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Abstract
Pauli blocking of spontaneous emission by a single excited-state atom has been predicted to be
dramatic at low temperature when the Fermi energy EF exceeds the recoil energy ER. The
photon scattering rate of a ground-state Fermi gas can also be suppressed by occupation of the
final states accessible to a recoiling atom; however, suppression is diminished by scattering
events near the Fermi edge. We analyse two new approaches to improve the visibility of Pauli
blocking in a trapped Fermi gas. Focusing the incident light to excite preferentially the
high-density region of the cloud can increase the blocking signature by 14%, and is most
effective at intermediate temperature. Spontaneous Raman scattering between imbalanced
internal states can be strongly suppressed at low temperature, and is completely blocked for a
final state EF > 4ER in the high imbalance limit.

1. Introduction

The Purcell effect is the enhancement or reduction of scattering
due to a modification of the electromagnetic density of states
by a cavity [1]. A complementary effect can occur in an
ensemble of fermions, where final states of the recoiling
particle are blocked, reducing the scattering cross section.
In semiconductors, such blocking creates a Moss–Burnstein
shift [2] of the apparent band gap. Further study of this
fundamental effect has been proposed for neutral Fermi gases
[3–7], motivated by the control of trap dimensionality, the
direct quantification of density and the absence of additional
scattering phenomena.

Light scattering is the primary tool for detection of
ultra-cold atoms [8], with a few notable exceptions [9]. In
addition to direct imaging, light scattering has been used to
probe density [10], phase coherence [11, 12], momentum
distributions [13], excitation spectra [14] and superradiance
[15–17] in quantum degenerate Bose gases. The light
scattering properties of degenerate Fermi gases, by contrast,
have only recently been studied experimentally [18, 19],
despite numerous theoretical proposals [3–7, 20–29]. In situ
optical probes could be particularly useful in exploring the
physics of paired superfluids [20–22, 24, 29]. In addition, the
temperature dependence of light scattering could be exploited
for thermometry.
1 Present address: Lyman Laboratories, Harvard University, Cambridge MA
02138, USA.

In this work, we review two scenarios in which Pauli
blocking has been considered previously, and then consider
two new scenarios in which the experimental signature of
blocking can be enhanced. Whereas pioneering work treated
untrapped gases [3, 20, 22, 25], or geometries with spherical
[4, 23, 24] or cylindrical [4, 5, 28] symmetries, we treat a
generalized scenario that includes finite temperature and a tri-
axial trap potential. Since the high optical density of a trapped
gas requires off-resonant excitation to avoid the multiple-
scattering regime, we focus on scattering suppression [4, 5,
28, 7] instead of line shape [3, 6, 20, 27].

We develop, in sections 2 and 3, a semiclassical approach
that may be applied to situations in which fully quantum
calculations have proved onerous. In section 3 we show
that our approach reproduces fully quantum calculations
in the literature. We then calculate angle-averaged finite-
temperature signatures without imposing any symmetry.
Finding that suppression is rarely complete, we evaluate
in section 4 two approaches to stronger blocking: using a
focused excitation beam, and scattering between imbalanced
populations. Finally, experimental prospects are discussed in
section 5.

2. Methods

We consider light scattering and spontaneous emission in the
presence of a Fermi sea of neutral atoms. Atomic excitation is
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assumed to be far below saturation, and multiple scattering is
assumed to be weak. The N degenerate fermions are trapped
in a three-dimensional harmonic trap with trap frequencies
{ω1, ω2, ω3} along three axes. When a subscript is not
specified, ω refers to the geometric mean of frequencies. The
single-particle Hamiltonian is

Ĥ =
∑

j

1

2m
p̂2

j +
1

2
mω2

j q̂
2
j , (1)

where m is the mass of the atom, p̂j is the momentum operator
in the j th direction and q̂j is the position operator in the j th
direction.

We treat spontaneous emission and scattering of an
incident photon using a golden rule approach, as in [4, 5]2.
The reduction of the scattering rate by Pauli blocking is
proportional to the reduction in the number of final states,
weighted by matrix elements. This is conceptually similar to
the suppression of spontaneous emission in an optical cavity
where the density of electromagnetic states is reduced; here,
the density of available atomic states is reduced. We define the
relative scattering rate S to be the ratio of the scattering rate
with fermions to the scattering rate with Boltzmann particles,
i.e. the rate without blocking effects:

S(k) =
∑

v

∑
u ni(v){1 − nf (u)}|〈u|eik·q̂|v〉|2∑

v

∑
u ni(v)|〈u|eik·q̂|v〉|2 , (2)

where k is the recoil momentum of the atom, |v〉 and |u〉 are
energy eigenstates |v1, v2, v3〉 and |u1, u2, u3〉 and ni and nf

are the initial and final occupation functions, respectively3.
The matrix element along a single direction can be calculated
using [32]

|〈uj |eikjx̂j |vj 〉|2 = e−(kj x0)
2 w!

