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Automated Search for Arthritic Patterns in Infrared
Spectra of Synovial Fluid Using Adaptive

Wavelets and Fuzzy C-Means Analysis
Jie Cui, Student Member, IEEE, John Loewy, and Edward J. Kendall*

Abstract—Analysis of synovial fluid by infrared (IR) clinical
chemistry requires expert interpretation and is susceptible to sub-
jective error. The application of automated pattern recognition
(APR) may enhance the utility of IR analysis. Here, we describe
an APR method based on the fuzzy C-means cluster adaptive
wavelet (FCMC-AW) algorithm, which consists of two parts: one
is a FCMC using the features from an -band feature extractor
adopting the adaptive wavelet algorithm and the second is a
Bayesian classifier using the membership matrix generated by the
FCMC. A FCMC-cross-validated quadratic probability measure
(FCMC-CVQPM) criterion is used under the assumption that the
class probability density is equal to the value of the membership
matrix. Therefore, both values of posterior probabilities and
selection criterion can be obtained through the member-
ship matrix. The distinctive advantage of this method is that it
provides not only the ‘hard’ classification of a new pattern, but
also the confidence of this classification, which is reflected by the
membership matrix.

Index Terms—Adaptive wavelets, arthritis, infrared spectrum,
pattern recognition.

I. INTRODUCTION

ARTHRITIS remains a difficult disease to diagnose [1], [2].
It is particularly difficult to assess its early stage of de-

velopment, partially due to the overlap of normal and abnormal
joint physiology.

The analysis of synovial fluid (SF) plays a major role in
the diagnosis of arthritis [3], [4], which usually starts with
recording the volume and the gross appearance of the fluid (i.e.,
color, clarity, viscosity and mucin clot), or gross analysis. Other
procedures include microscopic tests, microbiologic tests, sero-
logic tests, and chemical tests [1]. However, the conventional
approaches usually make diagnosis subjective, as well as po-
tentially labor intensive and costly. Because usually no single
test can distinguish among the various possible disorders, it
may take several months or years before the clinical symptoms
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become sufficiently distinctive to make a definitive diagnosis,
by which time irreversible damage to the joint may occur.

Some indirect measures of arthritic activity exist: C-reactive
protein and erythrocyte sedimentation rate correlate with dis-
ability [3]. However, these measures reflect the inflammatory re-
sponse rather than the synovial involvement. Recently, some ev-
idence has been presented that suggests joint fluid might contain
early indications of degenerative joint disease [5]–[7]. Infrared
(IR) spectral features were found to specifically correlate with
early versus late rheumatoid arthritis. We questioned if these
features were accessible to automated pattern recognition tech-
niques that potentially enhance the sensitivity and specificity of
diagnosis.

Infrared spectrum (IRS) provides a molecular fingerprint
based on the constituent functional group’s characteristic vi-
brational energy [8]. For a biological fluid or tissue each of the
major biomolecules present will contribute to the spectrum.
The IRS of SF, thus, should be highly characteristic. If the
disease process in the arthritic joint results in changes in the
composition of the SF, this will alter the molecular fingerprint
obtained by infrared spectroscopy, and the change in the fin-
gerprint should be diagnostic. In addition, subtle biochemical
differences may be detected through changes in the fingerprint
of SF before there is significant physical manifestation of the
disease process, allowing diagnosis at an earlier stage [7].

