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Momentum distribution and correlation function of quasicondensates in elongated traps
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~Received 5 November 2002; published 27 May 2003!

We calculate the spatial correlation function and momentum distribution of a phase-fluctuating, elongated
three-dimensional condensate in a trap and in free expansion. We take the inhomogeneous density profile into
account via a local-density approximation. We find an almost Lorentzian momentum distribution, in stark
contrast with a Heisenberg-limited Thomas-Fermi condensate.
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Low-dimensional, degenerate Bose gases are expecte
have significantly different coherence properties than th
three-dimensional~3D! counterparts. In one-dimension
~1D! uniform systems, no true condensate can exist at
temperatureT because of a large population of low-lyin
states that destroys the phase coherence~see Ref.@1# and
references therein!. For a trapped gas, the situation
different—the finite size of the sample naturally introduce
low-momentum cutoff, and at sufficiently low temperatu
T!Tf , a phase coherent sample can exist@1#. Above Tf ,
the degenerate cloud is a so-calledquasicondensate—the
density has the same smooth profile as a true condensate
the phase fluctuates in space and time. As shown in Ref.@2#,
this analysis holds also for 3D condensates in elongated t
even if, strictly speaking, radial motion is not frozen. Su
3D, phase-fluctuating condensates have been recently
served experimentally in equilibrium@3# and nonequilibrium
@4# samples.

Phase fluctuations of the condensate are caused main
long-wavelength ~or low-energy! collective excitations
@1,2,5#. In elongated traps, the lowest-energy modes are
excitations along the long axis of the trap@6#. Furthermore,
in the long-wavelength limit, density fluctuations are sm
and can be neglected for the calculation of the correla
function @1,7#. Then, the single-particle density matrix i
assuming cylindrical symmetry,

^Ĉ†~r,z!Ĉ~r,z8!&'x~r,Z,s!e2(1/2)Df2(Z,s). ~1!

We have introducedDf2(Z,s)5^@f(z)2f(z8)#2&, the
variance of the phase difference between two pointsz,z8 on
the axis of the trap, with mean coordinateZ5(z1z8)/2 and
relative distances5z2z8, and the overlap functionx
5An0(r,z)n0(r,z8), wheren0 is the~quasi!condensate den
sity. The varianceDf2(Z,s), the key quantity to characteriz
the spatial fluctuations of the phase of the condensate,
been calculated in Ref.@2#, and an analytical form has bee
given, which is valid near the center of the trap~i.e., for
Z,s!L, with L the condensate half length!. The first goal of
this paper is to find an analytical approximation for the va
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ance Df2(Z,s) valid across the whole sample. This
motivated by the fact that experiments with quasicondens
@15,16# are quite sensitive to the inhomogeneity of t
sample. In position space, interferometry@10,11# gives ac-
cess to the spatial correlation functionC (1)(s) ~see, e.g., Ref.
@12#!

C (1)~s!5E d3R^Ĉ†~r,Z1s/2!Ĉ~r,Z2s/2!&. ~2!

Equivalently, one can measure the axial~i.e., integrated over
transverse momenta! momentum distributionP(pz), which
is the Fourier transform ofC (1)(s) @12,13,14#:

P~pz!5
1

2p\E dsC (1)~s!e2 ipzs/\. ~3!

A powerful tool to measureP(pz) is Bragg spectroscopy
with large momentum transfer, as demonstrated in Ref.@14#
for a 3D condensate, and recently applied in our group
perform the momentum spectroscopy of a quasiconden
@15#. It is clear that bothC (1) and P are sensitive to the
inhomogeneity of the system. Our second goal is to obt
explicit expressions for these two important quantities.

This paper is organized as follows. First, we summar
the results of Ref.@2#, and give an energetic interpretation
Tf . Next, we discuss in detail a local-density approa
~LDA ! to compute the variance of the phase for any me
position in the trap. This approximation is found to be acc
rate forT>8Tf , when applied to a trapped condensate. U
ing the LDA, we then address the problem of a pha
fluctuating condensate in free expansion. In particular,
point out that at a higher temperature, the phase fluctuat
dominate over the mean-field release velocity and govern
shape of the momentum distribution.