(w + �)!
L�

w[(kjx0j )
2]2, (3)

where kj is the projection of k along the j th direction,
x0j = √

h̄/2Mωj is the ground-state width, w = min(uj , vj ),
� = |uj − vj | and Lα

n(z) is the generalized Laguerre
polynomial.

Due to the computational demands of a six-dimensional
sum, (2) is more easily calculated in the case of a spherically
symmetric trap, where three of the sums can be eliminated [4].
A similar approach applied to the case of cylindrical symmetry
can reduce six sums to five. Without these symmetries, our
desktop computer did not have the resources to calculate S
with experimentally realistic parameters (e.g. N = 106 atoms,
and trap frequencies of �ω/2π = {500, 800, 30} Hz) at finite
temperature. Indeed, no such calculation has been published.

If many states are occupied along all three harmonic axes,
a semiclassical integral may capture the important physics of
the problem. One might also expect a local density approach
to be appropriate since light scattering predominantly probes
high-momentum properties that depend upon local density
fluctuations in the gas. Starting from the semiclassical phase
space element [33] dN = h−3n(ε) d3p d3q, where n(ε) is the

2 This approach does not treat coherent effects, which are expected to be
important within the forward diffraction. cone [8, 23].
3 In Fermi gases, unlike in Bose gases, neglecting the zero point energy
h̄

∑
j ωj /2 when calculating the occupation ni,f leads to a fractional error in

the chemical potential of (1 +ε/2)(6Nε)−1/3, where eccentricity ε ≡ ωz/ω⊥.

quantum statistical occupation function, the relative scattering
rate is

S(k) = h−3
∫∫

d3p d3qni(p, q){1 − nf (p + k, q)}
h−3

∫∫
d3p d3qni(p, q)

. (4)

This local density approach neglects the energy quantization
scale set by the level spacing, and thereby allows us to
rescale the problem into an isotropic one, even though no such
symmetry is manifest in the trap geometry. The symmetry is
broken only by the direction of the momentum recoil due to
scattering4. A semiclassical approximation was also used in
[27] to discuss line shape, and to treat the uniform gas in [25].
Here we extend these treatments to find the light scattering
properties of a trapped gas.

For large atom numbers and moderate trap anisotropies,
we show (in section 3) that (4) is in excellent agreement
with published calculations based on (2). Furthermore, the
simplicity of the semiclassical method allows us to include
angular averaging across the scattered photon momentum, to
evaluate both finite and zero temperatures and (in section 4) to
consider more complex scenarios.

3. Signatures of Pauli blocking

Two scenarios for Pauli blocking have been considered in
the previous work. The first is spontaneous emission (SE)
of a single excited-state atom in the midst of a Fermi sea.
The second is light scattering (LS) off a large ground-state
ensemble. For reasons discussed further in section 3.1 and in
section 5, the LS scenario is experimentally more feasible, and
is the focus of our work. However, the SE case is the simplest
scenario that elucidates the blocking effect under discussion.
Our treatment can also be compared directly to [4], which
presents a fully quantum calculation of the same scenario.

3.1. Spontaneous emission of a single excited atom

For a single atom in the excited state decaying into a Fermi
sea of N atoms,

ni(ε) = (βh̄ω)3 exp(−βε) and

nf (ε) = [1 + z−1 exp βε]−1, (5)

where β−1 = kBT , kB is the Boltzmann constant, T is the
temperature and z is the fugacity of the Fermi gas. This ni is
normalized by integration over h−3d3p d3q.

Note that we assume that the excited-state atom sees the
same trapping potential as the ground state, and is thermalized
with the atoms in the ground state. This might be realistic for
fermions with long-lived metastable states, for instance in rare
earth metals [34] in magic wavelength traps [35].