The potential value of semi-automatic IRS anal-
ysis of arthritis has been explored and demonstrated
in a series of studies that exploited the near in-
frared (4000 –13 300 ) and middle infrared
(400 –4000 ) regions [5]–[7], [9], [10]. The
advantages of their methods are that combined application
of infrared spectroscopy and pattern recognition principles
provided a rapid (of the order of minutes), nonsubjective
method for the diagnosis of the major forms of arthritic
disorders. An important technical advantage is that the method
requires minute volumes (5–20 ) of synovial fluid. Although
these studies demonstrated that IR analysis of SF could aid in
differential diagnosis of arthritic disorders, some limitations
exist. First, they adopted correct rate (CR), the ratio of the
number of correctly classified samples to the total number, as
the sole criterion to classify the data. The CR criterion proved
quite variable, possibly due to the relatively small cohort
size. Second, they provided “crisp” or “hard” classification at
the completion of the algorithm; while an alternative “soft”
classification approach provides a confidence measure when a
new pattern is assigned to a class.
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Published approaches to feature extraction for SF character-
ization have capitalized the relative magnitude and position of
absorption peaks. The SF IR “fingerprint” is characterized by a
series of absorption peaks in the spectrum. On the one hand, the
position of the peaks is a characteristic of a functional group.
In signal processing, these peaks are selected as instantaneous
changes and contribute mainly to the high-frequency compo-
nents in signals. These components are not well characterized by
traditional Fourier transform (FT). On the other hand, the shape
and the width of an absorption peak (combined with the shift
information of the peak) are due to a series of peak absorptions
in a functional group frequency neighborhood. These absorp-
tions reflect the chemical environment of the specific function
groups. Previous papers [5], [6] arduously searched spectra to
identify discrete points as features. By ignoring the shape of the
spectrum, the cost for feature extraction was very high.

In this paper, we present an approach to automating analysis
of SF IRS with the purpose of making IRS a routine lab pro-
cedure that a nonspecialist can handle. Our approach empha-
sizes two points: First, we adopt -band adaptive wavelet fil-
ters to extract features. With this approach, both the shape and
the position of the peaks, or the low- and high-frequency com-
ponents, in a spectrum are evaluated in the process of feature
extraction. Second, we employed fuzzy C-means classification
[11] that gives the probability confidence of the classification.

II. BACKGROUND

A. System Outline

In principle, nonsubjective diagnosis with the assistance
of the IR analysis includes two distinct steps: obtaining high
quality spectra within the desired IR segment, and the design
of an effective algorithm of classification.

Our hypothesis is that retrievable characteristics of each dis-
ease variant will be encoded in the spectrum. In order to form
effective and robust coefficients of the classifier, the spectra
in training phase must be correctly classified by a physician
beforehand.

We focused on mid-IR region since studies [5], [7]
have indicated that the C-H stretching absorption band
(2800 –3050 ) might have extraordinary signifi-
cance in classification. Unfortunately, water presents a strong
absorption in mid-IR too. While our ultimate objective is to
reduce or eliminate processing in these experiments, in order to
minimize the potentially dominant water absorption band, we
employed a thin dry film of SF.

In the following section, we describe the principles of the
adaptive wavelet algorithm for feature extraction and the fuzzy
C-means cluster (FCMC) [11].

B. The Adaptive Wavelet Algorithm for Feature Extraction

A theory of wavelet analysis has been well developed by a
number of researchers, e.g., [12]–[14]. The adaptive wavelet al-
gorithm used in this paper is based on the work of [15]–[19].
Important definitions and results are presented below. A more
detailed explanation is presented in [20].

Denote as the th scaling coefficients at level , and
as the th wavelet coefficients at level . When we consider a
wavelet matrix as a filter bank, the filtering operations from level

to are then described by [16]

(1)

for , and , where is the
desired level of decomposition, and and are the rank and
genus [17] of the wavelet matrix respectively. It is clear that the
number of coefficients is reduced to when moving from
one level to the next. This is also the standpoint for reducing the
dimensionality of the feature vector that is one segment of these
coefficients.

Define coefficients vector by

...

(2)

and define the feature vector at level by

if
if (3)

It is assumed that the original discrete signal represents the
scaling coefficients at level zero, , for ,
where is the dimension of the signal. Apparently, if levels
of the decomposition are required, then the dimensionality of the
data should be . Furthermore, when periodic boundary
conditions are applied to the decomposition (1), we have

(4)

Before applying the algorithm, values for , , , and must
be specified.

