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with ten or more layers one can design a cloak that is practically invis-
ible. Furthermore, it is shown that the bandwidth of the Schurig cloak
can indeed be increased by up to a factor of 2.5, by optimizing the cloak
layer parameters, while maintaining the same minimal value of the total
scattered width. Finally, it is demonstrated that losses in the cloak in-
crease the total scattering width, in other words, reduce the invisibility
gain. However, for values of around v = 1072 f; the invisibility gain
of the optimized cloak is still roughly equal to the invisibility of the
Schurig cloak with no losses.
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A Hybrid Optimization Algorithm and Its Application for
Conformal Array Pattern Synthesis
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Abstract—Investigations on conformal phased array pattern synthesis
using a novel hybrid evolutionary algorithm are presented. First, in order
to overcome the drawbacks of the standard genetic algorithm (GA) and
the particle swarm optimization (PSO), an improved genetic algorithm
(IGA) and an improved particle swarm optimization (IPSO) algorithm are
proposed by introducing novel mechanisms. Then, inspired by the idea of
grafting in botany, a hybrid algorithm called HIGAPSO is proposed, which
combines IGA and IPSO to take advantages of both methods. After that, a
spherical array antenna using wide-band stacked patch antenna elements
is selected as a synthesis example to illustrate the power of HIGAPSO
in solving realistic optimization problems. Finally, HIGAPSO is used to
optimize the amplitude of the element current excitation of the spherical
conformal array. Experimental results show that the hybrid algorithm is
superior to GAs and PSOs when applied to both the classical test function
and the practical problem of conformal antenna array synthesis.

Index Terms—Array synthesis, conformal antenna array, genetic algo-
rithm, particle swarm optimization.

1. INTRODUCTION

Conformal antenna arrays have attracted more and more attention
in many applications where planar arrays or reflector antennas have
definite drawbacks [1]-[3]. This is because conformal antenna arrays
have advantages of visual unobtrusiveness, non-interference with
the aerodynamic performance and antenna performance. Nowadays,
many technologies have been proposed for their analysis and synthesis
[4]-[7]. However, low side-lobe array pattern synthesis techniques
developed for linear and planar arrays do not work well with conformal
arrays, since, if the array is conformal to a curved surface, the radiating
elements are directed in different directions, posing unique challenges
in the synthesis of antenna arrays. Therefore, it is desirable to develop
an algorithm which is robust and has excellent global optimization
performance and fast convergence speed in the antenna synthesis field.
Although great progress has been made in the development of the
evolutionary computation recently [8]-[11] in such a way that they are
more robust and efficient to solve real-world problems when compared
with traditional computation systems, they show limitations in solving
conformal array synthesis problems.

Since both PSO and GA algorithms work with a population of so-
lutions, recently some attempts have been made to combine them, but
with a weak integration of these two methods [12]-[14]. In this com-
munication, we addressed this problem from a different perspective.

Manuscript received May 12, 2009; revised February 04, 2010; accepted Feb-
ruary 05, 2010. Date of publication May 18, 2010; date of current version Oc-
tober 06, 2010. This work was supported by the National Science Foundation
of China under Grant 60571057.

W.T.Li, X. W. Shi, and S. F. Liu are with the National Key Laboratory of Sci-
ence and Technology on Antennas and Microwaves, Department of Electronic
Engineering, Xidian University, Xi’an 710071, China (e-mail: wtli@mail.xi-
dian.edu.cn).

Y. Q. Hei is with the State Key Laboratory of ISN, Xidian University, Xi’an
710071, China (e-mail: yghei @mail.xidian.edu.cn).

J. Zhu is with the Edward S. Rogers Sr. Department of Electrical and
Computer Engineering, University of Toronto, Toronto, ON MS5S 3G4, Canada
(e-mail: jiangzhu@waves.utoronto.ca).

