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Abstract: Gradient-based optimisation relies on the response Jacobian whose evaluation constitu-
tes a major computational overhead in full-wave numerical analysis. Adjoint-based techniques may
offer numerically efficient solutions, but their implementation is too involved in the case of full-
wave computations. A simple approach that uses the self-adjoint sensitivity analysis and
Broyden’s update is proposed. The overhead of the Jacobian computation is greatly reduced
because an adjoint system analysis is not needed and because Broyden’s update is used to
compute the system matrix derivatives. To improve the robustness of the Broyden update in the
sensitivity analysis, we propose a switching criterion between the Broyden and the finite-difference
estimation of the system matrix derivatives. We illustrate and validate the proposed method using
full-wave commercial electromagnetic solvers based on the finite-element method as well as on the
method of moments. Different gradient-based optimisation algorithms are exploited in the
examples where efficiency is compared in terms of CPU time savings.
1 Introduction

Gradient-based optimisation is widely used to solve non-
linear design and inverse-imaging problems [1–5]. It
employs algorithms such as quasi-Newton, sequential quad-
ratic programming (SQP) and trust-region methods. These
algorithms exploit the objective function Jacobian and/or
Hessian in addition to the objective function itself in order
to search for a local optimal point. Typically, they converge
much faster, that is, with significantly fewer system ana-
lyses, than algorithms utilising the objective function only
(e.g. pattern search and the family of global-search algor-
ithms). Naturally, the solution provided by a gradient-based
optimisation algorithm depends on the quality of the initial
design or model. And yet, because of the relatively small
number of required forward solutions, gradient-based
optimisation is preferred when design or inverse problems
are solved with the aid of time-intensive 3-D electromag-
netic (EM) simulations. The EM structure representing
the starting point of the optimisation is typically the result
of approximate, linearised inverse-problem solutions,
equivalent-circuit designs, and so on.
The efficiency of a successful gradient-based optimis-

ation process depends mainly on two factors: (i) the
number of iterations required to achieve convergence and
(ii) the number of simulation calls per iteration. The first
factor depends largely on the nature of the algorithm, on
the proper formulation of the objective or cost function
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and on the accuracy of the response Jacobian and/or
Hessian. The second factor depends on the nature of the
algorithm and on the method used to compute the
Jacobian and/or Hessian, which are necessary to determine
the search direction and the step in the parameter space. The
sensitivity analysis, which provides the Jacobian, is very
time consuming when finite differences or higher order
approximations are used at the response level. At least
Nþ 1 full-wave simulations are needed to obtain a
Jacobian for N design parameters. This is unacceptable
when N is large.
It is well known that adjoint variable methods offer

superior efficiency since they yield the Jacobian with only
one additional (adjoint) system analysis. They have been
exploited widely for design, for yield and tolerance analysis
[1–4], for system stability and uncertainty analysis [5], for
imaging and inverse scattering problems based on acoustic,
microwave and/or near-infrared technology, and so on. In
addition to [1–5], some representative examples and valu-
able reviews can be found in [6–10]. The adjoint variable
methods have their shortcomings. A common feature in
their applications is the reliance on analytical system
matrix derivatives. These are not only specific to the
numerical technique, but also often difficult to derive and
even more difficult to implement for tasks such as shape
and topology optimisation. Almost exclusively, applications
are based on the finite-element method (FEM), which is
relatively amenable to obtain analytical system matrix
derivatives with respect to shape parameters. The major
computational overhead of this adjoint-based Jacobian cal-
culation comes from the adjoint system analysis whose
computational requirements are usually comparable with
those of the original system analysis.
Recently, we proposed finite-difference self-adjoint sen-

sitivity analysis (FD-SASA) methods for the efficient com-
putation of network parameter sensitivities, for example, the
S parameters, in the frequency and time domains [11–12].
The S parameters, or functions thereof, are widely used in
RF/microwave design and inverse imaging to evaluate the
design or model performance and to define the objective
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function. Exploiting the self-adjoint nature of the EM
problem, our method eliminates the adjoint system analysis.
It yields the objective function and the Jacobian through a
single EM analysis. This is a major improvement over our
previous algorithms such as EM-FAST [13]. The overhead
of the sensitivity analysis with the self-adjoint approach is
only because of the computation of the system matrix
derivatives via finite differences. It is equivalent to N
matrix fills. The technique does not require any analytical
pre-processing. Its only requirement is the use of the same
mesh topology when the system matrices of the nominal
and the perturbed structures are computed.
We have also proposed to use the Broyden update [14–

