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The broad appeal of research on quantum gases relies on the universality of many-body
quantum physics. For example, regardless of whether it is constructed using electrons (as
in superconductors), neutrons (as in neutron stars), or neutral atoms of different hyperfine
spin (as in ultracold lithium gases), a system of strongly interacting mobile fermions will
show the same phenomenology. Similarly, nonlinear and quantum optics can be treated in
a common theoretical scheme, regardless of whether the bosonic fields under investiga-
tion correspond to massless photons or massive rubidium atoms. Such universality allows
ultracold atomic physics to contribute significantly to fields as diverse as condensed mat-
ter physics, high energy astrophysics, and quantum optics. As such, the collection of
works within this book is meant to bridge the gap between practitioners of these diverse
fields so as to make the exchange among them more productive.

Yet, despite these appealing similarities, there do remain system-specific considera-
tions that must be kept in mind in comparing physical systems built from different basic
ingredients. This chapter discusses some of the atom-specific aspects of ultracold atomic
physics experiments. We focus on two main topics: the common experimental techniques
of quantum gas experiments and the nature of atom–atom interactions.

1. INTRODUCTION: WHY SO COLD?

There is little variety in temperature and density among the quantum degenerate neutral
gases produced currently in over 100 laboratories in 17 countries. This commonality may
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be surprising because, unlike solids, gases have no lower bound in density. However, to
within a factor of 10, the density of an ultracold gas is n ≈ 1013 cm−3, about six orders of
magnitude lower than the density of an ideal gas at standard temperature and pressure.
Why is this the typical density? For n & 1015 cm−3, loss processes, such as a three-
particle collision leading to the formation of a deeply bound molecule, become faster
than rethermalization from elastic collisions. For n . 1012 cm−3, the characteristic energy
and temperature scales of the quantum gas become impractically small, particularly if
one is interested in anything beyond the noninteracting ideal gas, and the thermalization
rate of the gas becomes slow compared to parasitic heating rates and the vacuum-limited
lifetimes of the frigid gas samples.

This common density sets a common characteristic energy and length scale for exper-
iments on cold gases. From the interparticle spacing n−1/3, typically 300 nm, one would
guess the energy scale for the physics of such gases to be h2n2/3/M , where h = 2π~ is
Planck’s constant and M is the atomic mass; more formally, one often takes the Fermi
energy EF = ~2k2

F/2M , where kF = (6π2n)1/3 is the Fermi wave vector. For 87Rb, this
energy scale is around 4× 10−11 eV, corresponding to a temperature of about 500 nK, and
a frequency of about 10 kHz.1

This energy scale also (roughly) defines the temperature at which a gas becomes quan-
tum degenerate. The onset of quantum degeneracy can also be considered from the
comparison of length scales. From the system temperature, we can define the thermal
de Broglie wavelength,

λT =

√
2π~2

MkB T
, (1)

where kB is the Boltzmann constant. When the de Broglie wavelength is comparable to
the interparticle spacing, the coherent matter waves associated with the various particles
in the gas are forced to overlap, meaning (pictorially) that the number of independent
quantum states in the gas becomes comparable to the number of gas particles. At this
point, the quantum statistics of particles come into play in describing the nature of the
gas. The ultra-low temperature of quantum gases is therefore simply a consequence of
their necessarily low density. Since the gases in question are roughly a billion times less
dense than liquid helium, they are degenerate at a temperature a million times lower than
the lambda point of helium.

The low temperature scale required for the study of quantum degenerate gases has
been, and continues to be, the prime technical challenge in ultracold atom research. As
discussed in Section 4.1, cooling gases from room temperature to quantum degeneracy
relies on a hybrid of cooling methods. These methods took decades to develop. Even
today, with cutting-edge techniques, gases cannot match the extreme quantum degen-
eracy of electrons within a solid in a dilution refrigerator, where the ratio kB T/EF is
around 10−6; in contrast, for cold atom experiments to date, this ratio goes no lower than

1 Masses of degenerate neutral atoms range from 1 to 174 atomic units, so we have taken 87Rb as a typical
example. Rubidium was also the first gaseous element to be Bose condensed, and is still the most commonly
used species for ultracold boson experiments.
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10−2. Thus, advancing the frontier cold atom experiments still requires the continued
development of cooling techniques. Pursuing this frontier is tremendously appealing, as
one expects that neutral gases would be able to explore the rich physics of spin liquids,
topological quantum matter, pure BCS superfluidity, and perhaps d-wave pairing in
lattices [1].

However, even within the current technical limits, the combination of low density and
ultracold temperature creates an extraordinary opportunity to study many-body systems
with cold atoms. Atomic gases are subject almost exclusively to pair-wise interactions
that can be characterized completely by considering the physics of an isolated two-atom
molecule. Now, a molecule of, say, two 87Rb atoms is not the simplest quantum object,
and its properties cannot be determined ab initio. However, after taking into account a
range of data from various forms of molecular spectroscopy, it is possible to set up a
reliable model that describes the scattering properties of two isolated atoms extremely
well, and, thereby, provides the only inputs needed to describe accurately a many-atom
quantum gas comprising 87Rb atoms. Moreover, at the very low kinetic energies charac-
teristic of atomic gases, the partial wave treatment of binary collisions is of great utility in
reducing the complete characterization of atomic interactions simply to the specifications
of the s-wave scattering length, as , and, on rare occasions, of the range of the poten-
tial, re. As explained in Section 3, the scattering length can be controlled by tuning the
structure of the two-atom molecular potential, e.g., using magnetic-field tunable Feshbach
resonances.

For such reasons, ultracold atom “materials” can be regarded as faithful experimen-
tal renditions of a known many-body Hamiltonian. Experiments on quantum gases have
therefore been dubbed as quantum simulations of various models (i.e., Hamiltonians) of
many-body quantum physics. Although cold atom systems have nonuniversal eccentric-
ities just like any other materials, it is comforting to know that even these eccentricities
can, in principle, be characterized ab initio.

2. MANIPULATION OF ATOMS AND MOLECULES

In this section, we hope to provide the reader with “(almost) everything they wanted to
know about a neutral atom but were afraid to ask.” Mostly, we will concern ourselves
with the magnetic and electric susceptibility of a single ground-state atom, the latter due
to coupling of the ground state to excited states by electric fields. In Section 3, we will
extend this discussion to include interactions between two ground-state atoms.

2.1. Atomic Structure Basics

At the time of writing this chapter, 11 elements have been Bose condensed: hydrogen
(H), five alkali metals (Li, Na, two isotopes of K, Rb, Cs), three earth-alkaline and similar
metals (Ca, three isotopes of Sr, four isotopes of Yb), two transition metals (Cr, Dy),
and one metastable noble gas (He*). Five of these elements also have naturally occurring
fermionic isotopes that have been cooled to quantum degeneracy: 3He*, 6Li, 40K, 87Sr,
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and 173Yb. Alkalis were the first to be Bose condensed, and remain popular due to the
simplicity of their electronic structure: a single unpaired electron is optically active, just
as in hydrogen, whereas the remaining electrons form a relatively inert core.

