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Abstract 

We propose a two-factor Capital Asset Pricing Model (CAPM), which includes two 
separate factors for the market capital gains and the market dividend yield. We find 
that the dividend yield factor carries a significant negative premium in the post-1978 
period, which coincides with the persistent decline in the number and proportion of US 
dividend-paying firms. We motivate this finding by proposing a theoretical model, 
which shows that the predictive information of the dividend yield can be high if capital 
gains are vastly more volatile than the dividend yield and investors have a behavioural 
bias against dividends. 
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1 Introduction 
 
Financial theory is typically based on the idea that investors care about returns but are 

indifferent about whether they receive them through capital gains or dividends. This 

also holds for the Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner (1965) 

and Black (1972), which makes no distinction about whether the market return is due to 

capital gains or the dividend yield. In the absence of taxes and other frictions, this idea 

is economically sound and relates to the dividend irrelevance of Miller and Modigliani 

(1961) that value-maximizing investors are indifferent about the source of their returns.  

In practice, however, Hartzmark and Solomon (2019) find that investors track 

price changes and dividends separately rather than combine them into total returns. 

This creates a disconnect between price changes and dividends as investors perceive 

gains and losses to be primarily driven by price changes and tend to ignore dividends 

in assessing performance. The disconnect may be exacerbated by the fact that popular 

stock indices, such as the Dow Jones Industrial Average and the S&P 500, display a 

biased view of performance because they do not allow for dividend reinvestment 

(Hartzmark and Solomon, 2022). Accordingly, the dividend disconnect implies that it is 

sensible to: (1) decompose the performance of portfolios into a capital gains component 

and a dividend yield component, and (2) allow for different stock betas with market 

capital gains and the market dividend yield.1 

 
1 The idea of the dividend disconnect was first proposed by Shefrin and Statman (1984). See also Baker 

and Wurgler (2004a, 2004b), Baker, Nagel and Wurgler (2007), and Daniel, Garlappi and Xiao (2021). 
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In the context of the CAPM model, there is an additional reason why it may be 

sensible to decompose the market portfolio into its two components. The dividend yield 

makes a substantial contribution to the mean return: more than 20% of the market 

return is due to dividends. However, capital gains are vastly more volatile than 

dividends. The variance of market capital gains can be up to 1000 times higher than the 

variance of the market dividend yield. This has a profound statistical implication: 

bundling together two separate components, where one is vastly more volatile than the 

other one, implies that in regression analysis the volatile component will dominate. As a 

result, an asset’s beta on the market portfolio is effectively the same as the beta on just 

the market capital gains. In practice, therefore, whether we include or exclude the 

dividend yield from the market portfolio makes no difference in the estimation of 

standard CAPM betas, and hence in assessing the risk of financial assets. 

We propose a new two-factor CAPM model, where the market capital gains and 

the market dividend yield comprise two separate factors for evaluating the cross-section 

of expected stock returns. The two-factor CAPM model is designed to give a separate 

voice to the dividend yield that would otherwise be silenced in estimating the standard 

CAPM due to the vastly more volatile capital gains component. It also allows for the 

possibility that the risk associated with capital gains may be distinct from that 

associated with the dividend yield. To the best of our knowledge, this is the first paper 

to assess the asset pricing implications of the disconnect between market capital gains 

and the market dividend yield. 
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We motivate our empirical analysis by proposing a theoretical model, which 

shows that the predictive power of a signal about the dividend yield can be 

substantially higher than the predictive power of an additional signal about capital 

gains. The intuition of this argument is based on two assumptions. First, following 

Hartzmark and Solomon (2019), we assume that investors perceive gains and losses to 

be driven primarily by prices changes and, therefore, tend to ignore information about 

dividends. Second, we assume that investors process tremendous amounts of 

information about capital gains because they perceive capital gains as the primary 

determinant of price uncertainty due to their high variance. After investors take into 

account information about capital gains, the factor that generates more uncertainty is 

the dividend yield factor. Consequently, a signal about the dividend yield factor will 

have higher return predictability and will be more useful in reducing the remaining 

uncertainty about cash flows than an additional signal about capital gains. In summary, 

our theoretical model shows that the behavioural bias of investors to ignore dividends 

combined with the higher variance of capital gains can justify the predictive ability of 

the market dividend yield in the cross-section of expected stock returns.2 

In our empirical setting, we define the new dividend yield factor as the 

innovation to the 12-month market dividend yield. By construction, therefore, the new 

dividend yield factor accounts for the strong seasonality and potential non-stationarity 

of the dividend yield. Specifically, the dividend yield exhibits strong quarterly 

seasonality. We account for this seasonality by using the 12-month dividend yield, 

