

(C) in the object coordinate system.  The visual axis is modeled as the line through P and 

C.  We refer to the direction of the visual axis as the gaze vector G = (P – C). 

 
 

Figure 3.2: Intersection of visual axis with the 2D scene object. 
 
  

If the 2D scene object moves from its assumed position, estimates for P will no 

longer be meaningful as the visual axis now intersects the scene object at a point P '  

(Figure 3.3).  The points C, P, and P '  are collinear, which is expressed in parametric 

form as  

P '  = C + μ (P – C) = C + μ G      (3.1) 
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with parameter μ.  In the next section, we present a method to estimate the motion of the 

2D scene object.  Using knowledge of this motion, we can calculate P '  with respect to 

the true position of the scene object. 

 
Figure 3.3: Intersection of visual axis with the 2D scene object after movement. 
 
 
3.2 Estimating the Motion of a 2D Scene Object 

In order to estimate the motion of a scene object, clearly a means to observe it is 

needed.  We can use a scene camera to image the scene in which the object moves, as is 

done when using the head-mounted eye-tracker.  However, since we desired not to 

encumber users with head-worn components, the scene camera should be placed 

remotely rather than on a head-band.  In this section, we describe a method to estimate 

the motion of a 2D scene object using a static remotely-placed scene camera.  Using this 

method, as long as movement of the scene object is constrained to the field of view of the 

scene camera, the position of the object can be determined. 
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3.2.1 Coordinate Systems 

The remote point-of-gaze estimation system estimates gaze with respect to a fixed 

object coordinate system.  Without loss of generality, we can assume that this fixed 

object coordinate system is attached to the 2D scene object in some initial pose at time 

t=0 (denoted by axes X0, Y0, Z0 and origin O0 in Figure 3.4).  As before, the scene object 

is centred at the origin and occupies the plane Z0=0.  At time t=1, the scene object has a 

new pose and a new coordinate system (denoted by axes X1, Y1, Z1 and origin O1).  The 

scene camera has its own coordinate system (denoted by axes Xcam, Ycam, Zcam) and has an 

origin Ocam, where Ocam represents the camera’s optical centre (or nodal point). 

Recall that two coordinate systems are related by a Euclidean transformation 

described by a rotation matrix R and a translation vector T, where 

R = 
11 12 13

21 22 23

31 32 33

r r r
r r r
r r r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, and T = 
x

y

z

t
t
t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

When describing the relationship between a camera coordinate system and an object 

coordinate system, R and T are also referred to as the camera’s extrinsic parameters. 

 Let us define the following notation for relating the three coordinate systems: 

● R0→C : Rotation from object coordinate system at t=0 to camera coordinate system, 
 
● R1→C : Rotation from object coordinate system at t=0 to camera coordinate system,  
 
● R0→1 : Rotation from object coordinate system at t=0 to object coordinate system at t=1, 
 
● T0→C : Translation from object coordinate system at t=0 to camera coordinate system,  
 
● T1→C : Translation from object coordinate system at t=1 to camera coordinate system, and 
 
● T0→1 : Translation from object coordinate system at t=0 to object coordinate system at t=1. 
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Figure 3.4: Camera coordinate system and the object coordinate systems at two 
time instances. 

 
 

R0→1  and T0→1  specify the Euclidean transformation between two object 

coordinate systems.  Since the two coordinate systems are both attached to the 2D scene 

object, R0→1  and T0→1  also specify the motion undergone by the object from t=0 to t=1. 

 
3.2.2 Motion from Extrinsic Camera Parameters 

When the extrinsic parameters of the scene camera are unknown, a solution to the 

motion of a 2D object, described by R0→1  and T0→1 , exists up to a two-fold ambiguity 

and a unknown scale factor in T0→1  (Tsai and Huang, 1981; Faugeras and Lustman, 1988; 

Weng et al., 1991).  These ambiguities can be eliminated if additional information 

regarding the object are known, but in general a partial recovery of the extrinsic camera 

parameters, such as the distance between the camera and the object, is required. 
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However, when the extrinsic parameters of the scene camera relative to the 

respective local coordinate systems of the 2D object at t=0 ( R0→C , T0→C ) and at t=1 

( R1→C T1→C ) are known, a unique solution to R0→1 and T0→1  can be determined. 

Let us define the following notation for describing points within the three 

coordinate systems: 

● M0: 3D point described with respect to the object coordinate system at t=0, 

● M1: 3D point described with respect to the object coordinate system at t=1, and 

● MC: 3D point described with respect to the camera coordinate system. 

Using the above notation, M0, M1, and MC are related by: 

MC = R0→C M0 + T0→C ,       (3.2) 

MC = R1→C M1 + T1→C , and       (3.3) 

M1 = R0→1 M0 + T0→1 .        (3.4) 

From (3.2) and (3.3), we may obtain the relationship between M0 and M1 to be 

M1 =  -1R1→C R0→C M0 + 1−R1→C ( T0→C  - T1→C ).    (3.5) 

From (3.4) and (3.5), we have 

 R0→1  = -1R1→C R0→C , and       (3.6) 

 T0→1  = 1−R1→C ( T0→C  - T1→C ).       (3.7) 

From (3.6) and (3.7), it is clear that R0→C , T0→C , R1→C and T1→C are sufficient to solve for 

the motion of the scene object in terms of R0→1 and T0→1 . 
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3.2.3 Extrinsic Camera Parameters from the Homography 

Chapter 2 introduced the planar projective transformation (homography) which 

describes a linear mapping between points on a 2D object and their corresponding image 

points.  In this section we show a method to solve for the extrinsic camera parameters (R 

and T) from this homography based on a technique used for camera calibration (Zhang, 

1999). 

 The equation (2.8), relating the homography matrix H with a camera’s intrinsic 

and extrinsic parameters, is restated here for convenience: 

H =  λK
11 12 x

21 22 y

31 32 z

r r t
r r t
r r t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,       (3.8) 

where λ is an arbitrary scalar and K is the intrinsic camera matrix.  Let us denote H by its 

column vectors: H = [h1 h2 h3].  Likewise, let us denote R by R = [r1 r2 r3].  Using this 

notation, (3.8) can be expressed as: 

 [h1 h2 h3] = λK[r1 r2 T].       (3.9) 

From (3.9), we have 

 r1 =  1
λ

K-1h1,          (3.10) 

 r2 =  1
λ

K-1h2, and        (3.11) 

 T = 1
λ

K-1h3.         (3.12) 

To solve for the remaining rotation component r3 and to recover the scale λ, we must 

recognize some special properties of the matrix R. 



CHAPTER 3: EXTENSION TO REMOTE GAZE ESTIMATION 

 

 
36 

R is a rotation matrix, and is hence orthogonal.  A property of orthogonal 

matrices is that the column vectors are orthonormal; by definition: 

1. The column vectors are mutually orthogonal, and 

2. Each column vector has length (norm) equal to one. 

Due to orthogonality of the column vectors of R, 

 r3 = r1 × r2.         (3.13) 

Furthermore, since the column vectors have length of one, 

 ||r1|| = ||r2|| = ||r3|| = 1.        (3.14) 

From (3.10) and (3.11), we know 

 ||r1|| = 1
λ

|| K-1h1||, and        (3.15) 

||r2|| = 1
λ

|| K-1h2||;        (3.16) 

it then follows that 

 λ =  || K-1h1|| = || K-1h2||.       (3.17) 

If the homography H and the intrinsic camera parameters, K, are known, then the 

extrinsic camera parameters R and T can be uniquely determined. 

We may estimate H at each time instance using the method presented in Section 

2.1.  Coded targets can be placed on the 2D scene object at known positions Mi, for          

i = 1…N, and N ≥ 4, defined relative to the object coordinate system.  At each time 

instance, we measure the corresponding image coordinates of the coded targets as im .  