C. Fuzzy C-Means Classification

1) Choice of the Discriminant Criterion: The analysis of
FCMC reflects the information on the membership values of
samples in different classes [21]. However, further effort is
needed to optimize the classification of these samples. One
approach is to convert the fuzzy set into a crisp set, and then
chose a criterion based on CRs. This method has been adopted
widely and the simple explanation credits its advantage.

The disadvantages of this criterion are equally apparent: first,
when the sample size is small, the value of CR may vary greatly.
For example, if the size of the sample is less than 100, every
misclassification will result in a rate change greater than 1%;
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second, CR is a discrete measure which may not reveal the fun-
damental characteristics of the sample set; third, the use of CR
assumes that all the samples in the set have the same credit in
classification. Thus, it ignores the fact that some samples may
be closer to the center of the cluster and should be given more
credits and some others locate on the edge of the cluster, which
are perhaps of less importance in the evaluation of the perfor-
mance of classifier.

For these reasons, a statistical approach, based on a variant
of the cross-validated quadratic probability measure (CVQPM)
[22], was taken to optimize selection criteria. This variant obeys
the principles of Bayesian classification, takes advantage of the
membership matrix and assesses the trustworthiness of class
predictions made by the discriminant model.

2) Bayesian Classification: If one is interested in predicting
the class membership of an observation, then one should
aim to minimize the risk of misclassifying the object. This
may be achieved by using a classification theory based on
Bayes decision rules [23]. Suppose that there are possible
classes , and -dimensional feature vectors,

, in the feature space. Consider the classification
problem of assigning the object , , into
one of predefined classes. The Bayes rule assigns to
the class , , which maximizes the posterior
probability [24]

(5)

where is the prior probability of belonging to class , and
is the class probability density, i.e., the probability of

object arising from class , so it requires that

(6)

In practice, the class probability densities are often assumed
to follow a multivariate normal distribution and can be written
as

(7)

If indicates that is from class and the total number
of samples in in training set, then

(8)

is the mean vector of class , and

(9)

is the mean vector of class . Typically, and are calculated
form the training data.

If Bayesian linear discriminant analysis is employed, it as-
sumes the class covariance matrices in (7) are equal, and are
replaced with a pooled covariance matrix [25]

(10)

where , to give

(11)

Bayesian linear discriminant analysis is a special case of
Bayesian discriminant analysis, which is particularly suitable
for small sample size.

3) FCMC-CVQPM Discriminant Criterion: The basic form
of most probabilistic discriminatory measures is

(12)

where is the appreciation score for . The simplest prob-
abilistic function is the average probability that an object is as-
signed to the correct class, which has the appreciation score

(13)

where is the posterior probability for the true class
of . If it is assumed that the class probability densities follow
a multivariate normal distribution and the class covariance ma-
trices are equal, the posterior probabilities can be calculated by
substituting (11) into (5).

The quadratic appreciation score used is formulated as
follows:

(14)

When substituting (14) into (12), we obtain quadratic proba-
bility measure

(15)

Consider the properties of the quadratic probability measure in
two extreme cases: if samples are completely classified into cor-
rect classes, i.e., and , , then

. If completely misclassified, i.e., and
, , then . Thus, CVQPM ranges

from zero to one.
It has been shown that generally the quadratic probability

measure is superior to CR criteria when used for assessing the
performance of discriminant models [18], [26]. Usually, larger
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TABLE I
FCMC-AW ALGORITHM: INITIAL MEMBERSHIP MATRIX

Test data with noise level 8
z = 2, m = 4, g = 3, L = 2, and t = 0

� , � , � are three predefined classes

values of the CVQPM are preferred, since this infers the classes
can be differentiated with a higher degree of certainty.

However, the common approach above is based on the as-
sumption of multivariate normal distribution of the class prob-
ability and of the equal class covariance, which is not always
guaranteed. Furthermore, the calculation of the class probability
densities by (7) through (11) is quite complicated and could
occupy a lot of computing resources. On the other hand, be-
cause we have already obtained information from the analysis
of FCMC and the membership matrix providing with the confi-
dence of classification for every sample, can we take advantage
of it?

