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Critical Temperature of a Trapped,Weakly Interacting Bose Gas
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We report on measurements of the critical temperature of a harmonically trapped, weakly interacting
Bose gas as a function of atom number. Our results exclude ideal-gas behavior by more than two
standard deviations, and agree quantitatively with mean-field theory. At our level of sensitivity, we find
no additional shift due to critical fluctuations. In the course of this measurement, the onset of
hydrodynamic expansion in the thermal component has been observed. Our thermometry method
takes this feature into account.

DOI: 10.1103/PhysRevLett.92.030405 PACS numbers: 03.75.Hh, 03.75.Kk
The first term on the right-hand side is the transition
temperature T0

c in the thermodynamic limit, and the
of a=�0, making it negligible when compared to the
‘‘compressional’’ shift given by Eq. (2). The quantitative
Degenerate atomic Bose gases provide an ideal testing
ground for the theory of quantum fluids. First, their
diluteness makes possible first-principles theoretical ap-
proaches [1]. Second, thanks to the powerful experimen-
tal techniques of atomic physics, static and dynamic
properties can be studied quantitatively through a wide
range of temperature and densities. Furthermore, the
inhomogeneity induced by the external trapping potential
leads to entirely new behavior, when compared to bulk
quantum fluids.

Atomic interactions have previously been found to
affect deeply the dynamical behavior of trapped Bose
gases at finite temperatures [2,3]. By contrast, the influ-
ence of interactions on thermodynamics is less pro-
nounced [4], and has been less studied experimentally.
Pioneering work on thermodynamics [5] concentrated
essentially on the ground state occupation, and the role
of interactions was somewhat hidden by finite-size effects
[1]. Though several such measurements have been re-
ported [3,6], to our knowledge a decisive test of the role
of interactions is still lacking.

In this Letter, we focus on the critical temperature Tc of
a harmonically trapped 87Rb Bose gas to demonstrate the
influence of interactions on the thermodynamics. We
study the behavior of Tc as a function of the number of
atoms at the transition, for a fixed trapping geometry.
We find a deviation from ideal-gas behavior, towards
lower critical temperatures, whose significance will be
discussed below. In the course of this study, we have
observed that collisions induce an anisotropy in the free
expansion of the cloud even far from the hydrodynamic
regime [7,8]. We correct for this effect in our temperature
measurement.

For an ideal Bose gas in a harmonic trap, the critical
temperature is [1]
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second represents finite-size corrections. Here N is the
total atom number, !? and !z are the trapping frequen-
cies, ! � !2=3

? !1=3
z is their geometrical average, and � is

the Riemann zeta function.
As stated earlier, the main goal of this paper is to probe

the role of two-body repulsive interactions on Tc.
Corrections to the ideal-gas formula depend on the ra-
tio between the s-wave scattering length a and �0 �
�2
 �h2=MkBT0

c �
1=2, the de Broglie wavelength at the tran-

sition. In a trapped gas, the dominant effect of interac-
tions can be understood using a simple mean-field picture
[4]: Interactions lower the density in the center of the trap
n�0�, and accordingly decrease the temperature that meets
Einstein’s criterion n�0��3

0 � ��3=2�. The magnitude of
this reduction has been calculated to leading order [4],
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where a1 � 3:426 [4,9], and � �
��������������
�h=M!

p
is the mean

ground state width. In this work, the finite-size correction
in Eq. (1) changes T0

c by at most 2%, whereas the inter-
active shift (2) can be as high as 10%. The measurements
presented below are in quantitative agreement with the
prediction of Eq. (2).

As discussed in [9–14], critical fluctuations that de-
velop in the system near Tc are expected to favor the
formation of the condensate and thus to increase Tc. In
the case of a uniform Bose gas [12–14], this is the leading
effect, because the critical temperature is not affected at
the mean-field level. The correction �Tc=T0

c � �c1a=�0,
with c1 � 1:3 [14], can be traced back to density fluc-
tuations with a wavelength much larger than the corre-
lation radius rc � �2

0=a [13]. This upwards trend, which
has been observed experimentally in a dilute sample of
4He adsorbed in a porous glass [15], is quite sensitive to
the presence of an external potential [9,11]. In the trapped
case of interest here, the contribution of long wavelength
excitations to the shift in Tc scales as a higher power
2004 The American Physical Society 030405-1
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FIG. 1. Onset of hydrodynamic expansion for trapped clouds
above threshold. Measured aspect ratios after expansion (filled
circles, with statistical error bars) are plotted versus the colli-
sion rate $coll, and compared against several hypotheses: a
ballistic expansion (dotted line); a mean field dominated ex-
pansion (dashed line); and a collisional expansion for a non-
condensed Bose gas (solid line).
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agreement we find with the mean-field result can be
considered evidence of this effect, and highlights the
important role played by the trapping potential.