From the point correspondences, we estimate a homography H0 at t=0, from which we 

obtain R0→C  and T0→C .  Likewise, at t=1, at obtain R1→C and R1→C  from a homography 

H1.  Finally, using (3.6) and (3.7), we may solve for R0→1  and T0→1 . 
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3.2.4 Finding the Point-of-Gaze After Motion 

The point-of-gaze after movement is given by the point P ' , defined to be the 

point in space where the visual axis intersects the 2D scene object in its t=1 position.  

Since points of interest are defined with respect to the object coordinate system, it is clear 

that at t=1 we wish to determine P '  with respect to the t=1 object coordinate system 

(with axes X1, Y1, Z1 and origin O1).  In other words, P ' 1 is needed rather than P ' 0.  

Equation (3.1) is restated for t=1 as 

P ' 1 = C1 + μ G1.        (3.18) 

However, the current remote point-of-gaze estimation system estimates gaze with respect 

to the object coordinate system attached to the initial position of the 2D scene object, 

defined to be the t=0 object coordinate system (with axes X0, Y0, Z0 and origin O0).  

Hence, only C0 and G0 are provided.  Therefore, we must obtain C1 and G1 indirectly 

using knowledge about the motion of the scene object.  By applying (3.4), we have C1 = 

R0→1 C0 + T0→1  and G1 = R0→1 G0 + T0→1 .  The remaining unknown is μ. 

The value of μ is given by the intersection of the visual axis, expressed 

parametrically in (3.18), with the 2D scene object.  Recall that at t=1 the 2D scene object 

is defined to occupy the Z1=0 plane.  This plane has a unit normal given by n̂  = [0, 0, 1]T, 

and is described by the equation 

n̂  ● (P ' 1 – Q) = 0,        (3.19) 

where Q is any other point on the plane.  Since the plane includes the origin, for 

simplicity, we let Q = 0, from which we obtain 

n̂  ● P ' 1 = 0.         (3.20) 

Solving (3.18) and (3.20) for μ yields  



CHAPTER 3: EXTENSION TO REMOTE GAZE ESTIMATION 

 

 
38 

 μ = 1

1

ˆ • (- )
ˆ • 

n C
n G

,         (3.21) 

which allows a unique solution for P ' 1 to be obtained. 

 
3.3 Simulation of Point-of-Gaze Estimation Accuracy 

The accuracy of the point-of-gaze estimate, P ' 1 on objects that have undergone an 

arbitrary motion depends on two factors:  

● the accuracy of the estimate of gaze provided by the current remote point-of-

gaze estimate system, in terms of C0 and G0, and  

● the accuracy of the estimate of scene object motion in terms of  R0→1  and T0→1 . 

Using the methods presented above, the estimation accuracy of R0→1  and T0→1  depends 

exclusively on how well the homographies H0 and H1 can be estimated and how 

accurately the intrinsic camera matrix K can be determined.  In general, K can be 

obtained via the camera manufacturer’s specifications or through camera calibration to a 

high degree of accuracy (Faugeras, 1993; Hartley and Zisserman, 2003; Zhang, 1999; 

Weng et al., 1991).  Hence, we focus on errors in estimating H0 and H1, which result 

from deviations between the measured image locations of the coded targets, im               

(i = 1…N), and the image locations predicted using the pinhole camera model.  These 

deviations are chiefly caused by measurement noise and lens distortions.  The effect of 

these errors in im  on the estimation accuracy for R0→1 and T0→1 , and the corresponding 

effect on P ' 1, was studied through simulations. 
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3.3.1 Simulation Parameters 

Motion of a moving 2D scene object was simulated under typical experimental 

conditions.  Four targets were placed at the corners of the scene object, such that their 

coordinates in the object coordinate system were [-150, 150, 0]T, [150, 150, 0]T,               

[-150, -150, 0]T and [150, -150, 0]T (unit in mm).  This scene object approximates a 

reading card with dimensions 300 mm by 300 mm. 

Using the pinhole camera model, these targets were projected onto the imaging 

plane of a scene camera.  The camera’s intrinsic parameters were modeled after a 

Pixelink PL-A741 camera having a 1280x1024 CMOS sensor with of 6.7 μm square 

pixel and a lens with a focal length of 16 mm.  Using equations (2.4) and (2.5), we obtain 

αx and αy with px = py = 6.7 μm/pixel, and f = 16 mm.  The principal point was assumed 

to be located at the centre of the imaging plane.  Hence, the following intrinsic 

parameters were used 

● principal point (in pixels): x0=640.5, y0=512.5, and 

● focal length (in pixels): αx = 2400, αy = 2400. 

The resulting intrinsic camera matrix was 

K = 
2400 0 640.5

0 2400 512.5
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

The scene camera was placed 2 m from the initial position of the scene object 

(t=0), with the camera’s principal axis (Zcam axis) on the Z0 axis of the object coordinate 

system at t=0, and the camera’s Xcam and Ycam axes aligned with the X0 and Y0 axes (recall 

Figure 4.3).  Hence, the extrinsic parameters of the scene camera were: T0→C  = [0, 0, 

2000]T (unit in mm) and  
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R0→C  = 
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

For each trial, the scene object is moved to a random pose within the scene at t=1.  

The translation is specified by T0→1  = [tx, ty, tz]T, where tx, ty, and tz are uniformly 

distributed between -300 mm and 300 mm.  To specify the rotation, we parameterize  

R0→1  by a vector 0→1θ  which has a direction parallel to the axis of rotation and a 

magnitude equal to the angle of rotation.  This rotation vector is specified by 0→1θ  = θW 

= [θx, θy, θz]T, where W is a direction vector generated as a random point uniformly 

distributed on the surface of a sphere with a centre at the origin and a radius of 1, and θ is 

an scalar angle uniformly distributed between -30° and 30°.  R0→1  and 0→1θ  are related 

by the Rodrigues formula (Appendix A).  

 Gaze is modeled by an eye in fixed position, with a centre of corneal curvature  

C0 = [0, 0, 600]T (unit in mm).  The gaze vector G0 is simulated such that the subject 

always fixates on the centre of the 2D scene object after the random movement, i.e. the 

point-of-gaze P ' 1 = [0, 0, 0]T.  

For each trial, the simulated image locations of the coded targets were used to 

estimate H0 and H1 at t=0 and t=1, respectively.  The image locations of circular coded 

targets can be estimated to sub-pixel accuracy (Ahn et al., 2001; Clarke et al., 1994), with 

RMS estimation errors of approximately 0.1 pixels reported when using ellipse fitting 

techniques (  et al., 1994).  Errors in the image locations caused by non-linear lens 

distortions can be minimized using distortion correction techniques.  Residual errors in 

image locations have been reported to be on the order of 0.01 pixels (Heikkila and Silven, 
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1997).  To simulate errors in the image locations, Gaussian noise with zero mean and 

standard deviation between 0.1 and 1.0 pixels was added to the projected image 

coordinates. 

R0→1  and T0→1  were calculated using the method presented in Section 3.2; the 

estimates obtained under noisy conditions are denoted by R̂0→1 and T̂0→1 .  Using R̂0→1  

and T̂0→1 , we obtained an estimate for the point-of-gaze, denoted by P̂ ' 1. 

 
3.3.2 Simulation Results 

The movement of the 2D scene object and the point-of-gaze after movement was 

estimated over 5000 simulated trials for each noise level.  The error in the estimate of the 

translation is described by Etx, Ety, and Etz, the RMS errors associated with each 

translational component.  For example, Etx is given by 

Etx = 
N

2
x,i x,i

i=1

1 ˆ| t t |
N

−∑        (3.22) 

where N = 5000, and for the i-th trial, we have T0→1, i  = [tx,i ty,i, tz,i]T and T̂0→1, i  = [ x,it̂ , y,it̂ , 

z,it̂ ]T.  To express the error in the estimate of the rotation, the rotation matrix R̂0→1  is 

converted to its equivalent rotation vector θ̂0→1 .  The error in the estimate of the rotation 

vector, therefore, is described Eθx, Eθy, and Eθz, the RMS errors associated with each 

rotational component.  The RMS error in the estimate of the point-of-gaze is denoted by 

EP.  The RMS errors Ety, Etz, Eθx, Eθy, Eθz, and EP are found using the method shown in 

(3.22) for Etx. 

