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Momentum Spectroscopy of 1D Phase Fluctuations in Bose-Einstein Condensates
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We measure the axial momentum distribution of Bose-Einstein condensates with an aspect ratio of
152 using Bragg spectroscopy. We observe the Lorentzian momentum distribution characteristic of one-
dimensional phase fluctuations. The temperature dependence of the width of this distribution provides a
quantitative test of quasicondensate theory. In addition, we observe a condensate length consistent with
the suppression of density fluctuations, even when phase fluctuations are large.
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One of the most striking features of Bose-Einstein
condensates is their phase coherence. Extensive experi-
mental work on dilute atomic gases has demonstrated a
uniform phase of three-dimensional (3D) trapped con-
densates [1,2], even at finite temperature [3]. In low
dimensional systems, however, phase fluctuations of the
order parameter are expected to destroy off-diagonal long
range order (see [4,5] and references therein). This phe-
nomenon also occurs in sufficiently anisotropic 3D
samples, where phase coherence across the axis (long
dimension) is established only below a temperature Ty,
that can be much lower than the critical temperature T,
[6]. In the range Ty <T < T, the cloud is a *“quasicon-
densate,” whose incomplete phase coherence is due to
thermal excitations of 1D axial modes, with wavelengths
larger than its radial size. Quasicondensates in elongated
traps have been observed by Dettmer et al [7], who
measured the conversion, during free expansion, of the
phase fluctuations into ripples in the density profile.
Although the conversion dynamics is well understood
[8], the measured amplitude of density ripples was a
factor of 2 smaller than expected. In addition, nonequili-
brium phase fluctuations in elongated condensates have
been observed with the condensate focusing method [9].

In this Letter, we report on the measurement of the
axial coherence properties of quasicondensates via mo-
mentum Bragg spectroscopy. In previous work using this
technique [2,10], the finite size and mean-field energy
were the primary contributors to the spectral width. By
contrast, the dominant broadening in our conditions re-
sults from thermally driven fluctuations of the phase,
which reduce the coherence length [4,6]. Indeed, the axial
momentum distribution is the Fourier transform of
the spatial correlation function C(s) = [ Br¥ie -
su,/2)W(r + su,/2)) [11], where u, is the axial unit
vector. When phase fluctuations dominate (i.e., 7 >
T,), the axial momentum width is, hence, proportional
to /i/L 4, where L is the characteristic axial decay length
of C(s). Experimentally, for 6 < T/T,, < 28, we find mo-
mentum distributions with Lorentzian shapes, whose
widths increase with 7. Such a shape is characteristic of
large phase fluctuations in 1D [12], which result in a
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nearly exponential decay of C(s). Moreover, the momen-
tum half-width A p agrees quantitatively with theoretical
predictions to within our 15% experimental uncertainty.
This implies, in this temperature range, a coherence
length /i/A p substantially smaller than the quasiconden-
sate length 2L, from about L/18 to L/4 [13]. We have also
checked an important feature of quasicondensates: the
suppression of density fluctuations even in the presence of
large phase fluctuations.

We produce a Bose-Einstein condensate of 8’Rb in the
5812 |F =1, mp = —1) state. A new design of our iron-
core electromagnet, with respect to our previous work
[14], allows us to lower the bias field of the Ioffe-
Pritchard trap to obtain tighter radial confinement.
Final radial and axial trap frequencies are, respectively,
w, /27 =760(20) and w./27 = 5.00(5) Hz. The con-
densates, containing around 5 X 10* atoms [15], are nee-
dle shaped, with a typical half-length L =~ 130 wm and
radius R =~ 0.8 um. The chemical potential being a few
times fw |, the clouds are between the 3D and 1D
Thomas-Fermi regime [17]. However, the low-lying ex-
citations of the condensate are 1D in character, due to the
large aspect ratio of the trap [18].