Using distributions (5), we evaluate (4) using a change
of variables. The coordinates are rotated such that one
momentum axis is aligned with the momentum kick k, and the
other five coordinates are combined into a five-space radius.
We define a dimensionless momentum ξ ≡ √

βER from the

4 For instance, illumination of a cigar-shaped cloud along one of its two radial
axes would break all rotational symmetries.
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Figure 1. Comparison of quantum (points) and semiclassical (lines)
calculation of spontaneous emission blocking. Suppression is
absent when S → 1 and complete when S = 0. For comparison to
figure 1 in [4], the quantum calculations assume ER = 25h̄ω and
spherical symmetry; however, these assumptions are not necessary
for the semiclassical calculation. From top to bottom, EF/ER = 0.4,
0.8, 1.2, 1.6, 2.0. The inset ‘cartoon’ is a schematic representation
of the process under consideration: an atom in the midst of a Fermi
sea emitting a single photon.

single-photon recoil energy ER = h̄2k2
L

/
2m, where ckL is the

laser frequency. The normalized scattering rate is then

SSE(ξ, T ) = 1√
π

z−1 eξ 2
∫ ∞

−∞
dy e2ξyf5/2(z e−(y+ξ)2

), (6)

where fn is the Fermi function5. Note that since we are using a
local density method, trap frequencies and atom number now
affect the scattering rate only through EF.

Figures 1 and 2 show the essence of the blocking effect: at
low temperature, and when the Fermi energy is larger than the
recoil energy, the scattering rate decreases. Figure 1 compares
our results to Busch et al [4] to find that the semiclassical
SSE agrees well with a fully quantum calculation, in this case
calculated using (2) and assuming spherical symmetry.

Figure 2 shows that complete suppression of spontaneous
emission can occur when the Fermi energy exceeds the recoil
energy. (By contrast, suppression is only complete for infinite
Fermi energy when the set of initial states is expanded to a
full Fermi sea, as discussed in the next section.) At zero
temperature, (6) takes the simple form

SSE(κ) = 
(κ − 1), (8)

where 
 is the unit step function, and we use a dimensionless
momentum κ ≡ (ER/EF)

1/2 since ξ is ill-defined at
zero temperature. The abruptness of this step is the
only discrepancy between the quantum and semiclassical
calculation, as shown at the left-most points in figure 1.
Interesting non-isotropic effects have been predicted in this
limit [4], with possible application to directional single-photon
sources [7]. Wavefunction features appear when kBT is
comparable to the level spacing h̄ωj . However, even at the

5 The Fermi integrals that appear in this section are of the form∫ ∞

0
an−1 da

1

ea/C + 1
= �(n)fn(C), (7)

where fn(C) is −Lin(−C), and Lin(C) = ∑∞
j=1 Cj/jn is the polylogarithmic

function.

Figure 2. Spontaneous emission rate SSE versus momentum kick
κ = (ER/EF)

1/2. Solid lines are numerical integrals as defined in
(6), for kBT/EF = 0.5, 0.2 and 0.1, as labelled. Short-dashed lines
are the constant kick approximate form of (10); the long-dashed line
is the zero-temperature limit (8).

lowest observed temperatures of approximately 0.03EF/kB

[36, 37], current experiments remain in the semiclassical
regime.

Figure 2 shows that the emission rate SSE(κ, T �
0.5TF) � 0.86, confirming that blocking is not dramatic in
the non-degenerate regime. However, for the weak effects
observed at high temperature, one can use a series expansion
of f5/2:

SSE(ξ, T ) −→ 1 − e−ξ 2
∞∑

n=2

(−1)nzn

n3
eξ 2/n. (9)

This expression converges for z < 1, i.e. kBT/EF > 0.57.
An approximate form valid for all temperatures can be

developed by neglecting the directionality of the momentum
kick. Given an initial atomic momentum p, the average energy
transferred by a kick is simply ER when averaged over a
uniform distribution of atomic momenta. Using this energy
difference, we can fully integrate S:

SSE(ξ, T ) ≈ z−1 eξ 2
f3(z e−ξ 2

). (10)

Figure 2 compares the approximations (8) and (10) to
numerical integration of SSE. The average-kick approximation
(10) underestimates the blurring of the step function at finite
temperatures, but is a reasonable estimate at the 20% level and
even better at low κ . In all cases, suppression is stronger for
lower recoil momentum (or higher Fermi energies), since final
states fall closer to the centre of the Fermi sea.

