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Abstract. We measure the spatial correlation function of Bose-Einstein condensates in the cross-over region
between phase-coherent and strongly phase-fluctuating condensates. We observe the continuous path from
a Gaussian-like shape to an exponential-like shape characteristic of one-dimensional phase-fluctuations.
The width of the spatial correlation function as a function of the temperature shows that the condensate
coherence length undergoes no sharp transition between these two regimes.

PACS. 03.75.Hh Static properties of condensates; thermodynamical, statistical and structural properties –
03.75.Dg Atom and neutron interferometry – 39.20.+q Atom interferometry techniques

1 Introduction

The high atomic phase-space density provided by a
Bose-Einstein condensate (BEC) [1] has driven interest
in guiding atoms in a manner analogous to guiding laser
light through single-mode optical fibres. The most ad-
vanced technology to date is based on atom chips, where
the fields which trap and guide the atoms are created by
microfabricated structures [2–7]. Many groups around the
world have already succeeded in preparing BEC on an
atom chip [8–14] and one can envisage using this technol-
ogy to create integrated atom interferometers [15–18]. In
this context, a precise characterization of the phase coher-
ence properties of the condensate is crucial [19–21].

Trapping quantum gases on atom chips naturally in-
volves highly elongated, guide-like traps. Changing the di-
mensionality of the system from three-dimensional (3D)
towards one-dimensional (1D) has a profound effect on the
phase coherence of the condensate. In 3D condensates of
modest aspect ratio, experimental results show that phase
coherence extends across the whole cloud [22,23], even at
finite temperature [24]. However, in the 1D regime, ther-
mal excitations of the low energy axial modes lead to phase
fluctuations which degrade the phase coherence [25,26].
Condensates exhibiting such phase fluctuations are known
as quasi-condensates.

In the intermediate regime of elongated 3D conden-
sates with a high aspect ratio, a behaviour similar to the
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1D case is observed [27]: below a characteristic tempera-
ture Tφ determined by the atom number and the trapping
frequencies, the condensate is nearly phase coherent, but
above Tφ the population of the axial modes is high and
phase fluctuations may be pronounced. For weakly elon-
gated condensates, Tφ can be higher than the transition
temperature Tc, so that the condensate is nearly phase
coherent at all temperatures. In contrast, atom chips can
easily produce traps with high aspect ratios (∼1000) for
which Tφ can be much smaller than Tc. Phase fluctuations
are therefore likely to impose limits on the performance
of atom chip devices and need to be well understood.

In an elongated condensate, the wavelength of the low
energy axial modes is longer than the radial size of the
condensate, so these excitations have a 1D character. How-
ever, the wavelength of these excitations can be much
shorter than the axial length of the condensate, reducing
the phase coherence length in the axial direction. An im-
portant feature of quasi-condensates is that density fluc-
tuations remain suppressed in the trap, due to the mean
field energy, even in the presence of large phase fluctua-
tions [21,27]. Therefore, the 3D quasi-condensate has the
usual parabolic profile in the Thomas-Fermi limit.

Phase-fluctuating condensates in elongated traps were
first observed by the conversion of phase fluctuations
into density fluctuations after a sufficiently long free
expansion [19] and by a condensate-focussing tech-
nique [20]. Quantitative measurements of the phase coher-
ence length have since been obtained from the momentum
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distribution [21] and the second-order correlation func-
tion [28]. The results of each of these experiments showed
good agreement with theory [27] in the strongly phase-
fluctuating regime (at temperatures T � Tφ). How-
ever, neither experiment explored the cross-over region
(T ∼ Tφ) between phase-coherent and strongly phase-
fluctuating condensates.