Our momentum distribution measurement is based
on four-photon velocity-selective Bragg diffraction
[2,10,11,19]. Atoms are diffracted out of the condensate
by a moving standing wave, formed by two counterpro-
pagating laser beams with a relative detuning 6. Because
of the Doppler effect, the momentum component reso-
nantly diffracted out of the condensate is p, = M(6 —
8wgr)/(2k;) with wg = hk? /(2M), M the atomic mass,
and k. = 27/A (A = 780.02 nm). The lasers are tuned
6.6 GHz below resonance to avoid Rayleigh scattering.
The laser intensities (about 2 mW/cm?) are adjusted to
keep the diffraction efficiency below 20%.

To build the momentum spectrum of the quasiconden-
sate, we measure the fraction of diffracted atoms versus
the detuning 6 between the Bragg laser beams. The
differential frequency 6 must be stable to better than
the desired spectral resolution, about 200 Hz for our
typical Ly = 10 um. The optical setup is as follows. A
single laser beam is spatially filtered by a fiber optic,
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separated into two arms with orthogonal polarizations,
frequency shifted by two independent 80 MHz acousto-
optic modulators, and recombined. The modulators are
driven by two synthesizers stable to better than 1 Hz over
the typical acquisition time of a spectrum. The overlap-
ping, recombined beams are then sent through the vac-
uum cell, parallel (to within 1 mrad) to the long axis of
the trap, and retroreflected to obtain two standing waves
with orthogonal polarizations, moving in opposite direc-
tions. After we mounted the critical retroreflecting
mirror on a long, rigid plate to minimize axial vibra-
tions, the average over ten beat notes had a half width
at half maximum (HWHM) of 216(10) Hz for a 2-ms
pulse [20].

The following procedure is used to acquire a momen-
tum spectrum. At the end of evaporative cooling, the
radio frequency knife is held fixed for 6.5 s to allow the
cloud to relax to equilibrium. Indeed, we observe axial
shape oscillations of the cloud, triggered by the onset of
Bose-Einstein condensation [9,21], despite a slow evapo-
ration (less than 100 kHz/s) across T,.. The magnetic trap
is then switched off abruptly, in roughly 100 ws, and the
cloud expands for 2 ms before the Bragg lasers are pulsed
on for 2 ms. We wait for a further 20 ms to let each
diffracted component (one per laser standing wave) sepa-
rate from the parent condensate, and take an absorption
image [Fig. 1(a)]. Diffraction efficiency is defined as
the fraction of atoms in each secondary cloud. We repeat
this complete sequence for several detunings (typically
15), several times (typically 5). After averaging the dif-
fraction efficiencies measured at each detuning &, we
obtain two “elementary spectra,” one for each diffraction
component.

We take the Bragg spectrum after expansion rather
than in the trap to overcome two severe problems. In
the trapped condensate, first, the mean-free path (about
10 um) is much smaller than its axial size, typically
260 um, so that fast Bragg-diffracted atoms would
scatter against the cloud at rest [22]. Second, the inho-
mogeneous mean-field broadening [2] would be of the
order of 300 Hz, ie., larger than the spectral width
expected from phase fluctuations. By contrast, after
2 ms of free expansion, the peak density has dropped
by 2 orders of magnitude [23], and both effects become
negligible. In addition, the phase fluctuations do not sig-
nificantly evolve in 2 ms, since the typical time scale for
their complete conversion into density ripples varies from
400 ms to 15 s for the range of temperatures we explore
[12]. Also, the mean-field energy is released almost en-
tirely in the radial direction, because of the large aspect
ratio of the trap [23], and contributes only about 50 Hz of
Doppler broadening in the axial direction. The only per-
turbation of in-trap axial momenta due to the trap release
seems to be small overall shifts (around 100 wm/s) at-
tributed to residual magnetic gradients that merely dis-
place the spectra centers.
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FIG. 1. (a) Absorption image of degenerate cloud (center) and
diffracted atoms (left and right), averaged over several shots,
after free-flight expansion. (b) Diffraction efficiency versus
relative detuning of the Bragg lasers at T = 261(13) nK, with
T/T, = 20(2). A typical statistical error bar is shown. This
spectrum is the superposition of 12 “elementary spectra” (see
text). The true average center is 30.18(2) kHz, close to
30.17 kHz, the four-photon resonance frequency. The solid
line is a Lorentzian fit of width 316(10) Hz (HWHM). (c¢)
and (d) show, respectively, the residual of a Lorentzian and
of a Gaussian fit to the above spectrum. Residuals are folded
around the 6 = 0 axis, and smoothed with a six-point-wide
sliding average.

