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Abstract. An array of anti-parallel current-carrying wires creates an inhomogeneous magnetic field capable
of reflecting neutral atoms. We present analytical and numerical analyses of the magnetic field produced
by such an array, and describe methods for reducing the resulting rms angular deviation from specular
reflection to less than 0.1 mrad. Careful choice of cross-sectional wire profiles is shown to dramatically
improve specularity of reflection close to the surface. Additionally, we find that the specularity depends on
whether the number of wires in the mirror is even or odd, and that there exists an optimal turning height
above the surface that maximizes the specularity of reflection from the mirror.

PACS. 03.75.Be Atom and neutron optics – 32.80.Pj Optical cooling of atoms; trapping –
85.70.Ay Magnetic device characterization, design, and modeling

1 Introduction

Highly specular mirrors for neutral atoms [1] may be im-
portant elements of atom interferometers [2], resonators
[3,4] and lasers [5]. Several atomic mirrors have already
been suggested and demonstrated [6–10]. In particular,
several groups have already either reflected [11–16] or de-
flected [17,18] neutral atoms using a potential propor-
tional to a magnetic field (B-field) magnitude that decays
exponentially as a function of distance from a surface.
Such a field can be produced by an alternating surface
magnetization or by a set of alternating parallel lines of
current [10,19]. However, physical realizations of such ar-
rays also exhibit some periodic modulation in the B-field
magnitude in any plane parallel to the surface. This mod-
ulation introduces an effective roughness to the mirror by
creating equipotential surfaces of constant B-field magni-
tude that are no longer flat parallel planes. In this paper
we consider ways to minimize this unwanted roughness
in the equipotentials produced by an array of alternating
magnetizations.

The equipotential roughness depends both on the fi-
nite mirror size and on the exact spatial magnetization
of the alternating magnetic domains or the cross-sectional
profiles of the current-carrying wires. For an infinite mir-
ror with an ideal surface “magnetization profile” (pro-
duced by either alternating magnetic domains or current-
carrying wires), the equipotentials would indeed be
perfectly flat; however, for any other magnetization pro-
file this is no longer true. Fortunately, as distance from
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the surface increases, the exact surface magnetization pro-
file is of lesser physical significance and the roughness in
the field of an infinite mirror decreases accordingly. Since
the height at which an atom will bounce increases with
increasing B-field strength, specularity of reflection from
an infinite mirror could be maximized by maximizing the
B-field magnitude. However, for any finite mirror this is
not true because of additional contributions to the rough-
ness from finite-size edge effects. We show that even at
heights comparable to the period of the mirror and much
smaller than the mirror length or width, these edge ef-
fects dominate and lead to a roughness which increases as
a function of height above the mirror. Significantly, the
transition to these finite-size effects can occur around the
height at which atoms dropped from a magneto-optic trap
(MOT) will be reflected. It is therefore important to in-
corporate such effects into any treatment of the roughness
of the effective reflecting surface. Unlike an infinite mir-
ror, we find that a real finite mirror has an optimal finite
current/surface magnetization magnitude that reflects the
atoms near the height where the equipotentials are flat-
test. For many configurations, this optimal surface mag-
netization magnitude is weaker than the maximum field
strength realizable experimentally [20].

In this paper we modify the existing theory of an in-
finite mirror [10,19], incorporating finite-size effects that
explain the existence of this optimal turning height. We
consider the case of current-carrying wires (although clear
analogues exist for permanent magnetic mirrors too) and
present ways to flatten the equipotentials on both sides of
this optimal turning point, increasing the specularity of
reflection and the range of incident atomic velocities that
can simultaneously be reflected with high specularity.
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Fig. 1. Schematic of an electromagnet
mirror of width W , line length L and
periodicity a. The solid line carries the
main mirror current I. The dotted lines,
carrying a current of I/2, show a com-
pensating scheme to minimize effects of
the mirror’s finite size and of the per-
turbing magnetic fields of the connect-
ing current leads (see Sect. 3.4).