Our experimental setup to reach Bose-Einstein con-
densation in the jF � 1;mF � �1i hyperfine ground
state of 87Rb is similar to that used in [16]. The trap-
ping frequencies are !?=2
 � 413�5� Hz and !z=2
 �
8:69�2� Hz in the present work. To reduce nonequilibrium
shape oscillations that occur in such anisotropic traps
upon condensation [8,16], the last part of the evaporation
ramp is considerably slowed down (to a ramp speed of
200 kHz=s) and followed by a 1 s hold time in the pres-
ence of a radiofrequency shield. We ensure good repro-
ducibility of the evaporation ramp in the following way.
We monitor regularly (typically every four cycles) the
radiofrequency �0 that empties the trap. This allows us to
detect slow drifts of the trap bottom, and to adjust in real
time the final evaporation radiofrequency �rf to follow
them. In this way, the ‘‘trap depth’’ �rf � �0, is kept con-
stant within �2 kHz. Since we measure � � h��rf � �0�=
kBT � 11 in this final evaporation stage, we estimate the
temperature stability to be �10 nK.

We infer the properties of the clouds by absorption
imaging. After rapid switchoff of the trap (1=e cutoff
time of about 50 �s), a 22.3 ms free expansion, and a
repumping pulse, we probe the ultracold cloud on reso-
nance with the jF � 2i ! jF0 � 3i transition [17]. The
images are analyzed using a standard procedure, de-
scribed, for instance, in [18]. For an ideal thermal cloud
above the transition point, the evolution of the density in
time of flight is related to the initial density profile by
simple scaling relations, so that the column density (in-
tegrated along the probe line of sight, almost perpendicu-
lar to the long axis of the trap) is
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where g2�u� �
P

j�1u
j=j2, and x and z are the coordinates

along the tight and shallow trapping axes, respectively.
For mixed clouds containing a normal and a (small)
Thomas-Fermi (TF) condensate [1], we describe the bi-
modal distribution by an inverted parabola on top of an
ideal, quantum-saturated thermal distribution [Eq. (3)
with � � 0]. The condensed number N0 is then deduced
from the TF fit, and the total atom number N from
integration over the entire image. We estimate that con-
densed fractions as low as 1% can be reliably detected by
the fitting routine. Absolute accuracy on atom number
relies on the precise knowledge of the absorption cross
section of the probe laser, which depends on its polariza-
tion and the local magnetic field. This cross section is
calibrated by fitting the radial sizes of condensates with
no discernible thermal fraction to the TF law R0 / N1=5

0
[1,7,18,19]. We find a reduction of 4.00(14) compared to
the reference value �0 � 3�2

L=2
 [17].
We will now discuss the more complex issue of ther-

mometry in some detail. The temperature is usually in-
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ferred from the sizes of the thermal cloud after a time of
flight t, assuming a purely ballistic expansion with iso-
tropic mean velocity, v0 �

����������������
kBT=M

p
, as appropriate for an

ideal gas. We show in Fig. 1 that the observed aspect ratio
of noncondensed clouds, in a wide range of temperatures
and atom numbers (corresponding to 1 & T=Tc & 1:8), is
actually larger than the value (0.773) expected for an
ideal gas and !zt � 1:23 that corresponds to our parame-
ters (dotted line in Fig. 1), in contradiction with the
assumption of an isotropic velocity distribution.

In a very elongated trap, this could be explained by two
distinct collisional effects. First, the initial mean-field
energy of the nondegenerate cloud converts almost com-
pletely into radial kinetic energy during time of fight
[20], as for an elongated condensate [7,19]. The magni-
tude of this effect is controlled by the ratio # of the mean-
field energy to the temperature. In our case, the parameter
# does not exceed 0.02, too low to explain the observed
anisotropy (dashed line in Fig. 1, calculated along the
lines of [20]).

Second, as studied theoretically in [7,21,22] and ob-
served in Bose [8] and Fermi gases [23], anisotropic
expansion occurs for a cloud in the hydrodynamic re-
gime, i.e., when the mean-free path at equilibrium is
smaller than the dimensions of the sample. In our very
elongated cloud, the mean-free path is typically smaller
than the axial length, but much larger than the radial size.
Hydrodynamic axial motion of the thermal particles
results in energy transfer from the axial to the radial
degrees of freedom. For weak deviations from ballistic
expansion, this collisional dynamic creates a velocity
imbalance proportional to $coll, the equilibrium collision
rate, in agreement with the trend observed in Fig. 1.

In [22], a set of scaling equations was derived to
investigate how collisions affect the expansion of a non-
condensed cloud. Numerical solution of these equations,
which also include the weak mean-field effect, agrees
well with our data (solid line in Fig. 1). The calculation
030405-2
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makes use of the results of [24] for the collision rate of a
noncondensed, almost ideal Bose gas, in general larger
(by as much as 70% close to Tc) than the classical colli-
sion rate with the same N and T [25]. In view of the
satisfactory agreement of our data with the scaling theory,
we conclude that the observed anisotropy is a signature of
the onset of hydrodynamic expansion.