In this article we describe a new experiment using a
matter-wave interferometer and Fourier-space analysis to
measure the spatial correlation function, thereby extend-
ing our measurements into the cross-over region (T ∼ Tφ).
Our results agree with the predicted shapes of the correla-
tion function: for T � Tφ, we find exponential-like corre-
lation functions as predicted for significant phase fluctua-
tions, whereas at T ∼ Tφ we find a Gaussian-like shape, as
expected when the phase profile is nearly flat and the cor-
relation function decay is dominated by the density pro-
file. The coherence length as a function of T/Tφ follows
the trend predicted by theory, showing that the coher-
ence length increases smoothly as the temperature falls
and that there is no sharp transition at Tφ. This high-
lights the fact that phase fluctuations occur at all finite
temperatures, even if these effects are too small to be
resolved experimentally for more spherical traps. How-
ever, whereas our previous measurements based on mo-
mentum spectroscopy [21], realized for high T/Tφ, were
in full agrement with the theory, two observations remain
unexplained in the interferometric method. First, as in a
previous experiment [22], our experimental measurements
of the coherence length are shifted from the theoretical
prediction, by about 25% for T/Tφ = 1, even after taking
the limitations of our imaging system into account. Sec-
ond, our interferometer produces unexplained supplemen-
tary fringes outside of the region where the condensates
overlap, and we note that similar unexplained fringes ap-
pear in other published data [29]. These supplementary
fringes do not seem to be compatible with interference of
the thermal cloud observed in [30].

2 Measurement of the coherence length
by atom interferometry

A natural method to study the coherence length along
the long axis z of a condensate, or a quasi-condensate, is
to use atom interferometry. With atomic beam-splitters,
one produces two daughter copies of the initial condensate
with a separation s, and observes the interference pattern
appearing in the atomic density:
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where ez is the axial unit vector, Ψ0(r) is the wavefunction
describing the initial condensate and φrel a relative phase

shift produced by the interferometer and the free fall of
the condensate.

Let us first consider the behaviour of a fully phase
coherent condensate. During free expansion, it acquires
a phase distribution proportional to z2 [31]. The phase
difference φrel between two displaced copies of the con-
densate is therefore proportional to zs, giving rise to an
interference pattern of straight fringes, uniformly spaced
along the longitudinal direction, the spatial frequency of
the fringes being proportional to the separation s. The
fringe contrast integrated over the entire condensate gives
the first-order correlation function at s:
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Repeating this contrast measurement for different separa-
tions s, one can study the decay of C(1)(s) with increas-
ing s [22]. For a fully phase coherent condensate, the first-
order correlation function decay reflects only the width of
the density profile n(r) [32].

In the case of a quasi-condensate, 1D thermal excita-
tions cause the phase to fluctuate along the longitudinal
axis, both spatially and temporally. In our experiment,
these fluctuations are small compared to the parabolic
phase developed during free expansion. Therefore when we
image the overlapping condensates after free expansion,
we still observe straight fringes, but they are no longer
strictly periodic. Small local phase shifts add a “jitter” to
the fringe spacing, which in Fourier space has the effect of
broadening the peak at the spatial frequency of the fringes
and thereby reducing its height. As s is increased, the
fringes are perturbed more strongly, because the conden-
sate phase becomes less correlated at larger separations.
The contrast therefore decreases faster with s than in the
fully phase-coherent case. The greater the amplitude of
the phase fluctuations, the faster the contrast decreases
with s. Therefore by measuring the width of the corre-
lation function at different temperatures, we extract the
temperature dependence of the coherence length. Further
information is obtained from the shape of the correlation
function [33].

In the presence of phase fluctuations, each realization
of the experiment gives a different interference pattern,
even with fixed experimental conditions. Expression (2)
must therefore be generalized to:
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where the brackets 〈 〉 denote a statistical average of the
random process describing the random phase. In practice,
one must repeat the experiment at a given separation s
and average the contrast measurements over many quasi-
condensates to obtain C(1)(s).