Color versions of one or more of the figures in this communication are avail-
able online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAP.2010.2050425

0018-926X/$26.00 © 2010 IEEE



3402

Firstly, two new evolutionary algorithms, IGA and IPSO derive from
GA and PSO by introducing some new mechanisms. Then, they are
tightly combined into a new hybrid algorithm called HIGAPSO, in
which the grafting principle is employed to take full advantages of these
methods. Our current proposal is an improved version of the algorithm
reported in [18], in which the novel mechanisms and the grafting idea
are introduced to improve the the convergence speed and the optimum
search ability. After that, a typical benchmark function is presented
to validate the proposed algorithm. Furthermore, a stacked Minkowski
fractal microstrip antenna is used to design the spherical conformal
array. In this example, the proposed algorithm has demonstrated its
capability to reduce the side-lobe levels by optimizing the element am-
plitude weights.

The remainder of the communication is organized as follows:
Section II presents the detailed architecture of the proposed hybrid al-
gorithm. The low side-lobe pattern synthesis of a spherical array based
on the proposed algorithm is given in Section III, while Section IV
concludes this communication.

II. HYBRID OF IGA AND IPSO

Consider a global optimization problem:

*Tn )

(7: 1~2*77) (1)

min f(r) = f(r1 s L2y
S.t. mliﬂin S iy S m;ﬂax
where n is the number of the optimized variables, 272
the upper and lower bounds of z; respectively.
In the following part, IGA and IPSO will be introduced, followed by
the details of the proposed hybrid algorithm. After that a typical bench-
mark function is used to demonstrate the proposed hybrid algorithm.

and 2" are

A. Improved Genetic Algorithm

1) Crossover: In natural biological evolution, several offspring
may be generated by the two parents after crossover and inevitably
a competition relationship exists among those offspring produced by
the same parents. Motivated by that, new crossover operator intro-
ducing competition manipulation among the offspring of the same
parent is adopted in IGA. Now define the two parent chromosomes as
@y = [x5 x5 -+ 23] and @& = [z} 2§ --- 2L], respectively, then the
corresponding four offspring chromosomes are obtained according to:

by=[b7 b b
=w(ds +di)/2+ (1 — w) max(ds, d;) )

by = [b? b3 bi]
= (1 —w)min(ds, @) + w(ds + @) /2 3)

by = [b13 by - bi]
= Amax (1 — w) + max(ds, d,)w @)

by = [bi' by - bi]
= Amin (1 — w) + min(a@s, ¢ )w ©)
Tmax = 7 23 e 2] ©)
A S A @

where w € [0, 1], max(d,, d@;) denotes the vector with each element
obtained by taking the maximum among the corresponding element
of @, and d;. Inspired by survival of the fittest principle in Darwinian
evolution theory, we choose the two offspring with better fitness values
among {Z;l, RN 174} as the output of the crossover operation.

For our proposed crossover operator, (2) and (3) can be seen as the
results of interpolation, which leads to offspring search in the domain
between @, and @;. While (4) and (5) can be regarded as the results of
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extrapolation, which results in offspring searching the rest of the do-
main. Then the potential offspring are capable of spreading over the
entire domain. A similar crossover operator is presented in [15], how-
ever, certain search space is missed when compared with our scheme
(see Appendix).

2) Mutation: To avoid overly fast converging to a local optimum
domain, the offspring generated by crossover operation will undergo
the mutation operation [16]. Define the original offspring and the mu-
tated offspring as # and @ = (xy +++ Ty +++ x,), respectively. The
randomly selected variable Z; for mutation is defined as

wo=af + (ol = b ) w ®)
y = min (u +u (év?ax - :v?m) / 2»«!’?”) Q)
rr = max (rk — 1 (,r',:“ — :c',:i") /2, ,r',?i") (10)
where w € [0, 1] and p is determined by
p(r) =1 = (r/Dl =/ an

where T’ is the maximum number of iterations, 7 is the current iteration
number, and b is the shape parameter. From (11), it is discovered the
advantage of such mutation operator is that at the initial stage of evo-
lution, p(7) = 1, the mutation domain is large. However, in the later
evolution when 7 approaches to T, u(7) = 0, the mutation domain
becomes small and the individuals search in a local domain.

