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Quantum Point Contacts for Neutral Atoms
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We show that the conductance of atoms through a tightly confining waveguide constricti
quantized in units ofl2

dB�p, whereldB is the de Broglie wavelength of the incident atoms. Such
constriction forms the atom analog of an electron quantum point contact and is an example of qu
transport of neutral atoms in an aperiodic system. We present a practical constriction geometry th
be realized using a microfabricated magnetic waveguide, and discuss how a pair of such const
can be used to study the quantum statistics of weakly interacting gases in small traps.

PACS numbers: 03.75.–b, 05.60.Gg, 32.80.Pj, 73.40.Cg
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Quantum transport, in which the center-of-mass mo
of particles is dominated by quantum mechanical effe
has been observed in both electron and neutral-a
systems. Pioneering experiments demonstrated qua
transport in periodic structures. For example, Blo
oscillations and Wannier-Stark ladders were observe
the conduction of electrons through superlattices [1] w
an applied electric field, as well as in the transport
neutral atoms through accelerating optical lattices [2
Further work with neutral atoms in optical lattices h
utilized their slower time scales (kHz instead of THz) a
longer coherence lengths to observe a clear signatu
dynamical Bloch band suppression [4], an effect origina
predicted for but not yet observed in electron transport

Quantum transport also occurs in aperiodic syste
For example, a quantum point contact (QPC) is a sin
constriction through which the conductance is always
integer multiple of some base conductance. The qu
tization of electron conductance in multiples of2e2�h,
wheree is the charge of the electron andh is Planck’s
constant, is observed through channels whose widt
comparable to the Fermi wavelengthlF . Experimental
realizations of a QPC include a sharp metallic tip c
tacting a surface [6] and an electrostatic constriction
two-dimensional electron gas [7,8]. Electron QPC’s h
length-to-width ratios less than 10 because phase-coh
transport requires that channels must be shorter than
mean-free path between scattering events,�mfp. Geomet-
ric constraints are the limiting factor in the accuracy
quantization in an electron QPC [9].

In this Letter, we present an experimentally realiza
system that forms a QPC for neutral atoms—a constric
whose ground state widthb0 is comparable toldB�2p,
whereldB is the de Broglie wavelength of the atoms. T
“conductance,” as defined below, through a QPC for at
is quantized in integer multiples ofl2

dB�p. The absence
of frozen-in disorder, the low rate of interatomic scatter
(�mfp � 1 m), and the availability of nearly monochr
matic matter waves with de Broglie wavelengthsldB �
50 nm [10,11] offer the possibility of conductance qua
tization through a cylindrical constriction with a lengt
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to-width ratio of �105. This new regime is interesting
because deleterious effects such as reflection and in
mode nonadiabatic transitions are minimized [12], allow
ing for accuracy of conductance quantization limited on
by finite-temperature effects. Furthermore, the observ
tion of conductance quantization at new energy and len
scales is of inherent interest.

If a QPC for neutral atoms were realized, it woul
provide excellent opportunities for exploring the physic
of small ensembles of weakly interacting gases. F
instance, the transmission through a series of two QPC
would depend on the energetics of atoms confined in t
trap between the two constrictions. The physics of such
“quantum dot” for atoms is fundamentally different from
that of electrons, since the Coulombic charging ener
that dominates the energetics of an electron quant
dot [13] is absent for neutral particles. The quantu
statistics of neutral atoms energetically restricted to su
three-dimensional spaces has already aroused theore
interest in novel effects such as fermionization [14] an
the formation of a Luttinger liquid [15].