This principle was used by Michelson in his famous as-
tronomical interferometer, whose goal was to measure the
spatial coherence of the light field arriving from a star, in
order to deduce the diameter of the star [34]. However,
Michelson’s method is plagued by the existence of a ran-
domly fluctuating relative phase between the two inputs
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of the interferometer, and various methods insensitive to
the relative phase fluctuations had to be developed [35]. A
similar problem appears when one tries to determine the
coherence length of a condensate or a quasi-condensate
with interferometry. In addition to the controlled relative
phase between the two components interfering in (1), there
is an uncontrollable relative phase due to experimental
problems such as a residual phase shift between the lasers
creating the two copies or a random velocity kick imparted
to the sample. In order to overcome this problem [36],
Hellweg et al. [28] have used an analysis analogous to the
Hanbury Brown and Twiss method [37], since it is based
on the measurement of the second-order correlation func-
tion which is insensitive to global phase shifts. In contrast,
our method is in line with the initial method of Michelson
who could visually evaluate the contrast of the randomly
moving fringes he was observing. The decrease of this con-
trast as a function of the telescopes’ separation gave a di-
rect measurement of the coherence length. Similarly, we
directly evaluate the contrast of the fringes by taking the
modulus of the Fourier transform of the fringe pattern.
The decrease of that contrast as a function of the separa-
tion s yields the coherence length of the quasi-condensate.

3 Experiment

3.1 Creation of elongated Bose-Einstein condensates

In our experimental setup [38], a Zeeman-slowed atomic
beam of 87Rb is trapped in a MOT, and after optical
pumping into the 5S1/2|F = 1, mF = −1〉 state is trans-
ferred to a magnetic Ioffe-Pritchard trap created by an
iron-core electromagnet. Our design allows us to lower the
magnetic field at the bottom of the trap to a few Gauss
and thus to obtain very tight radial confinement [39]. Us-
ing this trap, we are able to create condensates very close
to the 1D Thomas-Fermi regime [40], as was demonstrated
in [41–43]. In the present experiment, we produce conden-
sates further into the 3D regime so that we can explore
the cross-over regime (T ∼ Tφ). We use two different
trap configurations: in the first, the final radial and ax-
ial trap frequencies are respectively ω⊥ = 2π × 395 Hz
and ωz = 2π × 8.67 Hz, giving an aspect ratio of 45;
for the second trap configuration, the final frequencies are
ω⊥ = 2π× 655 Hz and ωz = 2π× 6.55 Hz, with aspect ra-
tio 100. In this way, we obtain needle-shaped condensates
containing around 3×105 atoms, with a typical half-length
L � 85 µm in the first trap and L � 120 µm in the second.
We control the final number of atoms by holding the con-
densate for a variable time, typically a few seconds, in the
presence of an rf shield. The absolute number of atoms is
calibrated from a measurement of the critical temperature,
taking into account the effects of interactions [44]. For con-
densates with small condensate fractions (less than 60%),
the temperature is obtained by fitting a Gaussian distribu-
tion to the thermal wings of the cloud. The temperature is
then extrapolated from the final frequency of the rf ramp
to lower temperatures for which the thermal fraction is
indiscernible [43,45].

π/2

π/2

s = 2vRTs

t = t1+Ts

t = TTOF

t = 0

t1 = 2 ms

z

2L

Fig. 1. The condensate is released from the trap at t = 0
and has a half-length of L. A sequence of two Bragg pulses is
applied to generate the interferometer. Two output ports are
created (p = 0, p = 2�kL) with complementary fringe patterns.

3.2 Interferometry set-up and timing

As shown in Figure 1, we implement the interferometer us-
ing a sequence of two π

2 -Bragg pulses, which act as matter-
wave beamsplitters. The set-up consists of two laser beams
counter-propagating along the longitudinal trap axis, each
of intensity ∼2 mW cm−2, red-detuned by ∆ = 6.6 GHz
from the 87Rb D2 line at λ = 780.02 nm. Two acousto-
optic modulators driven by frequency synthesizers pro-
duce a small relative detuning δ, tuned to the two-photon
Bragg resonance δ = 2�k2