 
2 Our theoretical model is loosely related to the framework of Peng and Xiong (2006). 
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which is a standard approach in the literature for avoiding biased results in estimating 

regression coefficients. Additionally, we account for non-stationarity by using the 

innovation to the 12-month dividend yield to avoid the effect of the high and long-lived 

persistence in the 12-month dividend yield. 

Consistent with the theoretical model, our main empirical finding is that the new 

dividend yield factor has strong predictive power for the cross-section of expected stock 

returns. This is true primarily for the post-1978 sample period. The beginning of this 

period marks the peak in the number of US dividend-paying firms (Fama and French, 

2001). Following this peak, both the number and the proportion of dividend payers 

declines steadily. This empirical observation is consistent with our theoretical model: 

the less important are dividends in the US economy, the more likely are investors to 

ignore them and, hence, the higher the predictive power of dividends in resolving 

uncertainty about future returns. 

To be more specific, we find that, for the post-1978 period, exposure to the new 

dividend yield factor distinguishes clearly between high-performing stocks and low-

performing stocks. The predictive power of the dividend yield factor: (1) is distinct from 

the market capital gains factor; (2) is also distinct from other standard risk factors; (3) is 

significant for both dividend-paying and non-dividend paying firms; and (4) is 

unrelated to individual dividend yields. 

Consider, for example, the following evidence. For value-weighted quintile 

portfolios rebalanced monthly by sorting on the beta to the dividend yield factor, the 

High-minus-Low (H-L) portfolio delivers an expected return of -0.28% per month with 
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a Newey and West (1987) t-statistic of -2.04. The six-factor alpha of the H-L portfolio is 

equal to -0.27% with a t-statistic of -2.38. The results are stronger for equally-weighted 

portfolios: the H-L mean return is equal to -0.36% with a t-statistic of -2.16 and the H-L 

alpha is equal to -0.71% with a t-statistic of -5.62. The significant negative premium of 

the dividend yield factor is confirmed in Fama and MacBeth (1973) regressions in the 

presence of standard asset pricing factors. 

To understand why this premium is negative, it is essential to note that the 

dividend yield factor is strongly countercyclical. Consider an asset that has a high 

positive beta on the dividend yield factor, which implies that the asset performs well 

when the factor is high. Since the dividend yield factor is high in recessions, the asset 

performs well in recessions. According to standard asset pricing theory, investors do 

not require a high expected return to hold an asset that performs well when we need it 

the most (in the bad states of the world). Consequently, high-beta assets on the 

dividend yield factor will have low expected returns and vice versa. 

The remainder of the paper is organized as follows. In the next section, we 

present our theoretical model. In Section 3, we describe the data on US stock returns. 

Our approach to pricing dividend yield risk is described in Section 4. In Section 5, we 

investigate whether exposure to the market dividend yield factor is related to 

individual dividend yields. In Section 6, we assess the cross-sectional performance of a 

version of the two-factor model that we term the “predictive CAPM.” Finally, we 

conclude in Section 7. The Online Appendix provides additional details, robustness 

tests and results.  
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2 Theoretical Framework 

2.1 A Two-Factor Model 

We use a simple theoretical framework to guide our empirical analysis. Let us assume 

an economy populated by a representative agent. There is one risky asset with payoffs �̃� 

and the following factor structure: 

�̃� = 𝛽𝑔�̃� + 𝛽𝑦�̃� + 𝑓, (1) 

where �̃�~𝑁(0, 𝜏𝑔
−1) represents the capital gains factor, �̃�~𝑁(0, 𝜏𝑦

−1) represents the 

dividend yield factor, and 𝑓~𝑁(0, 𝜏𝑓
−1) represents the firm-specific factor.  