In the absence of external fields, there are three terms in the Hamiltonian of hydrogen-
like atoms,

Ĥ0 = Ĥel + ĤFS + ĤHFS,

where Ĥel contains the nonrelativistic kinetic energy of the electrons and the Coulomb
interaction between them; ĤFS is the “fine structure” term that includes relativistic cor-
rections to Ĥel, electron spin, and spin-orbit terms; and ĤHFS is the “hyperfine structure”
term induced by the spin and electric quadrupole moment of the nucleus.

In the Russell–Saunders (L S) coupling scheme, which is relevant when the electronic
valence shells are sparsely populated as is the case for hydrogen-like atoms, the eigen-
states of Ĥel + ĤFS share a common set of quantum numbers: n (principal quantum
number), L (total orbital angular momentum), and J (total overall angular momentum).
For instance, the ground state of Rb is 52S1/2, meaning the optically active electron is in
the n = 5 orbital, with L = 0, and an angular momentum of J = 1/2. The “2” superscript
gives the degeneracy for the total electronic spin of 1/2.

For alkali atoms, the two lowest lying excited states are n2P1/2 and n2P3/2. Different
from the situation in hydrogen, the energies of these levels differ from that of the nS
state because the higher angular momentum of the P states pulls the electron orbit to a
higher radius, sampling less of the charge density of the core electrons. Such a many-
electron mechanism (known as the “quantum defect”) is weak for excited states with
higher principal quantum numbers. For the alkalis, this nS-nP transition is the lowest
energy and strongest optical transition. The resonant frequency occurs at several hundred
THz (roughly 1.5 eV of energy), and is therefore accessed by light in the near-infrared to
visible range, generated easily from solid-state or dye laser systems.

For atoms with nuclear spin, ĤHFS further splits the fine-structure eigenstates. The total
angular momentum, which is a sum of the electron orbital and spin angular momentum
and of the nuclear spin, is called F . For example, for 87Rb the nuclear spin is I = 3/2,
which, added to the ground-state electronic angular momentum of 1/2 (all of it from
spin), gives either F = 1 or F = 2. These states are split by 6.8 GHz in 87Rb, and similar
amounts in other hydrogen-like atoms, small enough that the upper state does not decay
spontaneously over experimental timescales.

For illustration, the atomic level structure of 87Rb is shown in Fig. 1. For this alkali
atom, strong transitions are found at optical wavelengths of 780 and 795 nm (per Fraun-
hofer, these are the D2 and D1 lines, respectively). Each of these lines is split into
well-resolved transitions between the various ground- and excited-state hyperfine levels.

2.2. Magnetic Trapping

Applying a magnetic field to the atom adds another term to the Hamiltonian, ĤB =

−µ̂ · B, where µ̂ is the magnetic dipole operator and B is the external field. This term
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Fig. 1. The level diagram of 87Rb. A naturally occurring gas of 87Rb would be in a mixture of its 8
electronic ground states, in the 5S manifold. At low magnetic field, these states are well character-
ized by the total atomic angular momentum, with quantum number F , and the magnetic quantum
number m F . Ground-state hyperfine interactions split the levels F = 1 and F = 2 by an energy
of 1EHF = h×6.8 GHz. Laser cooling, trapping, and imaging typically involve optical transitions
to the 5P states. These are split into two disparate lines, labeled D1 and D2, by the fine structure
interaction, and split further into states of distinct total angular momentum F ′ by the hyperfine
interaction. In 87Rb, these excited-state hyperfine levels are split by about 100 MHz between neigh-
boring lines, greater than the natural line width (6 MHz) of the optical transitions. For some other
alkali elements, the excited-state hyperfine structure is not resolved. Especially important are the
two “cycling” transitions, shown with dashed arrows, on the D2 line, for which spontaneous emis-
sion from the excited state cannot return the atom to an electronic ground state other than the one
being driven. Such cycling transitions are favored for laser cooling and optical probing, since thou-
sands of photons can be scattered by the atom without its departing from the set of states being
interrogated.

breaks the rotational symmetry of the Hamiltonian of an isolated atom. Solving for the
eigenvalues of the electronic ground and excited states in an applied magnetic field
is a standard exercise in an atomic physics course. In the case of J = 1/2 electronic
state, such as the ground-state of alkali atoms, the energy eigenvalues are expressed
conveniently by the Breit-Rabi formula,

EF ,m

1EHF
= −

1

4F+
±

1

2

√
1+ 2

m

F+
x + x2, (2)

where x = gJµB B/1EHF, m = m I ± 1/2, 1EHF = AHF F+, AHF is the hyperfine con-
stant, and F+ = I + 1/2. Figure 2 shows the the Breit-Rabi level diagram for the
ground state of 87Rb. We point out several of its features. For weak magnetic fields,
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Fig. 2. Breit-Rabi diagram for 87Rb. Left column: At low field, states are well characterized by
their total angular momentum F , and their energies deviate linearly from their zero-field hyperfine
splitting by gF m FµB B. States that can be trapped at low field are indicated with a thick black trace.
Right column: At high field, the energies are again linear in field, varying as gJ m JµB B. Central
column: Between these two linear regimes is a quadratic regime in which neither F nor m J is a
good quantum numbers.

the magnetic dipole term ĤB can be treated as a perturbation for which the total atomic
angular momentum F is still conserved. The Zeeman energy shifts are then linear:
E ≈ EB=0 + gF m FµB B, where m F is the magnetic quantum number (projection of F
along the field axis), µB is the Bohr magneton, and the factor gF is given by Landé’s
formula.

As the field is increased, the field-induced coupling between hyperfine spin states first
becomes evident in a quadratic Zeeman shift, proportional to (m FµB B)2/1E2

HF. For
example, for the F = 1, m F = ±1 levels 87Rb, this shift is 70 Hz per square Gauss. The
quadratic Zeeman shift plays an important role in the physics of spinor Bose gases, as
discussed in the Chapter by Fetter and Foot.

At very high fields, the magnetic dipole term dominates the energy eigenstructure. With
the hyperfine interaction now treated as a perturbation, the atomic levels become increas-
ingly well described by the quantum numbers m J and m I , these being the individual spin
projections of the electron and nuclear angular momenta. Since the magnetic moment of
the electron is much larger than that of the nucleus, the energy states break up into a higher
energy set of m J = +1/2 eigenstates and a lower energy set of m J = −1/2 eigenstates,
as shown in Fig. 2. In this regime, E ≈ m J gJµB B + AHFm J m I . In each m J set, the level
spacing is nearly constant at AHF, with a weak dependence on magnetic field. This slow
variation becomes useful in performing rf spectroscopy on resonantly interacting Fermi
gases of 6Li, for instance, to observe interaction shifts from the single-particle transition
energy AHF/2.

The variation of atomic energies in an applied magnetic field finds important appli-
cation in the magnetic trapping of ultracold gases. To achieve such trapping, atoms are
placed in an inhomogeneous magnetic field. Assuming an itinerant atom follows the mag-
netic field orientation and magnitude adiabatically, the spatial variation of the magnetic
field magnitude leads directly to a spatially varying magnetic potential energy. Traps
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are formed typically with fields in the low-field regime discussed above, and, since
magnetostatic field maxima in conductor-free regimes are not allowed by Maxwell’s
equations, only “weak-field-seeking” atomic states, i.e., those with m F gF > 0, can be
trapped magnetically. For example, for 87Rb, only the |F , m F 〉 = |2, 2〉, |2, 1〉 and |1,−1〉
states are trapped at the limit of zero magnetic field2 (see Fig. 2).

