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Abstract. We describe how tightly confining magnetic waveguides for atoms can be created with micro-
fabricated or nanofabricated wires. Rubidium atoms guided in the devices we have fabricated would have
a transverse mode energy spacing of 50 µK. We discuss the creation of a single-mode waveguide for atom
interferometry whose depth is comparable to magneto-optical trap (MOT) temperatures. We also discuss
the application of microfabricated waveguides to low-dimensional systems of quantum degenerate gases,
and show that confinement can be strong enough to observe fermionization in a strongly interacting bosonic
ensemble.

PACS. 03.75.Be Atom and neutron optics – 32.80.Pj Optical cooling of atoms; trapping

1 Introduction

Recently, there has been much interest in the physics of
neutral atoms tightly confined in one or more dimensions
[1–4]. Simultaneously, there has been continued interest
in waveguides for atoms [5–14]. In this work, we propose
a tightly confining magnetic waveguide whose transverse
energy level spacing is comparable to the temperature of
a magneto-optical trap.

Atoms have been guided through the hollow core of
optical fibers [5–7], where quasi-resonant laser light repels
the atoms from the walls. Cores as small as 1 µm have
been used [15]; however, the minimum length scale of con-
finement, a, is set by the evanescent decay length of the
confining light, such that the mode spacing (≈ ~2/2Ma2)
of the guide is comparable to one photon recoil energy. The
cladding of the fiber protects the atoms from the environ-
ment, but it prevents access to the guided atom waves.
In addition, spontaneous emission can limit atomic coher-
ence.

Neutral particle waveguides based on current-carrying
wires, originally suggested by Vladimirskĭı for neutrons
[16], have been extended to neutral atoms in the last five
years [8–12]. Practical fabrication and heat dissipation is-
sues limit the demonstrated characteristic size scale of
these guides to > 100 µm, and the free-standing wire cur-
rent densities to < 105 A/cm2. Guiding of neutral atoms
using a charged wire has also been proposed [13,14].

More recently, planar “slab” guides, which confine
atoms along one dimension but leave two axes free
or weakly confining, have been suggested [3,17,18] and
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demonstrated [19]. Some of these guides have much
smaller transverse confinement scales (10–100 nm) than
the above linear waveguides, and may be used to study
weakly interacting two-dimensional systems [18]. Low-
dimensionality traps are also viewed as a way to suppress
photon reabsorption, an obstacle on the way to the real-
ization of a continuous laser-like source of matter waves,
the atom laser [3].

Waveguides that are tightly confining in two dimen-
sions can similarly be used to form quasi-one-dimensional
systems that do not have the impurities and high densi-
ties normally present in condensed matter systems. One of
the interesting features of 1D systems is the possibility of
“fermionization” of confined bosonic atoms [2,20]. Tightly
confining potentials may also change the nature of atomic
interactions from repulsive to attractive [2].

In this work we propose a tightly confining atomic
waveguide based on the magnetic fields produced by pat-
terns of planar microfabricated current-carrying wires.
Since wires carrying a current I spaced a distance S apart
produce magnetic field gradients that scale as I/S2 and
curvatures that scale as I/S3, miniaturization of electro-
magnets can produce extremely high field gradients and
curvatures [21]. We have previously demonstrated that
“micro-electromagnets” (µEM) can be controlled dynam-
ically with current densities of up to 108 A/cm2 [22,23].
With standard electron-beam lithography, wire spacings
< 100 nm can be achieved [24].

In the following sections, we describe the fields pro-
duced by several µEM waveguides (Sect. 2) and discuss
confinement of atoms within these guides (Sect. 3). As
with other atom guides, these guides can be used for in-
coherent transport without density loss due to free-flight
expansion. However, we will focus on two exciting physi-
cal regimes accessible to µEM waveguides: the realization
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of µK-deep single-mode waveguides (Sect. 3.1) and the
use of tightly confining guides to study low-dimensional
quantum degenerate gases of atoms (Sect. 3.2).