3.2. Light scattering from a large ensemble

We now consider N polarized fermions in a single ground
state, recoiling under the net momentum k of an incident and
a scattered photon. In the perturbative limit, we ignore the
disturbance of removing an atom from the distribution, and
use the same initial and final state:

ni(ε) = nf (ε) = [1 + z−1 exp βε]−1. (11)

The initial states have an energetic range that is determined
both by temperature and Fermi pressure, unlike the case of a
single excited-state atom. This makes it easier to scatter out
of the Fermi sea, and reduces the net blocking effect.
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Figure 3. Scattering rate SLS versus momentum kick κ(α)
comparing fully quantum (points) and semiclassical (lines)
calculations, from equations (2) and (12) respectively. Temperatures
shown are kBT/EF = 1.0 (triangles), 0.47 (circles), 0.24 (squares)
and 0.10 (inverted triangles). The fully quantum calculation is for a
cylindrically symmetric geometry (ω1 = ω2 ≡ ω⊥, and incident
beam along axis of symmetry), and parameters are chosen to
reproduce figure 3 in [5]: ER = 21h̄ω⊥ and aspect ratio is 0.1.
Assumptions of symmetry, aspect ratio and ER/ω⊥ are not used for
the semiclassical calculation.

Integration of (4) using (11) yields a normalized scattering
rate:

SLS(ξ(α), T ) = 1 − 8

π(βEF)3

∫ ∞

0
a3/2 da

×
∫ ∞

−∞
dy

1

1 + z−1 ea+y2

1

1 + z−1 ea+(y+ξ(α))2 , (12)

where the results now depend on the angle α between the
incident and scattered photon. The rescaled recoil momenta
are ξ(α) = 2ξ sin2(α/2) and κ(α) = 2κ sin2(α/2), and we
maintain the previously defined quantities ξ 2 = βER and κ2 =
ER/EF, written without an angle argument. Figure 3 shows a
numerical integration of (12) at various temperatures. Points
show a reproduction of quantum mechanical calculations
assuming cylindrical symmetry, for values chosen in [5]. The
agreement is excellent. Unlike the SE case, there is no
disagreement between quantum and semiclassical calculations
at low temperature so long as EF � h̄ωj in all directions.

Since the excitation and decay both contribute a
momentum kick, an angle-resolved experiment would observe
S directly [5]. If an experiment measures the total scattering
rate (see discussion in section 5), we observe an angle-
averaged suppression factor, which we call M:

M(k) =
∫ π

0
S

(
2k cos2 α

2

)
P(α) dα, (13)

where P(α) = 3
8 (1 + cos2 α) for a dipole emission pattern of

any polarization, after averaging over the azimuthal scattering
angle. Numerical evaluation of MLS versus κ , no longer α

dependent, is shown in figure 4. Comparing MLS and SLS,
shown in the inset, we see that angle averaging produces
little qualitative change. The low-κ limit is identical, but
suppression continues to higher κ in MLS. This is due
to inclusion of forward-scattering events that produce small
kicks and are easy to block. Including these scattering
events is necessary for quantitative prediction of the scattering
suppression.

Figure 4. Angle-averaged scattering rate MLS versus average kick κ
for a dipole emission pattern. Thick lines are numerical integrals,
for kBT/EF = 0.6, 0.2 and 0.05. The dashed line is the
zero-temperature limit. Inset: scattering rate SLS versus momentum
kick κ(α), for the same temperatures.

As before, we can expand S to find a high-temperature
expression:

SLS(ξ(α), T ) −→ 1 − 6

(βEF)3

∞∑
n=2

(−1)nzn

n3

×
n−1∑
�=1

e−ξ(α)2�(n−�)/n; (14)

however, the series converges only for z > 1, where
SLS > 0.91. Keeping only the first term, SLS(ξ(α)) ≈
1 − 3

4 (βEF)
−3z2 exp(−ξ(α)2/2).

At zero temperature, an analytic expression for SLS can
be found:

SLS(κ(α)) = 1 − 32

5π
χ

(
κ(α)

2

)

(2 − κ(α)), (15)

where

χ(x) ≡ x
√

1 − x2

48
(−8x4 + 26x2 − 33) +

15

48
cos−1(x).

(16)

A further integral can also be done to find an expression for
MLS at zero temperature, and is given in the appendix. Both
scattering rates are plotted as dashed lines in figure 4, and
linearly approach zero as the momentum kick goes to zero.

Quantum corrections to the scattering rate can also be
evaluated by considering (2) for various trap geometries,
and comparing to the geometric insensitivity valid in the
semiclassical limit of EF � h̄ωj for all i = {1, 2, 3} trap
frequencies. Evaluating (2) for a cylindrically symmetric
trap with 20:1 aspect ratio, and comparing to a spherically
symmetric trap, both for EF = 11h̄ω, we find that SSE changes
by less than 5%, SLS changes by less than 3%, and MLS changes
by less than 2%.