The simplest trap is a magnetic quadrupole field, whose minimum field is zero.
However, spin-flip losses occur when atoms pass too close to the zero-field point. For
long-lived magnetically trapped samples, one uses a Ioffe-Pritchard configuration [3,4],
in which a two-dimensional magnetic quadrupole is combined with a magnetic dipole
along the third axis. To lowest order, the combined field is

B(x , y, z) = B0

0
0
1

+ B ′

 x
−y
0

+ B ′′

 −xz
−yz

z2
− x2/2− y2/2

 , (3)

where B0 is the holding field, B ′ is the quadrupole gradient, and B ′′ is the dipole field
curvature. For x , y � B0/B ′, the potential is harmonic in all directions, with frequencies
ω2

z = 2µB B ′′/M and ω2
x ,y = µB(B ′)2/M B0 − ω

2
z/2. The depth of the trap is limited by

off-axis saddle points.
The maximum magnetic dipole moment of an atom is about one Bohr magneton per

unpaired electron. Thus, in a trap where the magnetic field strength varies from zero at
the trap bottom to, say, 0.1 T at the rim of the trap potential, a one-µB atom experi-
ences a trap depth of about 100 mK, a temperature that is attainable by a precursor stage
of laser or perhaps buffer-gas cooling. Transition metal atoms that have been recently
laser cooled can have rather large magnetic moments, e.g., 6 µB for Cr or 10 µB for
Dy, coming from the large number of unpaired electrons in the partially filled shells of
these atoms. However, the large dipole moment of these atoms also makes the weak-
field-seeking states more unstable to dipolar relaxation collisions, wherein the magnetic
potential energy is converted to kinetic energy due to transitions among Zeeman states.
Thus, magnetic trapping of these high-spin atoms has been less useful than for hydrogen-
like atoms. The ground states of alkaline earth atoms, with two paired electrons, lack an
electronic magnetic moment, and thus cannot be magnetically trapped.

2.3. Electrostatic and Optical Trapping

Even though neutral atoms with unpaired electrons have a magnetic dipole moment,
eigenstates of Ĥ0 do not have an electric dipole moment. However, an applied electric
field can mix eigenstates of opposite parity to induce a dipole moment. Barring degenera-
cies between states of opposite parity (such as occurs for excited states of hydrogen), the
resultant Stark shift is quadratic in field strength. For heteronuclear (“polar”) molecules,
the existence of nearly degenerate states of opposite parity means that the Stark shift
becomes linear beyond some relatively weak polarizing field.

2 In high fields, the quadratic Zeeman effect has been used to trap the |2, 0〉 state of 87Rb [2].
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Restricting our discussion to the quadratic Stark shift typical of ground-state atoms,
static electric fields create an attractive potential (the dc Stark shift) with a strength
−

1
2α0E2, where α0 is the dc polarizability and E is the electric field strength. Alkali

atoms have α0 ≈ 3× 10−39 cm2/V. Since fields greater than 105 V/m typically cause elec-
trode discharge, static potentials cannot be larger than a few µK, in temperature units.
This potential depth is roughly 105 times shallower than the typical magnetic trap depths
discussed in Section 2.2. Another problem with electrostatic traps is that field maxima
are (again) not allowed by Maxwell’s equations, so an electrostatic potential must be
combined with another type of potential to form a stable trap for atoms.

Fortunately, the Stark potential can be greatly enhanced near optical resonances. Con-
sidering just a “two-level atom,” i.e., where we can consider only the coupling between
one ground state |g〉 and one excited state |e〉 of the atom, the expectation value of the
dipole operator ĤE1 = −d̂ · E is

~�R = 〈e|ĤE1|g〉 = −〈e|d̂|g〉 · E , (4)

where�R is the Rabi frequency. On resonance, population oscillates between ground and
excited states at the frequency �R . Far from resonance, when the detuning δ ≡ ω − ω0

between the driving frequency ω and the atomic transition frequency ω0 is much larger
than the transition line width 0, the ground state feels a second-order energy shift
(sometimes called the “ac Stark shift”), with the value

Vg = ~|�R|
2/4δ. (5)

As in the static case, this energy scales like E2, but now we identify this quantity as the
intensity of an electromagnetic wave. When ω � ω0, i.e., as we approach the limit of the
dc Stark shift, the above formula must be corrected by the addition of counter-rotating
terms [5]. Comparing the dc and ac Stark shifts, we see that the resonant enhancement
of the Stark shift is approximately ω0/δ. In principle, since optical resonances can have
a quality factor ω0/0 of 108, a tremendous enhancement is possible. In practice, optical
traps are tuned many line widths from resonance to avoid heating from light scattering,
so ω0/δ is typically tens to hundreds.

We see that the sign of the ac Stark shift varies with that of the detuning of the drive
field. Referring to the case of 87Rb and considering only the levels shown in Fig. 1, light at
a wavelength below 780 nm is blue detuned with respect to both the principal transitions.
Thus, a ground-state 87Rb atom exposed to such light experiences a repulsive ac Stark
potential, and will be attracted to low-intensity spots of the light field. In contrast, light at
a wavelength above 795 nm is red detuned with respect to all transitions from the ground
state, so that 87Rb atoms experience an attractive ac Stark potential and are pulled toward
the high-intensity regions. Light with a wavelength between those of the D1 and D2
transitions can yield either attractive or repulsive potentials depending on the relative
strengths of coupling to the two transitions. These relative strengths depend on the atomic
hyperfine and Zeeman state and the polarization of the light field. Such a dependence
allows the ac Stark shift to be used to create state-dependent potentials or to exert fictitious
magnetic fields.
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The ac Stark potential allows one to trap quantum gases optically [6]. The simplest opti-
cal trap is formed by a focused Gaussian beam of red-detuned light. A 10 W beam focused
to a minimum beam waist of 20 µm creates an electric field strength of 3× 106 V/m. Such
a beam at a wavelength of 1064 nm induces a trap depth of 2.4 mK for rubidium. In gen-
eral, we see that optical potentials can be deeper than electrostatic potentials, but not as
deep as typical magnetic traps.

Optical traps have the tremendous benefit of allowing one to trap any magnetic sub-
level of the ground state manifold. For 87Rb, for instance, there are eight states among the
F = 1 and F = 2 hyperfine levels. As discussed above, only three of these can be mag-
netically trapped with a linear Zeeman effect, whereas an optical trap can hold all eight.
A further implication is that the magnetic field can be varied arbitrarily if the atoms are
trapped optically. This will have important consequences in Section 3.2.

2.4. Optical Lattices

In a solid, electron band structure arises from the periodic potential created by ions in a
crystalline arrangement. A similar potential landscape can be created for cold atoms by
interfering multiple laser beams. Two intersecting plane-wave beams of the same optical
frequency and polarization create an intensity pattern that varies sinusoidally in space.
Following Eq. (5), this intensity pattern produces a periodic potential of the form

Vg(x) = V x
0 cos2 (qx), (6)

where V x
0 is the magnitude of the potential, and where q = qx̂ , the difference between

the wavevectors of the intersecting beams, defines the x̂ axis. A single pair of beams
creates a stack of pancake-like potentials, with tight confinement along one axis due to
the spatial interference term and loose confinement along the other axes defined by the
radial profile of the intersecting laser beams. When the intersecting laser beams are weak,
the atoms may tunnel between neighboring pancakes over experimentally reasonable time
scales. When the laser beams are sufficiently intense, such tunneling is negligible, and, at
sufficiently low temperature, the atomic motion may be reduced to just two dimensions.