15] to compute the system matrix derivatives when the
Jacobian is used in an iterative optimisation loop [16–17].
Our forward solvers used in-house method of moments
(MoM) codes. The feasibility of such an approach was
proved and its limitation was identified – it was shown
that the Broyden estimates of the system matrix derivatives
may become inaccurate when the step taken in the par-
ameter space is too small (comparable with the resolution
of the discretisation grid). This drawback may inhibit con-
vergence close to the optimal solution. The above approach
is limited to in-house solvers since it needs to solve an
adjoint problem. The latter is difficult to set up in the frame-
work of a commercial EM simulator.
Here, we propose to use the Broyden-based system-

matrix derivative update in conjunction with our self-
adjoint formulation [11]. We refer to this approach as
Broyden-update self-adjoint sensitivity analysis (B-
SASA). We emphasize that, unlike FD-SASA, B-SASA is
applicable only to optimisation tasks because of the iterative
nature of Broyden’s formula. The big advantage of B-SASA
over FD-SASA is that it has practically no computational
overhead since the N additional matrix fills are unnecessary.
Note that B-SASA, too, does not need an adjoint system
analysis. Yet, the limitation noticed in [16–17] remains.
Thus, to achieve optimal performance, we need to
combine the efficiency of the B-SASA with the robustness
of the FD-SASA. Here, we propose hybridisation based
on a criterion for switching back and forth throughout the
optimisation process between FD-SASA and B-SASA.
This hybrid approach (B/FD-SASA) guarantees good accu-
racy of the Jacobian with minimal computational time.
Also, for the first time, we show how to apply the
Broyden-based sensitivity analysis with commercial
solvers, both FEM and MoM based solvers. The key here
is to preserve the mesh topology from one optimisation iter-
ation to the next when B-SASA is used to compute the
Jacobian. When FD-SASA is on and B-SASA is off, the
mesh topology may be allowed to vary.
We validate and compare our methods using two kinds of

optimisation algorithms: a minimax algorithm, which is suit-
able for filter and impedance-transformer design, and a
least-squares algorithm, which is suitable for inverse and
modelling problems. Different gradient-based search
algorithms are tested such as the trust-region and the SQP.
All these algorithms require the Jacobian, which is computed
using the FD-SASA or the new B/FD-SASA method in sep-
arate optimisation processes. We also provide comparison
with optimisation processes where the Jacobian is computed
via forward finite differences directly at the response level. In
the trust-region and the SQP algorithms, the Hessian is also
needed but it is estimated using the classical Broyden–
Fletcher–Goldfarb–Shannon (BFGS) update.
We start with a brief summary of the SASA in the FEM

and the method of moments. Then, we discuss the B-SASA
and the B/FD-SASA implementation in gradient-based
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optimisation. Through three numerical examples, we
compare the performance of the optimisation processes
using the sensitivity analysis approaches discussed above.

2 Background

With a proper discretisation procedure in the frequency
domain, a time-harmonic linear EM problem can be formu-
lated as a complex system of equations

A � x ¼ b (1)

Here, A [ CM�M is the system matrix, x [ C
M�1 is the

state variable vector and b [ C
M�1 is the excitation vector,

which is derived from excitation sources or inhomogeneous
boundary conditions. The system matrix is a function of the
vector of optimisable (shape or material) parameters
p [ RN�1, that is, A(p). Thus, the field solution vector x
is an implicit function of p.
The SASA offers an efficient way to obtain network par-

ameter sensitivities. It is based on the sensitivity formula
(this formula assumes that the perturbation of the parameter
pn does not affect the geometry and the excitation of the
port) [11]

@F

@pn
¼ �x̂T �

@A

@pn
� �x, n ¼ 1, . . . , N : (2)

Here, F is a network parameter, for example, an S par-
ameter, pn is the nth design parameter, �x is solution of (1)
at the current design and x̂ is the adjoint variable vector.
It is the solution to the adjoint system

AT
� x̂ ¼ (rxF)

