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We have investigated experimentally the finite-temperature properties of a Bose-Einstein condensed cloud of
87Rb atoms in a harmonic trap. Focusing primarily on condensed fraction and expansion energy, we measure
unambiguous deviations from ideal-gas thermodynamics and obtain good agreement with a Hartree-Fock
description of the mixed cloud. Our results offer clear evidence of the mutual interaction between the con-
densed and thermal components. To probe the low-temperature region unaccessible to the usual time-of-flight
technique, we use coherent Bragg scattering as a filtering technique for the condensate. This allows us to
separate spatially the condensed and normal components in time of flight and to measure reliably temperatures
as low as 0.2Tc

0 and thermal fractions as low as 10%. Finally, we observe evidence for the limitations of the
usual image analysis procedure, pointing out to the need for a more elaborate model of the expansion of the
mixed cloud.
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I. INTRODUCTION

Trapped, dilute atomic gases offer an opportunity to study
the interplay between quantum-statistical phenomena and in-
teractions in Bose systems[1]. A third ingredient, the exter-
nal trapping potential, also plays a key role in understanding
the properties of these gases[2]. At finite temperatures, it
leads to spatially distinct condensed and thermal phases, a
new behavior when compared to bulk quantum fluids, in
which both components overlap everywhere. This spatial
separation allows in particular a clear identification of the
condensed fraction through absorption imaging, in stark con-
trast with superfluid4He, where condensed fraction measure-
ments are only indirect[3].

Much work has been devoted to the properties of con-
densed gases at very low temperatures(much smaller than
the critical temperatureTc), where the noncondensed fraction
is negligible. Then, in the so-called Thomas-Fermi(TF) re-
gime [2], the static and dynamic behavior of the condensate
is essentially determined by the interplay between the trap-
ping potential and the atomic interactions. At higher tem-
peratures, less than but comparable toTc, a significant ther-
mal component is also present, typically much more dilute
than the condensate. In this situation, the kinetic energy per
thermal atom is larger than the mean-field energy, and devia-
tions from ideal gas behavior are small[4–9]. Although sev-
eral key thermodynamical properties, such as condensed
fraction and average energy, are readily measurable experi-
mentally, a detailed comparison of experiments with finite-
temperature theories of the interacting cloud is to our knowl-
edge still lacking.

The goal of this paper is to contribute to fill this gap by
investigating experimentally the thermodynamics of a

trapped87Rb Bose gas belowTc, where both a condensed
and a thermal component are present. We focus on two quan-
tities, the condensed fraction and the expansion(kinetic plus
mean-field) energy in the radial direction. We find that the
condensed fractionN0/N is significantly reduced with re-
spect to the ideal-gas law,N0/N=1−sT/Tc

0d3, whereTc
0 is the

ideal-gas condensation temperature in the thermodynamic
limit, and that the expansion energy is increased, even for the
thermal atoms.

Our measurements thus clearly exclude ideal-gas behav-
ior, and to assess the importance of interactions, we compare
them with two mean-field theories of the interacting cloud
that assume a condensate in the TF regime. The simplest one
is the so-called “semi-ideal” model[10,11], which considers
the thermal cloud as a quantum-saturated gas evolving in the
combined trapping plus condensate-mean-field potential. Al-
though the general trend of our observations is well repro-
duced by this model, finer details are not. To take interac-
tions within the thermal cloud and between the thermal cloud
and the condensate into account, we use a self-consistent
Hartree-Fock(HF) description of the mixed cloud[12–18],
which yields good agreement with the data. We are able to
confirm experimentally its validity over a wide range of tem-
peratures and atom numbers, and to show that despite the
diluteness of the thermal cloud, its mean-field energy affects
both the condensed and noncondensed atoms. Such system-
atic measurements of the mutual interplay between the con-
densed and noncondensed components have not been re-
ported before, although evidence for repulsion of the thermal
atoms by the condensate has been provided in[19], through
a careful study of the interface region between the two com-
ponents.

Our measurements rely on the standard time-of-flight
technique to observe the mixed cloud. A limitation arises at
low temperatures, where the condensate appears broader than
the thermal cloud in time of flight. This limits our measure-
ments with this technique toT/Tc

0.0.3 (condensed fraction
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,80%). To overcome this limitation, we use coherent Bragg
scattering to spatially separate the coherent and incoherent
components of the cloud in time of flight. We apply it for
low-temperature thermometry and measure in this way con-
densed fraction larger than 90% and temperatures below 100
nK (T/Tc

0<0.2).
The paper is organized as follows. Section II first de-

scribes the experimental apparatus used for condensate pro-
duction. Then, after reviewing the widely used procedure of
time-of-flight imaging, we introduce the improved method
based on Bragg diffraction to filter the condensate out of
thermal cloud. The key results of this paper are presented in
Secs. III and IV. In Sec. III, we present a measurement of the
temperature dependence of the condensed fraction. In Sec.
IV, the Bragg filtering scheme is applied to a measurement of
the expansion energy of the thermal component. Both mea-
surements clearly confirm the HF predictions in the whole
temperature range. Further evidence for mutual interaction is
provided in Sec. V, where we analyze the behavior of the
mixed cloud in time of flight and measure a compression of
the condensate axial length by the thermal cloud. For com-
pleteness, we review briefly in the Appendix I the three well-
understood models to which we compare the data: namely,
the ideal-gas model, the semi-ideal model, and the self-
consistent HF model.