We start by discussing equipotential surfaces produced
at various heights above the mirror. Close to the surface,
realistic variations in the cross-sectional wire profile are
shown to result in equipotentials orders of magnitude flat-
ter than those produced using either rectangular or circu-
lar wire cross-sections [21]. Slightly further from the sur-
face, we investigate the nature of the finite-size induced
roughness, and show how to smooth the potentials us-
ing compensating wires at the mirror edges as first sug-
gested by Sidorov et al. [14]. In addition, we present al-
ternative ways to model the finite-size influences revealing
an even/odd parity effect in the number of current lines
constituting the mirror [20].

We conclude by presenting numerical simulations of
semi-classical atom trajectories through the reflecting B-
field potential of a finite-sized mirror. For typical current-
carrying magnetic mirror devices reflecting atoms dropped
from a MOT, optimizations should be able to reduce the
rms angular deviation from specular reflection to less than
0.1 mrad.

2 Mirror definitions and basic principles

We begin by describing a typical micro-electromagnet mir-
ror [16,17]. The bulk of the mirror is constructed from one
continuous wire looped back and forth to create a paral-
lel series of wire segments through which the current-flow
direction alternates (see Fig. 1). The fundamental spa-
tial period of the mirror, a, is twice the wire separation,
since neighbouring wires carry opposing currents. Axes
are defined such that x is perpendicular to the long wire
direction, y is parallel to it, and z is perpendicular to the
x−y mirror plane. The mirror width in the x-direction
is defined as W and the mirror length in the y-direction

as L. The x and y origins define the mirror centre and z
measures the distance from the top of the wires.

The theory of the exponentially decaying B-field above
an infinite set of identical alternating currents/magnetic
domains [10,19] yields a magnetic scalar potential which
we write in the form:

φM =
∞∑
n=0

φn cos(nkx)e−nkz , z ≥ 0 (1)

where k = 2π/a is the decay constant associated with the
fundamental harmonic of period a, and where we have set
all phase angles to zero by symmetry. The coefficients in
(1) derive from the Fourier series describing the magnetic
scalar potential immediately above the wires at z = 0,
which is itself determined by the current density as a func-
tion of both x and z in the wires (z < 0). All φn=even = 0,
since the current flow alternates directions and is neces-
sarily of the same magnitude throughout the mirror series
circuit. Additionally, the high harmonics (with their asso-
ciated rapidly decaying exponentials) decay to negligible
levels even a fraction of a decay length above the surface.

If the atomic magnetic moment adiabatically follows
the local B-field direction, then the field magnitude de-
termines the reflecting potential [22]. Approximating the
surface field magnitude as B0 = kφ1, the field magnitude,
B, can be approximated as

B ≈ B0e−kz
(

1 + b3e−2kz cos(2kx)

+ (terms involving b5, b7 . . . )
)

(2)

where the b3, b5, b7 . . . coefficients are functionals of the
current density distribution given by b2n+1 =
(2n + 1)φ2n+1/φ1, and are respectively associated
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Fig. 2. Absolute magnetic field contour lines (iso-potentials), equi-spaced in z, above (A) a mirror having an infinite number
of current-carrying lines and (B) the centre of a finite mirror having 100 lines. The finite mirror iso-potentials become rougher
less than two decay lengths above the surface and have dominant periodicity twice that of the iso-potentials above the infinite
mirror.

with cos(2nkx) terms arising from cross terms between
the (odd) harmonics.