T
x¼�x (3)

where rxF is the row of the derivatives of F with respect to
the state variables xi, i ¼ 1, . . . , M, evaluated at x ¼ �x. In
FD-SASA, @A=@pn is approximated by DnA=Dpn, where
Dn is the finite change resulting from the perturbation Dpn
of the nth parameter alone.
In a self-adjoint problem, the adjoint solution x̂ can be

expressed in terms of the original solution �x by multipli-
cation with a known complex constant k

x̂ ¼ k � �x (4)

For a complete network-parameter analysis of a K-port
network, K full-wave simulations are performed, which
yield the vectors �xj, j ¼ 1, . . . , K. Here, the subscript indi-
cates the port of excitation. In S-parameter analysis, for
example, during each simulation, one port is excited
whereas all other ports are matched. For the sensitivity of
each Skj, there exists a unique self-adjoint constant kkj
such that x̂kj ¼ kkj � �xk , j, k ¼ 1, . . . , K [11]. In the self-
adjoint case, the sensitivity formula (2) is expressed as

@Skj
@pn

¼ �kkj �
�Dkj,n, n ¼ 1, . . . , N (5)

where

�Dkj,n ¼ �xTk �
@A

@pn
� �xj (6)

is dependent solely on the original-system solutions, �xj
and �xk .
The complex constant k can be derived for any EM solver

if the analytical dependence of the network parameter on
the field solution at the ports is known. As shown in [11],
853



in a finite-element solver, kkj is

kkj ¼
1

2gkE0 k

ÐÐ
j�port

(an � Einc
j ) � (an � ej) dsj

(7)

Here, Einc
j is the incident field at the jth port, an is the unit

normal to the respective port surface, ej is the normalised
real vector function representing the modal E-field distri-
bution at the jth port [18], gk is the modal propagation con-
stant of the kth port and E0k is a user-defined excitation
magnitude for the kth port, which is usually set as 1.
In the S-parameter analysis with the MoM, kkj is given

by [11]

kkj ¼ �
2Z0

V
(k)
e V

(j)
e

(8)

Here, V (j)
e and V

(k)
e are the jth and kth port voltage sources,

respectively, usually set as 1. Z0 is the system impedance,
typically 50 V. Finally, if the derivatives of the input impe-
dance Zin are needed with the MoM solutions, the self-
adjoint constant [11]

kZin ¼ �I�2
in (9)

is used. Here, Iin is the complex current at the excited port
computed from �x.
In summary, using only the original system analysis, we

compute the network parameters as well as their derivatives
with respect to all optimisable variables. The user-defined
objective function G typically depends on the network par-
ameters analytically and its derivatives are obtained from
those of the network parameters.
Finally, we note that the self-adjoint constant for a given

simulation setup may also be determined empirically, that
is, without any knowledge of how the network parameters
depend on the field solution. The constant kkj depends
only on the excitation magnitude/phase and on the modal
distribution at the excited port. See, for example, (7) and
(8). It is independent of the nature of the design parameters,
their perturbation or the mesh setup. It is then possible to
determine kkj at each frequency point of interest as the
ratio of the finite difference derivative estimate with
respect to any one of the design parameters and its adjoint
variable counterpart. For instance, in the case of the Skj
parameter

kkj ¼
DnSkj=Dpn

� �Dkj,n

, n [ 1, . . . , Nf g (10)

where DnSkj=Dpn is the finite difference approximation of
the Skj derivative at the response level obtained through par-
ameter perturbation. The denominator is determined by the
self-adjoint expression in (6).

3 Hybrid algorithm

Since in the FD-SASA, the derivatives of the system matrix
are computed with a finite difference approximation, it
requires at least N matrix fills. To eliminate this overhead,
here, we compute the system matrix derivative applying
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Broyden’s formula [14] to the elements of A

@A

@pn

� �(kþ1)

¼
@A

@pn

� �(k)

þ

A(p(k) þ h(k))�A(p(k))�
PN
j¼1

@A=@pj

� �(k)
h
(k)
j

h(k)Th(k)

� h
(k)
n , n¼ 1, . . . , N

(11)

A(p(k)) is the system matrix at the kth iteration, when the
design parameter space is p(k), and h(k) is the increment
vector in the design parameter space between the kth and
(kþ 1)st iteration; h