L/m, with m the atomic mass
and kL = 2π/λ. The momentum width along z of the
expanding condensate corresponds to a frequency width
of 200 Hz. Therefore we use Bragg pulses of ∼100 µs,
short enough such that the corresponding 1.6 kHz fre-
quency width (full width at half maximum) is sufficient
to couple the entire condensate. The thermal cloud sur-
rounding the condensate has a momentum distribution
with a frequency width ranging from 12 kHz to 60 kHz,
much larger than that of the condensate. Thus, only a
small fraction of the thermal cloud is coupled by the Bragg
pulses [45]. By controlling the Bragg pulse length, we re-
alize a π

2 -pulse which splits the condensate into a coherent
superposition of two wavepackets with velocities differing
by 2vR = 2�kL/m = 11.72 mm s−1, where vR is the recoil
velocity. The interferometer sequence is illustrated in Fig-
ure 1. The condensate is held in the trap for at least 2 s at
the end of the final rf evaporative-cooling ramp, to allow
residual oscillations to be damped [20,21]. After switching
off the trap, the condensate is allowed to expand freely for
2 ms before the first π

2 -pulse is applied. During this expan-
sion the condensate density reduces by two orders of mag-
nitude, so collisions between the diffracted wavepacket and
the original condensate become negligible. During a free-
evolution time 2 ms < Ts < 10 ms, the two wavepackets
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Fig. 2. Left: one of the two output ports of the interferometer
for different separations s between the two condensate copies.
The half-length of the initial condensate is L = 85 µm. Right:
profiles of the 2D Fourier transform (absolute value) of each
of the images on the left. The profiles are normalized to equal
central peak height (proportional to total atom number). The
position of the second peak (delimited by the two lines) gives
the spatial frequency of the fringes, and the ratio of the height
of the second peak to the central peak gives the fringe contrast.

separate to a distance s = 2vRTs. The second π
2 -pulse

completes the interferometer, and we observe interference
in each of the two output ports, which differ in momen-
tum by p = 2�kL. The condensate is imaged by absorp-
tion perpendicular to the long axis z after a 29 ms total
time-of-flight [46].

For a given set of experimental conditions (condensate
atom number and temperature), the experimental corre-
lation function is acquired by taking a sequence of in-
terference images with different condensate separations s
ranging from 0.2L to 1.2L, varied by changing Ts. For
smaller separations, we do not observe enough fringes to
obtain a reliable measurement of the contrast. At the max-
imum value of s, the contrast has reduced such that the
fringes are no longer discernible above the noise. Typi-
cal images for 0.3L ≤ s ≤ 1.1L are shown in Figure 2.
For each value of s, typically 5 images are taken, so that
a statistical average can be performed. The fringe con-
trast is then measured, giving the correlation function.
Correlation functions have been obtained at various tem-
peratures T between 100 and 230 nK and for conden-
sate atom numbers N0 between 0.5 × 105 and 2.5 × 105.
These conditions correspond to 0.8 < T/Tφ < 8, where
Tφ = 15�

2N0/16mL2 [27,47].

4 Analysis of interferograms

4.1 Interferogram

As shown in [25], a quasi-condensate is well-described by
a fluctuating complex field Ψ(ρ, z) =

√

n(ρ, z)eiΦ(ρ,z),

with fixed density distribution n(ρ, z) and fluctuating
phase Φ(ρ, z). In the following, Ψ(ρ, z) represents the
wavefunction of the condensate after the free-fall expan-
sion. The first Bragg pulse is applied after 2 ms of free
expansion, at which time the density has reduced such
that interactions between the atoms are negligible. We
therefore assume that the different copies of the conden-
sate propagate independently. The phase distribution can
be expressed as Φ(ρ, z) = αz2 +βρ2+φth(z), where φth(z)
represents the thermal phase fluctuations and the quadra-
tic terms represent the parabolic phase developed during
expansion.