Equation (2) assumed an infinite array of current-
carrying lines. For a finite-sized mirror, this approxima-
tion can only be valid within some small distance above
the mirror centre. An immediate upper-bound on this dis-
tance is obtained by noting the height at which the ad-
dition of one extra wire to the mirror edge adds a field
of comparable magnitude to the infinite mirror’s field. In-
troducing I for the current, N for the number of lines
constituting the mirror, defined by N = (2W/a) + 1, and
µ0 for the free-space permeability, this height is approxi-
mated by:

kzfinite =ln
[
πB0

µ0I
W

]
=ln

[
π2φ1

µ0I
N

]
≈ ln(N) (3)

where the logarithmic dependence results from the expo-
nentially decaying mirror field being compared to the 1/r
decay of a single line. For typical wire profiles, π2φ1/µ0I
is approximately 1.5. In contrast, the mirror size, reflected
by the ln(N) (or equivalently, ln(W )) term, can vary more
widely and dominates for typical mirrors having, say, 100
to 1000 lines. The approximate range for zfinite is therefore
5 to 7 decay lengths, approximately coinciding with the
mirror periodicity a [23].

As an immediate example of this transition from an in-
finite to finite system, we consider a finite number of lines,
each of infinite extent in the y-direction [24]. Figures 2A
and 2B show calculated B-field equipotentials at various
distances above a mirror with an infinite number of lines
(Fig. 2A) and above a mirror with 100 lines (Fig. 2B).
The mirror’s finite size quickly results in iso-potentials
that become rougher with distance from the surface and
that have periodicity twice that predicted for an infinite
mirror.

3 Improving the specularity of a finite mirror

In this section we explain the fields of Figures 2A and 2B
and further analyze the B-field of a realizable finite-sized
mirror, presenting means to improve the specularity of the
resulting reflection from it. To this end, it is convenient
to distinguish three approximate height regimes which we
label as the “infinite mirror region” (z . a/2), “finite mir-
ror region” (z ≈ a), and “mirror far-field region” (z & 2a),
recognizing that their true boundaries are slowly varying
functions of the mirror geometry. The lower two regions
are seen in Figure 2B, with the transition between them
occurring at the height where the equipotentials are flat-
test. The “mirror far-field region” occurs off the top of the
plot, but we note that it too occurs long before the dis-
tance from the mirror is even on the order of the mirror
width, W .

3.1 “Infinite mirror region”

Close to the surface, equipotential roughness is domi-
nated by the Fourier components determining the mag-
netic scalar potential which leads to the b3, b5, b7 . . . coef-
ficients describing the B-field in (2). The higher frequency
components decay quickly such that a few decay lengths
from the surface, the B-field retains an x-dependence pro-
portional only to cos(2kx). This exponential decay of the
modulating roughness in the B-field suggests that mini-
mal roughness will be obtained for maximal current, since
maximizing the field strength maximizes the height at
which the atom is reflected above the surface. This strat-
egy is correct only for an infinite mirror; for a finite mir-
ror the roughness does not decrease monotonically with
increasing B-field strength (see Fig. 2).

However, the roughness can be alternatively re-
duced by appropriately changing the cross-sectional wire
profiles to reduce the Fourier coefficients appearing
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Fig. 3. Absolute magnetic field contours (iso-potentials), equi-spaced in B, above the surface of a mirror having wires of (A),
a rectangular, and (B), an optimized cross-sectional profile. The optimized profile shown, yields iso-potentials two orders of
magnitude flatter than does the rectangular profile.

in equation (2). We expect the current density in the small
(µm scale) mirror wires to be essentially uniform through-
out the wire [25], so the current distribution is equated
with the wire’s cross-section. Recalling that B = −∇φM ,
(1) shows that all b3, b5, b7 . . . terms in (2) could be
eliminated if a suitable wire profile could be found having
a scalar potential immediately above the wires consist-
ing of only the fundamental harmonic. Determining this
ideal shape analytically is complicated by the current flow
dependence on both x and z positions, the constraint of
insulating adjacent wires from each other, and the require-
ment of ensuring manufacturable wire profiles.

We have found, numerically, that simple profile
changes can result in large reductions in the b3, b5, b7 . . .
coefficients (see Eq. (2)) compared to those resulting for ei-
ther rectangular or circular cross-sectional wires. Figure 3
shows a comparison between the B-field iso-potentials re-
sulting from wires of rectangular cross-section and from
wires of a cross-sectional shape determined by our op-
timization algorithm. The gain in flatness shown is two
orders of magnitude.