For simplicity, and without loss of generality, we assume that all factors have a 

zero mean. The variances 𝑉(. ) are equal to the inverse of the precisions: 𝑉(�̃�) = 𝜏𝑔
−1,  

𝑉(�̃�) = 𝜏𝑦
−1 and 𝑉(𝑓) = 𝜏𝑓

−1. We also assume that all factors are uncorrelated. The 

parameters 𝛽𝑔 and 𝛽𝑦 are the factor loadings for the capital gains and dividend yield 

factors, respectively. Based on the summary statistics of the data (to be discussed in the 

next section), we assume that the variance of the capital gains factor is much larger than 

the variance of the dividend yield factor: 𝑉(�̃�) ≫ 𝑉(�̃�) or equivalently 𝜏𝑔 ≪ 𝜏𝑦. 

 

2.2 Estimating the Model Through the CAPM 

If econometricians estimate the model in Equation (1) using the CAPM framework, then 

they would estimate the following regression: 

�̃� = 𝛽(�̃� + �̃�) + 𝑓, (2) 
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where �̃� + �̃� is the market factor, 𝛽 is the loading on the market factor and 𝑓 is the error 

term in the regression. The estimate of the market factor loading is given by: 

�̂� =
𝐶𝑜𝑣(�̃�, �̃� + �̃�)

𝑉(�̃� + �̃�)
=

𝑉(�̃�)

𝑉(�̃�) + 𝑉(�̃�)
�̂�𝑔 +

𝑉(�̃�)

𝑉(�̃�) + 𝑉(�̃�)
�̂�𝑦, (3) 

where 𝐶𝑜𝑣(. ) represents the covariance between two random variables.3 

In Equation (3), �̂� is a weighted average of �̂�𝑔 and �̂�𝑦, where the weights depend 

on the factor variances. Since 𝑉(�̃�) ≫ 𝑉(�̃�), �̂� is very close in value to �̂�𝑔. Consequently, 

the capital gains factor dominates the dividend yield factor. In other words, the higher 

the 𝑉(�̃�) relative to 𝑉(�̃�) (or alternatively the lower the 𝜏𝑔 relative to 𝜏𝑦), the less 

relevant the information contained in the dividend yield. 

If �̂�𝑔 = �̂�𝑦, �̃� and �̃� make the same contribution to �̃�. In this case, the CAPM holds 

regardless of the fact that 𝑉(�̃�) ≫ 𝑉(�̃�). If, however, �̂�𝑔 ≠ �̂�𝑦, �̃� and �̃� make distinct 

contributions to �̃�. In this case, the higher the 𝑉(�̃�) relative to 𝑉(�̃�), the lower the weight 

on �̂�𝑦 and the more the CAPM is misspecified by ignoring the distinct information 

contained in the dividend yield. In short, if �̂�𝑔 ≠ �̂�𝑦 and 𝑉(�̃�) ≫ 𝑉(�̃�), estimating the 

CAPM of Equation (2) ignores the information contained in the dividend yield, whereas 

estimating the true model described by Equation (1) does not.4 

 

 
3 Note that 𝐶𝑜𝑣(�̃�, �̃�) = 0 because the two factors are assumed to be uncorrelated. 

4 The fact that 𝑉(�̃�) ≫ 𝑉(�̃�) is established by the summary statistics of the data discussed in the next 

section. The hypothesis that �̂�𝑔 ≠ �̂�𝑦 is assessed throughout our empirical analysis and is also motivated 

by the empirical findings of Hartzmark and Solomon (2022). 
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2.3 Predictability of the Dividend Yield Factor 

In this section, we build a theoretical model for motivating the predictive ability of the 

dividend yield factor for stock returns in the context of the two-factor model of 

Equation (1). We consider a representative agent (investor), who regularly receives 

signals (i.e., new information) about capital gains and the dividend yield. We assume 

that the investor regularly pays attention to signals about the capital gains factor but 

ignores signals about the dividend yield factor. The main capital gains signal they 

observe is changes in the price. The main dividend yield signal they ignore is changes in 

the dividend yield. The assumption that investors allocate higher attention to capital 

gains than dividends is consistent with the evidence in Hartzmark and Solomon (2019, 

2022), who find that investors perceive gains and losses to be driven largely by price 

changes and, therefore, trade as if their gains and losses do not include dividends. 