B. Improved Particle Swarm Optimization

1) Exceeding Boundary Control: Particles are commonly found
lying outside the boundaries of the solution space during the position
updating process. For such cases, the general methods are either to take
the boundary as the coordinate of the new particle, or to keep the co-
ordinate of the particle unchanged but to assign a poor fitness value to
the particle. However, either approach may reduce the diversity of the
particle as well as the global search ability of the algorithm. To keep
the diversity of the particles, a novel approach is proposed

d

Ti(Tnew = ——= - T:(7) (12)
where 7;(7) is the particle velocity, d is the distance between the par-
ticle and its violation boundary, and D is its variation range. The new
velocity is determined by the violation distance, the variation range and
the previous velocity, in such a way it can improve the diversity of the
particles in the searching process and the global search ability of the
algorithm.

2) Global Best Perturbation: PSO has been shown to converge
rapidly at the initial stages of a global search, but slows down when
the search is close to the global optimum. To this point, the global best
perturbation operator is adopted in IPSO. In social society, the leader
in a swarm can be always found to explore more regions in order to
lead the swarm to achieve the target with a faster speed. Inspired by
this behavior, the perturbation operation is applied to the global best
particle on the basis of the extrapolation theory

Py(7) = Py(7) + ea - py(T) (13)
where p, is the best global solution, e4 is the extrapolation coefficient
defined as

ea=1=(14ryel /1) (14)
rq is the uniformly distributed random number in [0,1]. By means of
(13) and (14), the stagnant global best particle can be activated again
so the global best can be found with a much higher probability.
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Fig. 1. Flow of key operations in HIGAPSO.

C. Hybrid Optimization Algorithm (HIGAPSO)

Inspired by the principle that grafting in botany can integrate the
superiority of the two original branches, the proposed hybrid algorithm
combines IGA with IPSO to take the advantages of both methods. In
each generation, based on the fitness values, the population is firstly
divided into three parts: the best individuals, the better individuals and
the worst individuals. The best individuals are directly reproduced to
the next generation; while the following better individuals are enhanced
by IPSO to generate the corresponding individuals of next generation.
Those IPSO-enhanced individuals regarded as the grafting population
together with the rest individuals, are evolved with IGA to generate the
remaining individuals of next generation. For clarity, the flow of key
operations is illustrated in Fig. 1 with sequential steps of the algorithm
given below.

Step 1) Randomly initialize a population of P individuals within the

constraint range.

Step 2) Calculate the fitness of each individual from the fitness func-
tion, and then sort the individuals in ascending order ac-
cording to their fitness values.

3) Choose the top H individuals as the elites and directly re-
produce them to the next generation.

4) Apply IPSO strategy to the .S better individuals and those
IPSO-enhanced individuals are regarded as the grafting
population.

5) Therest P — H — S individuals together with the IPSO-en-
hanced individuals, are evolved with IGA. Then the best
P — H — S individuals are selected as the remaining indi-
viduals of next generation.

6) Combine the three parts together as the population of the
new generation and calculate their fitness values. Choose
the best one among all the individuals obtained so far as
the global best.

7) Repeat Steps 3 to 6 until a stopping criterion (i.e., a suf-
ficiently good solution being discovered or a maximum
number of generations being completed) is satisfied. The
best scoring individual in the population is taken as the final
solution.

In the proposed algorithm, the better individuals are evolved with
IPSO instead of IGA. This is because compared with GA, PSO has the
advantages of memory efficiency and cooperation between particles.
Therefore, IPSO is more reasonable to take the task in guiding evo-
lution. Besides, IPSO has good flexibility in controlling the balance
between local and global exploration of the problem space, which can
readily overcome the premature convergence of elite strategy in IGA.
Then, the combination of these two optimization mechanisms, not only
improves the diversity of the offspring, but also maintains the balance
of global search and local search. Therefore, the search ability of the
algorithm can be enhanced.

Step

Step

Step

Step

Step
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Fig. 2. The average best fitness results over 20 independent runs.

D. Preliminary Numerical Experiments

A typical test function is presented here to verify the efficiency of the
hybrid algorithm. Algorithms of standard GA (SGA), IGA, PSO and
IPSO are simulated for comparison.

