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Momentum distribution and correlation function of quasicondensates in elongated traps
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We calculate the spatial correlation function and momentum distribution of a phase-fluctuating, elongated
three-dimensional condensate in a trap and in free expansion. We take the inhomogeneous density profile into
account via a local-density approximation. We find an almost Lorentzian momentum distribution, in stark
contrast with a Heisenberg-limited Thomas-Fermi condensate.
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Low-dimensional, degenerate Bose gases are expected amce A ¢%(Z,s) valid across the whole sample. This is
have significantly different coherence properties than theimotivated by the fact that experiments with quasicondensates
three-dimensional(3D) counterparts. In one-dimensional [15,16] are quite sensitive to the inhomogeneity of the
(1D) uniform systems, no true condensate can exist at angample. In position space, interferomeft0,11] gives ac-
temperatureT because of a large population of low-lying Cess to the spatial correlation functi6f)(s) (see, e.g., Ref.
states that destroys the phase cohergsee Ref.[1] and [12])
references therein For a trapped gas, the situation is R
different—the finite size of the sample naturally introduces a cW(s)= f PRV T(p,2+52)¥(p,Z2—5/2)). (2
low-momentum cutoff, and at sufficiently low temperature,

T<T,, a phase coherent sample can efist Above T,,  Equivalently, one can measure the axia., integrated over
the degenerate cloud is a so-callgdasicondensatethe  transverse momentanomentum distributiorP(p,), which
density has the same smooth profile as a true condensate, hisithe Fourier transform of (*)(s) [12,13,14:
the phase fluctuates in space and time. As shown in[REf.
this analysis holds also for 3D condensates in elongated traps — L (1) —ip,siti

CAYSE . : > P(p,) dsC™(s)e : 3
even if, strictly speaking, radial motion is not frozen. Such 2mh

3D, phase-fluctuating condensates have been recently OR— powerful tool to measure(p,) is Bragg Spectroscopy
served experimentally in equilibriuf@] and nonequilibrium with large momentum transfer, as demonstrated in Ref

[4] samples. for a 3D condensate, and recently applied in our group to

Phase fluctuations of the condensate are cause_d ”_‘ai”'y tﬁérform the momentum spectroscopy of a quasicondensate
long-wavelength (or low-energy collective excitations 15]. It is clear that bothc™ and P are sensitive to the

[1,2,5. In elongated traps, the lowest-energy modes are 1ihnomogeneity of the system. Our second goal is to obtain
excitations along the long axis of the trg]. Furthermore,  gxpjicit expressions for these two important quantities.
in the Iong'WaVelength I|m|t, denSIty ﬂgCtuatlonS are Sma” This paper is Organized as follows. First’ we summarize
and can be neglected for the calculation of the correlationihe results of Ref[2], and give an energetic interpretation of
function [1,7]. Then, the single-particle density matrix is, T,. Next, we discuss in detail a local-density approach
assuming cylindrical symmetry, (LDA) to compute the variance of the phase for any mean
A R ) position in the trap. This approximation is found to be accu-
(VT(p,2)W(p,2'))=~x(p,Z,s)e” M2A129 (1)  rate forT=8T,, when applied to a trapped condensate. Us-
ing the LDA, we then address the problem of a phase-
We have introducedA ¢?(Z,s)=([#(2)— ¢#(z')]%), the fluctuating condensate in free expansion. In particular, we
variance of the phase difference between two par'son  point out that at a higher temperature, the phase fluctuations
the axis of the trap, with mean coordinate=(z+z')/2 and  dominate over the mean-figld yele@se velocity and govern the
relative distances=z—z’, and the overlap functiony  Shape of the momentum distribution. _ o
= no(p2)Ng(p,2’), wheren, is the(quasjcondensate den- We c0n3|deﬂ\lo condeqsed atoms, trapped in a cyl|_ndr|-
sity. The variance\ $2(Z,s), the key quantity to characterize C2lly Symmetric _harmonic trap, with an aspect ratio
the spatial fluctuations of the phase of the condensate, h :%“’Z/“’L<1' If u>{fiw, fiwg, the condensate is in the
been calculated in Ref2], and an analytical form has been Thomas—!:erml(TF) regime[16]. The density has~t2he
given, which is valid near the center of the trée., for ~ Well-known inverted parabola formne(r)=nom(1—p
Z,s<L, with L the condensate half lengtfiThe first goal of ~ —2), with the peak densitpo,= w/g related to the chemi-
this paper is to find an analytical approximation for the vari-cal potentialx. From now on, we will use the reduced co-
ordinatesp=p/R andz=z/L, with R?=2u/Mw? and L?
=2u/Mw?, respectively.