Starting from this basic configuration, a wide range of trapping potentials can be gen-
erated. Adding more laser beams, one can create periodic confinement also in the y
and z directions. The simplest three-dimensional lattice potential is the one in which
three pairs of beams are used along orthogonal axes, with each pair at a different opti-
cal frequency so that cross-interference between pairs can be ignored. Again assuming
counter-propagating beams to have a common polarization, the resulting potential is

Vg(x) = V x
0 cos2 (kx x)+ V y

0 cos2 (ky y)+ V z
0 cos2 (kzz). (7)

The intensities V i
0 in this cubic lattice can be chosen arbitrarily, and even dynamically,

to produce atomic gases that live effectively in three-, two-, one-, or zero-dimensional
spaces. Even the wave vectors can be varied dynamically, in an “accordion” fashion [7,8]
or to create a rotating lattice [8,9]. Although square nets and cubic lattices have dominated
cold atom experiments to date, all of the Bravais lattices can be created [10].
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So far we have assumed that lattice potentials were created with parallel linear polariza-
tions of light. However, the polarization of each laser beam can be chosen arbitrarily. The
intensity at r of two interfering beams with wave vectors k1,2 and complex polarizations
ε̂1,2 is

Isw(r)
I0
= 2+ 2Re{ε̂1 · ε̂

∗

2ei(k1−k2)·r}, (8)

where I0 is the intensity of each individual beam. However, it is not the intensity alone, but
also the optical polarization that determines the potential, as follows from the definition of
the Rabi frequency in Eq. (4). Treating the ac Stark effects more completely, accounting
for both diagonal and off-diagonal second-order coupling between the different spin states
of the electronic ground state, leads to a diverse set of optical lattice potentials, such
as spin-dependent lattices, where the external potential depends on the internal state of
the atom [11], or lattices with significant spin–orbit coupling, in which bands can have
nonzero Chern number [12]. Dynamic control of the relative polarization can be used for
spin-dependent transport and, thereby, to generate widespread entanglement between the
spin and motion states of lattice-trapped atoms [13,14]. Considering also the possibility
of optical superlattices (formed by overlaying lattices of different periodicity), lattices
for atoms with several stable electronic states (notably the alkali-earth atoms), lattices
that combine both optical and radio frequency manipulation of the trapped atoms, and
so forth, one might expect that atomic physicists will be as busy studying lattice-trapped
atoms as condensed-matter physicists have been studying lattice-bound electrons!

However, as one considers designing a new family of optical lattice potentials, one
should keep in mind the limitation that optical potentials are not entirely conservative.
The electric dipole moment induced dynamically in an atom by a near-resonant laser
field does not respond exactly in phase with the laser drive. The out of phase (imaginary)
electric susceptibility of the atom induces the atom to emit light spontaneously. The recoil
from these randomly emitted photons and also the random transitions between electronic
states of differing polarizability (dipole force fluctuations) heat the atom mechanically
[15]. Many of the machinations that yield the most intriguing optical lattice potentials
often require the use of laser light that is fairly close to atomic resonances, so that the
laser detuning from various transitions be significantly different. Perhaps, realizing the
more exotic optical lattice configurations will have to wait for more exotic atoms and
molecules to be introduced to the ultracold regime.

3. INTERACTIONS

As discussed above, the broad relevance of research on quantum gases rests upon the
idea that the many-body quantum systems behave similarly regardless of the details of
their construction. Yet, in considering analogies between electrons in solid-state mate-
rials and atoms in artificial potentials, one cannot escape the fact that electrons, being
charged, interact via the long-range Coulomb interaction, while neutral atoms do not.
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Rather, in most neutral atomic gases, interactions are short ranged as defined by the
Angstrom-scale effective range of the two-atom molecular potential. The absence of
long-range interactions among atoms does not necessarily invalidate the analogy between
atomic and electronic materials, since in many materials, the Coulomb interactions among
mobile electrons are screened at long range, leaving only an effective short-range inter-
action between electron-like (or hole-like) quasiparticles. However, in other contexts,
the absence of electric charge and long-range interactions lead to a major departure of
ultracold atom systems from typical solids, for instance vis a vis the connection between
plasma oscillations and Bogoliubov modes in charged superconductors or the realization
of high-order and long-range spin–spin interactions in magnetic materials. The presence
of dipolar interactions in some neutral gases is an interesting exception to the rule, and is
discussed at the end of this section.

3.1. The Scattering Length

At the low density of atomic gases, interactions can be treated as a two-atom quantum
scattering problem governed by the relevant molecular potential. A complete treatment
of such scattering is quite complicated, owing to the many potential energy surfaces that
arise as two-compound quantum objects—atoms with internal states describing electronic
motion, electron spin, and nuclear spin—approach one another. However, much of this
complexity is swept under the rug due to the near-zero incident energy of a colliding atom
pair. One appeals to the partial wave treatment of scattering, in which the incident matter
waves engaged in a collision are decomposed into eigenstates of angular momentum. In
this basis, a centrifugal barrier exists for any nonzero angular momentum, for example,
p-wave or d-wave collisions. However, as shown in Fig. 3, even for p-wave collisions,
the magnitude of the barrier is ∼0.1 mK, much higher than the sub-µK temperatures of
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Fig. 3. The s-wave collision cross section (open symbols), measured using a mixture of spin states
of fermionic 40K, shows little temperature dependence. However, the p-wave cross section (closed
symbols), measured using spin-polarized atoms, exhibits a threshold behavior, falling two orders
of magnitude between 100 µK and 5 µK. (Reproduced from Ref. [16] with permission, courtesy of
the APS.)
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quantum degenerate gases. Therefore, only isotropic s-wave scattering is significant for
ultracold atoms. Far from the innards of the molecular potential, such s-wave scattering
results only in a phase difference, η0, between the incoming and outgoing de Broglie
waves, which is given as [17]

k cot (η0) = −
1

as
+

1

2
rek2, (9)

where the wavevector k relates to the relative momentum of the colliding pair. In the
ultracold regime, all the gory details of the interaction potential may be neglected (though
sometimes it pays to keep them in mind) by retaining just two quantities that characterize
the scattering phase: the s-wave scattering length as , and the effective range of the poten-
tial re. The effective range term itself is negligible for collision energies much less than
~2/Masre, which is roughly 100 µK for 87Rb. For 87Rb in the polarized |2, 2〉 state, the
triplet scattering length as = 5.238(3) nm [18].

The scattering length also determines the elastic collision cross section, given for
distinguishable particles as

σNI =
4πa2

s

1+ k2a2
s

. (10)

For identical bosons, there is an additional factor of two: σ = 2σNI, whereas for identical
fermions, s-wave collisions are forbidden by the Pauli principle, and σ = 0. Figure 3
shows direct measurement of the latter effect in a spin-polarized gas of 40K.

Since the details of the interaction potential are unimportant, it is convenient to replace
it formally with a simpler potential—the zero-range contact potential V (R) = gδ(R)
with R being the relative spatial coordinate—which yields the same s-wave scattering
length by identifying g = 4π~2as/M . Subtle divergence problems that arise some-
times from this pseudopotential approach are avoided by using the regularized potential,
V (R)9(R) = gδ(R)∂R(R9(R)) [19].