We considerN0 condensed atoms, trapped in a cylind
cally symmetric harmonic trap, with an aspect ratiol
5vz /v'!1. If m@$\v' ,\vz%, the condensate is in th
3D Thomas-Fermi~TF! regime @16#. The density has the
well-known inverted parabola form:n0(r )5n0m(12 r̃2

2 z̃2), with the peak densityn0m5m/g related to the chemi-
cal potentialm. From now on, we will use the reduced co
ordinatesr̃5r/R and z̃5z/L, with R252m/Mv'

2 and L2

52m/Mvz
2 , respectively.

As shown in Ref.@1#, the phase fluctuations in trappe
gases are mostly associated with thermally excited, lo
energy quasiparticles~the quantum fluctuations are negl
gible!. Under these conditions, the varianceDf

2
(Z̃,s̃) is

o,
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Df
2
~ Z̃,s̃!'(

j

2kBT

\v j
uf j~ Z̃1 s̃/2!2f j~ Z̃2 s̃/2!u2, ~4!

where the sum extends over the 1D axial excitations, w
energy \v j and occupation numberNj'kBT/\v j for Nj
@1. For a 3D condensate in an elongated trap, the ampli
f j is proportional to a Jacobi polynomialPj

(1,1) , and v j

5vzAj ( j 13)/2 @6# for integer j. The explicit result for the
variance is then@2#

Df
2
~ Z̃,s̃!5

T

Tf
f ~ Z̃,s̃!, ~5!

with f (Z̃,s̃)5( jF j@Pj
(1,1)(Z̃1 s̃/2)2Pj

(1,1)(Z̃2 s̃/2)#2 and
the coefficientsF j5( j 12)( j 13/2)/4j ( j 11)( j 13). Below
the characteristic temperatureTf 5 15N0(\vz)

2/32mkB ,
the phase profile is almost flat, and the single-particle den
matrix ~1! is limited by the overlap functionx; therefore the
characteristic width ofC (1) ~i.e., the coherence length! is of
the order ofL. On the other hand, ifT@Tf the varianceDf

2

dominates the behavior ofC (1), and the coherence length
substantially smaller thanL. Near the center of the tra
(Z̃,s̃!1), Petrov et al. @2# have derived the simple law
Df

2
(Z̃,s̃)'(T/Tf)us̃u and introduced the characterist

phase-coherence lengthLf5LTf /T which depends implic-
itly on the temperature, on the number of condensed ato
and on the trapping geometry.

We can understand this expression forLf from energetic
considerations. A random-phase gradient of the conden
wave function, on a length scaleLf , requires an averag
kinetic energyEf;N0\2/MLf

2 . This kinetic energy is sup
plied by the thermal excitations that drive the fluctuations
the phase@5#. As these excitations are quasiclassical (Nk
@1), this energy is of orderkBT times the number of rel-
evant modes. In 1Dk space, the distribution of the releva
excitations extends over;1/Lf , and the spacing betwee
modes is;1/L because of the finite size of the system—th
givesL/Lf relevant modes. By equating the two expressio
for Ef , we recover finallyLf;LN0(\vz)

2/mkBT.
As indicated earlier, it is important to take the full spat

dependence ofDf
2
(Z̃,s̃) into account for quantitative com

parison with experiments. In any case, Eq.~5! can be evalu-
ated numerically. However, we gain physical insight with
analytical approach based on the LDA, also used in Ref.@3#
to calculate the evolution of the density in time of flight. Th
approximation considers that the condensate is loc
equivalent to a homogeneous medium, however, with
slowly varying density that depends on the trapping pot
tial. If T@Tf , the coherence length is sufficiently sma
compared toL, so that the LDA is valid for the calculation o
correlation properties.

The first step is to consider a finite cylinder of length 2L,
with radial harmonic trapping and periodic boundary con
tions alongz ~and therefore homogeneous axial density!. For
this geometry, we find in the TF regimen0(r )5n0m(1
2 r̃2) for the condensate wave function. The low-lying ex
tations are found using standard Bogoliubov theory@5# after
05160
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averaging over the transverse degrees of freedom@6#. The
Bogoliubov spectrum for the excitation frequencies isvk

B

5@vk(vk1Mc1d
2 /\)#1/2'c1Dk for small k, with the free

particle energy\vk5\2k2/2M and the 1D speed of soun
c1D5Am/2M @17#. The Fourier component for phase flu
tuations with wave vectork is

fk5A vk
B

2vk

1

AV'AMc1D

\k

1

AV , ~6!

where the final expression holds for low-lying phonon sta
(k→0), andV52pn0mR2L. In a second step, we take int
account the trapping potential by the substitution

m→m2
1

2
Mvz

2z2. ~7!