II. EXPERIMENTAL METHODS

This section reviews the experimental techniques used in
this work. After a brief description of our experimental ap-
paratus(Sec. II A), we discuss in Sec. II B condensed frac-
tion and temperature measurements via time-of-flight ab-
sorption imaging and point out the limitations of this
technique for high condensed fractions. In Sec. II C, we
show how they can be overcome using coherent Bragg scat-
tering [20,21].

A. Condensate production

Our experimental setup employs the standard combination
of laser and evaporative cooling to reach Bose-Einstein con-
densation in a sample of87Rb atoms, spin polarized in the
uF=1;mF=−1l hyperfine ground state. A Zeeman-slowed
atomic beam loads a magneto-optical trap in 4 s. After spatial
compression(125 ms) and cooling in optical molasses(6
ms), the laser-cooled sample is repumped in theuF=1l hy-
perfine manifold and loaded into an Ioffe-Pritchard-type
magnetic trap. The trap, an iron-core electromagnet, is a spe-
cific feature of our experiment[22]. The guiding of magnetic
flux lines along the ferromagnetic body of the magnet pro-
duces strong(when compared to macroscopic, coil-based de-
vices) radial gradients(1.4 kG/cm), while using a modest
current of 30 A. This produces a cigar-shaped, very elon-
gated harmonic potential of the formVext=Mv'

2 sx2+y2d /2
+Mvz

2z2/2. In this work, differently from[23], radial and
axial trapping frequencies are, respectively,v' /2p
=413s5d Hz andvz/2p=8.69s2d Hz at a 10-G bias field.

The combined compression and evaporation sequence
typically lasts for 16 s, with the last part of the radio-

frequency(rf) evaporation ramp considerably slowed down
(to a ramp speed of 200 kHz/s) and followed by a 1-s hold
time in the presence of an rf shield. This is done in order to
allow the system to cross slowly the quantum degeneracy
threshold and to relax towards equilibrium. In particular,
nonequilibrium shape oscillations that occur in such aniso-
tropic traps upon condensation[23,24] are strongly reduced.
To ensure the reproducibility of the temperature in the ex-
periment, the radio frequencyn0 that empties the trap is mea-
sured every five experimental cycles, and the rf shield fre-
quencynrf is readjusted in real time to follow slow drifts of
the bottom of the trap. In this way, the “trap depth”nrf −n0 is
controlled within ±2kHz. Since we measurehsnrf −n0d /kBT
<11 in this final evaporation stage, we estimate the tempera-
ture reproducibility to be ±10nK.

B. Time-of-flight imaging

Information about the atomic cloud is obtained through
time-of-flight absorption imaging(see[25] for a detailed ac-
count of imaging techniques and[26] for details of the
implementation in our experiment). This widely employed
method will be referred to as the “standard method” in the
following. Here, two important quantities are measured
through a fit to absorption images: the condensed fraction
and the temperature. To find the condensed fraction, we use
the fitting method described in[25], which assumes that the
atomic density can be described by a parabolic TF profile
describing the condensate plus an ideal Bose-Einstein distri-
bution with zero chemical potential describing the thermal
cloud. The condensed numberN0 is taken to be the number
of atoms integrated under the parabolic profile, while the
total atom numberN is found by integration over the entire
profile.

The temperature is measured through an independent fit to
a thermal Bose-Einstein distribution, restricted to the wings
of the thermal distribution only, in order to minimize the
effect of interactions(see[4,5] and Sec. IV). One typically
assumes that the high-energy atoms selected by this proce-
dure behave as if the gas were ideal and extracts effective
temperaturesTx and Tz from the cloud sizes—for instance,
kBTx=Mv'

2 Rth
2 / f1+sv'td2g, with Rth the radial size. We ob-

serve a systematic variation of the temperatureTz measured
along the long axis with the size of the exclusion region. This
effect was more pronounced with increasing condensed frac-
tion and disappeared aboveTc. On the contrary, the radial
temperatureTx was barely affected by the actual size of the
exclusion region, provided it was chosen larger than the con-
densate radius and sufficiently small to conserve a reasonable
signal-to-noise ratio(5% or less variation). For this reason,
we infer the initial temperature from the radial valueTx only
[28]. This thermometry procedure assumes a nearly ballistic
expansion. Collisional effects in time of flight may invalidate
this assumption, and it is important to estimate their impor-
tance to quantify the accuracy of our measurements. We de-
fer this discussion to Secs. IV and V.