Figure 3.5 shows the RMS error in the estimate of the translation (unit in mm) as 

a function of the standard deviation of the noise in the image coordinates of the coded 
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target centres.  Likewise, Figure 3.6 shows the RMS error in the estimate of the rotation 

(unit in degrees).  Note that noise with standard deviation of 0 corresponds to noise-free 

conditions. 
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Figure 3.5: Error in the estimation of the translation vector. 
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Figure 3.6: Error in the estimation of the rotation vector. 
 

 The results show the RMS error in the estimates of the motion parameters 

increases linearly with the standard deviation of the noise.  With respect to the translation 

vector, the error is greatest in estimates of translation along Z0 axis. At each noise level, 

Etz is higher than Etx and Ety, which are approximately equal.  With respect to the rotation 

vector, the error is smallest in estimates of rotation about the Z0 axis.  At each noise level, 

Eθz is lower than Eθx and Eθy, which are approximately equal.  The errors with respect to 



CHAPTER 3: EXTENSION TO REMOTE GAZE ESTIMATION 

 

 
43 

the Z0 axis are different because this is also the principal axis of the scene camera.  It is 

harder to estimate translations along the principal axis, as such translations result in the 

smaller changes in pixel coordinates than translations of the same magnitude along the X0 

or Y0 axes.  Conversely, it is easier to estimate rotations along the principal axis because 

such rotations result in greater changes in pixel coordinates than rotations of the same 

magnitude about the X0 or Y0 axes. 

Figure 3.7 shows the RMS error in the point-of-gaze estimation.  Note that in the 

simulation, we assume that C0 and G0 are error-free.  Thus, the error in the point-of-gaze 

result solely from errors made in estimating R0→1  and T0→1 . 
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Figure 3.7: Error in the estimation of the point-of-gaze. 
 

The results show that the error in the point-of-gaze increases linearly with the 

standard deviation of the noise.  The results were obtained from simulations in which a 

subject fixates on P ' 1 = [0, 0, 0]T at t=1 for all trials.  The simulations were repeated for 

other fixation points, and similar results were obtained. 

Based on the aforementioned studies, we may reasonably expect the RMS error in 

the image coordinates of the circular coded targets to be approximately 0.1 pixels.  For 

this noise level, the simulated RMS error in the point-of-gaze was 1.51 mm.  
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3.4 Summary 

This chapter presented a methodology to estimate the rotation parameters of a 2D 

scene object.  This development allows point-of-gaze to be estimated on moving reading 

material.  Unlike the system described in Chapter 2, this system requires no head-

mounted components, making it suitable for use in long reading tasks, and in applications 

involving children. 

Within the context of reading assistance, the determination of the point-of-gaze 

P ' 1 allows the viewed word to be determined using the methodology presented in Section 

2.2.  The RMS error in P ' 1 resulting from the motion estimation varied linearly with the 

standard deviation of the noise in the measured image position of the circular coded 

targets.  For noise having standard deviation of approximate 0.1 pixels, the simulated 

error in P ' 1 was comparable to the RMS mapping error of 2.29 mm reported in Chapter 2 

using the head-mounted system.  Thus, the proposed remote system has approximately 

the same resolution as the head-mounted system. 
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Chapter 4  

Quantitative Criteria for Detecting Reading Difficulty 

In the previous two chapters, methods have been presented to determine the 

viewed word.  By monitoring the viewed word over time, eye movements during reading 

can be characterized on a per-word basis.  In this chapter, quantitative criteria based on 

eye movements are developed to detect reading difficulty on a per-word basis.  

Section 4.1 provides an overview of previous eye movement research in reading 

tasks.  Section 4.2 presents the factors that affect reading performance along with a 

model of the reading process.  Section 4.3 describes an experiment conducted to 

determine quantitative differences in eye movements when a reader encounters difficulty.  

Sections 4.4 through 4.7 propose and evaluate a method for detecting reading difficulty 

on a per-word basis.  Within the context of a reading assistance application, such 

detection would enable the development of a need-activated response mechanism. 

 
4.1 Basic Characteristics of Eye Movements in Reading 

During reading, we continually make eye movements called saccades to bring 

new text under foveal inspection.  Saccadic velocity is a function of saccade distance, 

and can reach velocities as high as 500° of visual angle per second (Rayner, 1998).  A 
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typical saccade during reading covers a distance of 2° and takes around 30 ms (Abrams 

et al., 1989).  In between saccades, our eyes remain relatively still during fixations of 

about 200-300 ms. 

Other eye movements such as pursuit, vergence, and vestibular eye movements 

bear mentioning.  Pursuit eye movements occur when the eyes follow a moving target; 

vergence eye movements occur when the eyes move to fixate on objects at different 

distances; finally, vestibular eye movements occur when the eyes move to compensate 

for head motion.  However, these types of eye movements stabilize images on the retina 

during reading, while saccadic eye movements are greater in magnitude and are 

responsible for moving the point-of-gaze.  For the reading tasks described in the 

remainder of this chapter, we will only consider saccadic eye movements. 

 Saccades bring new regions of text into foveal view for detailed analysis.  Not all 

words are fixated during reading as foveal processing of every word is not necessary.  

The probability of a word being fixated increases with its length; words 2-3 letters in 

length are only fixated 25% of the time (Rayner and McConkie, 1976).  Longer words 

are sometimes fixated more than once. 

Although reading English text is performed left to right, 10-15% of saccades are 

made right to left, or upwards to previously read lines (Rayner, 1998).  These saccades in 

the direction opposite of text flow are called regressions.  Some regressions are made 

because the reader made an overshoot in a saccade, necessitating a short corrective 

movement to the left.  In-word regressive saccades may indicate difficulty processing the 

fixated word.  Longer saccades back to previous lines may indicate comprehension 

difficulty.  
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4.2 Processing Time During Reading 

 Reading performance is affected by a number of factors, the most important of 

which are the reader’s skill level, and, conversely, the difficulty of the text.  For difficult 

text, the reader’s fixation durations increase, saccade lengths decrease, and frequency of 

regressions increases (Rayner, 1998).  Within a body of text, there are also variations in 

processing times for individual words.  To understand the factors that cause these 

variations, one must rely on a model of the reading process. 

 
4.2.1 Dual-Route Reading Model 

 The most popular theory of visual word recognition is the dual-route theory.  

According to this theory, reading involves two separate processing routes, one to read 

irregular words such as “yacht” and one to read pronounceable non-words such as “yat.” 

For regular words, these two processes compete to produce word recognition.  A model 

based on the dual-route theory is presented in Figure 4.1 (Coltheart et al., 2001). 

The first stage of reading is associated with orthographic analysis, whereby 

information regarding a word’s length, shape, and letter units is extracted from the text.  

Typographical factors such as print quality, font face, line spacing, letter spacing, and 

line length may affect this analysis (Kolers et al., 1981; Morrison and Inhoff, 1981).  

However, under normal reading conditions, the typographical effect should be small.  