This implies directly the following replacements:

density: n0m~}m! → n0m~12 z̃ 2!,

speed of sound: c1D~}Am! → c1DA12 z̃ 2,

radius: R~}Am! → RA12 z̃ 2,

half length: L → L. ~8!

With these substitutions, we recover the 3D TF density p
file. We require that the excitation frequencyc1Dk is not
modified as well, which implies replacingk with k(1
2 z̃ 2)21/2 and using a density of statesN(k)dk5(L/p)(1
2 z̃ 2)21/2dk. For the position-dependent variance of t
phase, we find@18#

Df
2
~ Z̃,s̃!'

T

Tf

us̃u

~12Z̃2!2
. ~9!

The Z̃-dependent phase-coherence lengthLf(12Z̃2)2, ap-
pearing in Eq.~9!, can be substantially smaller near th
edges of the trap than in the center. We will see that t
reduces the average coherence length below its value a
center of the trap.

We deduce from Eqs.~1!, ~2!, and ~9! the correlation
function

C trap,T
(1) ~ s̃!'

15N0

8 E
0

A12 s̃ 2/4
dz̃~12 z̃ 22 s̃ 2/4!2

3expS 2
T

2Tf

us̃u

~12 z̃ 2!2D . ~10!

In deriving Eq.~10!, we have used the approximation for th
overlap functionx(r,Z,s)'(12 r̃22 z̃ 22 s̃ 2/4), which is
valid near the center of the trap. In Fig. 1, we compare
result ~10! to the correlation function following from the
numerical integration of Eq.~5!. In the T50 limit, the cor-
relation function is limited by the overlapx. Because of the
2-2
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approximate form of x, our result C trap,T50
(1) 'N0@1

2( s̃/2)2#5/2 is about 25% too broad, and one should rath
use the Gaussian approximation toC (1), derived in Ref.@13#.
As T increases,C (1) turns to an exponential-like function
and our approximation approaches the numerical calculat
For T.8Tf , the LDA result is very close to the numeric
one ~maximum error'3%). For T@Tf , Eq. ~10! can be
further simplified by keeping thes̃-dependent term only in
the exponential. The Fourier transform then gives the m
mentum distribution

Ptrap,T~pz!'
15N0pf

32p E
21

1

dz̃
~12 z̃ 2!4

~12 z̃2!4pz
21pf

2 /4
, ~11!

wherepf5\/Lf is a typical momentum associated with th
phase fluctuations. This function is self-similar inpz /pf ,
and approximated to better than 4% by a normalized Lore
zian with a half-width at half maximum~HWHM! of Dp
50.67pf . This Lorentzian shape of the momentum distrib
tion differs qualitatively from the fully coherent case, whe
it is almost Gaussian and limited by the Heisenberg princ
@14#. The increase of the phase fluctuations with increasinT
not only broadens the momentum distribution, but also
duces the appearance of ‘‘wings,’’ which form the ‘‘high
energy tail’’ of the quasicondensate. To quantify the accur
of our approximation, we have calculated numerically t
Fourier transform of the correlation function. We find empi
cally that the HWHM is accounted for by the formulaDp2

'(2.04\/L)21(0.65\/Lf)2. The first term corresponds t
the Heisenberg-limited momentum width, and the second
the phase fluctuations. ForT>8Tf , the height and width
agree to better than 4% with the Lorentzian approximati
For lowerT, the overlap functionx still affects the momen-
tum distribution.

Note finally that the momentum distribution is Lorentzia
only in the domaink!R21. Outside this region, the 3D na
ture of the excitations should be taken into account prope

FIG. 1. Spatial correlation functionC (1)( s̃) of a trapped quasi-
condensate. The solid lines follow from the numerical evaluation
the result~5! derived in Ref.@2#, for T50, T/Tf54, andT/Tf

58, in order of decreasing width. The dashed lines follow from
local-density approximation~10!. Note that for convenience

C (1)( s̃) as shown here is normalized to 1 rather than toN0, differ-
ent from what is done in the text.
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However, this does not affect the quasicondensate peak
are investigating here, but only the much smoother ther
background@13,14#.

The results of the above paragraphs are valid for an e
librium situation. However, coherence measurements invo
ing Bragg scattering@10,14# suffer from two major difficul-
ties in a very elongated trap@15#: mean-field broadening o
the resonance@14# and elastic scattering from the recoilin
atoms and the condensate towards initially empty mo
@19#. Both of these problems can be solved by opening
trap abruptly, and allowing the Bose-Einstein condensate
expand to decrease its density before measurement. In
remainder of this paper, we discuss how expansion mod
the momentum distribution and the correlation function,
suming that the expansion time is chosen to be long eno
to neglect the collisions.