(k)
j is jth element of h(k). The resulting

sensitivity analysis algorithm is referred to as B-SASA.
We note that the derivatives of the system matrix in the
first optimisation iteration (when the preceding @A(0)=@pj,
j ¼ 1, . . . , N , estimates are not available) are obtained
with forward finite differences. In other words, the optimis-
ation process based on B-SASA is initialised by an
FD-SASA Jacobian at p(0). The system matrix derivatives
are updated iteratively thereafter. The iterative update
requires negligible computational resources compared
with N matrix fills.
Similar to the adjoint techniques in [16–17], where

in-house MoM solvers were used for both the forward and
the adjoint analyses, B-SASA requires that the discretisa-
tion mesh remains of the same topology from one optimis-
ation iteration to the next. This preserves the size of the
system matrix as well as the numbering of the mesh
nodes and mesh edges.
The derivatives of the Broyden update are less accurate

than those in the FD-SASA. The inaccuracy tends to be sig-
nificant when the increment of the design parameters is very
small, for example, near a local minimum, as catastrophic
cancellation occurs. We propose two criteria to switch
from B-SASA to FD-SASA: G(p(k)) . G(p(k�2)) and
khkk � d . Here, G is the objective function (defined
through the network parameters) and d is the minimum
edge length of the mesh elements. In effect, the first cri-
terion checks for possible divergence because of inaccurate
Jacobian, whereas the second criterion checks whether the
step taken in the shape-parameter space has become
smaller than the resolution of the numerical grid. The algor-
ithm checks the two criteria at every iteration. If either one
or both criteria are satisfied, a switch from B-SASA to
FD-SASA occurs – the forward solver is allowed to re-mesh
the structure completely and the Jacobian is computed with
FD-SASA. After a switch occurs, only one optimisation
iteration is performed with the FD-SASA Jacobian, after
which the algorithm returns to B-SASA. This B/FD-
SASA method is simple and guarantees acceptable accuracy
of the system matrix derivatives even for small increments
in the design parameter space.

4 Numerical results

We perform gradient-based optimisation using the response
Jacobian provided by: (i) the proposed hybrid B/FD SASA
approach, (ii) the FD-SASA and (iii) the forward finite
difference approximation at the response level denoted by
FD. We compare the performance of the optimisation algor-
ithm with the three sensitivity analysis approaches in terms
of number of iterations and the overall CPU time.
IET Microw. Antennas Propag., Vol. 1, No. 4, August 2007



4.1 Validation with the FEM

We validate our algorithm with a FEM solver FEMLAB
[19] by two numerical examples: an H-plane waveguide
filter and an inverse imaging problem.

4.1.1. H-plane waveguide filter: The six-section
H-plane filter is shown in Fig. 1 [20]. The rectangular wave-
guide is of width 3.485 cm and height 1.58 cm. The cut-off
frequency of the TE10 mode is 4.3 GHz. The six resonators
are separated by seven septa of finite thickness
d ¼ 0.625 mm. The design parameters are the resonator
lengths L1, L2 and L3, and the septa widths W1, W2, W3

and W4. A minimax objective function is used with the
design specifications

jS21j � 0:52 for f � 5:0GHz

jS21j � 0:98 for 5:5 � f � 9:0GHz

jS21j � 0:7 for � 9:5GHz: (12)

We choose 12 uniformly distributed points in the frequency
range from 4.5 to 10.0 GHz. The initial design is given by
p(0) ¼ [L1 L2 L3 W1 W2 W3 W4]

T ¼ [12 14 18 14 11 11 11]
T (all in mm). Its jS21j response is plotted in Fig. 2.
We use Madsen’s minimax optimisation algorithm [21],

which employs a trust region, and the Matlab minimax
algorithm, which employs SQP. We refer to these algor-
ithms as TR-minimax and SQP-minimax, respectively.
For TR-minimax, the initial trust-region radius is set to
r0 ¼ 0:03 � kp(0)k2. Generally, the choice of the initial
trust region radius depends on the nonlinearity of the objec-
tive function at the initial point [22]. Many algorithms use
an ad hoc value and the user is expected to provide an
initial guess. This is the case with this particular optimis-
ation code. The value above was chosen so that it is suffi-
ciently smaller than 0:1 � kp(0)k2 – a value recommended
for a weakly nonlinear problem – since from previous
experience we know that the H-plane filter design problem
is strongly nonlinear. We point out that there exist fully
automated approaches to determining the initial trust
region radius, which exploit the response and/or the
Jacobian, the Jacobian norm or the distance to the Cauchy
point at p(0) [22, 23]. For example, Matlab’s fmincon algor-
ithm, which employs a trust region, computes the initial
trust region radius automatically. We use this algorithm in
our second example.
We use the FD-SASA, the B/FD-SASA and the FD to

supply the Jacobian in three separate optimisation
processes. The response Jacobian is calculated at all 12 fre-
quency points of interest. Note that each of these Jacobians
is a continuous function in the design parameter space