2 Parallel-wire waveguides for atoms

2.1 Principle of operation

A neutral atom with a permanent magnetic dipole mo-
ment µ in a magnetic field B has a Zeeman potential
V = −µ ·B1. If µ remains anti-aligned with B as it moves
through the field, then V = |µ| |B| = µB, and the atom
can be confined near a field minimum. Fields that are con-
fining in two (transverse) dimensions but not confining in
a third (longitudinal) dimension are appropriate for use
as linear waveguides for atoms. In this section, we discuss
parallel-wire geometries that produce such guiding mag-
netic field configurations.

For example, four equally-spaced co-planar wires with
anti-parallel currents can form a waveguide above the
plane of the wires, as shown in cross-section in Figure 1a.
Near its minimum, the guiding magnetic field is a two-
dimensional quadrupole, whose characteristics will be dis-
cussed in detail in Sections 2.3 and 2.4. We will refer to the
direction parallel to the wires as ẑ, the direction perpen-
dicular to the substrate as ŷ, and the remaining orthogonal
axis as x̂.

Figure 1b shows an example of a fabricated four-wire
waveguide guide. Each wire is 3 µm wide and 1 µm tall,
and is able to carry 1.8 A, which is a current density
j ∼ 108 A/cm2. Fabrication techniques for µEM’s are de-
scribed in reference [22]. Wires are formed on a substrate,
which serves both to physically support the wires and to
dissipate the heat produced. Furthermore, the resistance
of the wires is reduced by cooling the substrate and wires
to cryogenic temperatures. The cold substrate also acts as
a cryopump, improving the vacuum conditions near the
substrate.

2.2 Alternate waveguide configurations

Many parallel-wire configurations can create magnetic
waveguides. Besides the four-wire guide shown in Fig-
ure 1a, several examples are: (a) a single wire with an
external field Be applied in the x̂ direction (Fig. 2a); (b) a
pair of wires with co-propagating currents (Fig. 2b); (c) a
pair of wires with counter-propagating currents and an ex-
ternal field Be in the ŷ direction (Fig. 2c); and (d) three
wires with each outer wire carrying more than half the
current of the inner wire (Fig. 2d). A series of wires (not
shown here), with or without external fields, can also form

1 For strong enough fields, a quadratic Zeeman effect will
become significant and can be used to confine neutral atoms
that exhibit a hyperfine splitting [18]. Fields of this strength
(≈ 1 kG) will not be considered in the following sections, al-
though they have been produced by µEM’s [22].

(a)

(b)

3µm

Fig. 1. (a) Isopotential curves for a four-wire micro-
electromagnet waveguide. Four wires, separated by a distance
S and with anti-parallel current flow ±I (marked “+” and
“−”), are mounted on a substrate. A potential minimum is
formed above the wires and can be used to guide atoms in the
out-of-plane direction ẑ. Twelve contours, equally spaced at
Bo/15, are shown, where Bo = µoI/2πS. (b) Micrograph of a
fabricated four-wire guide. Wires are formed on a substrate,
which serves both to support the wires mechanically and to
dissipate the heat produced. Each wire is 3 µm wide and 1 µm
high. We have demonstrated a continuous current capacity of
1.8 A for each wire, or approximately 108 A/cm2.

an array of guiding potentials [25]. In (a), the characteris-
tic length scale S (analogous to the spacing in multi-wire
guides) is the height of the minimum and determined by
the external field: S = µoI/2πBe. Configuration (b) pro-
vides the highest field gradient for a given wire current I
and spacing S, but also requires high-aspect-ratio wires
because the zero occurs in the plane of the wire centers.
Configurations (c) and (d) have a minimum whose posi-
tion (in units of S) is adjustable.

In the following sections, we will focus on the four-wire
waveguide configuration. This choice is somewhat arbi-
trary, but note that four-wire guides do not require ex-
ternal fields to form a minimum (as do (a) and (c)), high
aspect ratios (as does (b)), or a nonzero net current (as
do (a), (b), and (d)).