Specifically, the representative agent has access to a signal about the capital gains 

factor �̃�𝑔 = �̃� + 𝜀�̃�, where 𝜀�̃�~𝑁(0, 𝜏𝜀𝑔
−1) and a signal about the firm-specific factor �̃�𝑓 =

𝑓 + 𝜀�̃�, where 𝜀�̃�~𝑁(0, 𝜏𝜀𝑓
−1). Under these signals, we can calculate the posterior mean 

�̂� = 𝐸[�̃�|�̃�𝑔, �̃�𝑓] and posterior variance 𝑉[�̃�|�̃�𝑔, �̃�𝑓] using Bayesian updating.5 The 

posterior mean �̂� is given by: 

 
5 We could also model the representative agent to observe another signal �̃�𝑦 = �̃� + 𝜀�̃�, where 𝜀�̃�~𝑁(0, 𝜏𝜀𝑦

−1) 

with 𝜏𝜀𝑦 → 0 or with 𝜏𝜀𝑦 ≪ 𝜏𝜀𝑔. In this scenario, the investor processes information about the two factors 

(�̃�, �̃�), but information about capital gains is much more precise than information about the dividend 

yield. We have not added this additional signal because it unnecessarily complicates the model. Instead, 
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�̂� = 𝐸[�̃�|�̃�𝑔, �̃�𝑓] =
𝛽𝑔𝜏𝜀𝑔

𝜏𝑔 + 𝜏𝜀𝑔
�̃�𝑔 +

𝜏𝜀𝑓

𝜏𝑓 + 𝜏𝜀𝑓
�̃�𝑓 . (5) 

The investor also observes additional signals about the capital gains factor. These 

additional signals encompass all signals other than changes in the price. For example, 

the additional signals could be macroeconomic news about employment or interest 

rates, which indirectly affect stock prices. Although the investor regularly ignores the 

period-by-period changes in the dividend yield, they may occasionally pay attention to 

some signals about the dividend yield. An example of such a signal is described in 

Hartzmark and Solomon (2019): the dividend yield on a given period being such that 

the return excluding the dividend yield is negative but the return including the 

dividend yield is positive. 

In this context, we measure the return predictive power of an additional signal 

about the capital gains factor �̃�𝑔 = �̃� + �̃�𝑔, where �̃�𝑔~𝑁(0, 𝜏𝜔
−1) and the return 

predictive power of a signal about the dividend yield factor �̃�𝑦 = �̃� + �̃�𝑦, where 

�̃�𝑦~𝑁(0, 𝜏𝜔
−1). Note that �̃�𝑔 and �̃�𝑦 have the same precision.  

Following Peng and Xiong (2006), the return predictive power of an additional 

signal �̃�𝑔 about the capital gains factor can be measured by the following correlation: 

|𝐶𝑜𝑟𝑟(�̃� − �̂�), �̃�𝑔)| =
|𝛽𝑔|𝜏𝑔

𝜏𝑔 + 𝜏𝜀𝑔
. (6) 

 
we gain tractability without loss of generality by assuming that the representative investor ignores any 

information about the dividend yield as suggested by Hartzmark and Solomon (2019, 2022). 
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Similarly, the return predictive power of a signal �̃�𝑦 about the dividend yield factor can 

be measured by the following correlation: 

|𝐶𝑜𝑟𝑟(�̃� − �̂�), �̃�𝑦)| = |𝛽𝑦|. (7) 

Note that �̃� − �̂� is the posterior forecast error and hence it is a measure of the 

uncertainty surrounding �̃�. The higher the correlation (in absolute value) of a signal 

with �̃� − �̂�, the more informative the signal is.6 

This framework allows us to show that a signal �̃�𝑦 about the dividend yield has 

more predictive power than an additional signal �̃�𝑔 about the capital gains factor when: 

|𝛽𝑔|𝜏𝑔

𝜏𝑔 + 𝜏𝜀𝑔
< |𝛽𝑦| ⇔ (|𝛽𝑦| − |𝛽𝑔|)𝜏𝑔 + |𝛽𝑦|𝜏𝜀𝑔 > 0. (8) 

Based on stock return data, we know that the precision of capital gains is substantially 

lower than the precision of the dividend yield, i.e., 𝜏𝑔 ≪ 𝜏𝑦. We also take the view that 

investors process tremendous amounts of information about capital gains so that 

signals about capital gains are highly precise, i.e., 𝜏𝜀𝑔 ≫ 0. The combination of a very 

low 𝜏𝑔 and a very high 𝜏𝜀𝑔 guarantees that |𝛽𝑦|𝜏𝜀𝑔 will be the dominant term and hence 

the inequality in Equation (8) above holds.  