We now consider the interference pattern produced at
one of the output ports of the interferometer. For a sepa-
ration s, we obtain the atomic density distribution:

nout(ρ, z) =
1
4
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=
n+

4
+
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4
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with n± = n(ρ, z ± s/2) and ∆Φ(z) = Φ(z + s/2) −
Φ(z − s/2). The global phase shift φg is due to ran-
dom, uncontrolled phase shifts between the two Bragg
pulses. The phase difference between the two copies is
∆Φ(z) = αzs + φth(z + s/2) − φth(z − s/2). The den-
sity of the condensate is small when the first Bragg pulse
is applied, so we neglect a small relative velocity due to
repulsion between the two copies. At the second output
port, the two condensate copies have an additional π rela-
tive phase shift due to the Bragg pulses, thereby producing
a complementary fringe pattern. In our data analysis, the
images of each output port are treated separately.

Since the global phase shift φg fluctuates from shot to
shot, we cannot average over different images at the same
separation s. Instead, we take the contrast of each image
individually and then average the contrast.

4.2 Analysis in Fourier space

The atoms are imaged by absorption along the vertical
y-axis, perpendicular to the long axis of the trap. The
image we obtain, rescaled to units of 2D atomic density,
is the integrated density:

I(x, z) = const
∫

dy nout. (5)

We take the 2D Fourier transform of this image and ex-
tract its profile along the zero radial frequency kx = 0 axis:

Ĩ[0, kz] = const
∫

d3r noute
ikzz. (6)

Typical images and their 2D Fourier transform pro-
files are shown in Figure 2 for different separations s.
The contrast of the fringe pattern is given by the ratio
2Ĩ[0, k0(s)]/Ĩ[0, 0], where k0(s) � αs is the dominant spa-
tial frequency of the fringe pattern. The profiles of Fig-
ure 2 show clearly the increasing spatial frequency and
decreasing contrast as a function of s.



M. Hugbart et al.: Coherence length of an elongated condensate 159

To extract the correlation function, we take the com-
plex amplitude of the Fourier peak at the spatial fre-
quency k0 of the fringes:

Ĩ[0, k0(s)] = eiφg

∫

d3r
√

n+n−ei∆Φth . (7)

In the absence of the global phase shifts φg, the corre-
lation function C(1)(s) would be obtained by taking the
statistical average of equation (7):

C(1)(s) =
〈
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which is identical to relation (3). However, φg changes
from shot to shot and prevents us from averaging Fourier
transforms directly in this way [48]. To eliminate this ran-
dom phase, we can take the absolute value of the Fourier
transform before averaging. Thus we obtain an effective
correlation function:
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Note that although it has similar behaviour, our effective
correlation function is expected to be quantitatively differ-
ent from C(1)(s). Taking the absolute value of the trans-
form reduces the cancelling effect between the random
thermal phase shifts in the statistical average, so that the
effective correlation function Ceff(s) decays more slowly
with s than C(1)(s), as calculated in the next section.

4.3 Simulation

The 1st order correlation function C(1)(s) can be calcu-
lated analytically [33], using the theory of [27] to account
for the phase fluctuations. However, it is not possible to
obtain an analytic expression for the effective correlation
function Ceff(s) (Eq. (9)) which we measure. Therefore,
to calculate Ceff(s), we first simulate the quasi-condensate
phase fluctuations following the theory in [27]. The phase
operator is given by:

φ̂th(r) = [4n(r)]−1/2
∑

j

f+
j (r)âj + h.c., (10)

where âj is the annihilation operator of the excitation with
quantum number j. The solution of the Bogoliubov-de
Gennes equations for “low energy” excitations (with en-
ergies εν < �ω⊥) gives the wavefunctions of these modes:

f+
j (r) =

√

(j + 2)(2j + 3)gn(r)
4π(j + 1)R2Lεj

P
(1,1)
j (z/L), (11)

where P
(1,1)
j are Jacobi polynomials, g = 4π�

2a/m is
the interaction strength, a is the scattering length, R
and L are the size of the condensate in the trap and
εj = �ωz