4. Scenarios with stronger Pauli blocking

While spontaneous emission can be suppressed fully at finite
momentum κ for sufficiently low temperature, complete
blocking is possible only at κ = 0 in the case of light scattering

4



J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 015301 B Shuve and J H Thywissen

(section 3.2). The smallest κ reported to date is ≈ 0.6
[30, 31, 38], so a suppression of at most MLS ≈ 0.5 would be
expected. In this section, we explore two methods to improve
the Pauli blocking signal: the use of a focused excitation beam
(‘FB’), and scattering between two imbalanced populations
(‘IP’). In both cases, we attempt to bias scattering towards
events with higher local EF. In the FB scheme, this is done
directly by selecting the spatial centre of the trap. In the
IP scheme, reduced Fermi pressure in the initial state also
reduces the initial kinetic energy. As is shown below, these
approaches increase the overlap between accessible final states
and the Fermi sea of occupation.

4.1. Focused excitation light

DeMarco and Jin suggest that stronger blocking might be
observed when focusing the incident laser beam [5]. Here we
evaluate this scheme quantitatively. We consider excitation
along a cycling transition, starting and ending in the same
Fermi sea, as in section 3.2. A focused excitation beam
restricts ni to its intersection with the atomic cloud. Assuming
that the beam propagates along q3, the distribution of initial
states is

ni(ε, q1, q2) = I (q1, q2)[1 + z−1 exp βε]−1, (17)

where I (q1, q2) is a dimensionless intensity distribution of the
light. The final-state distribution nf remains as before, given
by (11).

For simplicity we consider a cylindrically symmetric
beam I (q1, q2) = exp

(−2q2
1

/
σ 2 − 2q2

2

/
σ 2

)
, where σ is the

waist of the beam. Starting from (4), we rescale symmetric
degrees of freedom and are left with a triple integral:

SFB(κ(α), T , σ ) = 1 − 2

πNe

∫ ∞

0
a

1
2 da

∫ ∞

0
x dx

×
∫

dy
e−2(xRF /σ)2

1 + z−1 eβEF(a+y2+x2)

1

1 + z−1 eβEF(a+(y+κ(α))2+x2)
,

(18)

where the mean number of atoms excited by the probe is

Ne =
∫ ∞

0
a da

∫ ∞

0
x dx e−2(xRF /σ)2

[1 + z−1 eβEF(a+x2)]−1,

(19)

the radial Fermi radius RF = √
2EF/m/ω⊥ and we have

assumed ω⊥ ≡ ω1 = ω2. Figure 5 shows that smaller
beam size enhances the suppression. Atoms are excited at
the centre of the cloud, where the density is higher and thus
the local EF is higher. Since ER is unchanged, we effectively
decrease κ .

In the large cloud (or small beam) limit, σ � RF ,
the spatial selection of the exciting beam becomes a delta
function. Since rescaled quadratic degrees of freedom are
equivalent under the integral, eliminating two spatial degrees
of freedom is equivalent to eliminating one spatial and one
momentum degree of freedom. In other words, for a given
geometric mean ω, the same scattering rate is observed for a
tightly focused beam on an oblate three-dimensional cloud, as

Figure 5. Pauli blocking is enhanced when the excitation beam is
focused onto the centre of the cloud. The normalized scattering rate
SFB is shown versus beam size σ/RF , for κ(α) = 0.5 and
kBT = 0.2EF. The arrows indicate the asymptotic limits: the
three-dimensional SLS at high σ , and the two-dimensional S2D

LS at
low σ . Inset: the same quantities are plotted with a dipole pattern
angle-averaged scattering rate MFB.

would be observed for a two-dimensional cloud with a uniform
excitation light. This limit is

S2D
LS (ξ(α), T ) = 1 − 4

π(βEF)2

∫ ∞

0
a1/2 da

×
∫ ∞

−∞
dy

1

1 + z−1 ea+y2

1

1 + z−1 ea+(y+ξ(α))2 . (20)

Figure 5 shows as arrows the 3D limit (12) and the 2D limit
(20).

Figure 6 shows the difference �S ≡ S2D
LS − SLS (and

angle-averaged �M ≡ M2D
LS − MLS) between the small- and

large-beam limit. This is the maximum effect that changing
beam size could have. We see that the difference is restricted
to �S � 0.15. Interestingly, the most pronounced effect
occurs when kBT/EF ≈ 0.25. At intermediate temperatures,
selecting the centre of the cloud is even more important than
at zero temperature, since quantum degeneracy varies across
the cloud. At lower temperatures and momenta, suppression
is complete for both the 2D and 3D limits, so focusing is less
effective.