Recently, several waveguides have been propos
[16–18] whose confinement may be strong enough
meet the constraintb0 & ldB�2p for longitudinally free
atoms. In this Letter, we will focus on the example of
surface-mounted four-wire electromagnet waveguide f
atoms [18] (see Fig. 1) which exploits recent advanc
in microfabricated atom optics [19,20]. A neutral atom
with a magnetic quantum numberm experiences a linear
Zeeman potentialU�r� � mBgmjB�r�j, where mB is
the Bohr magneton,g is the Landé g factor, andB�r�
is the magnetic field atr. Atoms with gm . 0 are
transversely confined near the minimum in field ma
nitude shown in Fig. 1; however, they are free to mov
in the z direction, parallel to the wires. Nonadiabati
changes inm near the field minimum can be exponentiall
suppressed with a holding fieldBh applied in the axial
direction z [21]. Near the guide center, the potentia
forms a cylindrically symmetric two-dimensional simple
harmonic oscillator with classical oscillation frequenc
v � �mBgm�2m0I�pS2�2�MBh�1�2, where m0 is the
© 1999 The American Physical Society
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FIG. 1. Magnetic field contours above a microelectromagnet
waveguide. Four parallel wires, separated by a distance S and
with antiparallel current flow (marked “ ?” for 1z and “3” for
2z) are mounted on a substrate (crosshatched), which serves
both to support the wires mechanically and to dissipate the heat
produced. A potential minimum is formed above the wires
and can be used to guide atoms in the out-of-plane direction
z. Twelve contours, equally spaced by B0�4, are shown, where
B0 � m0I�2pS and 6I (62I) is the current in the inner (outer)
wire pair.

permeability of free space, I is the inner wire current,
2I is the outer wire current, S is the center-to-center
wire spacing, and M is the mass of the atoms. Sodium
(23Na) in the jF � 1, mF � 11� state would have a
classical oscillation frequency of v � 2p 3 3.3 MHz
and a root mean squared (rms) ground state width
b �

p
h̄�2Mv � 8.1 nm in a waveguide with S � 1 mm

and I � 0.1 A. The fabrication of electromagnet wave-
guides of this size scale and current capacity has been
demonstrated [20].

A constriction in the waveguide potential can be
created by contracting the spacing between the wires
of the waveguide. The constriction strength can be
tuned dynamically by changing the current in the wires.
Figure 2a shows a top-down view of a constriction whose
wire spacing S�z� is smoothly varied as

S�z� � S0 exp

∑
z2

2�2

∏
, (1)

where S0 is the spacing at z � 0 and � is the characteristic
channel length. Assuming the wires are nearly paral-
lel, the guide width, depth, oscillation frequency, and
curvature scale as S�z�, S�z�21, S�z�22, and S�z�24,
respectively. For � � 100S0, field calculations above this
curved-wire geometry show that the parallel-wire approxi-
mation is valid for jzj & 3�, allowing for a well-defined
waveguide potential over a factor of more than 103 in
level spacing (see Fig. 2b). Our particular choice of S�z�
is somewhat arbitrary but prescribes one way in which
wires can form a smooth, constricting waveguide as well
as run to contact pads (necessary to connect the wires to
a power supply) far enough from the channel (¿�) that
their geometry is unimportant. The total “ footprint” of
this device (not including contact pads) is approximately
FIG. 2. (a) Top-down view of a waveguide wire geometry
which creates a quantum point contact for atoms. The direction
of current flow is indicated on the wires (solid lines). A
constriction with � � 100S0 is shown. (b) Level spacing h̄v
(in mK) of transverse oscillator states versus axial distance
z. Points (¶) are based on numerical calculations of the field
curvature at each z above the wire configuration shown in (a);
the line is based on the parallel-wire scaling S�z�22. Both
calculations assume Na atoms in the jF � 1, mF � 11� state,
S0 � 1 mm, I � 200 mA, and Bh � 35 G.

10� 3 10�, or about 1 mm2, for S0 � 1 mm and � �
100S0.

Atoms approach the constriction from the 2z direc-
tion, as shown in Fig. 2a. We calculate the propagation
of the atom waves through the constriction by solving
the time-dependent Schrödinger equation in three spatial
dimensions. It is important to note that the nature of quan-
tum transport requires fully quantum-mechanical calcula-
tions, even for the longitudinal degree of freedom within
the waveguide. The Hamiltonian for an atom near the axis
of the four-wire waveguide described by Eq. (1) is