√

j(j + 3)/4 is the energy of mode j [40]. We
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Fig. 3. Points represent the contrast extracted from our simu-
lated absorption images (see text) as a function of s/L, L being
the condensate half-length, for T/Tφ = 1. These points are fit-
ted by the product of a Gaussian and an exponential (solid
line) which we take to be our theoretical effective correlation
function Ceff (s).

assume the Thomas-Fermi approximation for the den-
sity n(r), taking R and L from fits to images after ex-
pansion. To simulate numerically the phase fluctuations,
we replace the operators âj and â†

j by complex Gaussian
random variables αj and α∗

j . These variables have a mean
value of zero and the correlation 〈αjα

∗
j′ 〉 = δjj′Nj where

Nj = kBT/(�ωz

√

j(j + 3)/4) is the occupation number
for the quasiparticle mode j at a given temperature T .
We assume that the phase fluctuations do not evolve on
the time scale of the expansion [33]. We have verified
this by studying images of condensates after the same
time-of-flight, but without the interferometer pulses. In
this case, we observe a smooth density profile, with no
extra features appearing in the Fourier transform.

For a given T/Tφ, 20 condensates are generated at each
value of s, with s ranging from 0.2L to 2L. Each conden-
sate is integrated over y as in equation (5). These simu-
lated absorption images are analysed in exactly the same
way as the real experimental images. The absolute val-
ues of the Fourier transforms of the images are averaged,
and the contrast extracted as in equation (9). The points
in Figure 3 show the typical contrast extracted from our
simulations for T/Tφ = 1. We found that these points are
very well fitted by the product of a Gaussian and an expo-
nential, for all T/Tφ. We use these fits as our theoretical
effective correlation functions Ceff(s).

The effective correlation function was simulated for
0 ≤ T/Tφ ≤ 20. Figure 4a presents results for differ-
ent T/Tφ. At T = 0, Ceff(s) coincides with C(1)(s) [33].
This function is simply the integrated overlap function be-
tween the two condensates, and is approximately a Gaus-
sian function of the separation s [32]. As T/Tφ increases,
the width of the function decreases and its form gradually
becomes exponential. In Figure 4b we plot the 1/e widths
of the simulated Ceff(s) functions as a function of T/Tφ.
For comparison we show also the width of C(1)(s) [33]
which decreases much faster with T/Tφ.
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Fig. 4. Top: lines are simulated effective correlation func-
tion Ceff (s) (described in the text) as a function of s/L for
different T/Tφ. From the top, T/Tφ = 0, 1, 3, 10. With increas-
ing T/Tφ, the curve changes from a quasi-Gaussian to an expo-
nential and the width decreases. Inset: comparison of Ceff (s)
(solid line) and C(1)(s) (dashed line) at T/Tφ = 10. Bottom:
width at 1/e of Ceff(s) (solid line) and C(1)(s) (dashed line) as
a function of T/Tφ.

5 Experimental results

Figure 5 shows two examples of effective correlation curves
measured using our interferometer and analysed as de-
scribed above. The points shown in Figure 5a were ob-
tained using a magnetic trap with an aspect ratio of 45,
and with an atom number and temperature corresponding
to T/Tφ = 1.35, that is for small-amplitude phase fluctua-
tions. The points in Figure 5b were obtained using a trap-
ping aspect ratio of 100, and with T/Tφ = 4.86. The con-
trast is plotted as function of s/L, obtained from a fit to a
truncated parabola. Each point corresponds to an average
over 5 condensates. The difference in the range of s/L ex-
plored is due to different expansion dynamics after release
from the two different traps. In the more tightly confined
trap (Fig. 5b), the axial expansion is much slower, and
thus the fringe spacing decreases more slowly with s. At
the smallest values of s, it is therefore impossible to mea-
sure the contrast reliably since we do not observe enough
fringes. We can extract information about the phase fluc-
tuations from both the shape and the width of these ef-
fective correlation functions.