Similar magnetic fields could also be created at the mi-
cron length scale with magnetic recording technology [26].
Furthermore, 100-nm-scale patterning of magnetization in
a material is possible, for instance, with scanning probe
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(a) (b)

(c) (d)

Fig. 2. Isopotential curves for several magnetic waveguide configurations. The direction of current flow is indicated by “+”
and “−”; in-plane external magnetic fields are indicted by bold arrows. Twelve contours, equally spaced at Bo/4, are shown,
where Bo = µoI/2πS. (a) A single wire with an external field Be applied in the x̂ direction; here S = µoI/2πBe. (b) Two
high-aspect-ratio wires, separated by S, with co-propagating currents. (c) Two wires, separated by S, with opposing current
directions and an external field Be = Bo in the ŷ direction. (d) Three wires, separated by S, with each outer wire carrying
−1.25 times the inner-wire current.

or nanolithography techniques [27]. Permanent-magnet
devices have the advantage that they do not need to be
powered externally; however, with this advantage comes
the inability to modulate the magnetic field dynamically.
A further advantage of using small wires is experimental
robustness: even if material purity, wire profile, or surface
roughness changes along the length of the wires (or from
one fabrication to the next), the potential is completely
determined by the current – which is uniform along the
length of the wire by Kirchoff’s law – and by the wire
spacing – which is well-defined lithographically.

2.3 Field characteristics

In this subsection, we analyze the location, depth, gradi-
ent, and curvature of the magnetic waveguide fields cre-
ated by four co-planar cylindrical wires. A cylindrical wire
has a field outside its surface that is indistinguishable from
the field produced by an infinitesimally thin wire (“point
wire”), according to Ampere’s law. However, microfabri-
cated wires will be flat at their contact with the substrate.
By numerically integrating the Biot-Savart law, we find
that wires with heights and widths smaller than half the
inter-wire spacing S produce approximately the same gra-
dient near the field minimum as do point wires. However,

note that for finite wire heights, the plane of the wire cen-
ters (y = 0) does not coincide with the surface of the
underlying substrate (see Figs. 1a and 2). These calcu-
lations also assume a uniform current distribution in the
wires, which is valid for micron-scale gold wires carrying
108 A/cm2 or less.

A four-wire waveguide with inner wires carrying op-
posing currents ±I and separated by S, and outer wires
carrying opposing currents ±βI and separated by αS,
will form a minimum above the plane of the wires when
1/α < β < α (see Fig. 1a). The minimum forms the center
of the waveguide potential, and is located at x = 0 and
y = yc, where

yc =
S

2

√
α− β
β − 1/α

· (1)

For α = 3 and β = 2, yc = 0.39S.
The depth of the four-wire guide is always limited by

the maximum field in the x = 0 plane:

Bdepth/Bo =


4(1− β/α) if β ≥ βD

4
(
√
αβ − 1)2

(α2 − 1)
if β < βD

(2)
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where Bo = µoI/2πS is the characteristic field above the
guide, µo is the permeability of free space, and

√
βD/α =(

α+
√

2(α2 − 1)
)
/(2α2 − 1). The depth is maximized at

β = βD, when the outer barrier (y > yc) is equal to the
inner barrier (y = 0). For example, at α = 3 and β =
βD = 2.13, the waveguide depth is 1.16Bo.

The radial gradient of the field magnitude near its con-
ical minimum2 is B′c = κBo/S, where

κ =
16

(α2 − 1)2β

√
(αβ − 1)5(1− β/α). (3)

The outer-wire current that maximizes the gradient is
βκ = u(1 +

√
1 + u2/2), where u = (3α2 − 1)/8α. For

equally spaced wires, the gradient is maximized at βκ =
2.38 to give B′c = 4.46µoI/2πS2.