*Email address: fabrice.gerbier@iota.u-psud.fr As shown in Ref[1], the phase fluctuations in trapped
"Present address: Department of Physics, University of Torontogases are mostly associated with thermally excited, low-
Canada. energy quasiparticlesthe quantum fluctuations are negli-
. e . 2~ ~ .
*UMRA 8501 du CNRS. gible). Under these conditions, the variant@ (Z,s) is
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e 2keT - ~ o averaging over the transverse degrees of free@®mThe
AP (29~ h—w_|¢j(2+5/2)—¢j(2—5/2)|2- (40 Bogoliubov spectrum for the excitation frequenciesci§

. ! =[w(w+Mc2Jh)]¥2~cipk for small k, with the free
where the sum extends over the 1D axial excitations, witrParticle energyiw,=#?k?*/2M and the 1D speed of sound
energyfw; and occupation numbeN;~kgT/fiw; for N;  Cip=Vu/2M [17]. The Fourier component for phase fluc-
>1. For a 3D condensate in an elongated trap, the amplitudélations with wave vectok is
¢; is proportional to a Jacobi polynomi&@{*", and .
=w,\j(j+3)/2[6] for integerj. The explicit result for the b= /ﬂi% \ /MClDi 6)
variance is ther2] K 201 \fy hk Y’

2m e T o where the final expression holds for low-lying phonon states
Ad (Z’S):ﬁf(z’s)' () (k—0), andV=2mn,,R2L. In a second step, we take into
account the trapping potential by the substitution
with  (Z,5)=3F;[P{*N(Z+5/2)— P*(Z-s/2)]? and 1
the coefficients;=(j +2)(j +3/2)/4 () +1)(j +3). Below h— = El\/lwﬁzz. (7)

the characteristic temperatuie, = 15N (% w,)%/32ukg

the phase profile is almost flat, and the single-particle density
matrix (1) is limited by the overlap functioy; therefore the
characteristic width o€ ) (i.e., the coherence lengtis of

the order ofL. On the other hand, if>T , the varianced ¢>2

dominates the behavior ¢f%), and the coherence length is [1_32
i ’ speed of sound: ¢ N CipVl—27,
substantially smaller tham. Near the center of the trap P 1% V#) = C1p

(Z's<1), Petrovetal. [2] have derived the simple law
A¢2(2,§)~(T/T¢)|~s| and introduced the characteristic

This implies directly the following replacements:

density: Nom(*m) — nOm(l_Ez)y

radius:  R(x\u) — RY1-22

phase-coherence length,=LT,/T which depends implic- half length: L — L. (8)
itly on the temperature, on the number of condensed atoms,
and on the trapping geometry. With these substitutions, we recover the 3D TF density pro-

We can understand this expression figy from energetic  file. We require that the excitation frequencypk is not
considerations. A random-phase gradient of the condensateodified as well, which implies replacing with k(1
wave function, on a length scale,, requires an average -7 2)-12 and using a density of state¥(k)dk=(L/#)(1
kinetic energyE ,~No#?/M Lfb This kinetic energy is sup-  _72y-124k  For the position-dependent variance of the
plied by the thermal excitations that drive the fluctuations Ofphase, we find18]
the phasg[5]. As these excitations are quasiclassichl (
>1), this energy is of ordekgT times the number of rel- Gy T |§|
evant modes. In 1k space, the distribution of the relevant Ad (Z,s)f~v_|_—ﬁ.
excitations extends over1/L,, and the spacing between ¢ (1-29)
modes is~ 1/L because of the finite size of the system—this - -
givesL/L 4 relevant modes. By equating the two expressionsl he Z-dependent phase-coherence leng(1—-2%)?, ap-
for E4, we recover finallyL 4~ LNo(%iw,)% ukgT. pearing in Eq.(9), can be substantially smaller near the