After orthographic analysis, the model diverges, splitting off into the lexical route and 

the non-lexical (sub-lexical) route.  In the lexical route, the word’s letter units are 

processed visually in parallel and a match is found within the reader’s orthographic 

lexicon, containing all words the reader knows.  In effect, the word is recognized as a 
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single unit, rather than through an examination of its individual letters.  A mapping from 

the orthographic lexicon to the phonological lexicon, i.e. from a word image to a 

pronunciation, is then performed.  When there is a one-to-many relationship between 

word image and pronunciation, such as for the word “read” which has two 

pronunciations depending on its tense, the semantic system disambiguates on the basis of 

meaning and context. 

text

speech

Orthographic
Analysis

Orthographic
Input Lexicon

Phonological
Output Lexicon

Response
Buffer

Semantic
System

Grapheme-
Phoneme

Rule System

LEXICAL ROUTE NON-LEXICAL ROUTE

 

 
Figure 4.1:  Model of dual-route cascaded model of visual word recognition and 

reading aloud (adapted from Coltheart et al., 2001). 
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In the non-lexical route, a letter string is converted into a phoneme string via a 

grapheme-to-phoneme conversion.  A phoneme is the smallest unit of sound by which 

words can be distinguished; hence, changing one phoneme in a word yields a different 

word.  A grapheme is the letter or set of letters that represent a particular phoneme.  This 

conversion is performed one grapheme at a time, and requires a sequential examination 

of the letters in the word.  The conversion is performed based on a set of mapping rules.  

For example, the grapheme c in the word “cat” is mapped to the phoneme /k/, while the 

same grapheme in “cent” is mapped to the phoneme /s/. 

The bidirectional arrows in the lexical-route are significant and represent the 

positive feedback that is provided to prior stages.  For example, production of an output 

phoneme in the response buffer induces an excitation effect in phoneme searching within 

the phonological output lexicon.  This positive feedback may propagate all the way back 

to the orthographic analysis stage.  Similar feedback effects have been proposed for the 

non-lexical route, but have not yet been successfully modeled.  

The lexical route is faster since each word is recognized as a whole, rather than 

through an examination of its constituent letters.  The speed of the lexical route depends 

on how often the reader had previously encountered the word.  Commonly encountered 

words are recognized more quickly.  Hence, the frequency of the word affects how long a 

reader spends looking at the word; this has been described as the “frequency effect” 

(Inhoff, 1984; Inhoff and Rayner, 1986; Just and Carpenter, 1980).  When the word is 

encountered at “low-frequency”, the non-lexical route may be faster.  When the word is 

unknown to the reader, and thus not within the reader’s lexicon, the lexical route fails.  
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Not all English words conform to standard grapheme-to-phoneme mapping rules, and the 

non-lexical route fails to produce the proper phoneme string in these cases. 

After a phoneme has been activated, it is placed in the response buffer.  This 

response buffer has a finite size and imposes a limit on the reading rate.  The rate at 

which output from the response buffer can be consumed depends on whether the reading 

is performed silently or aloud.  When silently reading text suitable for their reading 

ability, skilled readers are able to read at a rate in excess of 300 words per minute (wpm).  

When reading aloud, reading rate is limited by the speed of the vocalization.  The eyes 

tend to move ahead of the voice, and the reader must periodically wait for the voice to 

“catch up” (Rayner, 1998).  Hence, reading speed depends on whether the reading is 

performed silently or aloud. 

Based on the model described above, reading performance is a function of how 

quickly the lexical and non-lexical routes can activate phoneme generation.  The 

performance of the lexical route depends on the size of the reader’s lexicon and how 

quickly that lexicon can be searched, while the performance of the non-lexical route 

depends on the reader’s ability to apply acquired grapheme-to-phoneme conversion rules.  

For “low-frequency” words, readers will tend to fall back upon the non-lexical route, 

which increases processing time.  This processing time is further increased if the word is 

long, or if the reader is unable to efficiently apply known grapheme-to-phoneme rules 

due to word irregularity.  By measuring the processing time of a word, we can attempt to 

detect when the lexical route fails, and hence determine when a reader encounters an 

unfamiliar word.  

 



CHAPTER 4: QUANTITATIVE CRITERIA FOR DETECTING READING DIFFICULTY 

 
 

 
51 

4.2.2 Measuring Processing Time 

 Eye movements provide an efficient and objective measure of reading 

performance on a per-word basis.  The two most frequently used measures are “gaze 

duration” and “first fixation duration” (Rayner, 1998).  Gaze duration is the sum of all 

fixations made upon a word prior to a saccade to another word.  First fixation duration is 

the duration of the first fixation upon a word, regardless of how many subsequent 

fixations are made upon that word.  Results of past studies show that first fixation 

duration and gaze duration yield similar results. 

 When using these measures to quantify processing time, it is important to note 

that fixation times do not directly correspond to the underlying cognitive processes.  

Parafoveal processing (Fisher and Shebilske, 1985), whereby clues regarding word shape 

and the length of the next word to be processed are acquired using peripheral vision, tend 

to result in slight underestimation of the processing time.  Saccadic latency (Abrams and 

Jonides, 1998; Rayner et al., 1983), associated with the time required to program and 

activate the next saccade, tend to result in slight overestimation of the processing time.  

Nevertheless, fixation times provide a reliable and convenient means to indirectly 

quantify cognitive processes. 

 
4.3 Reading Task Experiment 

4.3.1 Objective 

An experiment was conducted to observe eye movements during a reading task.  

The objective of the experiment was to determine quantitative differences in eye 

fixations when a reader encounters difficulty reading a word.  Within the context of a 
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reading assistance application, detection of such differences on a per-word basis would 

enable reading assistance to be rendered when needed. 

 Readers are expected to experience difficulty when encountering a word that 

they do not recognize (low-frequency word), and hence must rely on the non-lexical 

reading route.  We hypothesized that this difficulty would result in a longer gaze duration 

upon the word being read, and would also be characterized by a higher rate of in-word 

regressions.  From these quantitative differences, a set of criteria can be established to 

automatically determine reader difficulty on a per-word basis. 

 
4.3.2 Apparatus 

The reading material used in this experiment consisted of short passages of text, 

between twenty and fifty words in length.  The passages were selected from English 

literature such that each passage contained at least one low-frequency word, varying 

from 5 letters to 12 letters in length.  Word frequency was measured using the British 

National Corpus (BNC) metric (Leech, 2001), which counts the number of word 

occurrences within a database of 100 million words sampled from present-day English.  

For example, “the”—the most common word in the English language—has a BNC 

Frequency of 6187267.  This can be expressed as an occurrence rate of 6.187267% 

within the corpus.  A low-frequency word was defined as one having a BNC Frequency 

less than 100.  A sample passage follows: “Perhaps most amazingly, votaries of diversity 

insist on absolute conformity.”  Table 4.1 shows the corresponding BNC Frequencies of 

each word from the sample passage.  For this text, “votaries” is the low-frequency word 

expected to be unknown to the reader. 
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Table 4.1:  BNC Frequency of Words in a Sample Passage 

Word BNC Frequency 
Perhaps 35039 

Most 54966 

Amazingly 377 

Votaries 4 

Of 2941444 

Diversity 1387 

Insist 881 

On 647344 

Absolute 3480 

Conformity 473 

 
 
 The experiment was conducted using a standard desktop PC operating the remote 

point-of-gaze estimation system described in Chapter 3.  Point-of-gaze was estimated 

with respect to a static scene (a computer monitor); hence, the proposed modifications for 

performing an experiment using moving reading material were not needed.  The remote 

system was used instead of the head-mounted system to obtain point-of-gaze estimates 

free of errors caused by movement of the head or the reading material.  To this end, a 

chin-rest was used to stabilize the head.  Point-of-gaze was estimated and recorded at 30 

Hz. 

 Subjects were positioned at a distance of 65 cm from a 19” computer monitor; 

text was presented on the monitor with a character height of 1.5 cm, subtending a visual 

angle of 1.3°.  The character height was chosen to accommodate the point-of-gaze 

estimation system, which is accurate to within 1° of visual angle under normal operating 

conditions.  The selected text size can be read comfortably by individuals with 20/20 

vision.  When visual acuity is not a factor, text size does not affect reading speed, as the 
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number of letter spaces traversed by saccades is largely invariant to text size (Morrison 

and Rayner, 1981). 

 
4.3.3 Methodology 

Four subjects participated in the experiment.  Subjects all possessed university-

level reading ability.  All four subjects had normal visual acuity (20/20) or achieved 

equivalent visual acuity using corrective lenses.  