A weak axial (ẑ) field Bh must be applied3 to main-
tain the adiabaticity of atoms moving near the center of
the guide, as described in Section 2.4. This holding field
creates a hyperboloid potential whose curvature at cen-
ter is (B′c)2/Bh, where B′c is the field gradient near center
without Bh. The classical oscillation frequency of an atom
with mass M near this quadratic minimum is

ω⊥ =
√

(µB′c)2/µMBh. (4)

For the device shown in Figure 1b (S = 5 µm and α = 3)
with I = 0.9 A and β = 2, the field gradient the near guide
center is B′c = 2.9 × 106 G/cm. In this guide, rubidium
(87Rb) confined in the |F = 2,mF = +2〉 state would have
a classical oscillation frequency of ω⊥ = 2π×1.1 MHz and
a level spacing of 52 µK, approximately five times the Rb
magneto-optical trap (MOT) temperature of 10 µK [29].
The total guide depth would be 350 G, or 20 mK. Atomic
hydrogen (H) in the |F = 1,mF = +1〉 state would have
an oscillation frequency of 2π × 4.9 MHz, a level spacing
of 230 µK, and the same depth. These estimates assume
Bh = 12 G, which ensures that the loss rate due to spin-
flips near the field minimum is ∼ 1 Hz, as described in the
next section.

2.4 Loss rates

There are two loss mechanisms for a single atom within
a four-wire magnetic guide: (1) spin flips near the mag-
netic field minimum, and (2) tunneling of the atom out of
the confining potential. Depending on experimental con-
ditions, collisions may also produce a significant loss rate,
but we will not discuss collisional loss rates here. Surface-
atom interactions may also be important, and are dis-
cussed in [30].

2 Hexapole (i.e., paraboloid) field minima can also be formed
with micro-electromagnets. For example, a guide with α = β
has a hexapole minimum between the inner two wires.

3 Spin flips could also be avoided, as in [28], by modulating
the current in the wires such that the field minimum rotates
about the confined atoms at a frequency greater than ω⊥ but
smaller than the Larmor procession frequency.

In order to remain in the low-field-seeking state, an
atom must move through the field adiabatically. Near a
quadratic minimum in field magnitude, this condition is
met if the oscillation frequency ω is small compared to the
Larmor procession frequency µBmin/~, where Bmin is the
local field minimum.

For the four-wire waveguide discussed in Section 2.3,
an external holding field Bhẑ adds in quadrature with the
x̂ŷ-fields produced by the wires to form a non-zero (Ioffe-
type) minimum. The transverse oscillation frequency ω⊥
for an atom in this potential is given by (4). As Bh is
increased, the rate of non-adiabatic spin flips is exponen-
tially suppressed: Sukumar [31] gives the spin-flip loss rate
of an atom in the ground state of this potential as

Γ gnd
SF = CSFω⊥ exp

[
−µBh

~ω⊥

]
, (5)

where CSF = π/(2
√
e) ≈ 0.95 for a J = 1/2 atom.

Since the spin flip loss rates of all other states are smaller
than the ground state loss rate, we will use Γ gnd

SF as a
safe estimate of the lifetime of atoms in the guide. For
µBh � ~ω⊥, the loss rate of a J = 1 atom is lower than
for the J = 1/2 atom since the exponential factor in (5) is
multiplied by 4/π [31]; we will generally assume that (5)
(with a CSF ∼ 1) gives a safe estimate of Γ gnd

SF for atoms
with J 6= 1/2.

Since an atom guided in a four-wire waveguide is not
confined in a global minimum, we must consider tunneling
loss rates out of the guide. In a one-dimensional potential
V (x), a bound state with an oscillation frequency ωosc and
energy E has the loss rate

ΓT = CTωosc exp
[
−2
∫
k(x)dx

]
, (6)

where k(x) =
√

(2M/~2)(V (x) −E), the integral limits
are the classical turning points on either side of the poten-
tial, M is the mass of the particle, and CT is a constant
of order unity. The exponential component of (6) is the
barrier transmission valid for small tunneling probabilities
[32]. In contrast to ΓSF, ΓT is largest for the highest en-
ergy bound state, because

∫
k(x)dx is minimized. For our

application, the particle is confined in a two-dimensional
well; however, the loss rate is at most of order the one-
dimensional loss rate across the path with the minimum
value of

∫
k(x)dx. We will assume CT is of order unity

and estimate tunneling rate for each state using this one-
dimensional overestimate.