Fig. 1 Six-section H-plane filter
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although the Jacobian of the minimax objective function
is not. The minimax optimisation algorithms operate with
the complete set of Jacobians.
Figs. 3 and 4 show the parameter step size and the objec-

tive function against the iterations in the TR-minimax
optimisation with all three sensitivity analysis techniques.
Figs. 5 and 6 illustrate the same three cases with
SQP-minimax. In Table 1, the optimal designs achieved
by the three TR-minimax approaches are compared.
Table 2 shows the number of iterations and the time cost

of the three optimisation processes. We notice in Table 2
that SQP-minimax takes longer than TR-minimax despite
the smaller number of iterations. This is because of
SQP-minimax may call for a system analysis several
times per iteration in order to determine the next step in
the parameter space. TR-minimax needs only one system
analysis per iteration.
One FEM simulation (full-frequency sweep) of the struc-

ture takes �43 s. One system analysis (full-frequency
sweep) involves obtaining the S21 parameter and its seven
derivatives with respect to the design parameters. To
accomplish this, eight FEM simulations are necessary
using the FD sensitivity analysis (�344 s per system analy-
sis). As Table 2 shows, TR-minimax with FD sensitivities
takes 11 iterations to converge. The simulation time
(11 � 344 ¼ 3784 s) accounts for almost all of the total
time of the optimisation process, which is �3825 s. The

Fig. 2 Insertion loss of the initial and the optimised H-plane
filter designs

Fig. 3 Parameter step size against optimisation iterations in the
TR-minimax optimisation of the H-plane filter
855



remaining difference of�40 s accounts for data transfer and
the calculations of the optimisation algorithm. Within this
time, the total overhead associated with the FD estimation
of the seven derivatives is �3311 s, that is, the overhead
per system analysis is 301 s. This derivative estimation
overhead is reduced to 172 s in FD-SASA, whereas in
B-SASA it is 44 s. We note that in the TR-minimax optim-
isation process, the B/FD-SASA method switches from
B-SASA to FD-SASA once at the 5th iteration. Thus, the
Jacobian estimation time (524 s) includes one FD-SASA
computation and eight B-SASA computations. With
SQP-minimax, B/FD-SASA does not switch and only
B-SASA is invoked in the Jacobian calculation. The
optimal points of the different methods are practically the
same and so are their responses (see Fig. 2).
The reduction in the overhead of the sensitivity calcu-

lation as well as the overall time of the optimisation
process with B/FD-SASA becomes increasingly pro-
nounced as the size of the system matrix and the number
of optimisable parameters increase.

4.1.2 2-D inverse problem: The 2-D inverse imaging
problem is shown in Fig. 7. The lossy inhomogeneous struc-
ture is illuminated by a TEM wave for frequencies from 5 to
9 GHz with an interval of 0.5 GHz. The objective is to
determine the position and size of an object immersed in

Fig. 4 Objective function against optimisation iterations in the
TR-minimax optimisation of the H-plane filter

Fig. 5 Parameter step size against optimisation iterations in the
SQP-minimax optimisation of the H-plane filter
856
the host medium. The object is modelled as a rectangular
area with width w and length l. The distance to the interface
is d. The object has a relative permittivity 1r2 ¼ 45 and
specific conductivity s2 ¼ 4:5 . The host medium is charac-
terised by 1r1 ¼ 12 and s1 ¼ 0:5 . The computational
domain is surrounded by absorbing boundaries. To obtain
a target response, we perform a simulation with the target
shape parameters �p ¼ [w l d] ¼ [44 55 5] (in mm). The
target response is the magnitude of the reflection coefficient,
j �S11j.
We optimise the three shape parameters so that the simu-

lated response matches the target response. The
least-squares objective function is