Achieving such gains in practice requires precise con-
trol over the fabrication process. However, calculations
show that even unoptimized rounded wire shapes offer
substantial improvements over rectangular wires. By ap-
propriately adjusting processing parameters [17], we have
manufactured a variety of “oval-shaped” wires with the
best thus far giving calculated iso-potential lines approx-
imately an order of magnitude flatter than those of rect-
angular wires. Such improvements more than compensate
for any decreased current capacity of the wires due to
their slightly reduced cross-sectional area as compared to
rectangular wires.

3.2 “Finite mirror region”

As distance above the mirror surface increases, the ex-
ponentials associated with the Fourier components de-
scribed above (Sect. 3.1) decay, while the deviations from
an infinite mirror become more pronounced, rendering
the infinite-mirror treatment invalid. Equation (3) indi-
cated only an upper bound for this infinite-finite transition
height. A similar, more accurate calculation [23] shows
that for a typical mirror of about 100 lines, the transition
point can occur already within the first few decay lengths
above the surface, which is typically where cooled atoms
dropped a few cm above an electromagnet mirror would
be reflected. Additionally, as even (3) shows, the transi-
tion height depends only logarithmically on the number
of mirror lines. Therefore, for finite-size effects to be com-
pletely negligible in typical atom-dropping experiments,
the number of current lines would need to be vastly in-
creased, ideally exponentially. Instead, we consider alter-
native ways to reduce the magnitude of this edge-induced
roughness.

Sidorov et al. [14] have already made the clever sugges-
tion of using compensating elements, which we call “end-
caps”, at the edges of a magnetic mirror to simulate a
larger mirror. Their idea is to add single extra magnetic el-
ements, or analogously, current carrying wires, at the mir-
ror edges to mimic the B-field that would be contributed
if there were alternating magnetic domains/current carry-
ing wires continuing out to infinity. The field at the centre
of the mirror is well approximated if the extra wires carry
half the current of the other wires in the mirror. At posi-
tions away from the centre of the mirror, the agreement is
less exact, but in all regions of interest above the mirror
it remains a good vector approximation.
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Fig. 4. Absolute magnetic field contours (iso-potentials), equi-spaced in B, above the centre of a mirror with an even (100)
number of current-carrying lines (A), and with an odd (101) number of current-carrying lines (B), showing an even-odd parity
influence on mirror roughness.

We emphasize that a current line, in particular, ap-
proximately corrects the vector B-field everywhere far in
from the mirror edge. To first order, this can be under-
stood by grouping the semi-infinite plane of missing wires
(extending off from the mirror x-edge to infinity) into
a single “monopole” half-wire, closest to the actual mir-
ror edge, and a repeating infinite series of “quadrupole”
half-whole-half-wire triplets. Since the infinite sum of
“quadrupole” terms gives an a/r2 fall off in contrast to
the 1/r decaying field of the residual half-current line, the
half-line’s B-field dominates at all positions above the mir-
ror that are an appreciable distance (r � a) in from the
edge.

Noting that endcaps provide a good correction in all re-
gions of interest, we choose now to use the complement of
these correcting endcaps in constructing an analytic model
of a finite-sized mirror. We approximate the difference be-
tween the fields of a finite and of an infinite mirror as the
negative of the endcaps that would have been added to
the finite mirror x-edges to approximately correct it. We
call this negative of the endcaps, the “error field”, and we
then approximate the finite mirror as equivalent to the
error field added to an infinite mirror.