From dimensional arguments, and in mean-field theory, it follows that the product ng,
with n being the number density, quantifies the per-atom interaction energy. This energy
is seen to be proportional to the scattering length, i.e., we associate as > 0 with repul-
sive interactions and as < 0 with attractive interactions. The possibility of realizing both
attractive and repulsive interactions may seem counterintuitive, given that the interaction
energy between polarizable ground-state atoms is always negative at long range (at the
typical distance between atoms) due to van der Waals interactions. More properly, the
per-atom interaction energy should be thought of as the influence of scattering on
the kinetic energy of the interacting gas. To visualize this, consider two atoms trapped
in a box with linear dimensions l, which we assume to be large. Their kinetic energy goes
as ~2/Ml2. Due to scattering, the two-body wave function behaves at long range as if the
linear dimension of this box now has a length l − as . For as > 0, the volume inhabited
by a collection of atoms is effectively reduced due to the asymptotic effects of scattering,
causing their kinetic energy to rise. For as < 0, adding more atoms seemingly increases
the volume available to the gas, causing its kinetic energy to diminish.
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The treatment of three-dimensional scattering discussed above is modified in fasci-
nating ways by the confinement of atoms to lower dimensional spaces, through which
interaction strengths are rescaled and various confinement-induced collisional resonances
and bound states can occur. These effects are discussed in Chapter 4.

3.2. Feshbach Resonances

In the presence of a magnetic field, free atoms and bound molecules experience a dif-
ferential Zeeman shift since their magnetic dipole moments are not equal. At certain
serendipitous values of the field, this differential energy shift can bring a bound dimer
state into resonance with the energy of two asymptotically free atoms. This condition is
called a Feshbach resonance [17]. Even though the atoms may not actually form a dimer,
the phase shift of their s-wave collision is modified by the proximity of the resonance. As
shown in Fig. 4, by using a magnetic field, the ultracold gas can be tuned from weakly to
strongly interacting, and chosen to be either repulsive or attractive.

Such an exquisite control of interactions is possible with cold atoms because the inter-
actions are binary. Liquid helium is roughly a billion times more dense, meaning that
particles are a thousand times closer to one another. At the microscopic level, it is an
“atomic traffic jam”—the mean separation is comparable to the range of the interatomic
potential, and no clean separation of energy scales is possible. For neutral gases, the
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Fig. 4. A Feshbach resonance at 737 G is used to tune the scattering length of bosonic 7Li across
seven decades, from extremely small attractive interactions to extremely strong repulsive interac-
tions. In situ cloud size is used to measure the scattering length (points). The mean and standard
error of approximately 10 shots taken at each field is shown. Results of a coupled-channels calcu-
lation are shown by the solid line. The Feshbach resonance fit is indicated by the dashed line. The
inset shows the extracted values of as near the zero crossing. Values of the scattering length above
104 Bohr radii are not accurate due to beyond mean-field effects. (Reproduced from Ref. [20] with
permission, courtesy of the APS.)
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Feshbach resonances can be milli-Gauss wide, showing that the control over interac-
tions through delicate tuning of the two-body molecular potential is not compromised
by many-body effects.

Experiments with Feshbach resonances use optical traps, for two reasons. First, Fes-
hbach resonances typically occur at fields of hundreds of Gauss (∼10 mT), whereas the
magnetic field minima of magnetic traps are often at the single-Gauss level (∼0.1 mT).
Second, the Feshbach resonances are accessed at the lowest magnetic fields in antitrapped
Zeeman states.

An alternative to the magnetic Feshbach resonance is the coupling to molecular states
with electric fields, either static [21,22] or optical [23,24]. These techniques are especially
important for atoms with paired electrons, such as rare earth alkalis, since, with zero
nuclear spin, they lack the hyperfine interactions that are necessary to couple free states
to bound states in magnetic Feshbach resonances. Optically induced Feshbach resonances
are being explored as a way to produce novel systems with rapid temporal and spatial
variations in the interaction strength. To date, however, these optical Feshbach resonances
appear to be accompanied by the significant disturbance of the gas by spontaneous light
scattering.

Sweeping the magnetic field across a Feshbach resonance can cause the adiabatic bind-
ing of free atoms into the loosely bound molecular states that induce the resonance. These
“Feshbach molecules” are quite unusual in that they are bound by mere kHz-level bind-
ing energies (10−7 wave numbers!) and have sizes in the nanometer range [25]. The
generic few-body physics of Feshbach-resonating atoms has been explored in a num-
ber of landmark experiments with cold atoms. Feshbach molecules are also centrally
relevant to studies of the BCS-BEC crossover in degenerate Fermi gases, across which
Bose-condensed Feshbach molecules transform smoothly into Cooper pairs in a BCS
superfluid. The formation of Feshbach molecules is also an important stepping stone for
the creation of ground-state molecules by photoassociation.

3.3. Dipolar Interactions

The magnetic dipole moment we discussed above for magnetic trapping can also lead
to interatomic interactions. Atoms in excited states (especially in highly excited Rydberg
states) can have strong electric dipole moments, but they are typically not stable when col-
liding. Molecules offer the possibility of strong electric dipole moments for both trapping
and interactions.

Uniformly oriented dipoles interact according to the potential

Vdip(R) =
Cdd

4π

1− 3 cos2 θ

R3
, (11)

where θ is the angle between the dipole orientation and R the separation between par-
ticles. A potential scaling as 1/Rξ at large distance is defined as short ranged—and can
be treated using the pseudopotential approach (Section 3.1)—so long as ξ > D, where
D is the number of dimensions. For instance, van der Waals interactions arising from
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fluctuation-induced dipole moments fall off like 1/R6 (or faster). Thus, such interac-
tions can be summarized by the scattering length as and otherwise ignored. However,
the V ∼ 1/R3 interaction between permanent dipole moments is, by this definition, long
ranged in three dimensions, and must be treated by a different approach [26]. For neutral
atoms, “dipolar interactions” is nearly synonymous with “long-range interactions.”

One can compare the strength of the magnetic dipole interaction to that of the s-wave
contact interaction by calculating the magnetic self-energy of a trapped gas to the contact
interaction strength g (Section 3.1), yielding the ratio εdd = Cdd/3g. For the alkali gases,
with a typical s-wave scattering length of tens of Bohr radii and a magnetic moment
of one µB , εdd is typically below 10−2, so that magnetic dipole interactions are small
compared to the overall contact interaction energy of a single-component Bose or Fermi
gas. However, dipolar interactions may still be significant in determining spin ordering in
multicomponent alkali gases. Most notably, for 87Rb, the contact interaction energy varies
only slightly for different magnetic states, as determined by a small difference in s-wave
scattering lengths for collisions among different pairs of atomic spin states. In face of this
small variation, the magnetic dipolar energy may indeed be significant [27].

More dramatic effects of the magnetic dipole interaction are seen in atomic gases with
larger magnetic moments, and in which the s-wave scattering length can be tuned near
zero. Seminal experiments on such “quantum ferrofluids” were performed using Cr gases
held in anisotropic optical traps. Fixing the orientation of the atomic magnetic moment
(of magnitude 6µB) to that of the guiding magnetic field, and varying the orientation of
that field with respect to the axes of the optical trap, the interactions were converted from
being effectively repulsive (for atoms spread out preferentially in directions transverse to
the dipolar axis), allowing large condensates to remain stable, to attractive, whereupon
the condensates collapsed [28].