G(p) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX9
i¼1

[jS11(p, fi)j � j �S11(fi)j]
2

vuut (13)

Here, jS11(p, fi)j is the response from the FEM forward
solution at the frequency fi, and j �S11(fi)j is the target
response. We use Matlab’s fmincon optimisation algorithm,
which uses a trust region and sets the initial trust region
radius automatically. The evolution of the objective func-
tion and the parameter step size against iterations are
shown in Figs. 8 and 9.
We use the FD-SASA and B/FD-SASA methods to

supply the Jacobian to the optimisation algorithm. The
initial guess of the shape parameters is p(0)[w l d]
[40 40 20] (in mm) with both methods. Both FD-SASA
and B/FD SASA result in an optimisation, which takes 8
iterations to converge to an optimal point. The optimal
point with the FD-SASA is x

� (8)
FD�SASA ¼ [42:8 57:7 5:51]

(in mm), while that of the B/FD-SASA is x
� (8)
B=FD�SASA ¼

[44:2 54:1 5:97] (in mm). The B/FD-SASA switches to
the FD-SASA method once at the 4th iteration. The CPU
time required by the optimisation using FD-SASA and B/
FD-SASA is 7328 and 4330 s, respectively. Thus, the
B/FD-SASA optimisation is about 1.7 times faster than
the FD-SASA one. The computational gain increases
as the number of optimisable parameters increases and the
size of the FEM system matrix increases [11].

4.2 Validation with the method of moments

We consider the stacked probe-fed printed annular ring
antenna of [24], which is shown in Fig. 10. The simulations
are performed with the commercial simulator FEKO [25]

Fig. 6 Objective function against optimisation iterations in the
SQP-minimax optimisation of the H-plane filter
IET Microw. Antennas Propag., Vol. 1, No. 4, August 2007



Table 1: Optimal designs using different sensitivity analysis methods with TR-minimax

L1 L2 L3 W1 W2 W3 W4

FD (mm) 12.226 14.042 17.483 14 11 10.922 11.341

FD-SASA (mm) 12.233 14.088 17.485 14 11 10.987 11.378

Mixed B/FD-SASA (mm) 12.131 13.855 17.809 14.01 11.1 11.098 11.191

Table 2: Number of iterations and time comparison between the different optimisation methods

TR-Minimax SQP-Minimax

FD FD-SASA B/FD-SASA FD FD-SASA B/FD-SASA

Optimization iterations 11 11 9 8 8 6

Calls for EM simulation 88 11 9 312 39 55

Response computation (s) 473 473 387 1677 1677 2365

Jacobian estimation (s) 3311 1892 524 11 739 6708 2934

Total optimisation time (s) 3825 2403 949 13 561 8523 5479

Notes: (i) The EM simulator requires �43 s to compute the field and the S-parameters. (ii) TR-Minimax calls the simulator once per
optimization iteration. (iii) SQP-Minimax calls the simulator many times per optimization iteration
based on the MoM. The antenna is printed on a printed
circuit board (PCB) with 1r1 ¼ 2:2, d1 ¼ 6:096 mm for
the lower substrate, and 1r2 ¼ 1:07, d2 ¼ 8:0 mm for the
upper substrate. The dielectric loss tangent is 0.001 for
both layers. The radius of the feed pin is r0 ¼ 0:325 mm.
The design variables are the outer and inner radius of
each ring and the feed position, namely,
p ¼ [a1 a2 b1 b2 rp]

T. The design specification is

jS11j � �10 dB for 1:75 � f � 2:15GHz:

We supply the Jacobian calculated by our B/FD-SASA
and FD-SASA techniques to the TR-minimax optimisation
algorithm. The initial trust-region size is set to
r0 ¼ 0:05 � kp(0)k2. The starting point is p(0) ¼ [a1 a2 b1
b2 rp ¼ [30 30 20 10 10] (in mm). The reflection jS11j
of the initial design is plotted in Fig. 11.
The B/FD-SASA algorithm switches to FD-SASA three

times at the 4th, 9th and 10th iterations. Both approaches
converge within 11 iterations. The optimal designs
emerge as p

� (11)
B=FD�SASA ¼ [33.139 28.836 18.592 9.9592

8.8593] (in mm) and p
� (11)
FD�SASA ¼ [33.088 28.992 18.437

9.849 8.5712] (in mm). For comparison, their responses
are plotted in Fig. 11.
Figs. 12 and 13 show the parameter step size and the

objective function against iterations, respectively. From
Figs. 11–13, it is clear that both designs are practically
identical. The overall time cost for the optimisation with
the B/FD-SASA is 2115 s against 4358 s for the FD-
SASA optimisation. Again, significant time saving is
observed.