As indicated earlier, it is important to take the full spatial €dges of the trap than in the center. We will see that this
dependence 0A¢2(2,§) into account for quantitative com- red?cesft?ﬁ atverage coherence length below its value at the

arison with experiments. In any case, E).can be evalu- C€Ne€r of the trap. .
gted numericalls. However, we é]/ain phygzal insight with an W‘? deduce from Egs(1), (2), and (9) the correlation
analytical approach based on the LDA, also used in fagf. function
to calculate the evolution of the density in time of flight. This

€)

approximation considers that the condensate is locally cgrla)pT(g)%%f“*sz"‘d}(l_gz_gzm)z
equivalent to a homogeneous medium, however, with a ’ 8 Jo

slowly varying density that depends on the trapping poten- ~

tial. If T>T,, the coherence length is sufficiently small xexp( _L E ) (10)
compared td., so that the LDA is valid for the calculation of 2T, (1_’2 2)2 '

correlation properties.

The first step is to consider a finite cylinder of length,2 In deriving Eq.(10), we have used the approximation for the
with radial harmonic trapping and periodic boundary condi-gverlap function y(p,Z,s)~(1—p?—2z2—s?2/4), which is
tions alongz (and therefore homogeneous axial densiBor  valid near the center of the trap. In Fig. 1, we compare the
this geometry, we find in the TF regimey(r)=non(1  result (10) to the correlation function following from the
—p?) for the condensate wave function. The low-lying exci- numerical integration of Eq5). In the T=0 limit, the cor-
tations are found using standard Bogoliubov thedyafter  relation function is limited by the overlap. Because of the
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However, this does not affect the quasicondensate peak we
are investigating here, but only the much smoother thermal
background13,14].

The results of the above paragraphs are valid for an equi-
librium situation. However, coherence measurements involv-
ing Bragg scattering10,14 suffer from two major difficul-
ties in a very elongated trgd5]: mean-field broadening of
the resonancgl4] and elastic scattering from the recoiling
_ . atoms and the condensate towards initially empty modes
§ (separation) [19]. Both of these problems can be solved by opening the
) _ ) . trap abruptly, and allowing the Bose-Einstein condensates to

FIG. 1. Spatial correlation functiod"(s) of a trapped quasi- ¢, 1anq o decrease its density before measurement. In the
condensate. The_ solld_ lines follow from the numerical evaluation Ofremainder of this paper, we discuss how expansion modifies
the result(5) derived in Ref.[2], for T=0, T/T,=4, andT/T, the momentum distribution and the correlation function, as-
=8, in order of decreasing width. The dashed lines follow from the ’

local-density approximation(10). Note that for convenience, suming that the expansion time is chosen to be long enough

~ . . _ to neglect the collisions.
(6] .
€ s) as Shov.vn here S normalized to 1 rather thaigp differ For a pure elongated condensate, abruptly released from
ent from what is done in the text.

the trap at =0, the explicit solution was found in R€R0].

The condensate density keeps its initial Thomas-Fermi
approximate form of x, our result Cﬁ,g)p’T:omNo[l shape, with the coordinates rescaled. Tsmal) axial mo-
_(5/2)2]5/2 is about 25% too broad, and one should rathefmentum from Lhe released mean-field energy is linear in po-
use the Gaussian approximationd, derived in Ref[13].  SItioN: P,~Pexz, With Pexy=(m/\2)AMcs for 7=, t>1,

As T increasesC® turns to an exponential-like function, andcg= \u/M is the 3D speed of sound. The axial momen-
and our approximation approaches the numerical calculationum distribution mirrors theéintegrated density distribution:
For T>8T,, the LDA result is very close to the numerical

C® (correlation function)

one (maximum error~3%). ForT>T,, Eq. (10) can be 15 p, \?]?

further simplified by keeping the-dependent term only in Pexp,7-0(P2) = 16Pexp 1- Pexp (12
the exponential. The Fourier transform then gives the mo-

mentum distribution This expression holds for a pure condensateTat0, as

indicated. For a phase-fluctuating condensate at fipiteis
- necessary to consider the time evolution of the fluctuations
1SNopy (1 ~ (1-z%* as well. As shown in Ref[3], the momentum distribution
Preap 1(P2)~ 327 f,l L(1—32)4p2+p2/4' (1D partially converts into density modulations after time of
z e flight. An explicit solution was derived for the density fluc-
tuations in the axially homogeneous case. Using the continu-