Such a model enables both qualitative and quanti-
tative explanations of differences between the finite and
infinite systems. For example, consideration of the error
field shows that a mirror with an odd number of wires has
flatter iso-potentials near its centre than does a mirror
with an even number of wires. The composite error field
of any mirror is the sum of the two error fields from the
mirror’s two edges. An odd (even) mirror’s edge error cur-
rents flow in the same (opposite) direction and therefore,
at the mirror centre in the height region in which atoms
are reflected, the error fields cancel (add). Since this error

field interferes with the infinite mirror harmonics, an even
mirror has rougher equipotentials than does an equiva-
lent odd mirror. Even if endcaps are included to correct
the finite mirrors to first (or second) order [26], an even
mirror will still have a second (or third) order error field
while an odd mirror will not. Figure 4 shows a numerical
calculation for the B-field iso-potential surfaces above two
identical mirrors except that in (A) the mirror has an even
number of lines while in (B) it has an odd number.

Since roughness due to finite-size edge effects appears
already just a few decay lengths above the surface, equa-
tion (2) has only a small region of validity. This region
can be extended (to all three height regions) by vectori-
ally adding the error B-field from the mirror’s edge error
currents to the equation. The error B-field, Be(x, z), re-
solved into x and z components, is:

|Bxe (x, z)| = cerrz

∣∣∣∣ 1
r2
1

± 1
r2
2

∣∣∣∣ , z > 0

|Bze (x, z)| = cerr

∣∣∣∣W/2− xr2
1

∓ W/2 + x

r2
2

∣∣∣∣ (4)

where the upper (lower) sign refers to an odd (even) mir-
ror, the constant cerr = µ0Ierr/2π, and r1 and r2 are the
distances from the point (x, z) to the two missing lines.
The modified equation is obtained by first adding these
components to the Bx and Bz components obtained from
taking appropriate derivatives of (1), before the B-field
magnitude is obtained as in (2). Noting that finite-size
induced roughness occurs a few decays lengths from the
surface, only the first and third harmonics of the infinite
mirror field are included giving the approximation:

see equation (5) below

B ≈ B0e−kz
√

1 + 2b3e−2kz cos(2kx) + 2ekz
(
Be(x, z)
B0

)
cos(kx− θ) + e2kz

(
Be(x, z)
B0

)2

(5)
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where θ ≡ θ(x, z) = arctan(Bxe (x, z)/Bze (x, z)). We note
that the third and fourth terms rapidly dominate over
the second, and that the third term has twice the peri-
odicity of the second. Unlike an infinite mirror where as
distance from the surface is increased (2) predicts a dom-
inant roughness of periodicity a/2, a finite mirror instead
switches over to a dominant roughness term with period
a (see Fig. 2). Note that this periodicity occurs even if
φ2 = 0.

As z increases further through the region z ≈ a, the
second term, the dominant roughness term for an infinite
mirror, soon becomes negligible. At these heights, on the
curved surface z(x) defined by the solution of Be(x, z) =
B0 exp(−kz), (5) reduces to a perfect square giving:

B(x, z(x)) = 2B0e−kz(x)

∣∣∣∣cos
(
kx− θ

2

)∣∣∣∣ · (6)

Therefore, in addition to having period a (correct to
within the slight modifying factor from the non-constant
phase angle θ), the B-field exhibits zero’s lying with this
periodicity on the surface z(x). That is, there exists a se-
ries of local minima in the absolute B-field, that repeat
every a in the x-direction and extend in the y-direction
forming a set of parallel waveguides. Using (4), the sur-
face z(x) valid near the mirror centre is:

z(x) ≈ zfinite +
1
k

ln

[
W

2
√
x2 + z2(x)

]
ODD

z(x) ≈ zfinite EVEN (7)

where zfinite is that calculated in (3). As expected, the
zero’s are closer to the surface for an even mirror than
for an odd one, again indicating that the even mirror is
the rougher. These surfaces, derived from the modified
B-field equation (5), are in excellent agreement with full
numerical calculations of the fields of finite-sized mirrors.