5.1 Shape of the effective correlation functions

First, we observe qualitatively that the shape of the ef-
fective correlation functions Ceff(s) changes as T/Tφ in-
creases. For small T/Tφ, as in Figure 5a, the curves are
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Fig. 5. Example of two experimental effective correlation pro-
files (points) as a function of s/L showing clearly the change in
shape and width with T/Tφ. Each point is averaged over 5 con-
densates, each with 2 output port images. Top: at T/Tφ = 1.35,
the effective correlation curve is fitted by a Gaussian (solid
line), with 1/e width LC/L = 0.62. The fit to an expo-
nential (dashed line) is shown for comparison. Bottom: at
T/Tφ = 4.86, the effective correlation curve is fitted better
by an exponential (solid line), with 1/e width LC/L = 0.46.
The fit to a Gaussian (dashed line) is shown for comparison.

clearly Gaussian, as shown by the fit in the figure. As we
increase T/Tφ, the profiles become rapidly exponential.
We see in Figure 5b that at T/Tφ = 4.86, the curve is
already better fitted by an exponential than a Gaussian.
At intermediate values of T/Tφ, we can use the product
of a Gaussian and an exponential to fit a smooth curve
through the data. The contribution of the exponential in-
creases rapidly in importance at finite T , in agreement
with the simulation, reflecting the increasing amplitude of
the phase fluctuations with T/Tφ.

5.2 Comparison of coherence length LC

In order to extract quantitative information from the
effective correlation functions, we define a coherence
length LC, equal to the 1/e width of the effective cor-
relation curve Ceff(s) [49]. We then use this parameter
to compare the widths of the measured and simulated
effective correlation functions. A smooth curve is fitted
through the data (using the product of a Gaussian and an
exponential) and the 1/e width extracted. Although the
thermal cloud plays no role in the interference pattern we
observe, it appears behind the condensates in the p = 0
output of the interferometer and thus reduces the mea-
sured contrast. Independent measurements of the thermal
fraction (between 60% and 80% for this experiment) al-
low us to renormalize the experimental effective correla-
tion functions to take account of this effect. When fitting
the renormalized curves, we then fix the value at s/L = 0
to unity.
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Fig. 6. LC/L as a function of T/Tφ. The solid curve is a fit
using an exponential with offset. Empty circles correspond to
the two experimental correlation profiles of Figure 5. Error bars
represent typical systematic errors. Inset: the solid curve is the
simulated effective correlation function of Figure 4b.

In Figure 6, we plot LC/L as a function of T/Tφ.
Importantly, we see that the coherence length varies
smoothly as a function of T/Tφ, even when the temper-
ature is close to Tφ. This is what we should expect since
Tφ is simply a characteristic temperature, defined as that
at which the mean square fluctuations of the phase dif-
ference between two points separated by a distance L is
equal to 1. Therefore it should be borne in mind that even
condensates at temperatures below Tφ are not necessarily
fully coherent.

The inset of Figure 6 compares the measured coher-
ence widths with the results of the simulation (Fig. 4b).
Despite the offset between the two curves, the trend of the
data follows very well that of the simulation. To compare
the decrease of the experimental and simulated coherence
lengths, we fit the data by an exponential with an offset.
The experimental coherence length decreases by 30(7)%
between T/Tφ = 1 and T/Tφ = 6, in good agreement with
the corresponding decrease of 28(1)% for the simulation.
In the following discussion we consider possible explana-
tions for the observed reduction in contrast.

5.3 Discussion

As shown in the inset of Figure 6, the measured coherence
length is offset by about 25% from the results of the simu-
lation at T/Tφ = 1. In order to eliminate various possible
causes of this discrepancy, and to understand better the
limitations of our experiment, we have performed several
tests.

Since the accuracy of our experiment relies on the com-
parison of fringe contrast at different spatial frequencies, it
is important to take great care in setting up and character-
ising the imaging system. Therefore we measured the mod-
ulation transfer function (MTF) (see e.g. [50]) of our com-
plete imaging system in situ, using a USAF1951 resolution
target engraved with 3-bar square wave patterns of spa-
tial frequency 4–200 lines/mm, covering the range of spa-
tial frequencies observed in our interference experiment.
By Fourier transforming images of different regions of the
target, we were able to compare the magnitude of the dif-
ferent Fourier components in the image with those of the
target pattern, thereby obtaining the MTF of our system.