An FCMC-CVQPM criterion that combines these features
has been proposed. The basic idea is to use the information in-
cluded in the membership matrix (cf. Table I). is the mem-
bership value of sample belonging to class , which satisfies

(16)

Recall the property of the class probability density (6),
and are equal mathematically. Under this assumption,
replacing in (5) by , we have

(17)

and subsequently and . Obviously, if all the
a priori probabilities of classes are equal, then

(18)

For Bayesian classification, the class probability density func-
tion , the probability of object arising from class

, must satisfy condition (6). Similarly, the membership value
, a measure of the degree of the belonging of object to

class , must satisfy similar conditions

(19)

(20)

(21)

where is the number of classes and the number of objects
to be classified. We use the membership value to approximate
the probability density functions in Bayesian classifier.

The principal advantages of the measure of FCMC-CVQP
are that it doesn’t waste the information from FCMC and the
complexity of calculation is less than the traditional one. Fur-
thermore, not only does it have a indicator of total quality of
classification, (the function of the optimizer), but also it
provides quantitative values, , reflecting the confidence of
every sample belonging to each class. Finally, in principle, the
assumption of multivariate normal distribution of the class prob-
ability and of the equal class covariance is not necessary. This
should enhance the robustness of the algorithm when operating
on real data where these criteria may not be met.

III. METHODS AND RESULTS

A. Experiments Using Simulated Test Figures

Simulated data were constructed as described below
(22)–(24). The ramp and rectangular functions are intended to
simulate the broad spectral features that we eventually intend
to classify in the real spectra. The ‘rectangular’ and ‘ramp’
waveforms shown in the simulation feature both continuous
areas and abrupt changes. Abrupt changes are characteristic
of infrared spectra (e.g., Fig. 7). The large absorptions peaks
within the Amide band (1273 –1800 ) or the small
peaks in the C-H stretching band (2778 –3149 )
feature sharp discontinuities. The simulation is intended to de-
termine the behavior of the algorithm on well defined signals.

The dimensionality of the simulated data, i.e., the
number of variables, is 128. There are totally three classes. A
single spectrum from each class is generated as follows, for

(22)

(23)

(24)

Here, and are two random values initialized by
and , where denotes

the integer-valued uniform distribution. is the char-
acter function on the interval [a, b], i.e.,

otherwise
(25)

and are also random values that abide by normal distribu-
tion . The four random variables , , and func-
tion as added noise on the figure. In order to study the influence
of noise on the ability of the algorithm, noise was added in nine
incremental levels ranging from zero to eight.

For example, Fig. 1 illustrates the spectra without noise,
where and are the middle numbers of their
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Fig. 1. Simulated test figures with noise level zero.

Fig. 2. Simulated test figures with noise level five. The average signal to noise
ratio is 12.8 db.

Fig. 3. Simulated test figures with noise level eight. The average noise level is
5.2 db.

interval. Fig. 2 and Fig. 3 show the spectra with noise level 5
and level 8 respectively. In each of these two figures, a totally
nine spectra are collected with three spectra in each class.

TABLE II
FCMC-AW ALGORITHM: OPTIMIZED MEMBERSHIP MATRIX

Test data with noise level 8

The increase in vagueness of the figures between different
classes can be quantitatively reflected in the membership matrix.

The experiments were carried out with different combination
of the parameters (fuzzy index), , , and , and then the
values of and CR were collected. However, to calculate
CR, we need to know to which predefined class the spectrum is
assigned. Usually we can only know the distribution of samples
in the cluster, but not know to which predefined class the cluster
correspondents after FCMC. To do this, a “marker figure” with
known classification was defined. Recall that a figure will be as-
signed into a class if it acquires the highest posterior probability
for that class. Thus, by definition, the marker figure obtains the
highest probabilities for their predefined classes. In practice, for
some kinds of clustering, if more than one marker obtains the
highest posterior probability for a cluster, CR could not be cal-
culated and this results in a “failed cluster.”