C. Selective displacement of the condensate using coherent
Bragg scattering

The method described in the last subsection rests on the
clean distinction between the condensed and thermal compo-
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nents. However, for cold samples(kBT&m), the condensate
radius after time of flight is larger than the extension of the
thermal cloud. The details of the thermal distribution are
therefore “buried” under the condensate density profile, and
a reliable fit is not possible. We have found no difficulties for
N0/N,60% (T/Tc

0,0.5), while still being able to extract
valuable information for condensed fractions close to 80%
(T*0.3TC0). For higher condensed fractions, the signal to
noise on the wings is too low to perform a reliable fit.

In this section, we describe an improvement of the time-
of-flight technique that exploits the dramatic difference be-
tween the two components in momentum space[2,20,21].
Our primary motivation for introducing this method is to
improve the resolution at low temperatures, a key advantage
in the condensed fraction measurements presented below.
The principle of the technique is to transfer the whole con-
densate to a center-of-mass momentum state with two photon
recoil velocities (we define the recoil velocity asvR
=h/MlL <5.8 mm/s, wherelL =780 nm is the Bragg laser
wavelength), while leaving the thermal atoms essentially un-
affected. As shown in Fig. 1, after a subsequent time of flight
(typically 20 ms), the condensate has moved away from the
center of the thermal cloud, allowing us to perform separate
fits and revealing previously hidden information about the
thermal component. This technique is related to the filtering
scheme used in[29] to study collective modes in the pres-
ence of a weak optical lattice at finite temperatures.

Momentum transfer is achieved by exposing the sample to
two counterpropagating laser beams detuned with respect to
each other. The moving lattice formed this way can Bragg-
diffract the atoms, promoting them to a two-recoil momen-
tum state. In principle, Bragg scattering is sensitive to the
atomic momentum distribution[20,21]. However, if the
spectral width of the Bragg pulse, Fourier limited by the
pulse durationT to DnF,1/T, is much larger than the con-
densate Doppler widthDn0,2nR/L, the momentum sensi-
tivity of Bragg diffraction is lost and almost complete trans-
fer of the condensate(p pulse) is achieved. On the other
hand, if the thermal component spectral widthDnth
,2nR/lT (lT=Î2p"2/mkBT is the thermal de Broglie wave-
length) is much larger thanDnF, Bragg diffraction is then a
momentum-selective process, and most of the thermal atoms,
being off resonant with the Bragg beams, stay at rest in the
laboratory frame. This filtering technique thus makes pos-
sible independent manipulation of the condensed and non-
condensed atoms.

The experimental setup that we use to generate the Bragg
beams is identical to the one used in[23]. Thep Bragg pulse
is applied after a sudden switch-off of the trapping potential
and a 2-ms time of flight. This decreases the condensate and
thermal cloud densities by a factor of ordersv'td2,30,
making any further mutual interactions negligible. This
avoids in particulars-wave collisions between atoms with
different momenta[30] and suppresses the equilibration of
the thermal cloud with the displaced condensate. The Bragg
beams are counterpropagating and parallel to the elongated
axis of the trap. Since the condensate mean-field energy is
then almost entirely released in the transverse directions, per-
pendicular to the diffraction axis, the ratio between the con-
densate and thermal cloud spectral widths is

S Dn0

Dnth
D

T O F
, S vz

v'

DÎ m

kBT
, s1d

and remains smaller than 1 even at very low temperatures.
Note that this would not have been the case for Bragg beams
parallel to a radial axis, where the momentum width is larger
by a factorsv' /vzd due to the released mean-field energy.

To find the condensate fraction, we simply count the num-
ber of diffracted atoms and identify it with the condensed
number. To obtain a meaningful measurement of the con-
densed fraction, two conditions have to be met. First, almost
all condensate atoms should be diffracted. Transfer efficien-
cies as high as 97% were observed for the coldest clouds we
have produced, indicating that only a few percent of the con-
densate population remains at rest; this is comparable to the
±2% root-mean-square fluctuations of the diffraction effi-
ciency that we have measured experimentally. Second, the
diffracted number of thermal atoms should be small to obtain

FIG. 1. Bragg diffraction as a condensate filter.(a), (b), and(c)
correspond to 92%, 85%, and 30% condensed fraction, respectively
(T/Tc