Forty passages were presented to each subject.  Subjects read twenty passages 

silently and twenty passages aloud in alternating fashion to reduce biasing effects of 

fatigue.  To alleviate fatigue, subjects were given brief rest periods between each set of 

ten passages.  Subjects were asked to disregard text comprehension during the reading 

task. 

After each passage was read, subjects were asked to name the words they did not 

recognize.  These unknown words were foreign to the orthographic lexicon of the subject.  

Based on the dual-route model of reading, subjects processed these words using the non-

lexical reading route.  We assume known words were processed using the faster lexical 

reading route.  Using this information, words fixated upon during reading can be labelled 

as either “known” or “unknown.”  Therefore, words from the forty passages can be 

divided into four sample populations: silent known, silent unknown, aloud known, and 

aloud unknown.  By analyzing these four sample populations separately, one can 

determine distinct fixations behaviours that are associated with each population. 
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4.3.4 Differences in Performance between Silent and Aloud Reading 

As shown in Table 4.2, aloud reading was slower than silent reading for all 

subjects.  Analysis of reading performance with respect to fixation time and fixation rate 

(fixations per word) confirmed some results from previous studies (Rayner, 1984; 1998).  

For aloud reading, fixation rate was higher, while fixation duration was approximately 

the same or higher. The high variability in fixation time and fixation rate between 

subjects is expected; these two factors combine to produce variations in reading speed.  It 

is interesting to note that Subject V.S. had the longest fixation times, but achieved the 

fastest reading speed by also having the lowest fixation rate, suggesting the use of more 

efficient saccadic programming.   

  The results show that eye fixation behaviour differs between silent and aloud 

reading.  Since the reading assistance system should operate for both silent and aloud 

reading, we will examine these two reading modes separately in the sections to follow. 

 
Table 4.2:  Reading Speed and Fixation Differences between Silent and Aloud 

Reading 
Reading Speed  

(wpm) 
Fixation Time  

 (ms) 
Fixation Rate 

(fpw) 
Silent Aloud 

Subject Silent Aloud Mean S.D. Mean S.D. Silent Aloud 
E.G. 165 142 228 122 221 122 1.35 1.57
M.E. 135 115 222 131 238 146 1.63 1.80
P.L. 186 134 254 151 266 164 1.08 1.43
V.S. 219 134 277 117 347 184 0.87 1.14
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4.3.5 Differences in Gaze Durations between Known and Unknown 
Words 

 
To analyze reading performance on a per-word basis, the gaze duration for each 

word was calculated.  Some words were viewed more than once via regressions; for 

unknown words, only the first viewing was considered under the assumption that word 

are no longer unfamiliar after they have been processed once.  The mean gaze duration of 

unknown words was compared to the mean gaze duration of known words.  Since 

processing time is affected by word length (Trueswell, Tanenhaus and Garnsey, 1994), 

we examine words of different length separately.  Figures 4.2 and 4.3 show mean gaze 

duration as a function of word length for each subject during silent and aloud reading, 

respectively.  The error bars in Figures 4.2 and 4.3 represent one sample standard 

deviation.  Consecutive estimates of the means and standard deviations for unknown 

words show high variability because the sample size of each set of unknown words is 

small (less than five words).  Nevertheless, the results show that mean gaze durations for 

known words are shorter than mean gaze durations for unknown words, reflecting faster 

processing of known words. 
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Figure 4.2: Gaze duration as a function of word length for known and unknown 

words during silent reading. 
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Figure 4.3:  Gaze duration as a function of word length for known and unknown 

words during aloud reading. 
 
 
4.3.6 Differences in In-Word Regressions between Known and 

Unknown Words 
 
 The recorded fixations were analyzed to determine regression behaviour during 

the reading tasks.  A regression is defined as a saccade made by the reader to the left, or 

upward to a previous line of text.  An in-word regression is a saccade made to an earlier 

portion of the same word.  Prior studies suggested that in-word regressions may indicate 

that the reader is experiencing difficulty processing the fixated word (Kennedy and 

Murray, 1987).  The rates of in-word regressions are summarized in Tables 4.3 and 4.4. 
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Table 4.3: In-Word Regression Rate for Silent Reading 
Known Words Unknown Words 

Subject Words Regressions Regression 
Rate Words Regressions Regression 

Rate 
E.G. 608 23 0.04 26 10 0.38 
M.E. 712 41 0.06 24 10 0.42 
P.L. 669 15 0.02 24 6 0.25 
V.S. 676 8 0.01 21 5 0.24 
Total 2665 87 0.03 95 31 0.33 

 

Table 4.4:  In-Word Regression Rate for Aloud Reading 
Known Words Unknown Words 

Subject Words Regressions Regression 
Rate Words Regressions Regression 

Rate 
E.G. 689 28 0.04 17 7 0.41 
M.E. 623 41 0.07 24 15 0.63 
P.L. 509 19 0.04 25 5 0.20 
V.S. 686 17 0.02 20 5 0.25 
Total 2507 105 0.04 86 32 0.37 

  

The results show that the in-word regression rate was ten times higher for 

unknown words, for both silent and aloud reading. This confirms expectations, since we 

expect unknown words to require re-examination more often, and this is facilitated by in-

word regressions.  However, not all unknown words required an in-word regression to 

process. This is clearly the case for short words, since they can be fully re-examined 

without using in-word regressions.  The in-word regression rate also varies greatly 

between subjects.  Subject M.E. showed the highest in-word regression rate at 0.63 

during aloud reading.  In contrast, subject P.L. exhibited an in-word regression rate of 

only 0.20 during aloud reading. 

 
4.3.7 Detecting Reading Difficulty on a Per-Word Basis 

 The results from the above experiments show that readers exhibit differences in 

fixation behaviour when reading unknown words.  These differences are measurable, and 
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have been quantified as reading with longer gaze durations and a higher rate of in-word 

regressions.  However, even though the rate of in-word regressions is much higher, most 

unknown words do not require an in-word regression to process.  Hence, the solitary use 

of in-word regressions does not provide a reliable means to detect reading difficulty.  We 

consider the use of a combined detection criterion using both in-word regressions and 

gaze durations.  We evaluated the merits of such an approach by examining the measured 

gaze durations for words processed with and without using an in-word regression.  These 

gaze durations are reported in Tables 4.5 and 4.6 for silent and aloud reading, 

respectively.  

 
Table 4.5:  Gaze Durations for Words Processed With and Without Using an In-

word Regression for Silent Reading 
Gaze Duration 

No In-word Regression (ms) In-Word Regression (ms) 
Subject Mean S.D. Mean  S.D. 
E.G. 284 187 540 280
M.E. 302 231 1099 811
P.L. 322 271 1159 901
V.S. 332 177 664 249
Total 308 222 839 657

 
 
Table 4.6:  Gaze Durations for Words Processed With and Without Using an In-

word Regression for Aloud Reading 
Gaze Duration 

No In-word Regression In-Word Regression 
Subject Mean S.D. Mean  S.D. 
E.G. 295 193 591 381
M.E. 328 270 1126 934
P.L. 398 344 733 559
V.S. 448 283 1041 437
Total 362 278 818 655

 

The results in Tables 4.5 and 4.6 show that the mean gaze duration is much 

higher when an in-word regression is used to process words.  An in-word regression 
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naturally increases gaze duration by increasing the number of fixations.  We conclude 

that a combined detection criteria using in-word regressions and gaze duration is unlikely 

to provide any additional information over the use of gaze durations alone since the two 

metrics are highly correlated. 

If gaze duration is used as the sole detection criterion, a threshold can be set to 

define the maximum gaze duration expected during the processing of a known word.  

Reading difficulty is detected when any gaze duration exceeds this threshold.  In the next 

section, we will discuss a method for determining this threshold. 

 
4.4 Proposed Detection System 

As reading speed is a function of reader skill and text difficulty, the appropriate 

gaze duration threshold must vary with the subject and the text.  Furthermore, the 

threshold should depend on the length of the word being examined.  We can apply 

classical detection theory to set an appropriate threshold for detecting unknown words. 