ĤQPC �
p̂2

2M
1

1
2

Mv2
0e22ẑ2��2

�x̂2 1 ŷ2� , (2)

where ^ denotes an operator, v0 is the transverse os-
cillation frequency at z � 0, and we have assumed the
parallel-wire scaling of field curvature, S�z�24. Since a
direct numerical integration approach is computationally
prohibitive, we developed a model that neglects nona-
diabatic propagation at the entrance and the exit of the
channel. The waveguide potential is truncated at z �
6zT , the planes between which atoms can propagate adia-
batically in the waveguide, and the wave function am-
plitude c and its normal derivative ≠c�≠z are matched
between plane-wave states (jzj . zT ) and the modes of
the waveguide (jzj , zT ). We found that, for � * 10b0,
a two-dimensional version of the model could reproduce
the transmissions and spatial output distributions of a two-
dimensional split-operator fast Fourier transform integra-
tion of ĤQPC�x̂, ẑ� with the full waveguide potential. This
agreement gave us confidence in our three-dimensional
model of atom propagation through the constriction.
3763
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The cross section for an incident atomic plane wave
to be transmitted through a constriction is dependent on
the plane-wave energy EI and incident angle. How-
ever, if the rms angular spread of incident plane waves
s is much greater than the rms acceptance angle a �
�ln���b0�b2

0��2�1�4, we can integrate over all solid angles
and define a conductance F dependent only on parameters
of the constriction and the kinetic energy EI of the incident
atoms:

F�EI� �
F

J0f�0, 0�
, (3)

where F is the total flux of atoms (in s21) transmitted
through the constriction and J0f�0, 0� is the incident on-
axis brightness (in cm2 s21). The transverse momen-
tum distribution f�kx , ky� is defined as follows: in the
plane-wave basis �jk�	, we consider a density distribution
of atoms on the energy shell a�k�dk � �C�k0

z �d�kz 2

k0
z �f�kx , ky�dk, where C � h̄J0�2pEI , h̄k0

z � �2MEI 2

h̄2�k2
x 1 k2

y��1�2, and f�kx , ky� is normalized such that
the incident flux density J0 �

R
dk a�k�h̄kz�M. When

applied to the diffusion of an isotropic gas (f � 1) through
a hole in a thin wall, F is equal to the area of the hole;
for a channel with a small acceptance angle, a ø s, F

is the effective area at the narrowest cross section of the
channel. We consider a distribution of incident energies
g�EI � with a rms spread DE, centered about EI . As
an example, the 23Na source described in Ref. [11] has
a monochromaticity EI�DE 
 50 for atoms traveling at
30 cm�s, or ldB � 50 nm. To meet the constraint s ¿
a [22], such a source can be reflected off of a diffuser
[23], such as the demagnetized magnetic tape described in
Ref. [24], or translated laterally to reduce time-averaged
spatial coherence. Assuming the spatial density of atoms
is preserved during propagation [25], such a source can
have a flux density of J0 
 2 3 1010 cm22 s21.

The quantized conductance for atoms is shown in Fig. 3
and is the central result of this Letter. Conductance
F��l2

dB�p� is shown as a function of mean energy
EI�h̄v0 and energy spread DE�h̄v0. In the limits
h̄v0 ¿ DE and � ¿ b0, one can show analytically that
the conductance is F � �l2

dB�p�N , where N is the num-
ber of modes above cutoff at z � 0. The “staircase” of F

versus EI�h̄v0 is a vivid example of quantum transport,
as it demonstrates the quantum mechanical nature of
the center-of-mass motion. For all of Fig. 3, we have
assumed � � 103S0 
 105b0; in the particular case of the
Na source discussed above, and assuming s � 25 mrad,
the first step (F � l

2
dB�p) corresponds to a transmitted

flux of �500 atoms s21, which is a sufficient flux to
measure via photoionization.