0<0.2, 0.35, and 0.8). Two-dimensional absorption images are
shown, with a cut along the direction of the trap weakest axis
(“axial cut”). The top images show regular absorption images for a
24.27-ms time of flight(dashed lines in the cut). The bottom im-
ages, also shown as the solid line in the axial cut, corresponding to
the same temperatures and atom numbers within experimental re-
producibility, have been taken after applying a moving optical lat-
tice tuned to realize ap Bragg pulse, transferring two photon re-
coils to almost all condensed atoms(velocity 1.1 cm/s). The
distance traveled by the condensate is verified to be 250mm, cor-
responding to a free flight of 22.27 ms after the Bragg pulse. As can
be seen, the thermal cloud is barely affected, due to its much larger
extent in momentum space.
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a sensible measurement of the condensed number. We esti-
mate the diffractedfraction of thermal atomsf th in the im-
pulse approximation discussed in[31]. In this approximation,
well justified for the low densities considered here, the num-
ber of atoms diffracted from the thermal cloud is taken to be
proportional to the thermal part of the momentum distribu-
tion, integrated over the directions perpendicular to the axis
of the Bragg beams. Treating the thermal cloud as an ideal
Bose gas in a first approximation, we find for a resonantp
pulse,

f th =
p2

4DnthT

fg5/2s1d − g5/2hexpf− 32snR/Dnthd2gjg
g3/2s1d

, s2d

where Dnth=2vR/Î2plT. Here and below, the Bose func-
tions are defined byg~sud=S jù1uj / j~. The second term in
brackets arises from off-resonant excitations, which are neg-
ligible for the condensate but sizable for the thermal compo-
nent. The quantityf th varies from 6% at 400 nK(T,0.8Tc

0 or
N0/N,20%) to 20% at 150 nK(T,0.2Tc

0 or N0/N,90%).
The ratio between the number of thermal atoms to the num-
ber of BEC atoms in the diffracted peak is given bys1
− fcd / fcf th, where fc=N0N is the condensed fraction, and it
should remain small for the technique to work. All in all, we
estimate from this simplified calculation that the Bragg filter
is a useful technique in a window 5%,N0/N,95%, the
upper bound being set by the first condition(complete con-
densate transfer) and the lower by the second(the number of
condensed atoms larger than the number of thermal atoms in
the diffracted peak). Outside of this window, it becomes sus-
pect to identify unambiguously the diffracted order with the
condensate. Despite this, the technique represents a signifi-

cant improvement over the standard method, as we will see
in the next sections.

III. CONDENSED FRACTION OF THE INTERACTING
GAS VERSUS TEMPERATURE

With the tools of Sec. II in hand, we can investigate the
behavior of the condensed fraction as a function of tempera-
ture. This quantity is of primary importance: the possibility
to measure it directly in trapped gases is in stark contrast
with the situation in traditional, bulk superfluids where such
measurements are intrinsically difficult[3]. We have done
this measurement in two steps, first by using the standard
method and second by taking advantage of the enhanced
resolution of the Bragg filtering scheme.

A. Standard time-of flight measurements

Using the standard analysis technique(i.e. no Bragg fil-
tering), we investigate in this section a temperature interval
ranging from T<1.1Tc

0 down to T<0.3Tc
0, with approxi-

mately 23106 atoms at the transition. Figure 2 shows the
measured condensed fraction as a function ofT/Tc

0. Each
point results from an averaging over several(typically five)
realizations under identical conditions. The expectation for
an ideal gas, including finite-size effects[2], lies distinctly
above our experimental data. The difference can be attributed
to interactions, as shown by the far better agreement with the
self-consistent HF calculation(solid line). The observed re-
duction of the condensed fraction contrasts with the homo-
geneous case[32], where the condensed and normal compo-
nents overlap everywhere and where it is energetically
favorable toincreasethe condensed fraction to diminish the

FIG. 2. Condensed fraction as a function of reduced temperature.(a),(b) Experimental data after averaging are shown as solid circles,
with statistical error bars. Data in(a) were taken using the standard time-of-flight technique, while data in(b) were measured with the Bragg
filtering scheme and extend to lower temperature, down toT<0.2TC0, whereas the standard method is limited toT<0.4TC0. Lines show
theoretical expectations according to an ideal gas calculation, including finite-size effects(dashed line), a “semi-ideal” model that neglects
interactions within the thermal cloud(dotted line), and a self-consistent HF calculation(solid line). Due to a different average atom number,
the parameterh that controls the importance of interactions is different in each case,h=0.49 andh=0.47 for(a) and(b), respectively. The
variation in total number due to evaporative cooling across the data set in(a) is shown in(c), and the corresponding variations ofh in (d)
(note the vertical scale, extending over no more than 5% of the average value). The averageh=0.49 is shown by the dashed line. In(e), we
show an enlargement of(a) around the critical temperature, to highlight the importance of making the full HF calculation to reproduce the
trend seen in the data.
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exchange interaction energy among excited states.
An interesting property, first pointed out in[33], is the

scaling behavior of all thermodynamical quantities, which
depend only on the reduced temperatureT/Tc

0 and on the
parameterh which controls the magnitude of two-body re-
pulsion [34]:

h =
mTFfN0 = Ng

kBTc
0 < 1.57S a

s
D2/5

N1/15. s3d

Alternatively, one can expressh as the ratio between the two
characteristic lengths in the uniform problem—the scattering
length a and the de Broglie wavelengthl0 for T=Tc

0 — as
h<1.07sa/l0d2/5. The power 2/5 reflects the presence of the
trapping potential. A typical value in our experiment ish
=0.5, while previous experiments(for instance,[4]) corre-
spond toh,0.3−0.4. Thus, the effect of two-body interac-
tions is stronger in the work reported here, which explains to
some extent the clarity with which we observe deviations
from ideal-gas behavior.