Since we are interested in studying the case of small sample
set (fewer than 100 samples, typically), the choice of the param-
eters will be considered under this assumption.

B. Simulation Experiment Results and Discussion

Table I shows a typical membership matrix with three clusters
and nine sample spectra at the initialization of the FCMC-AW
(adaptive wavelet) algorithm. The noise level was eight and the
parameters were , , , and . In this
table, stand for three predefined classes, and
are three marker spectra indicating three classes respectively as
is shown in Fig. 3. For simplicity, the first three samples
came from class , from , and from .
Since it was assumed that the prior probabilities of different
classes were the same, the membership values were equal to the
posterior probabilities of the samples. Shaded blocks point out
the highest posterior probabilities of different samples, which
also show the classification of the spectra, according to Bayesian
discriminator. Thus, the CR was one. The measure of can
be obtained from the table, which was 0.8027.

At the completion of the algorithm, the quadratic measure
was 0.9967 and CR was still one. The membership matrix

was presented in Table II. It can be observed that the posterior
probabilities of the samples were enhanced.

Table III shows a membership matrix upon initialization of
the algorithm with the same parameters as is shown in Table II
except that the noise level is 5. The was 0.9925. Note that
the for Table III was 23.7% higher than that for Table I.
Thus, can reflect the degree of the fuzziness of the classi-
fication.

With fuzzy index set to 2 and the other parameters set as
follows: , , , we consider the choice of band
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TABLE III
FCMC-AW ALGORITHM: INITIAL MEMBERSHIP MATRIX

Test data with noise level 5

Fig. 4. Average and standard deviation of M at the initialization of the al-
gorithm at the band of t = 0; 1; 2; 3. The noise level is 8.

TABLE IV
INITIAL AND FINAL MEMBERSHIP VALUES WITH DIFFERENT VALUES OF m, g,

AND L AT NOISE LEVEL EIGHT

for , 1, 2, and 3, based on the highest in the algo-
rithm. The average and standard deviation of 10 tests of
at the initialization with noise level 8 is shown in Fig. 4. The
results shown in Fig. 5 indicate that the at has the
highest value and this was carried forward in the optimization
procedure. For other values of , , and , band still had
the highest at the initialization.

We next considered the choice of other parameters: , and
. The optimization procedure did not produce significant better

results using the test figures at noise level less than five. How-
ever, significant improvement was achieved using the test fig-
ures with higher noise levels (Table IV).

Optimal values for , and , based on the calculation
were obtained (Fig. 5). attained its maximum value when

, and .

Fig. 5. Optimization of M using m, g, L parameters at noise level 8.

Fig. 6. M for adaptive and fixed wavelets using test figures with noise levels
5 and 8. AW, adaptive wavelet; DW, Daubechies wavelets; CW, Coiflet wavelets;
SW, Symlet wavelets, and BW, biorthogonal wavelets.

Recall that we are interested in classifying small samples. The
recommended ratio of feature vector to the sample size dimen-
sion is 1 to 10. The length of the original simulated data was
128 and consequently for and , the dimension of
feature vector was , a satisfactory value. Although
the reached a maximum when was 4, was chosen
to reduce calculation complexity. Thus, the choices of parame-
ters for simulated sample set were , , ,
and . For this setting of parameters, 90 test figures were
tested after training with 9 predefined simulated samples. The
value of at the completion of the algorithm for the figures
with noise level 5 was 0.9925 0.0021 and the CR was 100%; at
noise level 8 was 0.8839 0.091 and the CR was 98.67%,
indicating an average mis-classification of 1.2 spectra.

Finally, we should highlight the advantage of using an adap-
tive wavelet as opposed to a predefined wavelet. It should be
noted that the filter bands of the fixed wavelets was a fixed
number . Fig. 6 presents the values of at the com-
pletion of the algorithm for the 90 simulation spectra with noise
levels 5 and 8 respectively. The number of filter bands of the
adaptive wavelets was .