In the regime $coll & !?, where the anisotropy is weak
and increases linearly with $coll, kinetic energy conser-
vation suggests that mean square expansion velocities
take the form hv2

xi=v2
0 � 1� %$coll=2!?, and hv2

zi=v2
0 �

1� %$coll=!?, where % depends in general on !?; !z; t
(fixed for the measurement presented here). These simple
forms are confirmed by the numerical calculation de-
scribed above. Provided the expansion velocities along
both axes are measured, they allow to infer the initial
temperature T0, independently of the coefficient % [26].
Were this correction not applied, a systematic 10%–15%
discrepancy between the axial and radial temperature
would remain. We estimate the remaining systematic un-
certainties on T as �5% [27].

Having identified an appropriate thermometric tech-
nique, we turn to the measurement of the critical tem-
perature as a function of atom number. Data were taken
in a narrow range around Tc. From the two-component
fit, we extract the number of condensed atoms, the tem-
perature, and the total atom number as a function of
the trap depth, as shown in Figs. 2(a)–2(c), respectively.
The trap depth at which the transition point is reached,
��rf � �0�c, is taken to be the point at which a linear fit to
the condensed number data crosses zero (a linear ap-
proach towards Tc is consistent with the simulations
reported in [28]). The temperature and total number are
also fitted assuming a linear dependency on �rf , and from
the value ��rf � �0�c we extract the critical atom number
Nc and critical temperature Tc.

In Fig. 3, we plot Tc as a function of Nc, measured in
ten independent data sets. The ideal-gas value Tideal
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FIG. 2. Procedure to locate the transition point. We plot the
condensed number (a), temperature (b), and total atom number
(c) as a function of the trap depth, fixed by the final rf
frequency �rf and the trap bottom �0. The transition point
(hollow circle, with statistical error bars) is found from a
piecewise linear fit [dotted curve in (a)], and reported in (b)
and (c) to find Tc and Nc.
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(dashed line) lies two standard deviations above our
data. Including the mean-field correction (2) yields a
much better agreement (solid line), which we quantify
by assuming that the interactive shift in Tc can be written
as �Tc=T0

c � &N1=6, with a free coefficient &. A fit to the
data yields & � �0:009�1��0:002

�0:001, whereas Eq. (2) predicts
& � �0:007 for a scattering length a � 5:31 nm [29] and
� � 1:00 �m. The first uncertainty is statistical, while
the upper and lower bounds reflect calibration and analy-
sis uncertainties. The shaded area in Fig. 3 delineates the
resulting 1� confidence interval compatible with the ex-
perimental results.

The data shown in Fig. 3 reasonably exclude any addi-
tional shift of the same order of magnitude as the com-
pressional effect given by Eq. (2). In particular, if the
(positive) critical shift in Tc predicted in the uniform case
[12] were directly scalable to the trapped one, one would
expect an overall & � �0:004, a value not consistent with
our findings within the estimated accuracy. This observa-
tion is in line with recent theoretical studies [9,11], which
point out that, instead of being delocalized over the
entire system as in the homogeneous case, critical fluctua-
tions in the trapped gas are confined to a small region
around the trap center. This reduces corrections to the
equation of state by a factor ��a=�0�

3 � 1, correspond-
ing to the ratio of the volume of the fluctuation region to
the volume of the thermal cloud. Corrections to the criti-
cal temperature are thus fixed by the equation of state of
the whole interacting cloud, and deviations from mean-
field behavior enter only to second order in a=�0 [30]. For
our experimental parameters, we calculate from [9] an
upwards correction to Tc smaller than 1%, below the
sensitivity of the measurement.

In summary, we have measured the critical tempera-
ture of a trapped, weakly interacting 87Rb Bose-Einstein
gas. Our results exclude ideal-gas behavior by two stan-
dard deviations, and we find satisfactory agreement with
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FIG. 3. Critical temperature as a function of atom number at
the transition. The experimental points (circles) are lower than
the ideal gas law Eq. (1) (dashed) by two standard deviations.
The shaded area is the range of acceptable fits taking statistical
and systematic errors into account. Our results are consistent
with the shift due to the compressional effect given by Eq. (2),
indicated by the solid line. The filled circle represents the data
of Fig. 2.
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mean-field theory. We find no evidence for critical behav-
ior close to Tc within our experimental sensitivity, in line
with recent theoretical estimates for the trapped case. We
have also observed hydrodynamic behavior in the expan-
sion of the thermal cloud, and shown how to correct for it
in the thermometry procedure. We note to conclude that
measuring corrections to Tc beyond the mean field for our
typical experimental parameters would require thermom-
etry with an accuracy of 1% or better. A more direct route
to investigate such effects might be to measure the critical
density near the center of the trap, directly sensitive to
the presence of critical fluctuations. Alternatively, these
many-body effects could be enhanced in the vicinity of a
Feshbach resonance.
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