In the experiment, because the total numberN drops with
T due to evaporation and losses,h decreases slightly across
the temperature range, from 0.51 aboveTc to 0.47 at low
temperature[see Figs. 2(c) and 2(d)]. To compare with
theory, we use the average number of atoms across the data
set,N<1.23106, and the correspondingh=0.49. This does
not lead to a discernible variation of the HF prediction at the
scale of the graph, because of the weakN1/15 dependence of
h. This behavior emphasizes the scaling behavior exhibited
by trapped Bose gases with large atom numbers[33].

Finally, we note that the data in the vicinity ofTc, shown
in Fig. 2(e), emphasize the necessity of the full HF treatment
of the thermal component to understand quantitatively the
thermodynamic properties. As a matter of fact, the semi-ideal
model(dashed line) predicts a condensed fraction systemati-
cally higher than the one we observe. This is clear evidence
for mutual interaction between the condensed and noncon-
densed components. We will return later to this point, which
is an important conclusion to be drawn from this work.

B. Enhanced resolution of low thermal fraction

As discussed earlier, at low temperaturesT&0.4TC, the
standard procedure is unable to extract faithfully the proper-
ties of the thermal cloud. Thanks to the Bragg filtering tech-
nique introduced in Sec. II C, this difficulty can be overcome
and a very small thermal fraction can be detected. The con-
densed fraction measured this way is plotted in Fig. 2(b),
along with theh=0.47 curve that corresponds the valueN
<83105 for this set of measurements. Again, we find good
agreement with the prediction of the HF model within our
uncertainty, even at very low temperatures. One could won-
der whether the contribution from collective excitations
(quantum and low-energy thermal depletion) could be mea-
sured by this technique(the analog of the phonon regime in
superfluid4He). Unfortunately, according to the estimations
of [18], they are always small when compared to the contri-
bution of single-particle excitations in the temperature range
we explore and compared to the estimated sensitivity of the
Bragg technique(Sec. II C). Only by increasing the dilute-

ness parameterÎn0s0da3 significantly could this regime be-
come observable experimentally with the techniques de-
scribed here.

IV. MEASUREMENT OF THE OVERALL AND THERMAL
EXPANSION ENERGIES

Another quantity that can be measured from time-of-flight
expansion is the release energy[2,4,5], the sum of the kinetic
and interaction energy released at the trap cutoff and avail-
able for the expansion of the whole cloud. In an anisotropic
trap such as ours(v' /vz<51), almost all the interaction
energy converts into radial expansion velocity. The radial
expansion of the cloud fort@v'

−1, observed in they direc-
tion, proceeds at an overall speedvy, fixed by the expansion
energy

Ey =
1

2
Mvy

2 =
1

3
Ekin +

1

2
Eint, s4d

which, if scaled by the characteristicNkBTc
0, is a universal

function ofh andT/Tc
0. We discuss in the Appendix I how to

calculate the kinetic and interaction energies in the HF ap-
proximation.

Experimentally, one measuresEy directly from the root-
mean-square cloud radius, according toky2l=vyt [4,5], with-
out resorting to a detailed fitting model. This expression as-
sumes negligible relaxation between the axial and radial
degrees of freedom. We have plotted the measured value of
Ey in Fig. 3(a) for same data as those shown in Fig. 2(b),
where the Bragg filter has been used(h<0.47 for these
data). As expected, the kinetic energy of the thermal cloud
dominates close toTc, with a small contribution of the mean-
field energy, whereas the interaction energy of the conden-
sateE0 is the most important term at low temperature. The
HF curve connects these two limiting cases and reproduces
well our observations.

A key advantage in our situation is the ability to analyze
separately the condensate and thermal cloud thanks to the
Bragg filtering scheme and, therefore, to measure the release
energy of the thermal cloudalone.To avoid the condensate,
we estimate the thermal cloud rms radius from a fit to a
radial cut to the image[see inset in Fig. 3(b)]. The release
energy of the thermal cloud measured this way is shown in
Fig. 3(b), together with the calculated value:

Ey
sthd =

1

3
Ekin +

kBT

2
sz0 + zthd. s5d

The quantitiesz0 andzth represent the scaled mean-field en-
ergy corresponding to the repulsion felt by a thermally ex-
cited atom due the condensate and to the remaining thermal
atoms, respectively. They are defined more precisely in the
Appendix I. Although the difference with the noninteracting
curve is less pronounced at very low temperatures, where the
thermal energy is very low, close toTc, these results empha-
size the important role of interactions and the good agree-
ment with HF theory once again.
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V. FURTHER EVIDENCE FOR MUTUAL INTERACTION
BETWEEN THE CONDENSED AND THERMAL