At zero temperature, an analytic expression can be found:

S2D
LS (κ(α)) = 
(2 − κ(α))

12π
[κ(α)

√
4 − κ(α)2(κ(α)2 − 10)

+ 24 cos−1 (κ(α)/2)]. (21)

This expression is shown as a dashed line in figure 6.
A similar expression can be found for the angle-averaged

M2D
LS , and is given in the appendix. For a variety of

temperatures, figures 5 and 6 show the angle-averaged results
as insets. In the inset of figure 6, the dashed line shows
the zero-temperature difference between equations (A.1) and
(A.2). As with angle-resolved scattering, the enhancement
�M is no more than 0.15, and occurs at intermediate
temperature. However, because of the inclusion of low-α
events, suppression is observed (and enhanced) for κ � 2.

4.2. Imbalanced Fermi gases

An alternate method of reducing the distribution of initial states
is to use the internal structure of the atoms. Consider Raman

5
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Figure 6. The maximum possible strengthening of Pauli blocking
with a focused beam, �S = S2D

LS − SLS, is shown versus momentum
κ(α) for temperatures kBT/EF = 0.5 (cyan), 0.4 (green), 0.3 (red),
0.2 (purple), 0.1 (blue) and zero (black dashed). Inset: the
enhancement �M = M2D

LS − MLS versus normalized recoil
momentum κ , after averaging over a dipole angular distribution. For
clarity, fewer temperatures are shown: kBT/EF = 0.5 (top solid,
cyan), 0.2 (bottom solid, purple), 0.1 (middle solid, blue) and zero
(black dashed). Again the largest effect is at intermediate
temperatures.

(This figure is in colour only in the electronic version)

light scattering between two ground states, and the population
of atoms split unequally between them [36, 37] such that
zi < zf , where i and f indicate the initial and final states.
Now the thermalized initial and final distributions are

ni(ε) = [
1 + z−1

i exp βε
]−1

, and

nf (ε) = [
1 + z−1

f exp βε
]−1

. (22)

As before, we ignore the change in either distribution due to
scattered light or due to interactions. We also assume that
incident light excites only atoms from ni and decays only to
nf . 6 Integration of (4) with (22) yields

SIP(ξ(α), T , δ) = 1 − 8

π(βEFf)3

∫ ∞

0
a3/2 da

×
∫ ∞

−∞
dy

1

1 + z−1
i ea+y2

1

1 + z−1
f ea+(y+ξ(α))2

, (23)

where the difference in Fermi energies between the two states
is parameterized using δ = (EFf − EFi)/EFf . For instance,
Ni = Nf (1 − δ)3, etc. Figures 7 and 8 show the normalized
rate of Raman scattering between imbalanced Fermi clouds.
At finite temperature, figure 7 shows SIP versus δ for κ =
0.5, demonstrating that an imbalance enhances suppression.
Increasing the cloud imbalance enhances blocking because
the range of initial states is increasingly restricted to lower
energies. At low temperature, the effect can be dramatic,
allowing for complete blocking at δ � 3/4.

The zero-temperature limit of Raman scattering is

SIP(κ(α), δ) = 
(κ(α) + b − 1)

{
1 − 16

5π

(b + B)χ(−B/b)

+
16

5π

(1 + b − κ(α))χ(κ(α) + B)/b6

}
, (24)

6 Nearly exclusive decay to nf could be achieved by exciting along a weak
transition, such as a narrow line, or a pair of magnetic substates with a weak
Clebsch–Gordan coefficient.

Figure 7. Scattering rate SIP versus imbalance δ, at κ(α) = 0.5.
From top to bottom, solid lines represent temperatures kBT/EF = 1,
0.5, 0.3, 0.2 and 0.1 from (23); the dashed line shows the
zero-temperature limit from (24). Note that for figures 7 and 8, the
final-state Fermi energy has been used for dimensionless quantities,
so κ ≡ √

ER/EFf .

Figure 8. Zero-temperature scattering rate SIP versus kick κ(α), for
various imbalances: δ = 0, 0.5, and 0.99. This corresponds to
balanced, imbalanced and nearly polarized. Inset: angle-averaged
scattering rate MIP versus kick κ and at the same three imbalances.
Imbalance allows complete suppression to be observed for
nonzero κ .

where b = √
1 − δ, B = (δ − κ(α)2)/(2κ(α)) and χ is

defined in (16). Figure 8 shows zero-temperature suppression
at various imbalances. In the limit δ = 0, there is no imbalance
and (24) becomes (15). The comparison in figure 8 makes
especially clear the wide range of suppression possible at
finite recoil momentum for imbalanced gases. Complete
suppression is possible even in the angle-averaged case for
κ < 0.5, i.e. for EF > 4ER. By comparison, in the balanced
(or single ground-state) case SLS ≈ 0.48 for κ(α) = 0.50.

