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Chirplet time-frequency representation has been applied to charac-

terise visual evoked potentials (VEPs) successfully. The approach

presented here can represent both transient VEPs and steady-state

VEPs clearly. Comparison to the method of short-time Fourier trans-

form (STFT) is reported.

Introduction: Detecting signals of visual evoked potentials (VEPs)

elicited by repetitive stimuli is generally difficult, since the signal-to-

noise ratio (SNR) of VEPs embedded in strong background noise and

spontaneous EEG is rather low [1]. When the complete information of

the signal to be detected is known, the optimal detector (in the

Neyman-Pearson sense) is the likelihood ratio test which is usually

implemented by a matched filter. Therefore, knowing the properties of

the VEP signals related to a visual stimulus is important for designing

detectors.

Previous studies show that a steady-state VEP (ssVEP) is established

if the repetition rate of visual stimuli is higher than some value and the

shape of the resulting response becomes sinusoidal [1]. A transient

process, however, precedes the formation of steady-state, characterised

by abrupt changes of VEP amplitude within a short time interval.

Under steady-state condition, the detection task can be reduced to

finding a sinusoidal signal in noise by modelling the ssVEP signal as

the summation of a fundamental frequency component and the higher

harmonics, and ignoring the transient component. But because of the

variability in the mental state of the subject (perhaps due to a lack of

concentration, tiredness or accommodation), various factors can perturb the

steady-state components. Moreover, from a physiological point of view,

transient VEP appears to be more appropriate for rapid and reliable signal

detection. Efforts have been made recently to characterise VEP signals over

both its transient and steady-state portions [2].

Matching pursuit (MP) has been recently proposed as a nonlinear

decomposition algorithm to decompose a signal into a very broad class

of waveforms [3]. In MP, a sub-family of time-frequency atoms is

chosen from the repertoire of the waveforms in such a way as to best

match the local signal structure. In this Letter, we propose applying the

method of MP algorithm using four-parameter chirplet atoms to do

time-frequency analysis of VEPs. The purpose is to characterise both

the transient and the steady-state of visual responses.

Computational method: We propose a method whereby the VEP

signal is decomposed over Gaussian chirplet atoms using the MP

algorithm. A Gaussian chirplet atom is a four-parameter wave packet

with a Gaussian envelope [4]:
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p

(�1), tc2R is the centre of the energy concentration in

time, fc2R is the centre frequency, Dt > 0 is the spread of the pulse, and

chirprate c reflecting how quickly the chirp changes in time. The

symbol b¼ (tc, fc, Dt, c) denotes the set of these four parameters. Our

interest in using a Gaussian chirplet atom is mainly due to the fact that it

is the function that has the highest joint time-frequency resolution and

the only function whose Wigner distribution is non-negative. In

practice, all four parameters should be discretised. The set of the

parameter discretised atoms are called a dictionary.

The first step (n¼ 0) of the MP procedure is to choose the chirplet

atom gb0
from the dictionary so that the amplitude of the inner product

(chirplet coefficient) jh f, gb0
ij between this atom and signal f (t) is

largest. Then the residual signal R1f, obtained after extracting the

approximation of f in the direction of gb0
from f, is decomposed in

the similar way. Iterative procedures are applied to the subsequent

residues:

R0f ¼ f ;

Rnþ1f ¼ Rnf � hRnf ; gbn
i

(
n 2 z ð2Þ

In this way the signal f is decomposed into a sum of chirplet atoms that

best match its residues:

f ¼
Pm
n¼0

hRnf ; gbn
i gbn
þ Rnþ1f ð3Þ

The amplitude of residue jRnf j decreases exponentially with each

iterative step [3]. However, low amplitude residues may mainly be

due to noise, and can be measured by correlation ratios [3]:

lðRnf Þ ¼
jhRnf ; gbn

ij

kRnf k
ð4Þ

That is, the larger the correlation ratios of the signal residues, the more

coherent a residue and the less likely it is corrupted by noise.

As a first-order approximation, the VEP signal is represented by a

chirplet coefficient that results in the highest correlation ratio. From (4),

to approximate R0f ¼ f with the highest correlation ratio is equivalent to

selecting Gaussian chirplet atom gb0
. The energy density of the

approximated VEP signal in the time-frequency plane can be visualised

by the Wigner distribution of the selected chirplet atom, i.e. gb0
.

Because their Wigner distributions do not include interference terms,

they thus provide a clear picture in the time-frequency space.
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Fig. 1 Averaged VEPs for 6 s
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Fig. 2 Spectrogram of averaged VEP and windowed Fourier ridges of VEP
signal between the third and fifth second

a Spectrogram
b Windowed Fourier ridges

Results and discussion: The visual stimulus was presented as a

sinusoidally oscillating single vertical-bar movement. The signal

trace began with a 3 s interval without bar movement followed by

another 3 s interval for the target signal. It is in this latter interval that

the single horizontal bar undergoes a 3 Hz oscillatory motion. The

third second of this 6 s epoch was called the onset of the stimulus.

After amplification and filtering (lowpass filter at 40 Hz) the VEP data

were sampled at 250 Hz and passed through an A=D converter. Fig. 1

shows the averaged VEP signal over 50 single sweeps. In Fig. 2, the

spectrogram (STFT) of the averaged VEP is computed. The windowed

Fourier ridges of the STFT spectrum are also shown in Fig. 2. In the

spectrum, it is sufficient to distinguish the characters of ssVEP around

6 Hz where the second harmonic (2� 3 Hz) is expected because of

sufficient frequency resolution. However, the transient process of the

VEP is blurred owing to poor time resolution.
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In practice, the epoch of 6 s was divided into 15 segments (400 ms each)

to select 15 atoms (Fig. 3). The visualisation of time-frequency distribution

(the Wigner distribution) of the selected chirplet atoms offers a relatively

clearer picture of the transient components of VEP changes. Recall that the

onset was at the third second. Fig. 3a shows a sharp spindle occurring

about 300 ms after the onset of visual stimulus, followed by a slow down

chirp (chirprate: 4 Hz in 400 ms). This can be observed by comparing the

zoomed area of the time-frequency plane shown in Fig. 3b. From this

Figure, three typical characteristics of VEP responses can be observed: (i) a

transient component after the onset of each stimulus; (ii) a delayed steady-

state component of the response around the second harmonic; and (iii)

suppression of alpha activity (4–12 Hz) during stimulation.
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Fig. 3 Visualisation of MP decomposition using chirplet atoms

a Wigner distribution of selected chirplet atoms
b Zoomed in area of 3–5 s and 0–20 Hz
c Reconstructed (approximated) VEP signal from atoms in a

Since we note that the STFT uses a ‘windowed sinusoidal wave’ to

approximate the frequency component within a specific time-interval, we

can think of the Fourier approach as approximating the signal (over a short

window) with a straight ‘horizontal’ line segment, parallel to the time-axis,

in the time-frequency plane. Thus, if there are components of the VEP

which are rapidly changing in frequency, the STFT is not an efficient

method to analyse such signals. Alternatively, the chirplet transform uses

chirp functions as its basis which in theory should be more suitable for

approximating fast changes in frequency content even over short time

periods. Therefore, we conclude that it is a promising new method for

analysing the transient process of VEP signals.
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