In words, if investors’ information about the capital gains factor �̃� is precise, the 

predictive power of a signal about the dividend yield factor �̃� will be higher than that of 

an additional signal about �̃�. Intuitively, in an effort to reduce uncertainty about cash 

flows, investors focus on �̃� because this is the most uncertain (i.e., volatile) factor. As 

 
6 Note that �̃� is the realization at time t, and �̂� is the posterior forecast for time t conditional on time t-1 

information. For notational simplicity, we avoid using time subscripts. 
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investors spend substantial resources to learn about �̃�, 𝜏𝜀𝑔 ≫ 0. After all the collected 

information about �̃� is taken into account, the factor that generates more uncertainty is 

�̃�. Thus, a signal �̃�𝑦 about the dividend yield factor will have higher return 

predictability and will be more useful in reducing the remaining uncertainty about cash 

flows than an additional signal about capital gains �̃�𝑔. 

 

3 Data 

3.1 Stock Returns 

Our empirical analysis uses the cross-section of US stock returns obtained from the 

CRSP database. The cross-section includes all common stocks traded on the NYSE, 

AMEX and NASDAQ exchanges based on the following criteria: (1) the firm must have 

at least two years of accounting data in COMPUSTAT; (2) the firm must have at least 24 

monthly return observations in the past five years; and (3) the book-to-market value 

(B/M) ratio for the previous fiscal year must be positive. 

All data are monthly. For our main analysis, the sample ranges from January 

1978 to December 2019. We have chosen 1978 as the year to mark the beginning of the 

sample period because it coincides with the peak in the number of dividend-paying 

firms, which occurs at the end of 1977. This is shown in Figure 1, which illustrates that 

beginning in 1978 both the number and the proportion of dividend payers declines 

steadily (see also Fama and French, 2001). Hence we argue that in the post-1978 period 

there is a persistent decline in the importance of dividends in the US equity market.  
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3.2 The New Dividend Yield Factor 

In this section, we describe and motivate the new dividend yield factor. The value-

weighted (VW) market return including dividends at time t is denoted by 𝑚𝑘𝑡𝑡, while 

excluding dividends it is denoted by 𝑚𝑘𝑡𝑥𝑡. The latter is the rate of change in capital 

gains since 𝑚𝑘𝑡𝑥𝑡 = 𝑝𝑡/𝑝𝑡−1 − 1, where 𝑝𝑡 is the VW market price. The dividend yield is 

defined as 𝑑𝑦𝑡 = 𝑑𝑡/𝑝𝑡−1, where 𝑑𝑡 is the VW sum of all dividends paid by all firms at 

time t. We compute the market dividend yield as 𝑑𝑦𝑡 = 𝑚𝑘𝑡𝑡 − 𝑚𝑘𝑡𝑥𝑡.7  

A crucial aspect of 𝑑𝑦𝑡 is its strong seasonal behaviour due to the fact that firms 

pay dividends in different months and at different frequencies. In our sample, 81.9% of 

the dividend-paying firms pay dividends on a quarterly basis. Some of these firms pay 

dividends on January-April-July-October, others on February-May-August-November, 

and yet others on March-June-September-December. In addition, 2.1% of the firms pay 

monthly dividends, 6.9% of the firms pay semi-annual dividends and, finally, 9% of the 

firms pay annual dividends. As a result, 𝑑𝑦𝑡 displays significant serial correlation at the 

lags of 1-12 months but very high serial correlation at the quarterly lags of 3, 6, 9 and 12 

months.8 In estimating regression coefficients, it is essential to account for this 

seasonality to avoid biased results. The standard approach in the literature to account 

 
7 Note that the dividend yield is related to the equity carry, which is defined as the scaled expected 

dividend yield minus the risk-free rate (see Koijen et al., 2018). For a review of the recent literature on 

return and dividend growth predictability, see Sabbatucci (2022).  