Bragg spectra have been taken at various temperatures
between 90(10) and 350(20) nK, while T, varied from
280(15) to 380(20) nK. The temperature was fixed to
within 20 nK by controlling the final trap depth to a
precision of 2 kHz, and measured from a fit to the wings
of an averaged absorption image. The fitting function is
an ideal Bose distribution with zero chemical potential,
plus an inverted parabolic profile for the quasicondensed
cloud. At each temperature, pairs of elementary spectra
(described above) were collected across a 125-ms-wide
range of hold times to average over residual oscillations
and slowly varying fluctuations. All elementary spectra
corresponding to the same temperature are reduced to the
same surface, background, and center, and superposed, as
in Fig. 1(b).

The line shape of the resulting spectra is clearly closer
to a Lorentzian than to a Gaussian (see Figs. 1(c) and
1(d)). This is a significant result, because a Lorentzian-
like profile is expected for a momentum distribution
dominated by phase fluctuations (see [12] and below),
in contrast to the Gaussian-like profile expected for a
pure condensate [2,11]. From the Lorentzian fit, we ex-
tract the measured half-width A vy, for each temperature.
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The theoretical results obtained in [6,12] do not apply
directly to our experiment. In those works, a 3D Thomas-
Fermi density profile was assumed, whereas in our case
modification of the density profile by the thermal cloud
and radial quantum pressure must be accounted for. We
find (and discuss below) that a parabolic profile is still a
good fit function, but that the usual 7 = 0 relations
between u, L, R, and the number of condensed atoms
Ny are no longer valid. We therefore extend the calculation
of the axial correlation function in [12] to an arbitrary
density profile, in the local density approximation. In the
mean-field regime [4], from the result of [24] for a 1D
uniform Bose gas at finite-temperature, we obtain

where n,(z) = [d’r)ny(ry, z) is the axial 1D density of
the quasicondensate, while ny(r) is its 3D density profile.
The coherence length near the center of the trap is 2L,
with L = i?n,(0)/(MkgT). Following Petrov ez al. [4,6],
we define the temperature which delineates the border
between coherent and phase-fluctuating condensates as
T4 = L4T/L.Since ny(0), L, and T are extracted directly
from the images, the definitions of L, and T relate the
coherence properties to experimentally measured quan-
tities. The axial momentum distribution follows from a
Fourier transform of C(s) and is well approximated by a
Lorentzian of width Apy = afi/L, (HWHM), with a =
0.67 for a parabolic ng(r) [12]. The predicted spectral
half-width is therefore oA Vg4, Where

2k

)

In the following, we will use « as a free parameter to test
the theory outlined above.

Figure 2 shows the measured spectral width Ay ver-
sus Av,. The measured widths increase at higher Av, as
expected. To compare these data to theory, we need to
take into account a finite “instrumental” width of the
Bragg spectra, including the effect of the mirror vibra-
tions, residual sloshing in the trap, and Fourier broad-
ening due to the 2-ms pulse length (125 Hz HWHM). We
assume that all experimental broadenings result in a
Gaussian apparatus function of half-width wg, to be
convolved by the Lorentzian momentum profile with a
half-width aA V. The convolution, a Voigt profile, has a