 For each word length, gaze duration may be modeled by two Gaussian processes: 

N(μk, σk
2) for known words and N(μu, σu

2) for unknown words, where μu > μk.  The 

observed gaze duration, r, is modeled as a random variable that can be classified using a 

binary hypothesis test.  The two hypotheses are: 

H0 : r ~ N(μk, σk
2),        (4.1) 

 H1 : r ~ N(μu, σu
2).        (4.2) 

A standard Bayes test is inappropriate for this problem since we do not know the 

a priori probabilities of an unknown word and a known word being encountered.  

Furthermore, the costs associated with detection, rejection, false alarm, and miss are 
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application and subject dependent.  Hence, it is appropriate to use the Neyman-Pearson 

Criterion to design a test that maximizes the probability of detecting an unknown word 

while constraining the probability of a false alarm.  In the context of a reading assistance 

application, a false alarm triggers assistance when it is not needed.  This type of 

interruption slows the reading process. 

The probability of a false alarm is a conditional probability given by:  

F 0P = P{r T|H }≥ ,        (4.3) 

where T is the threshold above which an unknown word is detected; T varies with word 

length.  Since H0 states that r is a Gaussian random variable with mean μk and variance 

σk, the conditional density of r can be expressed as  

 
2

k0 2
kk

-(R - μ )1P{r = R|H } = exp( )
2σ2πσ

.     (4.4) 

Hence, from (4.3) and (4.4), it follows that the probability of a false alarm is 

                 
2

k
F 2T kk

-(R - μ )1 P = exp( )dR
2σ2πσ

∞

∫ .     (4.5) 

PF is the area of the shaded region shown in Figure 4.4, and is a continuous function of T.  

For some specified probability of false alarm, T can be expressed as: 

 -1
k F kT = σ 2erf (1 - 2P ) + μ .       (4.6) 
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Figure 4.4:  Probability of a false alarm, PF, in the binary hypothesis test. 
 

 The calculation of T does not depend on μu or σu.  This is advantageous because 

μu and σu are more difficult to estimate than μk and σk due to the smaller sample sizes of 

unknown words.  We can consider this approach as using μk and σk to characterize a 

subject’s normal reading behaviour, and detecting deviations from this behaviour.  

The choice of PF is application dependent; the effect of this selection on detection 

performance is discussed in the section to follow.  Figure 4.5 shows two examples of 

threshold curves for PF equal to 0.01 (left) and 0.1 (right).  Each point on the threshold 

curve is calculated independently for each word length using (4.6). 
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Figure 4.5: Example thresholds for a PF values of 0.01 (left) and 0.1 (right). 
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4.5 Training Set Detection Performance 

In this section we estimate the statistics of the distribution of gaze durations for 

known words (μk and σk
2) for each subject, and calculate the detection thresholds by 

equation (4.6).  We consider this set of gaze durations measured in the experiment 

described in Section 4.3 to be the “training set” used by the detection system to learn 

subject-specific reading behaviour.  By applying the detection thresholds on this set of 

gaze durations, we characterize the detector’s training set detection performance. 

We have assumed for convenience that the process of reading known words is 

Gaussian, while literature suggests that gaze durations are more accurately modeled as 

Gamma processes (Rayner, 1998).  By comparing the measured false alarm rate to PF, 

the specified probability of false alarm, we can evaluate the error introduced by using a 

Gaussian model.  Figure 4.6 shows the measured false alarm rate for each subject under 

both silent and aloud reading as a function of PF.  The theoretical false alarm rate should 

have a slope of 1, and pass through the origin. 
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Figure 4.6: False alarm rate as a function of PF for silent reading (left) and aloud 
reading (right). 
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The measured results follow theoretical expectations. The slope of each curve is 

approximately 1.  Although the results vary between subjects, for PF between 0.05 and 

0.10, the false alarm rates closely match PF.   For example, for PF equal to 0.10, the false 

alarm rate was between 0.095 and 0.125 for all subjects.  We conclude that the Gaussian 

model of gaze durations for normal words does not introduce significant error in the false 

alarm rates. 

We next evaluate the detection rate of unknown words.  Figure 4.7 shows the 

detection rate for unknown words for each subject as a function of PF, under both silent 

and aloud reading conditions. 
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Figure 4.7: Detection rate as a function of PF for silent reading (left) and aloud 
reading (right). 

 

As expected, the results in Figure 4.7 show that as PF increases, the detection rate 

increases.  In other words, if we permit a higher false alarm rate, we can achieve a higher 

detection rate.  However, there is considerable variation, from subject to subject and 

between aloud and silent reading, in the manner by which the detection rate increases. 

The detection rate is inversely correlated with the distance between the mean gaze 

duration of known words and the mean gaze duration of unknown words, as shown in 
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Figure 4.3.  For example, the smallest distance between the two means was found for 

Subject V.S.; accordingly, the detection rate was lowest for this subject for all values of 

PF.  This result is expected since smaller distances between the means of the two 

distributions (for known and unknown words) result in more distribution overlap and a 

higher Bayes classification error.  For this reason, detection performance is better for 

aloud reading than for silent reading.  Under aloud reading conditions, for a PF value of 

0.10, the measured detection rate was greater than 0.80 for all subjects. 

 
4.6 Approximating the Detection Threshold 

 Recall that the detection threshold curve consists of a set of threshold (T) values. 

Each threshold value specifies the gaze duration, which, if exceeded, causes words of a 

specific length to be classified as an unknown word.  Each value is calculated 

independently using the observed mean (μk) and variance (σk
2) of the gaze durations 

recorded for words of that length.  However, if each threshold value is a function of word 

length, then the values are clearly not independent.  This suggests that the detection 

threshold may be approximated by some function of word length.  This would allow each 

set of threshold values to be described in a more succinct manner.  Furthermore, 

thresholds could then be estimated for words of arbitrary length.  Figure 4.8 shows the 

detection thresholds for each subject under aloud and silent reading conditions, 

calculated for PF equal to 0.10. 
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Figure 4.8: Detection thresholds for silent reading (left) and aloud reading (right). 
 

The shapes of the detection threshold curves suggest that a first-order or second-order 

approximation is appropriate.  For the sake of simplicity, we try a first-order 

approximation, and then evaluate its validity.  Consider the following approximation of 

the threshold curve: 

T(L) = B L+A× ,        (4.7) 

where T  is the approximated threshold and L is the word length.  The parameters A and 

B are the coefficients of a least-squares regression line fitted to the threshold values.  

Figure 4.9 shows the first-order approximations of the detection threshold shown in 

Figure 4.8. 

 



CHAPTER 4: QUANTITATIVE CRITERIA FOR DETECTING READING DIFFICULTY 

 
 

 
68 

Linear Approximation of Detection Thresholds for 
Silent Reading

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12

Word Length (letters)

Ti
m

e 
(m

s) Subject E.G.
Subject M.E
Subject P.L.
Subject V.S.
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Figure 4.9: First-order approximations of the detection thresholds for silent 
reading (left) and aloud reading (right). 

 

 The validity of the first-order approximation can be evaluated by examining 

detection performance obtained using the approximated thresholds.  The performance 

characteristics of the approximated thresholds are shown in Figure 4.10, which shows the 

false alarm rate, and Figure 4.11, which shows the detection rate.  
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Figure 4.10: False alarm rate as a function of PF when using the approximated 
detection threshold for silent reading (left) and aloud reading (right). 

 



CHAPTER 4: QUANTITATIVE CRITERIA FOR DETECTING READING DIFFICULTY 

 
 

 
69 
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Figure 4.11: Detection rate as a function of PF when using the approximated 
detection threshold for silent reading (left) and aloud reading (right). 