COMPONENTS

From images taken employing the Bragg filtering scheme,
it is also possible to examine a radial cut to the profile of the
thermal cloud, as shown in Fig. 4(a). As the initial kinetic
energy of the thermal cloud is typically much larger than its
mean-field energy, one expects that the density distribution
after time of flight reflects at least approximately the initial

momentum distribution, which does not display the “hole”
present in the density distribution in the trap(see the Appen-
dix I for further discussion). This is indeed the case: the
measured profiles show a monotonic behavior near the center
of the cloud[35]. Nevertheless, the density distribution we
observe is somewhat flatter in the central region than the
ideal-gas distribution used in the analysis, as shown by the
residuals of a fit to the radial profile[Fig. 4(b)]. Above Tc,
the effect disappears, which indicates that a flatter profile is
not simply an artifact of our measurement method. Further-
more, such a behavior is to be expected if the condensate
mean field repels the thermal cloud in the early stage of the
expansion, since interactions tend in general to make the
density profile more uniform.

A. Evidence for nonballistic expansion

As stated in Sec. II, this repulsion effect is not taken into
account in our fitting procedure, which assumes an ideal
Bose distribution to fit the profile and ballistic expansion to
deduce temperature from the cloud sizes. To investigate fur-
ther the validity of the analysis, we begin by plotting in Figs.
5(a) and 5(b) the aspect ratio of both components, as a func-
tion of the reduced temperature. One sees from these graphs
that the simple model of a TF condensate on top of an ideal
thermal background is not sufficient to account for the data.
Indeed, for our trapping frequencies and for the time of flight
t=22.3 ms used in these measurements, one would expect
from this model an aspect ratio of 1.17 for the condensate
and 0.77 for the thermal cloud. Both deviate from these val-
ues and vary with temperature, indicating that the expansion
dynamics is more complex than assumed by the analysis
model. Note that although this model fails to describe fully
the expansion dynamics, the observed deviation from ballis-
tic expansion remains small.

As already pointed out, the obvious weakness of the
analysis model is the neglect of collisional effects. We recall
that the expansion model is basically motivated by the ab-
sence of a more elaborate theory to which we could compare
our observations. It is, however, of interest to quantify the
error level on temperature measurements, which we will do

FIG. 3. Expansion energy in the radialx direction as a function of temperature. Solid circles in(a) correspond to the whole cloud and
open circles in(b) to the thermal component only. The data are taken from the same set as in Fig. 2(b). The solid lines on the graphs show
the same quantities predicted by the self-consistent HF model, withh=0.47. The dotted line is the expansion energy(kinetic only) of an ideal
cloud.

FIG. 4. Radial density profile of the thermal cloud. The dashed
line in the inset shows the axis along which the profiles are taken.
(a) Radial cut of the column density profile of the thermal cloud
after 24.3 ms time of flight(solid line) and the best fit to an ideal
Bose-Einstein distribution(dashed line). The Bragg filter has been
employed to separate the thermal and condensed components. The
condensed fraction is indicated in each case.(b) Residual of the fit
for each case in(a).
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in the remainder of this section at the gross estimate level.
Interaction-driven forces that affect the expansion can be

divided into two distinct classes[36]: hydrodynamic forces
on the one hand, predominant aboveTc in [27], and mean-
field repulsion on the other, which play a minor role above
Tc, but become increasingly important with decreasingT due
to the presence of the condensate[37]. Both effects are
roughly speaking comparable in magnitude, and from our
observations aboveTc and HF calculations(see the I), we
estimate an upper bound on the systematic error on tempera-
ture measurements, from 10% close toTc (mostly due to
hydrodynamic behavior) to 20% well below(mostly due to
repulsion by the condensate), compatible with the observed
deviation from the ideal gas expansion.

This is an upper bound because the temperature is found
through a fit to the wings of the distribution the only, which
is expected to reduce effect of mean-field repulsion. The
close agreement we find between the calculated release en-
ergy and the measured one in Fig. 3(b), where we recall that
the radial size used to deduce the expansion energy was
found through a fit to the full profile, seems to indicate that
fitting to the wings avoids counting most of the repulsion
energy in the determination of the temperature, as expected.
However, this need not be true for the hydrodynamic relax-
ation, which affects directly the momentum distribution. Just
as aboveTC, hydrodynamic forces are thus likely to be the
dominant source of systematic error in most of the tempera-
ture range in elongated traps such as ours.