3 Applications

3.1 Coherent transport of atoms

When an experiment is sensitive to the phase accumu-
lated by an atom wave during its transport through a
waveguide, the existence of higher modes in the guide
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Fig. 3. The well depth (in µK) of single-mode atomic waveg-
uides as a function of wire width (in nm), shown for both hy-
drogen (dashed line) and rubidium (solid line). The wire spac-
ing shown is limited at + by the van der Waals interaction of
the atom with the surface, as described in the text. For both
cases shown, the optimal depth occurs at the cusp in the curve,
which is the smallest spacing at which the depth is limited by
the single-mode requirement (depth ∝ S−2) instead of the cur-
rent density (depth ∝ S).

is problematic. For instance, slight fluctuations in the cou-
pling at the guide entrance can cause a time-dependent ad-
mixture of the first excited state that washes out fringes.
This problem has been studied extensively for the case
of fiber-based gyroscopes [33], for which applications re-
searchers are careful to ensure higher modes are attenu-
ated. However, conventional atom waveguides are single
mode only at well depths of less than 100 nK [7]. In this
section, we discuss how µEM waveguides can create a sin-
gle mode guide deep enough to be loaded from a MOT.
These depths are achieved by using sub-micron wire spac-
ing, an application of nanolithography to atom optics.

To find the mode structure of atom waves propagat-
ing through a µEM waveguide, we solve numerically for
the bound states in the two-dimensional transverse poten-
tial formed by a four-wire waveguide. Figure 3 shows the
single-mode depth versus wire spacing for H with α = 3
and β = 2 and for 87Rb with α = 3 and β = 0.5.

The wire spacing S determines the length scale of con-
finement for atom waves, and therefore for large S, single
mode depth scales as S−2. Assuming that wire width and
height is proportional to S, the current density required
to maintain this depth scales as S−3. In Figure 3, we have
constrained the current density to less than 108 A/cm2,
such that at low S, the possible depth scales as S; the max-
imum depth occurs at the transition from S to S−2 scaling.
For H, at S = 210 nm and I = 5.6 mA, the depth is 0.9 mK
and the oscillation frequency is ω⊥ = 2π × 9.2 MHz. For
Rb, at S = 140 nm and I = 2.5 mA, the depth is 13 µK
and ω⊥ = 2π × 0.3 MHz; this depth is comparable to
the Rb MOT temperature. For both these examples, we
choose a holding field such that Γ gnd

SF ∼ 10−6ω⊥. The tun-
neling loss rates for H and Rb are ΓT ∼ 7× 10−7ω⊥ and
ΓT ∼ 7× 10−8ω⊥, respectively.

At sub-micron length scales, strong attractive atom-
surface forces put a lower bound on how close the guiding
potential can be to the substrate. Using parameterizations
of the van der Waals force that include its retardance at
larger atom-surface separations [34], we restrict the spac-
ings under consideration to those which produce a poten-
tial depth larger than the van der Waals shift at guide
center4. This constraint sets a lower bound on S, marked
by an “+” in Figure 3. Since the van der Waals force is
stronger for Rb than for H [34], we chose the parameters
α = 3 and β = 0.5 (compared to β = 2 for H) to pull
the center of the waveguide farther from the surface (see
Eq. (1)).

One advantage of using co-planar wires to guide atoms
is that the absence of physical confinement allows direct
access to the confined atom wave. Two µEM guides can be
brought into close enough proximity that an atom can tun-
nel from one guide to the next. A coherent atomic beam-
splitter can be created: after an appropriate length, an
atom wave that starts in one guide would exit with ampli-
tude in both guides. This is the principle of operation for
beamsplitters in fiber optical interferometers, and could
be applied to atom wave interferometry as well.

3.2 Toward low-dimensional degenerate dilute atomic
gases

In the multi-mode regime, the depth of the waveguide
potential, and consequently the classical oscillation fre-
quency in the center of the guide, are higher than in
the single-mode case. The estimates presented above show
that the values of the oscillation frequency in µEM waveg-
uides can be two orders of magnitude higher than those
in demonstrated atom guides: this allows a strong control
of the strength of the inter-atomic interaction and opens
rich opportunities for research on one-dimensional quan-
tum degenerate atomic gases.