 

The results shown in Figures 4.11 and 4.12, obtained using the approximated 

thresholds, can be compared directly to the results shown in Figures 4.6 and 4.7, obtained 

using the exact thresholds.  The magnitudes of the changes in the false alarm rates do not 

exceed 0.04 under any conditions.  The magnitudes of the changes in the detection rates 

are generally within 0.05.  The results show that the use of the first-order approximation 

for the detection threshold does not substantially affect detection performance.  This 

approximation allows each detection threshold to be described using only two parameters, 

while allowing the threshold to be estimated for words of arbitrary length. 

 
4.7 Test Set Detection Performance 

In this section, we apply the detection thresholds obtained from the training set on 

a new test set.  Gaze durations were collected in the manner described in Section 4.3 for 

an additional twenty passages read aloud and twenty passages read silently.  Detection 

performance for the new test set of gaze durations are compared to the training set results 
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of Section 4.6.  Detection rate and false alarm rate for both the training set and the test set 

are summarized in Tables 4.7 and 4.8 for silent and aloud reading, respectively.  

 
Table 4.7:  Detection Performance in Simulated Reading Assistance Application 

for Silent Reading 
Detection Rate False Alarm Rate 

Subject Training Set Test Set Training Set Test Set 
E.G. 0.90 0.78 0.11 0.10
M.E. 0.96 1.00 0.14 0.16
P.L. 0.96 0.93 0.10 0.08
V.S. 0.64 0.74 0.10 0.12
Total 0.87 0.86 0.11 0.12

 

Table 4.8:  Detection Performance in Simulated Reading Assistance Application 
for Aloud Reading 

Detection Rate False Alarm Rate 
Subject Training Set Test Set Training Set Test Set 

E.G. 0.89 0.86 0.11 0.09
M.E. 0.96 1.00 0.11 0.12
P.L. 0.96 0.94 0.10 0.10
V.S. 0.90 0.86 0.12 0.11
Total 0.93 0.92 0.11 0.10

 

The detection rate and the false alarm rate show high correlation between the 

training sets and the test sets.   In general, the false alarm rate closely adheres to the 

specified PF value of 0.10 for both sets.  The detection rate exhibits more variation from 

subject to subject; however, this variation is to be expected since the detection threshold 

only controls the false alarm rate and not the detection rate.  The results suggest that the 

detection threshold obtained from a small training set of gaze durations can be 

successfully applied to gaze durations measured when reading new text. 
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4.8 Detection Performance Based on Number of Words Read  

In the previous sections we have discussed detection rates and false alarms rates 

in terms of the percentage of gaze durations which exceed the detection threshold.  For 

the sake of brevity in the following discussion we will refer to each set of fixations for 

which each gaze duration is measured as a “gaze.”  During the reading tasks, the 

correspondence between words read and gazes was not one-to-one.  In this section, we 

normalize detection rates and false alarm rates based on the number of words read. 

We examine the relationship between gazes and words separately for known and 

unknown words.  In the case of known words, many short low-content words were 

processed parafoveally (no recorded gazes), while other words were read more than once 

(multiple recorded gazes).  By comparison, all unknown words were fixated upon.  

Furthermore, when an unknown word was read more than once, we only considered the 

first-pass gaze, based on the assumption that the word was no longer unfamiliar to the 

subject upon subsequence re-processing.  Table 4.9 reports the gaze rate (gazes per word) 

for known words calculated from the gaze durations measured in the above experiment.  

Note that the gaze rate for unknown words, based on the discussion above, is always 1. 

 
Table 4.9: Gaze Rate for Known Words During Silent and Aloud Reading 

Silent Reading Aloud Reading 

Subject Gazes Words Gaze Rate 
(gpw) Gazes Words Gaze Rate

(gpw) 
E.G. 580 634 0.91 652 668 0.98
M.E. 479 509 0.94 606 544 1.11
P.L. 433 644 0.67 470 646 0.73
V.S. 411 654 0.63 384 513 0.75
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In general, the gaze rate is lower for silent reading than for aloud reading.   

Furthermore, the gaze rate varies significantly between subjects.  The detection rates and 

false alarm rates presented in Tables 4.7 and 4.8 were normalized based on the number of 

words read.  The normalized word-based rates are presented Tables in 4.10 and 4.11 

alongside the old gaze-based rates, for silent and aloud reading, respectively.  

 
Table 4.10: Detection Performance Based on Number of Words and Number of 

Gazes for Silent Reading 
Detection Rate False Alarm Rate 

Subject Gaze-Based Word-Based Gaze-Based Word-Based
E.G. 0.78 0.78 0.10 0.09
M.E. 1.00 1.00 0.16 0.15
P.L. 0.93 0.93 0.08 0.06
V.S. 0.74 0.74 0.12 0.08
Total 0.86 0.86 0.12 0.09

 

Table 4.11: Detection Performance based on Number of Words and Number of 
Gazes for Aloud Reading 

Detection Rate False Alarm Rate 
Subject Gaze-Based Word-Based Gaze-Based Word-Based

E.G. 0.86 0.86 0.09 0.09
M.E. 1.00 1.00 0.12 0.13
P.L. 0.94 0.94 0.10 0.07
V.S. 0.86 0.86 0.11 0.09
Total 0.92 0.92 0.10 0.09

 

Since the gaze rate for unknown words is always 1, the detection rate does not 

change after normalization.  However, the gaze rates for known word tends to be less 

than 1 (there are fewer gazes than words).  Hence, the normalized word-based false alarm 

rate tends to be less than the gaze-based false alarm rate.  Detection performance 

normalized by the number of words read provides a more accurate comparison of results 

between different subjects, and between aloud and silent reading. 
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4.9 Summary 

In this chapter, the measurement of eye movements was introduced as an indirect 

method of estimating per-word processing time.  It was hypothesized that by measuring 

gaze duration on the viewed word we can detect when a reader encounters an unknown 

word.  In the context of the dual-route reading model, this difficulty represents a failure 

in the lexical reading route.  It was shown that the mean gaze duration used to process an 

unknown word is greater than the mean gaze duration used to process a known word of 

the same length.  Based on these experimental results, a method for detecting when a 

reader encounters an unknown word was designed based on the principle of constraining 

the false alarm probability.  The detection system was validated for both aloud and silent 

reading tasks.  Using detection thresholds calculated from a small training set for a false 

alarm probability of 0.10, a detection rate of 0.89 and a false alarm rate of 0.11 were 

obtained on a test set.  The next chapter describes the use of the detection system within a 

reading assistance application that facilitates reading within a natural setting. 
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Chapter 5  

Natural Setting Reading Assistance 

The primary objective of this investigation was to develop the means to provide 

automated reading assistance in a natural setting.  Chapters 2 and 3 described methods to 

determine the viewed word using head-mounted and remote point-of-gaze estimation 

techniques, respectively.  Chapter 4 presented a means to detect reading difficult on a 

per-word basis.  This detector and the viewed-word identification techniques developed 

in Chapter 2 were combined to implement a system to provide automated reading 

assistance while tolerating head and reading material movement. 

Section 5.1 describes an experiment to verify the principle of operation of the 

system, and evaluates system performance.  Section 5.2 summarizes the main 

contributions of this investigation and makes recommendations for future work. 

 
5.1 Reading Assistance Experiment 

5.1.1 Objective 

The proposed automated reading assistance system was implemented by 

combining: (1) the system to monitor the viewed word using a head-mounted eye-tracker, 

and hence measure per-word processing time, and (2) the processing time thresholds for 
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detecting when the reader encounters an unknown word.  The objective of the experiment 

described in this section was to verify the principle of a novel automated reading 

assistance system. 

 
5.1.2 Apparatus 

 The reading material used in the experiment was composed of short passages of 

text, totalling 615 words.  The passages were selected from English literature in the 

manner described in Section 4.3.  The reading material was printed on standard letter-

sized (8”×11.5”) paper, spanning 64 bound single-sided sheets.  Character height was 15 

mm, allowing a maximum of 70 characters (5 rows of 14 characters) to be presented on 

each page.  In addition to the text, each page contained four coded targets to facilitate 

tracking of reading material position and a barcode to encode the page number. 