The test functions is

30
flx) = Z [#7 — 10 cos(2mz;) +10],  a; € [-10,10].  (15)

=1

The function defined in (15) is known as Rastigrin function with
a global minimum of zero at the origin. This is a tough multimodal
optimization problem, because the global minimum is surrounded by a
large number of local minima, making the search of global minimum
without being stuck at one of these local minima extremely difficult.

The influence of parameters on the proposed algorithm has been in-

vestigated and we have found that the algorithm is sensitive to the pop-
ulation size and the percentage of S/P. Simulation results show that
the optimum value of the population size is from round(2n/3) to
round(7n/5) and the rational value of S/P changes from 0.18 to 0.35.
For the test function, we choose population size I = 30, the maximum
number of iterations T = 600, the number of elites H = 2, crossover
probability p. = 0.8, the mutation probability p,,, = 0.02 and the ac-
celeration constant ¢; = c2 = 2.0. In IPSO, the number of population
in each iteration is S = 0.2 P. The average best fitness results obtained
from the five algorithms under test through 20 independent simulations
are illustrated in Fig. 2. From the simulation results, it can be concluded
that:

1) Either SGA or PSO can hardly achieve the ideal results especially
for the high dimensional problems, which is due to their inherent
defects of evolutionary mechanisms. It is exactly these defects that
make the algorithm prematurely converged or easily trapped in a
local optimum.

2) Compared with SGA and PSO, the IGA and IPSO can obtain
better results. This fact accounts well for those improvements on
SGA as well as PSO are indeed efficient to overcome the draw-
backs of GA and PSO to some extent.

3) The HIGAPSO has the strongest local search ability and the fastest
convergence speed among the five previously mentioned algo-
rithms. This implies that IGA and IPSO can take the advantages
of grafting idea in our hybrid algorithm; hence, a superior perfor-
mance can be achieved by HIGAPSO.

4) As for the complexity, HIGAPSO is approximately the same as
IGA or GA. Although additional complexity afford of IPSO is
introduced, the evolutionary iterations can be reduced. Therefore,
the complexity of HIGAPSO is comparable to IGA and GA.
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Fig. 3. Configuration of a coaxial-fed, stacked fractal patch antenna. (a) Top
view of bottom layer. (b) Top view of top layer. (c) Side view. (All units are in
mm). (d) Simulated and measured VSWR for the antenna.

III. PATTERN SYNTHESIS OF A CONFORMAL ANTENNA ARRAY

A. Array Element Design

Microstrip patch antenna is extensively utilized as the array element
for their low profile, light weight, and low cost. Besides, they can be
easily made conformal. In this communication, a compact stacked
antenna is designed to have a center frequency of 3.2 GHz and a
bandwidth exceeding 12% for VSWR < 2. The Ansoft HFSS 11.0 is
employed to perform the design. The geometry of the fractal stacked
array element antenna, along with its optimized dimensions, is shown
in Fig. 3, which is fabricated on two layers with relative permittivity
of 2.65. The top layer consists of a one order quasi-Minkowski fractal
patch and has a dimension of 28.2 x 28.2 mm?. The bottom layer con-
sists of an H-shaped patch and has a dimension of 24.6 x 24.6 mm?.
The distance between the two layers is 7 mm. The antenna is fed by a
standard SMA coaxial connector from the bottom. Compared with the
regular rectangular patch antenna with dimensions of 27.1 x 27.1 mm?
on the bottom layer and 31.3 x 31.3 mm? on the top layer, the sizes
of our patches are reduced by 17.6% and 18.83% respectively. Thus,
the mutual coupling can be reduced. The impedance bandwidth
(VSWR < 2) is measured by Agilent N5230A network analyzer.
From Fig. 3(d), it can be seen that the designed antenna covers from
3.0 to 3.51 GHz (15.67%) and the simulated result agrees with the
measured one very well. Therefore, the designed antenna can fully
satisfy with the design requirements.