One of the most interesting features of one-dimensional
(1D) systems is the existence, in many models, of a strict
Boson-Fermion Duality (BFD): the possibility to express
the same Hamiltonian in either bosonic or fermionic terms.
The BFD is a direct consequence of break-down of the
spin-statistics connection in low-dimensions. Several ex-
amples of BFD are known: the equivalence of the bosonic
sin-Gordon model and fermionic massive Thirring model
[35], the exact mapping between a gas of impenetra-
ble bosons (a so-called “Tonks gas” [36]) and an ideal
Fermi gas [20], and a recent generalization of the latter to
the case of the δ-interacting bosons versus ε-interacting
fermions mapping [37]. The µEM guides are an excel-
lent tool for the creation of 1D impenetrable bosons and
subsequent fermionization, because, as we will see below,
the “impenetrability” regime requires low atomic densi-
ties and the upper bound for the density scales linearly

4 Note that the constraint is conservative: the potential re-
mains confining until the van der Waals force overwhelms the
magnetic gradient, which occurs at smaller atom-surface sepa-
rations.
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with the frequency of the transverse confinement. Below,
we give some estimates for the experimental parameters
needed to realize such a project.

The effective 1D regime requires the temperature to
be below the transverse energy spacing, T � ~ω⊥. As was
shown recently [2], in this limit the two-body interaction
potential between atoms at z1 and z2 is given by a 1D
δ-potential

U(z1, z2) = g1Dδ(z2 − z1) (7)

whose strength is

g1D =
g3D

2πb2⊥

(
1− C a3D√

2b⊥

)−1

, (8)

where g3D = 4π~2a3D/M is the interaction strength in
free space, a3D is the s-wave scattering length, b⊥ =√
~/Mω⊥ is the size of the transverse ground state, and

C = 1.4603 . . . [2].
Fermionization occurs when the 1D transmission co-

efficient associated with the interaction potential (7) be-
comes small: this happens in the low-energy scattering
regime k� 1/ |a1D|, where ~k/M is a typical relative ve-
locity and a1D = 2~2/g1DM is the one-dimensional scat-
tering length. For low temperatures, this typical wave-
vector of the relative motion is defined, in the case of a
strong repulsive interaction, by the typical inter-atomic
spacing l ∼ n−1

1D as k ∼ π/l, where n1D is the linear den-
sity. Therefore, at linear densities

n1D � 1/π |a1D| (9)

the bosons become “impenetrable” and the system be-
comes thermodynamically indistinct from an ideal Fermi
gas of the same density [20]. Since 1/π |a1D| is propor-
tional to ω⊥ as long as b⊥ � a3D, this regime is more
easily observed at tighter confinements.

In the opposite case, n1D � 1/π |a1D|, the system be-
comes a weakly interacting 1D Bose gas. For even higher
densities n1D & ~ω⊥/g1D the mean field interactions in-
duce a strong coupling to the higher transverse modes and
the system becomes substantially three-dimensional.

Let us now estimate how high ω⊥ can be in a four-
wire micro-electromagnet waveguide with demonstrated
technologies. 87Rb in the |F = 2,mF = +2〉 state in a
guide with S = 1 µm, a current density j = 1×108 A/cm2,
α = 4.9, and β = 3.7 will have ω⊥ = 2π × 3 MHz and a
ground state width b⊥ = 6 nm. These calculations assume
a holding field Bh = 29 G such that the lifetime in the
guide 1/Γgnd ≈ 1 second.