B. Compression of the condensate by the thermal cloud

We conclude this section by examining the axial length of
the condensate, which is reasonably immune to the effects
discussed above because axial expansion of the condensate is
very slow: the measured length thus stays close to the in-trap
length. From condensed fraction measurements, it is clear
that the semi-ideal model is not sufficient to reproduce our
results, meaning that the mutual interaction between con-
densed and noncondensed atoms is observable. This is also
seen from the length of the condensate inferred from the
two-component fit, which is reduced when compared to the
TF length calculated with the number of condensate atoms

we measure. A quantitative comparison can be made only by
taking into account the slow axial expansion. In the absence
of a complete theory, we assume that the axial length is
rescaled from the equilibrium length by the same factor as a
condensate in the TF regime,bz<1+pvz

2t /2v'<1.04 for
our parameters[39,40]. With this assumption, we find our
data to be in reasonable agreement with the HF length,
whereas the TF prediction is found systematically too high
(see Fig. 6). This reduction can be attributed to the thermal
cloud compression discussed in the I: at equilibrium, the
shell of thermal atoms surrounding the condensate exerts a
force towards the trap center, reducing its extension when
compared to a “free” TF condensate.

VI. CONCLUSION

In this paper, we have investigated experimentally the
thermodynamics of a trapped, interacting Bose gas over a
wide range of temperatures, fromTc down to 0.2Tc. We have
used the standard time-of-flight analysis, complemented by
the use of coherent Bragg scattering, to filter the condensate
out of the thermal cloud. The latter technique allows us to
reach lower temperatures and higher condensed fractions
than those accessible by the usual method. We have investi-
gated primarily two quantities: the condensed fraction and

FIG. 5. Deviation from ballistic expansion. The aspect ratios of the condensed(a) and thermal(b) components of mixed clouds, after 22.3
ms of free expansion, are plotted as a function of the reduced temperature. The aspect ratios for noncondensed clouds, analyzed in more
detail in [27], are also shown for comparison. The horizontal dashed lines indicate the aspect ratio of a TF condensate and an ideal thermal
gas, respectively, and the vertical dotted lines show the critical temperature including mean-field and finite-size effects.

FIG. 6. Compression of the condensate by the thermal cloud.
The axial length of the condensate as measured in the absorption
images is shown, with the TF(dashed line) and the HF predictions
for the trapped condensate(dotted line) and after rescaling by the
same factor as a TF condensate(solid line).
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the (radial) release energy. The data display without ambigu-
ity an interacting gas behavior and are in agreement at a few
percent level with a Hartree-Fock description of the mixed
cloud. This highlights the pertinence of this simple descrip-
tion of the interacting, trapped Bose gas at finite temperature.
Moreover, this gives evidence for a mutual interaction be-
tween the condensate and the thermal cloud close toTc. Al-
though these effects are small, they are measurable and
should be taken into account in precise comparisons to the
theory of finite-temperature, Bose-Einstein condensed gases.

A more thorough quantitative test of theory for ground-
state occupation and similar thermodynamic properties is,
however, hindered by the lack of theory to understand the
expansion of a mixed cloud. For instance, the data in Fig.
2(a) lie systematically slightly below the theory, which may
be due to an underestimation of the condensed fraction or the
temperature: as described above, we use an ideal Bose dis-
tribution to fit the thermal component. This assumption con-
tradicts the principal conclusion of this paper, that ideal-gas
approximations are far from sufficient at the desired level of
accuracy. Although the experiments described in this paper
suggest an accuracy on temperature of order 10% at least, we
have also shown that the density profile deviates from an
ideal gas near the center of the cloud and stressed that hy-
drodynamic and mean-field effects in the expansion are not
properly accounted for. Systematic errors may thus still be
present, and a better accuracy is not guaranteed with the
methods used in this paper. Numerical work—for instance,
along the lines of[41]—may help study the expansion of
mixed clouds and improve the standard analysis procedure.
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APPENDIX: SIMPLE MODELS OF A TRAPPED
BOSE-EINSTEIN CONDENSED GAS

AT FINITE TEMPERATURES

In this appendix, we briefly summarize the three different
models to which we compare our observations. We use as a
temperature scale the critical temperature of an ideal gas in
the thermodynamic limit[2], kBTc

0= "vfN/zs3dg1/3, wherez
is the Riemann function andv=v'