B. Conformal Antenna Array Configuration

A half spherical array consisting of N = 8 concentric rings in the
z-direction is investigated. The array is made up of a total number of
201 stacked fractal patch antennas on the sphere with radius # =
500 mm. Antennas are uniformly distributed along #-direction (from
# = 0° to# = 60°) and o-direction at approximately 0.65\,. Assume
the spherical coordinate of the mth (m = 1,2---, M,,) element on the
nth concentric ring is (R, 6., ¥mn) and the corresponding excitation
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current is In.n €Xp j¥mn, then the radiation pattern of the spherical
array can be expressed as

N M,

FF(G.QP) = Z Z IWLnf‘"LH(Hﬁkl”")

n=1lm=1

(JRR(sin 0 5in 0, c05(¢— @rmn )05 0 €05 O )+ )

Xe (16)

where f.,, (6, ¢) is the individual element pattern and % is the free-
space wave number. The excitation current phase .., can be calcu-
lated by:

Yinn =—kR [sin fg sin 8, cos(¢o — @mn ) + cos b cosb,]  (17)

where (Ao, o) is the desired steering angle.

The detailed array configuration can be found in [18]. Nevertheless,
in this communication the element spacing has been changed to 0.65
wavelength to reduce the coupling effect, and experimental results re-
veal that the array gain has been greatly improved.

C. Pattern Synthesis

For conformal arrays, it is common to select the phase to focus the
beam in the desired direction. Thus we only take the amplitude weights
as optimization parameters. With the phase weights calculated in ad-
vance according to (17), the specified scan angle can be guaranteed.
However, it should be noted that for some other synthesis problems
when the maximum directivity is not sought after, the phases of the el-
ements should also be optimized. Now considering that the optimiza-
tion for excitation amplitude of each element on the spherical phased
array may be a prohibitive task in practice, a previously proposed mod-
ified Bernstein polynomial for arc arrays [17] is used to synthesize con-
formal arrays. The modified Bernstein polynomial is defined as

By + =B

/\NOA(lfA)%VO(l*A)
XLTNQA(l _ LT)ND(17A)7 0 S U S A
By + 1—-B

2
AN1A(1—A)N1(1—-4)

xUNAL-U)M0=0 0 4<U <1

F(U) = (18)

where By, B, My, M> and A are the parameters in the polynomial.
By definition it can be deduced that the modified Bernstein polynomial
does not have any oscillations, a common drawback of which always
exists in the output of many optimizations and curve fitting routines.
With the help of modified Bernstein polynomial, only five variables
in our example need to be optimized for each concentric ring, and one
variable for the top layer which only consists of only one element. That
is to say, for a spherical conformal array consisting of N concentric cir-
cular arrays, the total number of variables to be optimized is reduced to
5x N 41, which significantly reduces the overhead of the optimization.

For the spherical conformal array mentioned above, the cost func-
tion to be minimized is defined as the arithmetic mean of the squares
of the excess far field magnitude above the specified level. By applying
rotations of the local co-ordinate system to the simulated polarized em-
bedded individual radiation pattern located in the ¢ = 0° direction on
each concentric ring, radiation patterns of the other elements on the
same ring can be determined. Hence, the total field can be obtained by
a coherent summation of radiation patterns of each patch in the array.
By virtue of using a modified Bernstein polynomial, only 41 variables
are optimized for the pattern synthesis of the entire spherical array. In
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Fig. 4. Radiation pattern for the conformal array after rotation. (a) Scan
direction of (0°,0°). (b) Scan direction of (25°,0°). (c) Scan direction of
(25°,45°).

addition, the design target is to have a scan range of —25° to 25° from
broadside and a side-lobe level of —33 dB or lower.

The improved algorithms (IGA, IPSO and HIGAPSO) are applied
to synthesize the far field radiation patterns. The SGA and PSO are
not shown because they are inefficient to perform optimization for this
case. Parameters are selected the same for these three algorithms to
have a fair comparison. Each run has been conducted with a population
of 32 individuals and a maximum iteration of 2000. The rest parameters
are selected the same as those in the test function. Fig. 4 shows the nor-
malized absolute ¢ = 0° plane radiation pattern in dB for three scan
directions of (0°,0°), (25°,0°), (25°,45°), respectively. From the re-
sults, it can be seen that the optimization results achieved by HIGAPSO
satisfy with the requirements while imperfect results are obtained by
either IPSO or IGA. Note that the side-lobe levels in other directions
are not optimized and the side-lobes in these directions can be higher.
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TABLE I