It is demonstrated that the values of calculated by the
adaptive wavelet algorithm were significantly higher than those
by fixed wavelets when the number of the filter band is .
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Since adaptive wavelets algorithm can search the highest effec-
tive classification when is more than two it has a far greater
potential for further improving the results.

C. Experimental Results Using Synovial Fluid (SF) and
Cerebral Spinal Fluid (CSF)

Physicians at Royal University Hospital aspirated SF sam-
ples during surgery on knee and hip joints. CSF samples were
aspirated by the physicians prior to myelography. All diagnoses
were made by the rheumatologist in attendance, based upon es-
tablished criteria, using standard clinical and laboratory tests.

Infrared spectra were recorded on a Digilab FTS 60 FT-IR
spectrometer equipped with a liquid nitrogen cooled mercury
cadmium telluride detector and continuously purged with dry
air. For each sample, 256 mid-IR interferograms were recorded,
signal averaged, and Fourier-transformed to generate a spectrum
with a nominal resolution of 2 . To facilitate inter-sample
comparison the spectra were normalized to maximum intensity.

1) Classification of SF Samples: We had a total of seven
SF specimens with diagnostic information, including three
fluid specimens drawn from patients suffering from rheumatoid
arthritis (RA), three from patients suffering from osteoarthritis
(OA), and one from a patient suffering from trauma without
evidence of arthritis. The latter specimen was used as control in
the classification of SF’s. The three RA spectra were denoted
as RA1–RA3, OA spectra as OA1–OA3.

Since the size of the sample set was very limited, it was not
practical to divide the set into a training set and a testing set.
The leave-one-out (LOO) [27] method was employed to test
the effectiveness of the algorithm. Under cross-validation, the
available data are divided into disjoint sets; models are
then trained, each on a different combination of par-
titions and tested on the remaining partition. Cross-validation
makes good use of the available data since each pattern is used
as both training and testing data. Cross-validation is especially
useful where the amount of data is too small to form the usual
training and testing data sets. The most extreme form of cross-
validation, where is equal to the sample number is known as
leave-one-out cross validation. Following this idea, in our ex-
periments, every specimen was sampled with two spectra, and
the algorithm was trained using one of the spectra. After the
optimal wavelet matrix was found, another spectrum of the
same specimen was applied to the discriminator to determine
its classification.

The experiments revealed that the algorithm obtained the
highest in the training phase when the parameters were
set as: , , and . Three approaches to
training the algorithm were investigated. The first way was to
use the whole spectrum (1,273 –3,982 ) to train the
algorithm (cf. Fig. 7). The CR of classification was 100% and
the value of was 0.9501. The second way was to use only
the Amide band of the spectrum (1273 –1800 ) to
train the algorithm. The value of was reduced to 0.9050
and the CR was 85.71% with one misclassified spectrum. The
third way was to use only the C-H stretching band of the sample
spectrum (2778 –3149 ) in the training of the algo-
rithm. Although only 384 points of the spectrum were involved

Fig. 7. Synovial fluid marker spectra for control and the spectral difference be-
tween RA, OA, and control. Top: control spectrum; bottom: spectral difference.
(a) RA-Control and (b) OA-control.

TABLE V
VALUES OFM AND CR USING DIFFERENT RANGES OF THE SPECTRA

TABLE VI
SYNOVIAL FLUID CLASSIFICATION MATRIX USING THE AMIDE BAND

TABLE VII
SYNOVIAL FLUID CLASSIFICATION MATRIX USING THE C-H STRETCHING BAND

in training, the value of was enhanced to 0.9815 and the
CR was 100%. These measures are collected in Table V.

The table indicates that the C-H stretching band of the spec-
trum has the highest significance in classification. Because only
384 points were used and with , , the feature
vector contained only 8 points. This represents a significant re-
duction in complexity when compared to the original signal.
The sample classification matrices using the Amide and C-H
stretching bands are presented in Tables VI and VII.