wherep,=1i/L 4 is a typical momentum associated with the Ity €quation(after radial averaging we find for >1,
phase fluctuations. This function is self-similar ;/p,

and approximated to better than 4% by a normalized Lorent-
zian with a half-width at half maximunfHWHM) of Ap
=0.67, . This Lorentzian shape of the momentum distribu-
tion differs qualitatively from the fully coherent case, where | wzt<(ﬂ/ﬁwz)(T/T¢)2' then for all k= L;l, the phase

it is almost Gaussian and limited by the Heisenberg principlejistribution is essentially frozenp,(z,7)~ ¢(z,0). Physi-
[14]. The increase of the phase fluctuations with increaSing cajly, this condition states that for such a time of flight, the
not only broadens the momentum distribution, but also in-excitations that have significant contributions to the phase
duces the appearance of “wings,” which form the *high- fiyctuations have not yet been converted into density modu-
energy tail” of the quasicondensate. To quantify the accuracyations. This condition is not at all restrictive for typical ex-
of our approximation, we have calculated numerically theperimental parametef8,4,15, and we suppose it is met in
Fourier transform of the correlation function. We find empiri- {ne remainder of the paper.

cally that the HWHM is accounted for by the formutep® Using the rescaled wave function from RE0], together

~(2.041/L)%+(0.65:/L 4)*. The first term corresponds to with Eq. (9), we find the correlation function for the expand-
the Heisenberg-limited momentum width, and the second tghg quasicondensate:

the phase fluctuations. FAr=8T,, the height and width

(2,7~ $i(2,0) r‘(“’E"”’ZCOS( o ) . @y
|

agree to better than 4% with the Lorentzian approximation. - 18N [l - -
For lowerT, the overlap functiory still affects the momen- CohA(s)~ 6 j dz(1-z22)2
tum distribution. -1
Note finally that the momentum distribution is Lorentzian T ~
only in the domairk<R™ . Outside this region, the 3D na- Xexp(i Th—~ & . (19
ture of the excitations should be taken into account properly. hw, 2T4 (1-22)2
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FIG. 2. The momentum distribution in expansign [Eq. (16)]
for y=p4/Pexp=0,1,3. Asy increasesg, continuously transforms
from a quartic profile to a Lorentzian-like profilsee text For y
=3, we find little change from the momentum distribution in the
trap (dashed line, a Lorentzian with HWHM 0.§7 see text The
functions have been rescaled by their maximum values to facilitat
comparison.

The phase factor in Eq14) accounts for the local expansion
momentum introduced abovérecall mul/fiw, >1). The
Fourier transform gives the momentum distribution

P T( )%& & (15)
exp, P pexpgy:p¢/pEXp pexp .
The functiong,, is given by
15y (1 _ (1-2%*
gy(x)_ﬁ 4 [ 2 (16)

(1-72%x-27%+ 2-

and the ratioy= p,/pex, controls the component of the mo-
mentum distribution which dominates. In the limit—0,
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using y/(x*+ y?)— wd(x) as y—0, we recover the zero-
temperature resultl2). On the other hand, iy>1, we ex-

pect the momentum distribution to be similar to the distribu-
tion in the trap(11). Figure 2 shows a numerical calculation

of g, for various values ofy. We find that already fop,

= 2Pexp, the momentum distribution is almost entirely domi-
nated by phase fluctuations and, as in the trapped case, is
very well approximated by a normalized Lorentzian with
HWHM =0.67,. Here, we note the following two points:
first, that the Heisenberg width-#/L is negligible at any
temperature, and second that, for large enough condensates,
we can havep.,>p, even if the coherence length is smaller
thanL.

In summary, we have analyzed the measurement of phase
fluctuations in elongated Bose condensates. Within a local-
density approach, we have been able to take the density pro-
file into account, and derived analytical formulas for the cor-
relation function and the momentum distribution of static
and freely expanding quasicondensates. In the regime of in-
terest, the formula compares well to a numerical evaluation
based on the results of R¢2], which are exact in the long-
wavelength limit. In particular, we show how the shape of
the momentum distribution tends to a Lorentzian with half-
width ~0.672/L, as one goes further in the phase-
fluctuating regime. We believe that these results may be
helpful to understand quantitatively the experiments involv-
ing quasicondensat¢s,4,15.
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