half-width aAv,/2 + \/wé + (@Aw,)?/4. Note that

fitting a Voigt profile instead of a Lorentzian to a spec-
trum gives the same total HWHM to less than 5%, but the
Lorentzian shape is too predominant to extract reliably
the Gaussian and the Lorentzian contributions to the
profile. Using o and wg as free parameters to fit the
data of Fig. 2, we find wg = 176(6) Hz, and a =
0.64(5)(5). The first uncertainty quoted for « is the stan-
dard deviation of the fit value. The second results from
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FIG. 2. Half widths at half maximum Awy; of the experi-
mental Bragg spectra versus Aw. Vertical error bars are the
standard deviations of the fit width; the horizontal error bars
are the one-sigma statistical dispersions of Av . The solid line
is a fit assuming a Voigt profile for the spectra.

calibration uncertainties on the magnification of the
imaging system and on the total atom number, which do
not affect wg. The agreement of the measured value of «
with the theoretical value 0.67, to within the 15% experi-
mental uncertainty, confirms quantitatively the tempera-
ture dependence of the momentum width predicted in
Ref. [6]. The coherence length /i/p, deduced from this
measurement varies between 5.9(8) and 39(4) um, in the
range 6 <T/T, <28.

Another important aspect of quasicondensates, the
suppression of axial density fluctuations, is investigated
here through the size of the trapped condensate. In the
presence of density fluctuations, the resulting interaction
energy [25] would increase the size with respect to the
expectation for a smooth density profile. The measured
axial half-length L after release faithfully reflects the
half-length in the trap since axial expansion is found
experimentally to be negligible. Figure 3 shows that the
measured values of L at various temperatures (filled
circles) deviate from the standard Thomas-Fermi predic-
tion (diamonds) L3p = 2u/(Mw?), with u given by
2p = hd(15Nya/a)? [16], where @ = (03 w,)'/3, o =
JVA/(M®), and a = 5.31 nm [26]. We understand this
smaller value by taking into account the compression of
the quasicondensate by the 3D thermal component (ex-
citations with energy much larger than fiw ), and the
radial quantum pressure. The 3D excited states contribute
negligibly to the fluctuations of the phase [6] and only the
density profile is affected. Using a Hartree-Fock approach
[16,27], we find

2g { 2 _
n(0) + = [g3/o(e 8O/ k1)) — o 2(1)]},
M w? /\% / /

3)

with the coupling constant g = 47h’a/M, the thermal
de Broglie wavelength Ap = [27/2/(MkgT)]'/?, and
g3/2(x) = %, x"/n*2. The open circles in Fig. 3 show
the solution of Eq. (3) assuming a parabolic profile, such

L? =
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FIG. 3. Half-length L of the quasicondensate versus tempera-

ture. Experimental values (@ with statistical error bars) are
compared to two calculations: standard Thomas-Fermi (¢) and
Hartree-Fock with radial quantum pressure corrections (see
text) (O). Calculations use the measured temperature and
number of condensed atoms. The greyed areas represent un-
certainty associated with atom number calibration. Inset:
Number of condensed atoms N, with statistical dispersion at
each temperature.

that ny(0) = 15N,L 3€?/(87). The aspect ratio € is
calculated according to the theory developed in [29],
which takes into account radial quantum pressure. The
calculated lengths are in agreement with our measure-
ments to within our estimated calibration uncertainty. We
conclude, in line with [8], that a phase-fluctuating con-
densate has the same smooth profile as a true condensate
[29], and thus that the axial density fluctuations are sup-
pressed even when phase fluctuations are large.

In conclusion, we have demonstrated three important
features of quasi—Bose-Einstein condensates: (i) the mo-
mentum distribution shape, found Lorentzian; (ii) the
temperature dependence of the momentum width; and
(iii) the suppression of density fluctuations. Our results
are in quantitative agreement with the finite-temperature,
interactive theory developed in [4,6] supplemented by a
Hartree-Fock treatment of 3D excited states. The same
method could be applied to investigate how long range
order develops during the condensate growth.
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Note added.—We would like to point out that comple-
mentary work [30] using interferometry was reported
soon after the submission of this manuscript.
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