In these tables the membership values are identical to the pos-
terior probabilities, since the prior probabilities of predefined
classes were the same. Since the membership value of OA3 in-
creased significantly, it compensated for losses elsewhere in the
level of agreement with the predefined classification. However,
the posterior probabilities in Table VI may indicate that OA3
may be better classified into the RA class.
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TABLE VIII
CONFUSION MATRIX OF SF CLASSIFICATION

TABLE IX
SYNOVIAL FLUID CLASSIFICATION USING AMID BAND

Table VII provides comparable results using the C-H
stretching band (Fig. 7). Here, the posterior probabilities sug-
gest that all samples are correctly classified.

A confusion matrix generated using the LOO technique was
computed to cross validate the SF classification (Table VIII).
The value of Kappa [28], [29], , was 0.60, which indicated that
the agreement between the clinical diagnosis and the classifica-
tion by the algorithm was significantly higher than the value by
random chance.

The CR was not quite satisfied (Table IX), which was mainly
due to the very limited size of the sample set, since, for seven
samples, every misclassified sample will contribute as much as
14.29% variations to the CR. Nevertheless, it may be more infor-
mative to compare with a CR. Note that the values
were less sensitive to small sample size than the CR metric. Fur-
thermore, even for a given CR the values may differ, pro-
viding the physician additional information toward alternative
classification. For example, the CRs of RA2 and RA3 are the
same, but corresponding are not. On the other hand, no
such information can be derived from the CR alone.

2) Classification of CSF: CSF spectra (Fig. 8) were em-
ployed as a reference to compare with the classification effec-
tiveness of the algorithm on SF. The seventeen CSF spectra were
collected from 10 patients diagnosed with OA, and 7 patients
considered free of OA.

The sample set was divided into a training set (3 control and
4 OA specimens) and a testing set (4 control and 6 OA speci-
mens). In the training phase, the parameters were set the same
as for the SF classification ( , , , , and

). For CSF, the Amide band was selected for classification,
since the absorption of C-H stretching band was very weak in the
CSF. The marker spectra for these two classes were the average
spectra from these two classes, shown in Fig. 8. The posterior
probabilities (Table X) suggest that the OA samples are as likely
to be classified as control as OA. The training phase for CSF
classification achieved an and a
indicating that classification was coincident with random distri-
bution. The test set confirmed this observation (Table XI). Here,
the value of from the LOO confusion matrix was around zero.
This confirms that no correlation could be found between OA
and infrared spectra using CSF spectra.

Fig. 8. Marker CSF spectra of control and OA. [Normalized absorption versus
frequency (cm ).]

TABLE X
CSF CLASSIFICATION MATRIX FOR THE TRAINING PHASE

USING THE AMIDE BAND

TABLE XI
CONFUSION MATRIX OF CSF CLASSIFICATION

IV. DISCUSSION

Previous IR correlation studies determined that features of
SF spectral features were positive indicators of arthritic disor-
ders [5]–[7], [9]. However, the analytical approach placed limi-
tations on the utility of the technique. First, they adopted CR as
the only criterion to evaluate the results of classification. Gener-
ally their results were obtained for the case of a small sample set.
As a result, the CR value proved quite variable. In this study, the
FCMC-CVQPM (measured by ) instead of CR was em-
ployed and, therefore, the evaluation of the algorithm was less
influenced by the sample size. Earlier studies adopted “crisp”
or “hard” classification. Here, we found that even for the same
CR, the “goodness” of a classification might differ. Our algo-
rithm provided this additional information as a index. In
addition, the entries of the membership matrix reflected the clas-
sification confidence of each new pattern when it was assigned
to a predefined class. This information may provide a confidence
metric for physicians in reporting a diagnosis.

The “fingerprint” of a sample is characterized by a series of
absorption peaks in the spectrum. In terms of signal processing,
these peaks are the instantaneous changes, contributing mainly
to the high-frequency components in bio-signals, which are not
well characterized by traditional FT. On the other hand, the



808 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO. 5, MAY 2006

shape and the width of an absorption peak (combined with the
shift information of the peak) are due to a series of peak absorp-
tions in its frequency neighborhood, which reflect its chemical
environment. This important information mainly contributes to
the low-frequency components of the signal and may not be
well characterized in values of discrete points. Previous reports
[5], [6] emphasized signal position and amplitude and arduously
searched the spectra to identify discrete features. Thus, they ig-
nored the shape of the spectrum and the cost for feature extrac-
tion was high.