3.3 “Mirror far-field region”

Slightly higher above the mirror, z & 2a, the error field
dominates completely, reducing (5) to B = Be(x, z). This
is equivalent to replacing the mirror (either even or odd)
by the two edge error currents carrying half the mirror
current, in analogy with the replacing of a dielectric by two
surface polarization charges. Only at far greater distances
where z � W (and therefore in regions where the atoms
are unlikely ever to be), will the uncorrected odd and even
mirrors have substantially different far-field behaviours,
the odd mirror appearing as a net flow of current.

3.4 Stray fields

Stray magnetic fields (even spatially uniform ones) are ad-
ditional sources of roughness since they can produce inter-
ference terms with the infinite mirror field harmonics [10].
Indeed, finite size effects, including the doubling in domi-
nant roughness periodicity, the even-odd parity effect, and

the repeating waveguide-like minima in the B-field, can all
be viewed as consequences of vectorially adding the infi-
nite mirror field to a particular form of stray field: the
error field, Be(x, z), given in (4).

A small uniform stray field, Bs ≡ Bxs x̂ + Bzs ẑ, added
to a flat infinite mirror, introduces ripples in the iso-
potentials with slopes dz/dx ≡ −(∂B/∂x)/(∂B/∂z) vary-
ing sinusoidally with amplitude (Bs/B0) exp(kz), (Bs �
B0). For example, for B0 ≈ 100 G, maintaining flatness of
order 0.1 mrad at kz = 2, requires shielding against any
Bs down to ∼ 1 mG. Therefore, all possible experimental
stray fields having components in the x- or z-directions,
should be minimized.

Apart from externally generated stray fields, addi-
tional intrinsic stray fields result from the current-carrying
mirror itself [27]. One of these is the roughness contribu-
tion due to the turning (connecting) sections of wire at
the mirror y-edges (see Fig. 1). They provide essentially a
piecewise-defined current flow, perpendicular to the major
mirror line direction, with magnitude alternating between
the mirror current magnitude, I, and zero. This configu-
ration can be regarded as the superposition of a steady
current line of I/2 and a set of adjacent current pieces
alternating between +I/2 and −I/2. Each piece in this
set of alternating current pieces contributes a magnetic
field, but their net field rapidly decays in from the mirror
edge, effectively leaving only a single line at each y-edge
of the mirror with current I/2. To approximate its effect
on the overall B-field, we assume the B-field to be other-
wise perfectly smooth. Adding these two edge line fields
to the first harmonic of the infinite mirror field gives the
iso-potential slope, dz/dx, valid near the mirror centre:

dz
dx

=
2yµ0I sin(kx)ekz

πL2B0

W√
W 2 + L2

· (8)

This effect is reduced by adding endcaps along the mirror
y-edges (much like the x-edge endcaps already discussed
(Sect. 3.2)). An extra I/2 current line running in the op-
posite direction along both y-edges of the mirror, cancels
the net current flow in the x-direction and approximately
eliminates the perturbing B-field (see Fig. 1).

Additional stray B-fields arise from current leads con-
necting the mirror to a power supply. These leads could
enter and exit the system from many directions; rather
than investigating each, we present a simple mirror geom-
etry that simultaneously adds the desired endcap currents
on both the x and y mirror edges and minimizes all con-
necting lead stray fields. Figure 1 shows the idea, with the
solid line representing the mirror circuit carrying current I
and the two dotted lines representing lines of current I/2.

Finally we return to the waveguides mentioned at the
end of Section 3.2. The existence of these guides is a
manifestation of the finite mirror size. It is not our in-
tention to discuss waveguides in this paper [28], but we
do note briefly that one need not rely simply on the
interference of the inherent finite-mirror Be(x, z) field
with the infinite mirror harmonics; expressly applying
an appropriate bias B-field in the x- or z-direction can
form a much stronger/deeper series of waveguides [29].
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3.5 Adding a holding field

To satisfy the adiabaticity assumption of Section 2, a
“holding” bias field is required to prevent the total field
vector (mirror+bias) from varying too rapidly in space.
With endcaps employed along the mirror’s y-edges, there
are no appreciable By components anywhere near the mir-
ror centre giving a free axis along which to apply the nec-
essary orthogonal holding field, Bh. Unlike the stray fields
above, no additional interference terms are introduced and
the resultant field is simply Bh added in quadrature with
the existing mirror field.