PERFORMANCE COMPARISONS OF DIFFERENT ALGORITHMS
Scan Uniform 1IGA
angle MSLL(dB) Nf MSLL(dB) ]Vf
(0°,0°) -15.2502 - -26.0814 32768
(25°,0°) -12.2537 -26.6971 33024
(25°,45°) -13.8894 -27.0666 33984
Scan IPSO HIGAPSO
angle

MSLL g4, Ny MSLL 4, Ny

(0°,0%) -28.9542 32384 -33.0179 11552
(25°,09 -25.2916 32704 -33.0898 13824
(25°,45°) -28.3977 34304 -33.0054 12832

The shape of the main-beam is also not optimized, only the beam-width
in the calculated plane is rejected to the same value. Fig. 5 shows the
comparison between the radiation patterns obtained by the proposed
method and the full wave simulation results from Ansoft HFSS v11.0.
The good agreement between those two results validates our method.
Besides, the average maximum side-lobe level (MSLL) and cost func-
tion evaluations (Vs ) of the improved algorithms over 10 independent
runs are given in Table I. Obviously the proposed algorithm achieves a
lower average maximum side-lobe level at the scan angles with a faster
convergence speed. It is worth pointing out that more factors such as
side-lobes and cross-polarization component should also be calculated
and optimized throughout the visible region, when our method is ap-
plied to the practical design process.

IV. CONCLUSION

A novel hybrid evolutionary optimization algorithm is proposed and
its application in spherical phased array synthesis is investigated in this
communication. The proposed algorithm combines IGA and IPSO to
take advantages of both by means of the grafting principle in botany,
where IGA and IPSO are introduced to overcome the drawbacks of GA
and PSO.

The proposed algorithm is verified by both classical test function
and pattern synthesis of a conformal array. These experimental results
show that the hybrid algorithm is able to achieve the optimum design
for specified design criteria in an effective manner. The accuracy and
the robustness of the hybrid algorithm show its potential applications
in a wide class of electromagnetic fields.

APPENDIX

The crossover operator in [15] with its four offspring chromosomes
are defined as

b= [b1 by - BY] = (. +d0)/2 (19)
by = [b? by ... bi]

= ((@max + Gmin)(1 — w) + (@ + d)w) /2 (20)
o= [} B3 - B3]

= dmax (1 — w) + max(d,, @ )w 21
bs = [b? by - bi]

= @min (1 — w) + min(d@s, @ )w (22)

where @, and @; have the same definition as in Section II-A. Without
loss of generality, let’s take the kth variable = of chromosomes for ex-
ample. Since w € [0, 1], the ranges determined by (20), (21), (22) are
(min (@™ 42 /2, (2] +24) /2).max( (e 4+ 2™) /2. (2] +
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Fig. 5. A comparison of the optimized array pattern (OAP) by the proposed algorithm and the pattern simulated via HFSS. (a) Scan direction of (0°,0°). (b)

Scan direction of (25°,0°). (c) Scan direction of (25°,45°).

24)/2)), (max(zj,z}),«P™) and (2", min(z;,2})), respec-
tively. Actually, some of the search ranges are missed by this crossover
operator. Concretely speaking, three cases corresponding to different
relationships between (™™ + 27")/2 and (2} + a)/2 can be
divided to illustrate this point.

a) If (27 + 20)/2 < (&P 4+ 27™)/2, the range
(min(zf, 2}), (2§ + 2)/2) is missed.

b) If (xf + «f)/2 > (2™ + 2P")/2, the range ((x] +
xh) /2, max(z] + x})) is missed.

o) If (zf + =1)/2 = (2P + 2P7™)/2, the range
(min(xf, of), max(xfy + %)) is missed, except the
point (z} + x})/2.

Therefore, there are certain blind ranges where the offspring
can not reach. However, for our proposed crossover, such blind
ranges do not exist because the ranges determined by (2) and (3)
are ((z, + 2},)/2, max(z}, + 2},)) and (min(z}, 2},), (2} +23)/2),
respectively. Therefore, the entire domain can be searched by the
offspring.
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