For a pure elongated condensate, abruptly released f
the trap att50, the explicit solution was found in Ref.@20#.
The condensate density keeps its initial Thomas-Fe
shape, with the coordinates rescaled. The~small! axial mo-
mentum from the released mean-field energy is linear in
sition: pz'pexpz̃, with pexp5(p/A2)lMcS for t5v't@1,

andcS5Am/M is the 3D speed of sound. The axial mome
tum distribution mirrors the~integrated! density distribution:

Pexp,T50~pz!5
15

16pexp
F12S pz

pexp
D 2G2

. ~12!

This expression holds for a pure condensate, atT50, as
indicated. For a phase-fluctuating condensate at finiteT, it is
necessary to consider the time evolution of the fluctuati
as well. As shown in Ref.@3#, the momentum distribution
partially converts into density modulations after time
flight. An explicit solution was derived for the density fluc
tuations in the axially homogeneous case. Using the cont
ity equation~after radial averaging!, we find for t@1,

fk~z,t!'fk~z,0!t2(vk
B/v')2

cosS vk

v'

t D . ~13!

If vzt!(m/\vz)(T/Tf)2, then for all k&Lf
21 , the phase

distribution is essentially frozen:fk(z,t)'fk(z,0). Physi-
cally, this condition states that for such a time of flight, t
excitations that have significant contributions to the ph
fluctuations have not yet been converted into density mo
lations. This condition is not at all restrictive for typical ex
perimental parameters@3,4,15#, and we suppose it is met in
the remainder of the paper.

Using the rescaled wave function from Ref.@20#, together
with Eq. ~9!, we find the correlation function for the expand
ing quasicondensate:

C exp,T
(1) ~ s̃!'

15N0

16 E
21

1

dz̃~12 z̃ 2!2

3expS i
pm

\v'

z̃s̃2
T

2Tf

us̃u

~12 z̃ 2!2D . ~14!
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e
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The phase factor in Eq.~14! accounts for the local expansio
momentum introduced above~recall pm/\v'@1). The
Fourier transform gives the momentum distribution

Pexp,T~pz!'
N0

pexp
gg5pf /pexpS pz

pexp
D . ~15!

The functiongg is given by

gg~x!5
15g

32pE21

1

dz̃
~12 z̃ 2!4

~12 z̃ 2!4~x2 z̃!21
g2

4

, ~16!

and the ratiog5pf /pexp controls the component of the mo
mentum distribution which dominates. In the limitT→0,

FIG. 2. The momentum distribution in expansiongg @Eq. ~16!#
for g5pf /pexp50,1,3. Asg increases,gg continuously transforms
from a quartic profile to a Lorentzian-like profile~see text!. For g
53, we find little change from the momentum distribution in t
trap ~dashed line, a Lorentzian with HWHM 0.67g, see text!. The
functions have been rescaled by their maximum values to facili
comparison.
ys

ys

a
pe

ev
.

e

05160
using g/(x21g2)→pd(x) as g→0, we recover the zero
temperature result~12!. On the other hand, ifg@1, we ex-
pect the momentum distribution to be similar to the distrib
tion in the trap~11!. Figure 2 shows a numerical calculatio
of gg for various values ofg. We find that already forpf
*2pexp, the momentum distribution is almost entirely dom
nated by phase fluctuations and, as in the trapped cas
very well approximated by a normalized Lorentzian wi
HWHM 50.67pf . Here, we note the following two points
first, that the Heisenberg width;\/L is negligible at any
temperature, and second that, for large enough condens
we can havepexp@pf even if the coherence length is small
thanL.

In summary, we have analyzed the measurement of ph
fluctuations in elongated Bose condensates. Within a lo
density approach, we have been able to take the density
file into account, and derived analytical formulas for the c
relation function and the momentum distribution of sta
and freely expanding quasicondensates. In the regime o
terest, the formula compares well to a numerical evaluat
based on the results of Ref.@2#, which are exact in the long
wavelength limit. In particular, we show how the shape
the momentum distribution tends to a Lorentzian with ha
width '0.67\/Lf as one goes further in the phas
fluctuating regime. We believe that these results may
helpful to understand quantitatively the experiments invo
ing quasicondensates@3,4,15#.
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