We found that the MTF is approximately linear, falling
from 1 at zero spatial frequency to 0 at 118 lines/mm. This
resolution limit at 8.5 µm is in agreement with earlier char-
acterisations of the system [42]. The shape of the MTF is
due almost entirely to the CCD camera [51], and is surpris-
ingly significant at fringe spacings much greater than the
effective pixel size of 2.5 µm. All contrast measurements
were corrected by this MTF. In fact, for the data obtained
using the second trapping aspect ratio, the axial expansion
(and thus the phase difference developed) was sufficiently
small that the maximum observed fringe spatial frequency
was 16 lines/mm and therefore the MTF correction had
a negligible effect on the experimental effective correla-
tion functions. In the first set of data, where the maxi-
mum fringe frequency was 38 lines/mm (a fringe spacing
of 25 µm), the correction was more significant, changing
the width of the curves by typically 10%, though still leav-
ing a 20% discrepancy with the simulation.

We also considered the error introduced by a small
focussing error. The imaging system is focussed onto the
condensate to within ±0.2 mm by minimising the imaged
size of a small condensate as a function of the objective
lens position. However, by varying the time-of-flight used,
we may have introduced an error of up to ±1 mm. Such
an error could also be introduced by small changes to the
residual magnetic fields, which lead to changes in the re-
lease velocity of the condensate when the magnetic trap is
switched off. We measured effective correlation curves for
different foci of the imaging system, but found that the
width of the effective correlation curve changed by less
than the existing spread in the points.

Other possible sources of error, such as the alignment
of the imaging beam with respect to the condensates’
fringes and correct background subtraction have also been
eliminated. In Figure 6, we indicate the systematic er-
rors for two points. These include calibration errors on
the atom number and the image magnification. The un-
certainty on the focussing adds a further error to LC/L,
which depends on the fringe spacing and thus on the
axial trap frequency. These error bars show clearly that
these systematic uncertainties are not sufficient to ex-
plain the discrepancy between the data and the theoretical
prediction.

There remains in our experiment an unexplained
phenomenon regarding the distribution of the fringe pat-
tern. We expect to see fringes only in the region where the
two condensates overlap. However, it can be seen in the
images of Figure 7 that the fringes extend to the edges of
each condensate. Moreover, these “extra” fringes have the
same spatial frequency and phase as the central fringes.
Although it is possible that a small fraction of the thermal
cloud is coupled by the Bragg beams, interference fringes
produced in this way [30] would have a much smaller fringe
spacing, less than 6 µm. More importantly, the contribu-
tions from different parts of the original thermal cloud,
whose width is ∼100 µm, would sum incoherently to wash
out the fringe pattern. It is more likely that these extra
fringes arise as a result of interactions during the appli-
cation of the Bragg pulses, but better modelling is still
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Fig. 7. Zoom on images of Figure 2. Circles represents the edge
of the two condensates displaced by a distance s. The “ex-
tra” fringes are visible outside of the overlap region of the
two condensates.

needed before evaluating whether their presence should
increase or decrease the overall measured contrast.

6 Conclusion

We have demonstrated a new type of matter-wave inter-
ferometry using Bragg beam-splitter pulses and Fourier
space analysis. Our results show that the expected shape
of the correlation functions changes from a Gaussian-like
shape to an exponential-like shape when the amplitude
of phase fluctuations is increased. The coherence length
of elongated condensates varies smoothly at temperatures
close to Tφ, as predicted by theory. This highlights the
fact that the characteristic phase temperature Tφ does not
indicate a transition to full phase coherence, but rather
that condensates exhibit phase fluctuations at all finite
temperatures, albeit of small amplitude. This may place
constraints on the trapping geometries which can be used
for creating measurement devices based on the phase co-
herence of condensates.
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