Even stronger dipolar effects are expected in other atomic and molecular gases. Neutral
atoms in Rydberg states have strong electric polarizabilities due to large-radius electron
orbitals, in addition to long-range van der Waals interactions. However, the collisional
instability of Rydberg atoms prevents a simple comparison to ground-state dipoles. Het-
eronuclear molecules polarize in a relatively weak electric field to have an electric dipole
moment on the order of 1 debye. When normalized with respect to a typical as , a dimen-
sionless strength εdd & 10 is expected. Quantum degenerate gases of polar molecules have
yet to be produced, but several teams are close [29,30] and expected to succeed in the near
future.

4. TAKING DATA

The constellation of measurement tools available for studies of materials in the solid state
reflects the robustness of such materials. The copious scattering of high-energy photons,
electrons and neutrons, injections of decaying muons, and the scratching of solid probes
across the surface can all be tolerated by solid materials without necessarily destroying
them. In contrast, cold atomic materials are delicate. The momentum transferred to an
atom upon scattering just a single near-infrared photon will typically exceed the typi-
cal thermal, Fermi, and interaction energy in a quantum vapor. Material probes poking
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into a nano Kelvin temperature gas will quickly boil the atoms away, ruling out most
scanning probe techniques. The delicacy of atomic many-body systems implies that the
act of extracting data from such systems is extremely influential on their evolution. Effi-
ciency is essential, and accounting for the back action of measurements is necessary for
their interpretation.

The lion’s share of measurements on cold gases are performed optically. The lightly
interacting atoms in a quantum gas are strong, narrow-band optical emitters, as discussed
in Section 2.1. However, ion-based detection can be used for fast detection of single
atoms (see Section 4.4), especially for metastable gases that ionize upon impact with an
electrode surface.

4.1. The Experimental Cycle: The Birth and Death of an Ultracold Gas

In conventional condensed-matter physics research, one makes or identifies a mate-
rial sample, prepares it for measurement, inserts it into a measurement apparatus, and
takes measurements for as long one needs to gather reliable data on the phenomenon
being investigated. The same sample might be used for months of data taking or for
several sequential types of measurement, and might be stored in a drawer for further
investigations down the line.

Ultracold atomic materials are quite different. The material must be constructed prior
to each measurement, starting from a new, hot atomic vapor. The typical experimental
sequence is (1) using laser cooling and trapping to gather atoms from the vapor into a
magneto-optical trap, with temperatures on the order of 100 µK, (2) trapping the atoms
in a conservative potential, e.g., a magnetic (Section 2.2) or optical dipole (Section 2.3)
trap, (3) evaporatively cooling the atoms by gradually lowering the depth of the conserva-
tive trap and letting atypically high-energy atoms escape the trap, reaching temperatures
in the quantum degenerate regime (usually sub-µK), and (4) putting the final touches on
the material by turning on the system Hamiltonian (interaction strength, lattice type, spin
admixture, etc.) that one wants to examine. Once finally produced, the lifetime of the
ultracold material is short, and so the entire experimental sequence for probing the mate-
rial is quick, typically much shorter than the time it took to prepare the material in the first
place. At the end of each measurement, the sample is discarded. This cycle is repeated at
the cycle time of a few seconds to a few minutes, depending on the speed of the accu-
mulation and cooling stages. In examining a graph of data from a cold atom experiment
(e.g., Fig. 3 or 4), one should value the fact that each point on the graph represents one or
several repetitions of a make-probe-discard experimental run. In light of this protocol, it
is somewhat stunning to hear of cold atom experiments that utilize hundreds or thousands
of “shots,” each reproducing a gas under almost identical conditions, to obtain the high
precision required to reveal new phenomena or test recent theories.

4.2. Imaging

Cold atoms are conventionally probed by optical imaging. Probe light at a well-defined
optical frequency is sent through the atomic gas and imaged onto a camera. Assuming the
gas is sufficiently thin that we can neglect double refraction, and neglecting scattering at
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large numerical aperture, such a probe measures the column-integrated complex dielectric
susceptibility tensor, truncated to the two polarizations allowed for light propagating
along the imaging axis. In other words, information about the atomic gas is encoded onto
the absorption, phase shift, and polarization state of the optical probe field, properties that
can be extracted by appropriate imaging methods.

For example, in absorption imaging, one images the probe light directly onto a camera.
Comparing images taken with and without the atomic gas within the field of view, one
records the fractional transmission of probe light, T (ρ), for each camera pixel (labeled
by position ρ). In the simple case of linear scattering from atoms in a single initial inter-
nal state, the areal density of the gas is given by n A(ρ) = − ln T (ρ)/σ , with σ being the
light absorption cross section given the atomic initial state and the optical polarization
and detuning. Yet, this simple interpretation of the absorption signal may be complicated
by various factors such as saturation, optical pumping, polarization rotation, the displace-
ment and acceleration of atoms due to light forces from the probe, collective scattering,
inhomogeneous broadening, etc. Some of these complications are obviated by probing
the gas with probe light well above the saturation intensity, so that atoms scatter light at a
known maximum rate (one-half of the excited-state decay rate), and counting the number
of absorbed photons [31] (or detecting the metered fluorescence [32]).

An advantage of absorption imaging is that an atom can scatter very many photons in
a single imaging pulse, improving the signal-to-noise ratio of the optical measurement.
Indeed, several groups have quieted absorption imaging to the point of measuring atomic
distributions with sub-Poissonian noise—where the atom number N in a given region is
measured with uncertainty δN < N 1/2—to reveal correlations generated by interatomic
interactions or quantum statistics [33–35].

Absorption imaging has two primary drawbacks. First, absorption imaging is typically
only a single-shot probe. The photons “absorbed” by the atoms in such imaging are, in
actuality, rescattered out of the imaging system. Such photon scattering imparts significant
momentum to atoms within the gas, typically adding sufficient energy and entropy that
the atomic quantum system is irrevocably disturbed and must be discarded and created
anew for further measurements. The destructiveness of the measurement makes it chal-
lenging to use absorption imaging to characterize interesting temporal dynamics, such as
equilibration dynamics, responses to sudden variations in the system Hamiltonian, collec-
tive excitations, or temporal noise correlations. If the response of the system to a temporal
perturbation is reproducible, one can construct a time series of measurements from many
repeated experiments with variable delay before the absorption probe. We note it is possi-
ble to get around the single-shot limitation by applying absorption imaging to just a small
fraction of atoms extracted from the quantum gas. For example, Frelich et al. used a weak
microwave pulse to transfer 87Rb atoms to a different hyperfine ground state before imag-
ing them with light that was sufficiently far detuned from the optical transitions of the
remaining gas that the trapped sample continued to evolve with little disturbance [36].