In this paper, our approach was based on the algorithm of the
-band adaptive wavelet filters. Wavelet technology has been

widely used in signal processing to characterize instantaneous
or nonstationary signals, e.g., [30]. The -band filters used di-
vided the signal into one low- and several high-frequency bands;
the feature vectors were searched among these bands. There-
fore, both the position and the shape of the peaks, or low- and
high-frequency components, in a spectrum could be evaluated
in the process of feature extraction.

According to the experimental results, we found that the fea-
ture vector at band was more effective in the SF clas-
sification than vectors at the other bands .
We know that band consists mainly of the low-frequency
components and contributes to the envelope of the signal. Our
results are different from the previous reports [5], [6]. Here, we
found the “shape,” or the low-frequency part of the signal rather
than the “change,” or the high-frequency part had gained more
credits in classification.

The fit statistics of the experimental results were calculated
through the method of the confusion matrix and the index .
This method was first used in psychological research to study
the agreement between two judgments on the same questions
made by two independent subjects [28]. The advantage of this
method is that no statistical distribution of the samples is re-
quired, for example, as is the case in Student t-test. The value for

fluctuates between 0 and 1, where zero indicates that the coin-
cidence of the two judgments is only by random chance and one
indicates that the agreement is met without chance. The value
for the SF classification , indicates that the correla-
tion is significantly higher than chance. In contrast, that was
zero for the CSF classification indicates no correlation. These
results demonstrate that the FCMC-AW algorithm is consistent
with expected outcomes.

The sample size was limited by the number of recruits avail-
able in our 18 month window of opportunity. We adapted the
validation techniques to the small sample sizes. It should be
pointed out that although the sample size in the project was
small, the technology of AW showed great potential in IR anal-
ysis. To our knowledge, this is the first time that the AW has
been used in IR analysis. The algorithm has the impartial ability
to search features in the whole frequency spectrum, including
both low- and high-frequency bands.

V. CONCLUSION

The APR system described in this paper has been proposed
on the basis of the fingerprint characteristic of the infrared spec-
trum, and under the hypothesis that the information regarding
each variant of arthritis is reflected in a distinguishable spectral

pattern. The FCMC adaptive wavelet (FCMC-AW) algorithm
employed consists of two parts: one is an adaptive wavelet based

-band feature extractor, and the other is a Bayesian classifier
using the information from the membership matrix generated
during fuzzy C-means clustering.

The spectral simulations emphasized two characteristics
of the FCMC-AW algorithm. The first was to show that the
algorithm can provide a measure of confidence of classifi-
cation which may have practical significance for physicians.
The second demonstrated that adaptive wavelets were more
efficient classifiers than predefined wavelets. The simulation
also provided an elementary approach to determining starting
parameters for the algorithm.

The biological experiments showed that the value of
was a more favorable index than the value of CR alone, espe-
cially in the case of a small sample size. The experiments also
demonstrated that the “shape” or the low-frequency components
of the spectrum gained more credits in classification, a finding
that contrasts with earlier reports (e.g., [6]). In addition, the al-
gorithm could produce additional information besides CR by
the value of and the entries of the membership matrix, re-
flecting the classification confidence of a new pattern when it
was assigned to one of the predefined classes.

Clearly, the sample size was small, representing the lower
limit of practical application. As a result, we are careful not to
draw conclusions that relate to pathology. Our interest is in the
development of a tool to assist in the diagnosis and manage-
ment of this debilitating disease. There exists no simple method
to evaluate joint fluid. Often joint swelling is not accompanied
by radiological findings of joint degradation. Developing an in-
direct measure to assist in the early detection of degenerative
disease could assist in staging the disease.
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