In Figure 4 we present the “phase diagram” (linear
density n1D versus temperature T ) of a collection of 87Rb
atoms in a waveguide with a frequency ω⊥ = 2π×0.3 MHz.
The “degenerate Fermi” domain corresponds to the strong
fermionization, where the thermodynamic properties of
the system will be equivalent to those of an ideal degen-
erate Fermi gas. We have not extended the Fermi/Bose
border into the non-degenerate (“Boltzmann”) regime
(n1D < 1/λdB), where quantum statistics are not evident
in the thermodynamic properties of a gas.
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Fig. 4. Density-temperature “phase diagram” for a collection
of 87Rb atoms in a µEM waveguide, with ω⊥ = 2π× 0.3 MHz.
Regions are delineated with three borders: (1) the transition
from three-dimensional to one-dimensional dynamics occurs
when the particle energy is comparable to transverse zero-point
energy ~ω⊥; (2) the transition to impenetrability occurs when
the typical 1D atom-atom transmission coefficient is 1/2; at low
temperatures this occurs at n1D = 1/π |a1D|; (3) the border be-
tween degenerate and non-degenerate (“Boltzmann”) gases is
the line at which n1DλdB equals unity.

The ω⊥ chosen for Figure 4 requires a current den-
sity j = 4× 106 A/cm2, only one twentieth of the capac-
ity demonstrated by the device shown in Figure 1b. At
tighter confinements, trap-induced modifications of scat-
tering properties become important [2]. We observe that
expression (8) predicts that a sign flip for the interac-
tion strength g1D will occur when b⊥ = Ca3D/

√
2. For

87Rb, a3D = +110aBohr [38], and this signature of ex-
tremely tight confinement would require a current density
of j ∼ 2× 108 A/cm2.

4 Conclusion

We have presented several planar wire configurations that
form guiding potentials for atoms. Guiding atoms with
magnetic fields produced by microfabricated or nanofab-
ricated electromagnets avoids the size scale and spon-
taneous emission constraints imposed by using quasi-
resonant light. In the high transverse field gradients
(107 G/cm) and curvatures (1012 G/cm2) produced by
µEM’s, guided 87Rb atoms can have transverse mode en-
ergy spacings greater than 50 µK. Fields created with elec-
tromagnets can also be controlled dynamically and are
robust against changes in material properties.

Atomic funnels are a natural extension of the parallel-
wire geometries analyzed in this work. Since the radius of
the confining potential is proportional to the wire spacing
S, if S is large at the entrance of a waveguide and becomes
smaller along its length, the guide can act as a funnel. A
funnel can facilitate loading into small diameter guides,
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or (in reverse) can adiabatically compress the transverse
atomic momenta at the exit of a waveguide.

We have shown that µEM waveguides can operate in a
single-mode regime with depths comparable to tempera-
tures of a MOT. Two µEM guides can be brought into
close enough proximity that an atom can tunnel from
one guide to the next, creating a waveguide-based atomic
beamsplitter. The nearly arbitrary planar geometries pos-
sible with conventional lithography techniques suggest
that many elements such as waveguides and beamsplit-
ters might be fabricated on a single substrate to create
“integrated” atom optics.

Finally, we have shown that atoms are sufficiently
tightly confined in a µEM guide to permit (a) the trap-
induced transformation of 1D scattering properties from
repulsive (a1D > 0) into attractive (a1D < 0), or (b) the
fermionization of a strongly interacting bosonic ensemble.
The latter effect is a clear demonstration of the break-
down of the spin-statistics connection in low dimensions.
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16. V.V. Vladimirskĭı, Sov. Phys. JETP 12, 740 (1961).
17. Yu.B. Ovchinnikov, S.V. Shul’ga, V.I. Balykin, J. Phys. B

24, 3173 (1991); P. Desbiolles, J. Dalibard, Opt. Commun.
132, 540 (1996); W.L. Power, T. Pfau, M. Wilkens, Opt.
Commun. 143, 125 (1997).

18. E.A. Hinds, M.G. Boshier, I.G. Hughes, Phys. Rev. Lett.
80, 645 (1998).

19. H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau,
J. Mlynek, Phys. Rev. Lett. 81, 5298 (1998).

20. D.B. Creamer, H.B. Thacker, D. Wilkinson, Phys. Rev.
D 21, 1523 (1980); V.E. Korepin, N.M. Bogoliubov, A.G.
Izergin, Quantum Inverse Scattering Method and Correla-
tion Functions (Cambridge University Press, Cambridge,
1993), Appendix I.1.

21. J.D. Weinstein, K.G. Libbrecht, Phys. Rev. A 52, 4004
(1995).
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