Second, absorption imaging is also of limited use in probing gases at high optical den-
sities, where imaging noise leads to large uncertainty in the measured column density. For
this reason, absorption imaging is rarely used to measure trapped atoms directly, in situ.
Rather, absorption imaging is applied typically to gases ex situ, after they have been
released from their trap and allowed to expand significantly before probing—a method
known as time-of-flight imaging.
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Fig. 5. Repeated phase-contrast dispersive imaging is used to trace the propagation of a sound
wave within a single trapped Bose–Einstein condensate. At t = 0, a repulsive potential is intro-
duced suddenly within the middle of the elongated condensate. Images are taken at 1.3 ms intervals,
beginning at t = 1 ms. The density excesses (red) travel along the condensate, revealing the speed
of sound. (Figure adapted from Ref. [38].)

Alternately, one may use dispersive imaging to probe high-density, trapped atomic
gases in situ. To attain the highest imaging resolution, one uses probe light sufficiently
detuned so that diffraction, rather than refraction, is dominant, a condition achieved when
the phase shift imparted on probe light on the order of 1 radian or less. For high opti-
cal density gases, i.e., those for which absorption imaging is problematic, this condition
also implies that optical dispersion dominates over optical absorption. Information on the
atomic gas is now encoded in the phase of the transmitted light. This phase is detected by
one of several common imaging techniques, such as dark-field [37], phase-contrast [38],
or polarization-contrast [39] imaging.

Dispersive imaging is still somewhat destructive, owing to the residual off-resonant
absorption by the gas. The destructiveness is mitigated only by imaging at lower signal-to-
noise ratios (e.g., by using fewer photons or probe light detuned further from resonance);
only so much information can be garnered from the gas before it is destroyed. Neverthe-
less, by parsing this information it is possible to obtain several in situ images of a gas,
e.g., to measure the time evolution (Fig. 5) or to measure several properties (Fig. 6) of a
single sample.

4.3. Bragg and Modulation Spectroscopy

The imaging probes discussed above are analogous to transmission electron or x-ray
microscopy in which real-space images are obtained of solid-state materials. Alternately,
solid-state materials can be characterized in reciprocal or momentum space, e.g., by using
Laue or Bragg x-ray diffraction to identify lattice planes and crystal orientations or neu-
tron diffraction to identify magnetic order. Such scattering experiments on solids are most
powerful in the form of angle-resolved spectroscopy, by which one determines both the
momentum and the energy absorbed by a material sample by scattering a probe particle.
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Fig. 6. Repeated polarization-contrast imaging is used to measure both the components of the
transverse magnetization of a spin-1 87Rb gas. (a) Several brief polarization–rotation images are
taken, measuring one component of the magnetization transverse to an applied magnetic field, while
such magnetization undergoes Larmor precession between image frames. This Larmor precession
is evident by selecting data from a common location in each image frame (yellow band in a) and
observing the temporal oscillation (shown in b). (c) Analyzing the data from each image pixel,
one extracts the spatially varying Larmor precession amplitude and phase, or, equivalently, the two
components of the transverse magnetization (here denoted as Mx and My , represented either in gray
scale, or in a color scale with brightness indicating amplitude and hue indicating orientation). This
image analyzes a degenerate gas equilibrating to a ferromagnetic state, as reported in Ref. [40].

A similar family of methods has been developed to characterize the structure of atomic
gases by angle-resolved light scattering. As for the methods used for solid-state materials,
Bragg scattering of light can be used to determine the dynamic and static structure factors
of a quantum gas, revealing, for example, the role of interactions in suppressing density
fluctuations [41] or shifting excitation energies [24,42–44].

A notable difference in the quantum gas applications is that coherent laser light inter-
acts strongly with the gas and also possesses a wavelength that is on par with the
physically relevant length scales of the gaseous sample. For this reason, experimental
applications of Bragg spectroscopy typically make use of stimulated Bragg scattering
to characterize the sample. Rather than quantifying the momentum and energy trans-
fer by spectroscopic analysis of (few) scattered particles, one specifies such quantities
a priori and with excellent resolution by the wavevector and energy difference between
several plane-wave light beams impinging on the sample. The excitation strength is then

(EmptyReference!)
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quantified, e.g., by detecting the amplification (or suppression) of one of the driving light
fields [45], or the energy or momentum deposited in the gas [42].

The similar method of modulation spectroscopy is well suited to the study of lattice-
trapped quantum gases. Instead of the optical walking-waves used for Bragg scattering,
here one uses standing waves modes of light, these being the optical lattice beams them-
selves. The carrier and modulation sidebands of the amplitude-modulated lattice beams
define the energy transferred to the medium in transitions at constant quasi-momentum.
Such modulation spectroscopy has been used to characterize the Mott insulator formed
by lattice-trapped Bose gases [46] and the particle-hole excitations in fermionic samples
[47].

A distinct feature of research on atomic gases is that measurements need not be con-
fined to the perturbative regime. For example, modulation spectroscopy is performed
often by modulating the potential energy (the periodic optical lattice) by tens of percent.
On the one hand, the use of such a nonperturbative measurement complicates its interpre-
tation. On the other hand, such strong perturbations produce interesting nonequilibrium
systems worthy of study in their own right, for example, Bose–Einstein condensates with
macroscopic occupancy of a phonon state [48] and dynamic systems in which the initial
excitation of the system is fed back via matter wave mixing or optical cavities [49 51].

4.4. Single-Atom Probes

The limits of measurement sensitivity are reached when a high-fidelity record of each and
every atom of a many-body system is obtained. Remarkably, recent experimental develop-
ments are converging on this limit. Several approaches are being pursued. For instance,
it is possible to detect each atom in a two- [52,53] or three-dimensional [54] array. To
achieve such a measurement, atoms in an optical lattice are exposed to near-resonant
light that is scattered copiously by the atoms as they are being actively laser cooled. Such
fluoresced light is then imaged with sufficient spatial resolution to isolate the emission of
each atom from that of its neighbor. High measurement sensitivity has also been attained
for metastable atomic species, such as the lowest state of orthohelium [55]. Upon striking
a detector surface, a single metastable atom may undergo Auger decay, releasing elec-
trons that can be fed into a multichannel electron multiplier. Other single-atom-sensitive
techniques include cavity-enhanced optical detection [56] and multiphoton ionization
[57,58]. Ultimately, such methods may allow for a detailed measurement of the state
of an interacting many-body quantum system, providing a wealth of information beyond
the standard correlation functions that are measured typically for solid-state systems.

5. INTERPRETING DATA

As discussed above, the atomic physics toolbox provides ready means to extract data
from gaseous systems. However, turning such data into a meaningful characterization
of system properties, particularly in forms that are comparable to those that characterize

–
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solid-state materials, requires another round of ingenuity. Here we provide a few examples
of how the raw data of measurements are interpreted as revealing the underlying physics
of atomic quantum gases.

5.1. Extracting Thermodynamic Quantities from Spatial Density Profiles

We are often asked, “how do you measure such low temperatures?” One measures the
temperature, or other thermodynamic property, of a conventional material by connecting
it with a reliable and calibrated sensor, which is a second material the properties of which
are already fully understood. Although different in practice, the concept behind measuring
bulk properties of quantum gases is the same: temperature and pressure are measured by
reference to the properties of an ideal gas.

For example, at thermal equilibrium, the velocity distribution of a nondegenerate ideal
gas is given by the Boltzmann distribution, f (v) ∝ exp

(
−Mv2/2kB T

)
. One may then

determine the temperature by measuring how fast the particles in such a gas (of mass M)
are moving. In principle, this can be done by seeing how quickly the gas escapes from
its container once the trapping potential is turned off. This simple concept can also be
extended to some of the degenerate and interacting systems that are under study today.
One notes that the most highly excited atoms in the gas are less affected by the inter-
actions, and so a reliable temperature measurement can still be made by examining the
high-velocity tails.