Apart from ensuring adiabaticity, the holding field also
slightly modifies the turning height of an atom of given
incident energy. This slight change can easily be compen-
sated for by changing either the mirror current or the atom
drop height. Therefore we consider the effects of Bh at a
certain fixed turning height, noting that the associated
incident velocity/mirror current may change slightly. We
note first that addition of a holding field along a free axis
does not alter the slope, dz/dx, of any iso-potential (the
extra holding field reduces ∂B/∂x and ∂B/∂z equally).
Nonetheless, the holding field can still affect the specu-
larity of reflection. Close to the surface where the mirror
B-field is large in comparison to the holding field, the re-
duction in ∂B/∂x and ∂B/∂z is negligible; further from
the surface, where the mirror B-field is smaller, the re-
duction is greater. The spatially dependent reduction in
∂B/∂z can act to sharpen the potential, narrowing the
height band in which an atom experiences appreciable
forces and making the potential look slightly more “wall-
like”. Depending on where the turning point occurs, this
“localization” can reduce the rms reflection angle despite
there being no change in any individual iso-potential. Ad-
ditionally, the reduction in ∂B/∂x reduces the transverse
momentum imparted to the atom while essentially still in
free fall.

4 Mirror specularity simulations

Since the reflecting mirror field is not a perfect “hard
wall” potential, the atom experiences appreciable forces
over some distance before turning and the imparted mo-
mentum depends on a weighted integral of the slopes of
the iso-potential lines in the vicinity of the turning point.
For a field given by (2), a multiplicative correction factor
enables one to regard the reflection process as occurring
off an equivalent “hard wall” potential [13]. Calculating
the reflection angle then simplifies to determining the iso-
potential slope at the turning point alone. However, if the
turning point lies slightly further from the surface, equa-
tion (2) starts giving way to (5) and such a multiplicative
factor no longer applies. The finite-size-induced roughness
region can appreciably affect the atom’s trajectory as it
passes through, even if the atom does not turn near there.
Additionally, applied holding fields can also affect the re-
flection angle. Therefore, to obtain accurate values for the
optimum turning heights and for the rms deflection an-
gles, θRMS, from perfect specular reflection, we perform a

full numerical integration of the semi-classical atom tra-
jectories through the mirror B-fields described above.

Results are quantified by averaging simulations over
atoms dropped at varying x-positions (spanning a width
W/10) about the mirror centre. Figure 5A shows θRMS for
an odd mirror as a function of turning point height above
the mirror surface for Bh = 0, 1 and 10 gauss (in compar-
ison with a 60 gauss surface field). Also plotted is an an-
alytic calculation for an infinite mirror (assuming “hard-
wall” potentials and including adjustment factors [13] for
each Fourier harmonic present to account for the omit-
ted averaging integration over iso-potential lines). Good
agreement is seen close to the surface but, while the rough-
ness of the infinite mirror decreases monotonically with
height, the roughness of the finite mirror begins increas-
ing beyond a certain optimum distance from the surface.
To clarify the relative magnitudes of the contributions of
different heights, z, to θRMS, Figure 5B shows the trans-
verse momentum imparted to an atom (reflected 2.5 decay
lengths from the surface) at each position during its fall.
Since the atom spends most time near its turning point,
the transverse momentum transfer should peak there. The
curve’s additional maximum though, is due to the strong
gradients around the minima occurring in the finite mir-
ror region around z ≈ a. This maximum vanishes with
increasing holding field as expected.