2/3vz
1/3 is the geometrical

mean of the trapping frequencies. We make three key as-
sumptions[labeled(i)—(iii ) in the following] to simplify the
theoretical description. For the condensate, we suppose that
(i) the conditionN0a/s@1 holds, wheres=Î" /Mv is the
mean ground-state width anda the scattering length. This
ensures that the condensate is in the TF regime. At very low

temperatures, where the condensed fraction is almost unity,
this gives the condensate densityn0=nTF as

nTFsr d = fmTF − Vextsr dg/U, sA1d

whereU=4p"2a/M is the mean-field coupling constant. The
TF chemical potential ismTF=s"v /2ds15N0a/sd2/5. For the
thermal cloud, we assume(ii ) kBT@ "v' for the semiclas-
sical approximation to hold and(iii ) use a mean-field de-
scription which treats thermal atoms as independent particles
evolving in a self-consistent static potentialVeffsr d (see be-
low). The distribution function in phase space for thermal
particles then reads

fsr ,pd =
1

ebfHsr ,pd−mg − 1
, sA2d

with the semiclassical HamiltonianHsr ,p d=p2/2M
+Veffsr d, the chemical potentialm, and b=1/kBT. The par-
ticle density distribution for the thermal componentnth is
found by integration over momenta and reads

nthsr d =
1

lT
3 g3/2hexpfbsm − Veffsr ddgj. sA3d

Each model detailed below is thus specified by the precise
form of Veff: in the ideal-gas model,Veff reduces to the trap-
ping potential, in the semi-ideal model, it includes the mean
field of the condensate only, and in the HF model, it also
takes the mean field of the thermal atoms into account.

1. Ideal-gas model

The simplest approximation neglects all interactive con-
tributions to the effective potential, which reduces to the
trapping field:

Veff − m = Vext − m. sA4d

The thermodynamic quantities follow the ideal-gas laws
(see, for instance,[2]) and impose in particularm=0 below
Tc andN0/N=1−sT/Tc

0d3 for TøTc
0. This ideal-gas descrip-

tion is thus incompatible with the existence of a TF conden-
sate, which impliesm=mTF.0, and it should be considered
as a reasonable approximation only forkBT@m.

2. Semi-ideal model

The repulsion of the thermal cloud by condensed atoms is
taken into account in the so-called “semi-ideal” model
[10,11], which considers a TF condensate containingN0,N
atoms plus a quantum-saturated, ideal thermal gas moving in
the combined trapping plus condensate mean-field potential:

Veffsr d − m = Vextsr d + 2UnTFsr d − mTF. sA5d

The factor of 2 accounts for exchange collisions between
atoms in different quantum states[2]. Note that the con-
densed atom numberN0 should be found self-consistently for
a givenT under the constraint that the total atom number be
fixed.
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The semi-ideal model correctly predicts the most impor-
tant feature in the static density profile of trapped interacting
Bose gases. As soon as the condensed fraction is larger than
a few percent, the density of the condensate greatly exceeds
the density of the thermal component. Therefore, the conden-
sate mean field is stronger and repels the thermal cloud from
the center of the trap, digging a hole in the thermal density
distribution.

3. Self-consistent Hartree-Fock model

Although qualitatively correct and appealing because of
its simplicity, the semi-ideal model is not sufficient to de-
scribe precisely our experiments. Interactions among thermal
atoms and the backaction of the thermal cloud on the con-
densate have to be taken into account, which we do here in
the HF approximation[12–18], corresponding to a self-
consistent potential:

Veffsr d − m = Vextsr d + 2Un0sr d + 2Unthsr d − m. sA6d

The equilibrium condensate density is no longer simply
given by the TF profile, but depends also on the thermal
density through

n0sr d =
m − Vextsr d − 2Unthsr d

U
. sA7d

A self-consistent numerical solution with a fixed atom num-
ber N fixes the finite-T chemical potential,m=Un0s0d
+2Unths0d, from which all other quantities can be deter-
mined. For instance, the interaction energy, which contains
mixed terms describing the mutual influence of the conden-
sate and the thermal cloud, can be written asEint=E0
+kBTs2z0+zthd, where

E0 =
U

2
E ds3drn0sr d2, sA8d

z0 =
U

kBT
E ds3drn0sr dnthsr d, sA9d

zth =
U

kBT
E ds3drnthsr d2. sA10d

The kinetic energy is entirely due to the thermal cloud in the
TF approximation and reads

Ekin =E 1

h3ds3drds3dp
p2

2M
fsr ,pd. sA11d

Numerical solution of the HF model displays two addi-
tional features compared to the semi-ideal model. First,
mean-field interactions lower the critical temperature for
Bose-Einstein condensation[27–32]. Second, there is a back-
action of the thermal cloud on the condensate: the mean field
exerted by the shell of thermal atoms surrounding the con-
densate acts in return to compress it, increasing its density
and reducing its axial lengthL0 according to

L0
2 =

2g

mvz
2Hn0s0d +

2

lT
3 hg3/2se−gn0s0d/kBTd − g3/2f1gjJ .

sA12d

This compression effect is directly observed in Sec. V B and
indirectly through the measurements of condensed fraction in
Sec. III.

A further step forward would be to include collective ef-
fects in the model. However, Ref.[42] points out that low-
energy, collective excitations cause a minute change in the
thermodynamic properties of the system even at relatively
low temperaturesT&m. Another approach, based on quan-
tum Monte Carlo calculations[43,44], has confirmed that the
HF approximation could reproduce thethermodynamicsof
the trapped clouds to a very good accuracy.
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