However, with increasing interactions, one cannot rely on the time-of-flight distribution
being a true reflection of the in situ velocity distribution: the gas particles scatter off each
other during the expansion from the trap, resulting in thermal cooling and a modification
of the velocity distribution. Other approaches to measuring velocity distributions, such
as atom interferometry [42], also fail in strongly interacting gases as the Doppler and
interaction-induced effects are difficult to disentangle.

An alternate approach is to base one’s measurements on the in situ spatial distribution
of the gas. Analyses of such distributions rely typically on the local density approxima-
tion, i.e., that even in the inhomogeneity introduced by the nonconstant trapping potential
across the volume of the trapped gas, properties of the gas measured locally—namely the
density, compressibility, pressure, magnetization, etc.—are interrelated by the equation
of state of a homogeneous quantum gas. In fact, the inhomogeneous trapping potential of
the gas becomes the vehicle by which such properties are measured in the first place. The
constant chemical potential of an equilibrated gas may be written as µ0 = µ(r)+ V (r)
where, by the local density approximation, we interpret µ(r) as the “local” chemical
potential that determines local properties of the gas according to its equation of state.
Consider that one measures the in situ density profile n(r) over a region where the trap-
ping potential has a nonzero gradient ∇V (r). One thereby obtains two thermodynamic
quantities simultaneously: n(µ) and dn/dµ = −|∇n|/|∇V |. Together with the means of
determining µ0 and the temperature T , one obtains an experimental characterization of
the equation of state [65].
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5.2. What One Learns About Quantum Gases from Their Decay

The fact that quantum gases decay away even as one wants to study them is certainly
inconvenient. Yet, this annoyance can also be turned to one’s advantage. In a paper enti-
tled “Coherence, correlations and collisions. . .” Burt et al. observed that Bose–Einstein
condensates in their apparatus were decaying remarkably more slowly than nondegener-
ate gases [59]. Examining closely the rate of loss of atoms from their gases, they found
that three-body decay, losses that occur when a pair of atoms relax into a bound molecular
state with the aid of a third collision partner, were diminished because the coherent mat-
ter wave of a Bose–Einstein condensate contains fewer trios of atoms at short distances
from each other than does an incoherent thermal gas. The six-fold reduction of the zero-
range third-order correlation function, g(3)(0), is familiar also from the quantum optics of
thermal and coherence sources of light.

Detailed studies of loss rates ascribed to two-, three-, and four-body processes have
been used to reveal the short-range correlations that arise in a number of strongly
interacting systems. Suppressed losses revealed the “fermionization” of one-dimensional
Bose gases as they enter the Tonks-Girardeau regime [60]. Sharp increases and decreases
in the three-body loss rate indicate the formation of three-body bound states due to strong
two-body interactions [61], as predicted by Efimov. A reduced loss rate in two-state
Fermi gases with strong interactions revealed the onset of local spin correlations and
also the rapid formation of bound-state molecules in systems swept across Feshbach
resonances [62].

5.3. Isolation versus Equilibrium

The lowest temperatures attained in cryogenic physics, in the µK range for bulk materi-
als, are infernally high when compared to the temperatures of quantum degenerate gases.
Thus, by necessity, atomic gases are kept extremely well isolated from their thermal envi-
ronment by placing the gas within an ultrahigh vacuum environment, with pressures
below 10−10 torr. The residual background gas within the chamber, at thermal equilib-
rium with the chamber walls (say at room temperature), is so dilute that its effect is just
to deplete the trapped gas slowly, since background-gas collisions typically impart more
energy to an atom than the depth of trap in which it is contained. Radiative coupling to
the atomic gas is minimal since the atomic absorption spectrum is so sparse (atoms are
very low emissivity objects). This latter observation may have to be revisited for atoms
and, particularly, for molecules with more dense and complex spectra.

This extreme isolation preserves the cold gas long enough for it to arrive at low tem-
perature by evaporative cooling and to be manipulated and probed by the experimentalist.
However, the isolation also presents us with a challenge: without an external thermal
bath with which to exchange energy, or an external reservoir with which to exchange
particles, can the atomic materials be truly regarded as having reached equilibrium?
Thermodynamically, quantum gases should perhaps be described as a microcanonical
ensemble; however, for a gas constantly subject to evaporative cooling, perhaps that pic-
ture is also inadequate. In any case, one should exercise caution in importing findings
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from a grand-canonical quantum-statistical model, where systems are characterized by
fixed chemical potential and temperature, rather than fixed energy and particle num-
ber. The same concerns apply to quantum gases with a magnetic degree of freedom. In
condensed-matter studies of magnetism, the magnetic susceptibility is typically measured
by applying a magnetic field to the sample, and measuring its resultant magnetization.
However, in quantum gases, the magnetization of the system can also be a conserved
quantity, given the absence of a “spin reservoir.” One way to connect the results of such
models to the properties of gases trapped in inhomogeneous potentials is via the local
density approximation, a method described above (Section 5.1).

Apart from being limited by the presence of several conserved quantities, equilibration
of quantum gases is also limited by the competition between the slowness of equilibra-
tion dynamics at low temperature and the finite lifetime or parasitic heating rates of the
trapped gas. As we demand increasingly precise information about the quantum gases
in our laboratories, regarding, for example, the locations of transitions in a phase dia-
gram or of subtle spatial features in a trapped gas, we require the atomic systems to be
increasingly close to equilibrium, as highlighted by recent investigations of the effects
of interactions on the Bose–Einstein condensation phase transition [63] or of fluctuations
in two-dimensional Bose–Hubbard systems [64]. The question of equilibration will con-
tinue to be important as cold atom experiments make ever-deeper inroads into many-body
quantum physics.

On the flip side, the persistence of nonequilibrium states in quantum gases may be
turned into one of their most appealing features. As discussed in Chapter 7, quantum
gases offer us access to nonequilibrium dynamics in complex quantum systems that may
be impossible to study otherwise.

6. CONCLUSION

Ultracold atomic physics provides an alternate approach for studying an increasing family
of open problems in condensed-matter physics. The experimental procedures are very
different in the two fields, each being informed by a different intellectual legacy and by the
different properties of the materials being studied. But our understanding of the universal
physics that is common to these fields is enriched by the complementary information and
perspectives provided by the two research approaches.

It is tempting to distinguish atomic physics research as more of a “materials by design”
rather than a “materials by happenstance” approach to materials science. An idealistic
view of this field posits that atomic physics experiments are a form of quantum simu-
lation where one first identifies a many-body quantum physics model that one wants to
understand better, and then one rigs up this model into an actual physical realization using
cold atoms. One can muse whether such simulations are to be regarded as experimental
research per se, or whether they represent a form of “experimental many-body quantum
theory.”

However, the reality is that the field of cold atom physics is mostly driven by new
experimental capabilities, rather than by the prior identification of a singular simulation
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goal. The systems selected for study are those that are just now becoming possible to
study because of the development of a new technique for preparing the system or probing
its properties. Understanding these techniques is essential for knowing where the field
is going next. We hope the present chapter, and the remaining works in this book, help
convey this knowledge.
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