Fig. 7 2-D inverse imaging problem
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5 Software requirements: mesh control and the
system matrix

The Broyden update of the FEM and MoM system matrix
derivatives requires that the mesh topology is preserved
from one optimisation iteration to another. This ensures
that the matrix size and the numbering of the mesh nodes
and edges are preserved – the mesh is only locally stretched
or shrunk.
In general, the global coordinates of the nodes as well as

the length and orientation of the edges of the topologically
fixed mesh change when shape parameters change;
however, these changes are neither introducing new state
variables nor eliminating existing state variables. With
in-house solvers, such mesh control can be easily realised.
With commercial simulation packages, advanced mesh-
control features must be used. For example, with FEKO,
restrictions can be imposed locally on a segment of the struc-
ture [26]. This feature is referred to as “local meshing”. An
example is shown in Fig. 14 where a printed ring is
meshed via four concentric circular bands of triangular
elements. There, the number of mesh edges along the five
circular contours (thick lines) is topologically fixed at 13,

Fig. 8 Parameter step size against optimisation iterations using
the least-squares algorithm in the 2-D inverse problem
857



19, 25, 32 and 39, respectively. While the inner and outer
radii of the printed ring change during the optimisation
process, the mesh topology remains the same. With
FEMLAB, the local mesh control is realised through the
manipulation of the exported mesh file, that is, the file

Fig. 9 Objective function against optimisation iterations using
the least-squares algorithm in the 2-D inverse problem

Fig. 10 Geometry of a stacked probe-fed printed double annular
ring antenna

Fig. 11 Responses at the initial design and the optimal designs
in the double annular ring example
858
which contains the coordinates of all mesh nodes of the
initial structure. At each design iteration, the optimisable
parameters change and the coordinates of affected mesh
nodes are adjusted automatically, thereby generating a
new mesh file for the next system analysis.

Fig. 12 Parameter step size against optimisation iterations using
TR-minimax in the double annular ring example

Fig. 13 Objective function against optimisation iterations using
TR-minimax in the double annular ring example

Fig. 14 Demonstration of local meshing of the stacked probe-fed
printed double ring antenna
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In addition to the mesh control, the FD-SASA requires
access to the system matrix so that the system matrix deriva-
tives can be computed [11]. Since B-SASA is initialised
with a finite difference set of matrix derivatives, it has the
same requirement. While most FEM and many
MoM-based commercial EM solvers allow user-defined
mesh control, only few of them give access to the system
matrix. This is the reason why the examples presented
here have been implemented in FEMLAB and FEKO –
both packages allow the system matrix export.

6 Conclusions

We have proposed an efficient and practical approach to
gradient-based EM optimisation. The proposed hybrid sensi-
tivity analysis technique (B/FD-SASA) exploits self-adjoint
sensitivities and Broyden’s update at the level of the system
matrix. It reduces the time cost of the optimisation signifi-
cantly because of the reduced overhead of the sensitivity
computation. The reduction is significant when compared
with the optimisation exploiting response-level sensitivities
as well as the optimisation exploiting our original
FD-SASA approach, where finite differences are used to
compute the system matrix derivatives. We also observe
that often the optimisation algorithms exploiting the B/
FD-SASA require fewer iterations to converge. At the
same time, the optimisation results are nearly the same as
those obtained by the optimisation algorithms based on
either the FD-SASA or the finite-difference response level
approximation. The time savings depend on the optimisation
algorithms, as well as the numerical size of the problem. For
electrically large 3-D problems with many design par-
ameters, the time savings become significant.
The proposed approach is feasible for users of commer-

cial MoM- and FEM-based simulators provided that (i)
local mesh control is possible and (ii) the system matrix is
accessible. Its potential, however, can be fully realised
through direct incorporation within existing CAD packages
where the mesh parameters and the system matrix are fully
accessible.
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