In the strong polarization limit δ → 1, (24) becomes

(κ(α)−1). This is reminiscent of the spontaneous emission
case (8), apart from the angular dependence of κ(α). We can
now see new significance in the results of section 3.1: in the
limit of extreme polarization, the Raman scattering problem is
equivalent to the spontaneous emission problem with a two-
photon recoil momentum. In both cases, suppression is strong
because a second state allows initial states to be exclusively at
the middle of the Fermi sea.

Comparing the two enhancement scenarios, the FB
approach is less effective than the IP scheme, since initial
state selection occurs only along two coordinates instead of all

6
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six coordinates7. Both schemes are successful at enhancing
the expected signal in realistic experimental scenarios: at
κ = 0.25 and T = 0.1TF, we find MLS = 0.40, MFB = 0.32
for σ/RF = 0.50, and MIP = 0.07 for δ = 0.90. The dramatic
suppression that seemed like a distant experimental prospect in
section 3.1 (since it required a thermalized excited-state atom)
is feasible using a Raman light scattering scheme.

5. Experimental realization and conclusion

To realize a Fermi energy that is 1/κ2 times the recoil energy,
the mean trap strength must be

h̄ω = ER

κ2(6N)1/3
. (25)

For 104 40K atoms, ω = 2π × 860 Hz at EF = 4ER. For
106 6Li atoms, ω = 2π × 1620 Hz at EF = 4ER.

In order to avoid multiple scattering, the atomic sample
must have a low optical density. Consider a cloud of N
fermions at T = 0 in a cylindrically symmetric trap, whose
eccentricity is ε ≡ ωz/ω⊥. A Thomas–Fermi profile has a
resonant optical density bounded by

ODmax = max{ε1/3, ε−2/3}3

4

(
EF

ER

)2 ER

h̄ω̄
. (26)

Combining with (25) and the constraint that OD < 1 requires
that N be on the order of unity, which is clearly incompatible
with a Pauli blocking experiment. Quantitative predictions for
spontaneous emission and for light scattering at resonance will
require treatment of multiple scattering.

Scattering with off-resonant light can avoid this
complication. Detuning approximately N1/6 line widths away
from resonance can achieve OD < 1. Our focus on net
scattering rates rather than on line shape is partially motivated
by this limitation.

One could use a variety of signatures to search for
blocking effects in the lab. Because fewer than one photon
per atom can be scattered while remaining in the perturbative
limit, angle-resolved experiments that measure only a fraction
of the total scattered light may be difficult. However, a direct
measure of the integrated rate M, rather than S(α), is possible
through absorption imaging. Another measure of M would
be an optical pumping experiment, in which the efficiency
of pumping into an occupied Fermi sea is reduced due to
blocking effects. In this case the blocking effect would be
recorded in atomic populations, circumventing lensing effects
of the detuned absorption beam by the degenerate cloud.

In summary, we have presented two light scattering
scenarios in which Pauli blocking is strengthened. Including
the effects of inhomogeneous trapping, finite temperature and
without assuming rotational symmetry, we make quantitative
predictions for both angle-resolved and angle-averaged
signatures. Pauli blocking effects can be enhanced by focusing
the excitation beam. Dramatic suppression of incoherent

7 Another experimentally viable situation would be a cigar-shaped cloud with
focused excitation in the plane of symmetry. This would restrict excitation
primarily along q1, for instance, but not q2 or q3, and therefore be less effective
than the oblate geometry considered in section 4.1.

scattering can be achieved with Raman scattering between
internal states for large population imbalances and and EF >

4ER. Our calculations should aid experimental efforts to
observe this fundamental quantum optical effect.
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Appendix: angle-averaged results for zero
temperature

Substitution of (15) into (13) yields an analytic expression for
zero-temperature angle-averaged scattering in the LS case:

MLS(κ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2520πκ3 {512(

√
1 − κ2 − 1)

+ 315κ(16κ2 + 3) sin−1(κ)

+ κ2[2κ2
√

1 − κ2(232κ4

− 1036κ2 + 2157)

+ 2767
√

1 − κ2 − 3456]} for κ � 1

1 − [256(27κ2 + 4)

− 945πκ]/(5040πκ3) for κ > 1.

(A.1)

This quantity is plotted as a dashed line in figure 4.
A similar expression can also be found for the FB case in

the tightly focused limit:

M2D
LS (κ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
210πκ3 {κ2[2

√
1 − κ2(131

− 32κ2)κ2 + 263
√

1 − κ2

− 336] + 64(
√

1 − κ2 − 1)

+ 105(4κ3 + κ) sin−1(κ)} for κ � 1

1 − 21κ(32κ−5π)+128
420πκ3 for κ > 1.