We can understand several features shown in Fig. 3 by
considering the adiabatic motion of atoms within the wave-
guide. As atom waves propagate through the constricting
waveguide, modes with transverse oscillator states �nx , ny�
such that h̄v0�nx 1 ny 1 1� 2 EI * 2Mh̄2��2 will con-
3764
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FIG. 3. Conductance F through a quantum point contact, as
a function of average incident energy EI and energy spread
DE. F is plotted in terms of the quantized unit of conductance,
l

2
dB�p, and EI and kBT are plotted in terms of h̄v0, the

level spacing at the narrowest point of the constriction. The
lowest DE shown, 0.02h̄v0, corresponds to the example for
23Na discussed in the text.

tribute negligible evanescent transmission and adiabati-
cally reflect before z � 0. Steps occur when the number
of allowed propagating modes changes: the mth step ap-
pears at h̄v0 � EI�m. Note that this condition can also be
written b0 �

p
m ldB�2p, demonstrating that transverse

confinement on the order of ldB�2p is essential to seeing
conductance steps in a QPC. Since low-lying modes oc-
cupy a circularly symmetric part of the potential, the mth
step involves m degenerate modes and is m times as high
as the first step. The large aspect ratio of the atom QPC
allows for a sufficiently gentle constriction to suppress par-
tial reflection at the entrance to the guide, such that the
sharpness of steps and flatness between them is limited
only by the spread in incident atom energies.

It is interesting to compare the electron and atom QPC
systems. If contact is made between two electron reser-
voirs whose chemical potentials differ by eDV , kBT ø
EF , where DV is the applied voltage, T is the temperature
of the electron gas, and EF is the Fermi energy, then the
current that flows between them will be carried by elec-
trons with an energy spread kBT and a mean energy EF .
For a cold atom beam, the particle flow is driven by kinet-
ics instead of energetics. The incident kinetic energy EI

corresponds to EF , and the energy spread DE ø EI cor-
responds to kBT . The quantum of conductance for both
systems can be formulated in terms of particle wavelength:
the classical conductance of a point contact of area A con-
necting two three-dimensional gases of electrons is G �
�e2k2

FA���4p2h̄� [26], such that, if G � Ne2�p h̄, the ef-
fective area is A � Nl

2
F�p .

In order to determine the accuracy of conductance quan-
tization, three measurements [F, J0f�0, 0�, and ldB] are
necessary for the atom QPC instead of two measurements
(current and DV ) for the electron QPC. The reduced num-
ber of degrees of freedom for electrons results from their
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Fermi degeneracy: the net current is carried by electrons
whose incident flux density J0 and wavelength lF are
functions of EF and DV . As a thought experiment, the
simplicity of an externally tuned J0 and ldB could also
be extended to neutral atoms, if two degenerate ensembles
of fermionic atoms were connected by a QPC and given
a potential difference DU. We can redefine neutral atom
conductance as G � F�DU, where F is the transmitted
atom flux, just as the electron conductance G is the ratio
of electron flux (current) to potential difference (voltage).
One can show that

G �
N
h

, (4)

assuming DU , kBT ø EF , where T is the temperature
of the Fermi ensembles and N is the number of modes
above cutoff.

Two QPC’s can form a trap between them, just as a pair
of electron QPC’s form a quantum dot [13]. For h̄v0 .

EI , all modes of the QPC are below cutoff and evanescent
transmission is dominated by tunneling of atoms occupy-
ing the �0, 0� mode. While the quantum dot between them
is energetically isolated, atoms can still tunnel into and out
of the dot. For cold fermionic atoms, the Pauli exclusion
principle would enable a single atom to block transmission
through the trap, just as the charging energy of a single
electron can block transmission in electron quantum dots;
such a blockade might be used to make a single-atom tran-
sistor. In such a single-atom blockade regime, quantum
dots can also show a suppression of shot noise below the
Poissonian level [13]. Note that spectroscopic measure-
ment of neutral atom traps with resolvable energy levels
has been suggested previously [17] in analogy to spectro-
scopic measurement of electron quantum dots. We empha-
size that the loading and observation of such a small trap
with two or more QPC “leads” is a powerful configuration
for atom optics, because loading a small, isolated trap is
problematic, and because spectroscopy near the substrate
is complicated by light scattering and inaccessibility.

In conclusion, we show how an electromagnet wave-
guide could be used to create a quantum point contact for
cold neutral atoms. This device is an example of a new
physical regime, quantum transport within microfabricated
atom optics.
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