 The head-mounted system described in Chapter 2 was used to perform point-of-

gaze estimation, and identify, in real-time, the word viewed by the subject.  A scene 

camera with a focal length of 4 mm and a field of view of 92.1° by 69.1° (horizontal by 

vertical) was used to image the scene in which the reading material was presented.  At a 

distance of 50 cm, the reading material occupied approximately 20% of the field of view.  

This provides a region in which the reading material may move with respect to the head-

mounted scene camera without leaving the camera’s field of view.  The size of reading 

material with respect to the field of view can be seen in Figure 5.1, in which a sample 

image captured by the scene camera is shown. 
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Figure 5.1: Image of the reading material used in the reading experiment 
captured by the scene camera. 

 

When the position of the scene camera is fixed, the reading material may move 

within a region with dimensions of approximately 60 cm by 40 cm by 10 cm (horizontal 

by vertical by depth).  The constraint in depth is imposed by the image processing used 

to track the four coded targets.  When the position of the reading material is fixed, the 

range of tolerable head movement is approximately ± 20° by ± 15°  (horizontal by 

vertical).  Using this configuration, the system is expected to accommodate the head 

movements and reading material movements typically encountered during a reading task. 

Customized monitoring software was used to calculate gaze durations and trigger 

assistance when gaze durations exceeded the specified threshold.  Assistance was 

rendered in the form of computer vocalization of the viewed word.  Computer 

vocalization was generated using the Lernout and Hauspie ® TruVoice text-to-speech 

engine, a state-of-the-art vocalization system for personal computers.  
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5.1.3 Methodology 

Two subjects participated in this experiment; both had previously participated in 

the experiments described in Sections 4.3, and thus the appropriate detection thresholds 

were known. 

While performing the reading task, subjects sat in a natural reading pose and held 

the reading material at a comfortable distance (approximately 50 cm).  Head position was 

not restrained, allowing for natural head motions during reading tasks.  These head 

motions typically consist of small changes in tilt and pan angle, and were expected to be 

within the tolerances described in Section 5.1.2.  The reading material was held by the 

subject, and thus moved with the subject.  This configuration simulates a natural reading 

setting.  Figure 5.2 shows a subject in a typical reading pose while the system is in 

operation. 

 

Figure 5.2: Photograph of a subject in a typical reading pose. 

 
Subjects read the reading material aloud while per-word gaze duration was 

measured.  The subject-specific thresholds for detecting unknown words were set based 
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on the linear threshold approximations described in Section 4.6.  The threshold levels for 

each word length were selected for a false alarm probability of 0.10.  When gaze duration 

for any word exceeded the length-appropriate threshold, the reading assistance system 

performed computer vocalization of the word.  The system operates under the 

assumption that vocalization assistance is needed for all unknown words.  At the end of 

each page, subjects were asked to identify any unknown words. 

 
5.1.4 Results and Discussion 

Detection performance achieved during operation of the automated reading 

assistance system is presented in Table 5.1.  The detection rate corresponds to the 

percentage of unknown words for which the system provided needed vocalization 

assistance; while the false alarm rate corresponds to the percentage of known words for 

which the system provided unneeded vocalization. 

 
Table 5.1:  Natural Reading Setting Detection Performance  

Subject Detection Rate False Alarm Rate 
M.E. 0.94 0.10
P.L. 0.95 0.09

 
 

These results can be compared to those obtained in the evaluation of the detection 

system performed in Section 4.7, whereby gaze durations were measured using a remote 

point-of-gaze estimation system for fixed head and reading material positions.  For the 

same two subjects on the aloud reading test set, the aggregate detection rate was 0.96 and 

the aggregate false alarm rate was 0.10.  Detection performance during operation of the 

reading assistance system closely conformed to these earlier results.  This suggests that 
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the proposed point-of-gaze mapping method accommodated the range of head and 

reading material movement without significantly reducing system performance. 

 
5.2 Conclusions 

5.2.1 Contributions of the Thesis 

In developing an automated reading assistance system, some contributions have 

been made which are more generally applicable.  The main contributions of this thesis 

are as follows: 

• Development of a method to map point-of-gaze estimates obtained from a head-

mounted eye-tracker to an object coordinate system attached to a moving 2D scene 

object.  Using a set of four point correspondences, the mapping method was found to 

have an RMS error of 2.29 mm.   

• Development of a method to estimate the motion of a 2D scene object within a scene 

when the intrinsic parameters of a statically-placed scene camera are known.  The 

theoretical framework for extending the operation of an existing remote point-of-gaze 

estimation system from static 2D scene objects to moving 2D scene objects was 

developed.  This enables the creation of a system to identify the viewed word on 

moving reading material using no head-worm components.  Performance of the 

system was characterized through simulation.  If four point correspondences between 

the scene image and the 2D scene object can be established with image noise having 

standard deviation of 0.1 pixels, then the proposed motion estimation method 

introduces a 1.51 mm RMS error to point-of-gaze estimates.  
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• Development of a method to detect when a reader encounters an unknown word.  A 

method was developed to learn subject-specific reading behaviour using a small 

training set.  This method establishes per-word thresholds for gaze durations such 

that an unknown word is detected when the reader’s gaze duration exceeds the 

threshold.  The detection sensitivity is specified by the desired probability of false 

alarm.  For a specified probability of false alarm of 0.10, the system achieved a 0.89 

detection rate and a 0.11 false alarm rate. 

• Demonstrated the principle of operation for an automated reading assistance system 

that provides need-triggered computer-generated vocalization of unknown words to 

readers.  The system operates in a natural reading setting, tolerating unconstrained 

head movement. 

 
5.2.2 Future Work 

The theoretical basis for an automated reading assistance system based on a 

remote gaze estimation system has been presented, but the implementation remains to be 

completed.  This work requires interfacing a scene camera to an existing remote point-of-

gaze estimation system (Guestrin, 2006) and implementing the 2D object motion 

estimation algorithm developed in Chapter 3.  A reading assistance system with no head-

worn components offers more comfort to the reader, and would be more suitable for long 

reading tasks.  Remote point-of-gaze estimation is also preferable to head-mounted 

systems in applications involving children, for whom the reading assistance system may 

offer benefit in a teaching capacity. 

Although the principle of operation of a reading assistance system has been 

demonstrated, further investigation is required to validate the efficacy of the system as a 
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teaching tool.  The effectiveness of the system in teaching grapheme-to-phoneme 

mappings requires study, especially in direct comparison to current teaching techniques 

in which assistive intervention is provided by a human monitoring the reader’s 

performance (e.g. a teacher or a parent). 

Other forms of assistive intervention may be evaluated.  In some applications, 

providing vocalization of an unknown word may be insufficient or inappropriate.  Other 

possible forms of automated assistance include providing the definition of the word and 

translation of the word to a different language.  The principle of the system to be 

conserved is the automatic detection of the reader’s need followed by context-appropriate 

assistance.
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Appendix A 
 
Rodrigues’ Rotation Formula 
 

One method of representing a rotation is the angle-axis representation, whereby a 

rotation by a angle θ about a fixed axis specified by a unit vector W = [wx wy wz]T is fully 

described by a vector θ = θW.  The equivalent rotation matrix R of this rotation is given 

by Rodrigues’ rotation formula (Hartley and Zisserman, 2003): 

2
x x y z y x z

2
z x y y x y z

2
y x z x y z z

cosθ + w (1 cosθ) w w (1 cosθ)  wsinθ w sinθ + w w (1 cosθ)
wsinθ + w w (1 cosθ) cosθ + w (1 cosθ) w sinθ + w w (1 cosθ)
w sinθ + w w (1 cosθ) w sinθ + w w (1 cosθ) cosθ + w (1 cosθ)

− − − −

− − − −

− − − −

⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥⎣ ⎦

R .  (A.1) 