(A.2)

The difference between (A.2) and (A.1) is plotted as a dashed
line in the inset of figure 6.
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[24] Törmä P and Zoller P 2000 Phys. Rev. Lett. 85 487
[25] Görlitz A, Chikkatur A P and Ketterle W 2001 Phys. Rev. A

63 041602
[26] Mustecaplioglu O E and You L 2001 Phys. Rev. A 64 033612

[27] Juzeliunas G and Masalas M 2001 Phys. Rev. A 63 061602
[28] Vignolo P, Minguzzi A and Tosi M P 2001 Phys. Rev. A

64 023421
[29] Challis K J, Ballagh R J and Gardiner C W 2007 Phys. Rev.

Lett. 98 093002
[30] O’Hara K M, Hemmer S L, Gehm M E, Granade S R

and Thomas J E 2002 Science 298 2179
[31] Aubin S, Myrskog S, Extavour M H T, LeBlanc L J,

McKay D, Stummer A and Thywissen J H 2006 Nature
Phys. 2 384

[32] Wineland D J and Itano W M 1979 Phys. Rev. A 20 1521
[33] Bagnato V, Pritchard D E and Kleppner D 1987 Phys. Rev. A

35 4354
[34] Fukuhara T, Takasu Y, Kumakura M and Takahashi Y 2007

Phys. Rev. Lett. 98 030401
[35] Ye J, Kimble H J and Katori H 2008 Science 320 1734
[36] Zwierlein M W, Schirotzek A, Schunck C H and Ketterle W

2006 Science 311 492
Zwierlein M W, Schunck C H, Schirotzek A and Ketterle W

2006 Nature 442 54
Shin Y, Schunck C H, Schirotzek A and Ketterle W 2008

Nature 451 689
[37] Partridge G B, Li W, Kamar R I, Liao Y-A and Hulet R G

2006 Science 311 503
Partridge G B, Li W, Liao Y A, Hulet R G, Haque M

and Stoof H T C 2006 Phys. Rev. Lett. 97 190407
[38] Gommers R and Ketterle W 2009 Private communication

8

http://dx.doi.org/10.1103/PhysRevLett.83.3112
http://dx.doi.org/10.1103/PhysRevLett.91.010405
http://dx.doi.org/10.1103/PhysRevLett.82.4569
http://dx.doi.org/10.1103/PhysRevLett.88.120407
http://dx.doi.org/10.1126/science.286.5448.2309
http://dx.doi.org/10.1038/45194
http://dx.doi.org/10.1126/science.1083171
http://dx.doi.org/10.1103/PhysRevA.78.021602
http://dx.doi.org/10.1038/nature07172
http://dx.doi.org/10.1103/PhysRevA.60.R1775
http://dx.doi.org/10.1103/PhysRevA.60.504
http://dx.doi.org/10.1103/PhysRevA.61.033605
http://dx.doi.org/10.1103/PhysRevA.62.033608
http://dx.doi.org/10.1103/PhysRevLett.85.487
http://dx.doi.org/10.1103/PhysRevA.63.041602
http://dx.doi.org/10.1103/PhysRevA.64.033612
http://dx.doi.org/10.1103/PhysRevA.63.061602
http://dx.doi.org/10.1103/PhysRevA.64.023421
http://dx.doi.org/10.1103/PhysRevLett.98.093002
http://dx.doi.org/10.1126/science.1079107
http://dx.doi.org/10.1038/nphys309
http://dx.doi.org/10.1103/PhysRevA.20.1521
http://dx.doi.org/10.1103/PhysRevA.35.4354
http://dx.doi.org/10.1103/PhysRevLett.98.030401
http://dx.doi.org/10.1126/science.1148259
http://dx.doi.org/10.1126/science.1122318
http://dx.doi.org/10.1038/nature04936
http://dx.doi.org/10.1038/nature06473
http://dx.doi.org/10.1126/science.1122876
http://dx.doi.org/10.1103/PhysRevLett.97.190407

	1. Introduction
	2. Methods
	3. Signatures of Pauli blocking
	3.1. Spontaneous emission of a single excited atom
	3.2. Light scattering from a large ensemble

	4. Scenarios with stronger Pauli blocking
	4.1. Focused excitation light
	4.2. Imbalanced Fermi gases

	5. Experimental realization and conclusion
	Acknowledgments
	Appendix: angle-averaged results for zero temperature
	References