In Figure 5C, θRMS-turning point curves compare an
odd mirror, an odd mirror with endcaps, and an odd mir-
ror with endcaps and a wire profile determined by our
optimization algorithm. All plots are calculated for an ex-
perimentally realistic Bh = 1 gauss. The minimum θRMS

value is 0.1 mrad [30] and occurs approximately 1.25 decay
lengths from the mirror surface. Therefore, for this mirror
the current required to reflect atoms with the maximum
degree of specularity is given by Ioptimum ≈ Ithresholde1.25,
where Ithreshold is the minimum current required to reflect
atoms. For example, for 85Rb atoms (ground state F = 3,
mF = 3) dropped from a MOT 2 cm above the mirror
surface, a typical 1 cm2 mirror (a = 200 µm , N = 101)
with surface field per unit current B0/I of order 60 gauss
[17,18], has an Ithreshold ≈ 0.45 A. This gives Ioptimum ≈
1.5 A, a value considerably below the maximum current
that can be pulsed through such a mirror. Even for the
unoptimized odd mirror shown (rectangular wires and
no endcaps), the minimum occurs below 2 decay lengths
from the surface and at Ioptimum ≈ 3 A, again below the
maximum current achievable. In addition to decreasing
the minimum θRMS, the θRMS-turning point curve (C) in
Figure 5C exhibits a smaller curvature around its mini-
mum, implying that a larger range of incident velocities
can be simultaneously reflected with this higher degree
of specularity. This robustness reduces constraints on the
monochromaticity of the atomic ensemble to be reflected.

5 Conclusion

Unlike an infinite mirror, whose specularity increases
monotonically as a function of reflection height above
the surface, a finite mirror exhibits an optimal reflection
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Fig. 5. Predicted curves of rms angular
deviation from specular reflection versus
atom turning point height above the mirror
surface, showing an optimal turning height.
Curves are for a 101-line mirror for various
holding fields and are contrasted against
the prediction for an infinite mirror (dotted
line). (B) Transverse momentum imparted
to an atom at each height through which it
falls. Local maxima in the curves are due to
strong field gradients around the minima in
the absolute magnetic field caused by the
finite mirror size. (C) Progressive smooth-
ing of the mirror in going from (A), an
odd mirror with wires of rectangular cross-
section to (B), the same odd mirror but
with correcting endcaps, and then (C), the
odd mirror with correcting endcaps and an
optimized wire cross-sectional profile. (An
even mirror is omitted, it falling mainly off
the scale of the graph.) The dashed line
corresponds to perfect specular reflection
(θRMS = 0).

height that maximizes the specularity. Notably, this opti-
mum height can be reached (and exceeded) by available
magnetic mirrors (both permanent and electromagnetic).

In this paper we have described how the wire cross-
sectional profiles, the finite size, the even/odd number of
current lines, and the holding field all affect the mirror’s
roughness. Based on these observations, we have consid-
ered possible means to reduce the rms angular deviation
from perfect specular reflection to below 0.1 mrad and to
increase the range of incident velocities which can simul-
taneously be reflected with greater specularity.

We have chosen an electromagnet mirror as our model
system, it having the advantage of an experimentally
easily tunable field strength, but analogues of the results
apply equally well for the static permanent magnet mir-
rors. Whether using current-carrying wires or permanent
magnets, the use of an appropriate number of elements,
endcaps, and optimized magnetization profiles appears a
possible promising route towards highly specular atom
mirrors.
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Johnson, R.M. Westervelt, M. Prentiss, Eur. Phys. J. D 7,
361 (1999).

29. Recently, E. Hinds has independently suggested an al-
ternative means, combining magnetic and electric forces,
to create a similar series of waveguides: E.A. Hinds,
in New Directions in Atomic Physics, edited by C.T.
Whelan (Plenum, in press).

30. θRMS of 0.1 mrad could be further reduced if a larger hold-
ing field were applied, or if higher order correcting endcaps
were used. Second order (x-edge) endcap correction can
reduce θRMS to a few µrad. However, we show only first
order endcap calculations, since other, previously negligi-
ble, higher order effects dominate before reaching this µrad
level.