8 See Figure 1 of the Online Appendix. 
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for dividend seasonality is to use the trailing 12-month dividend yield defined as 

𝑑𝑦12𝑡 = 𝛴𝑗=0
11 𝑑𝑡−𝑗/𝑝𝑡−1. For this reason, our main analysis focuses on 𝑑𝑦12𝑡.9 

In addition to seasonality, the dividend yield may also display non-stationarity 

due to its high persistence. For example, 𝑑𝑦12𝑡 displays an autocorrelation of 0.99 at a 1-

month lag, which decays slowly to a value of 0.88 at a 12-month lag.10 In this context, 

we compute the Augmented Dickey-Fuller statistic for 𝑑𝑦12𝑡, which is equal to -0.78. 

Hence, the null hypothesis of a unit root (i.e., non-stationarity) cannot be rejected. To 

account for non-stationarity, we define Δ𝑑𝑦12𝑡 as the innovation to the 12-month 

dividend yield, which is calculated as the proportional change in 𝑑𝑦12𝑡: Δ𝑑𝑦12𝑡 =

𝑑𝑦12𝑡

𝑑𝑦12𝑡−1
− 1. Δ𝑑𝑦12𝑡 reflects the changes in the market dividend yield at time t and 

certainly includes changes that have been pre-announced by individual firms.11 

 

3.3 Summary Statistics 

Table B1 of the Online Appendix reports summary statistics and Table B2 the cross-

correlations. The main findings can be summarized as follows: (1) the dividend yield 

accounts for 21% of the market return (0.22% of 1.04% per month); (2) 𝑚𝑘𝑡𝑡 has 30 

 
9 We have also implemented an alternative way of accounting for seasonality by deseasonalizing the 

dividend yield using an ARMA model. The results remain qualitatively the same. 

10 Again, see Figure 1 of the Online Appendix. 

11 Using the innovation to the dividend yield is consistent with the return decomposition of Campbell and 

Shiller (1988) into changes in expectations about future cash flows and future discount rates. It is also 

consistent with the Campbell (1996) implementation of the Merton (1973) ICAPM model. 
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times higher standard deviation than 𝑑𝑦𝑡 (4.40% vs 0.14%). Put differently, 𝑚𝑘𝑡𝑡 has 988 

times higher variance than 𝑑𝑦𝑡; (3) whereas 𝑚𝑘𝑡𝑡 and 𝑚𝑘𝑡𝑥𝑡 are strongly cyclical, 𝑑𝑦𝑡 

and ∆𝑑𝑦12𝑡 are strongly countercyclical. Indeed, Δ𝑑𝑦12𝑡 is on average negative in 

expansions but strongly positive in recessions; and (4) 𝑚𝑘𝑡𝑡 and 𝑚𝑘𝑡𝑥𝑡 exhibit perfect 

correlation but the correlation between 𝑚𝑘𝑡𝑡 and 𝑑𝑦𝑡 is equal to 0.10.  

 

4 Dividend Yield Risk in the Cross-Section of Stock Returns 

4.1 A Two-Factor CAPM Model 

In this section, we propose a simple decomposition of the CAPM with two 

factors, one based on the capital gains to the market portfolio (𝑚𝑘𝑡𝑥𝑡), and one based on 

the dividend yield to the market portfolio (Δ𝑑𝑦12𝑡). By explicitly accounting for the 

market dividend yield as a separate factor in the CAPM regression, we ensure that its 

contribution to asset pricing is not ignored. This is because in estimating the CAPM, 

whether we use 𝑚𝑘𝑡𝑡 or 𝑚𝑘𝑡𝑥𝑡 , the result is essentially the same since the average betas 

in the two cases are identical to the second decimal.12 Furthermore, the quintile 

portfolios formed by sorting on the betas of either 𝑚𝑘𝑡𝑡 or 𝑚𝑘𝑡𝑥𝑡 are practically 

identical. Accordingly, we propose the following two-factor model: 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖,𝑐(𝑚𝑘𝑡𝑥𝑡 − 𝑟𝑓,𝑡) + 𝛽𝑖,𝑑𝛥𝑑𝑦12𝑡 + 𝜀𝑖,𝑡 , (9) 

 
12 If we estimate the beta on 𝑚𝑘𝑡𝑡 for each stock using a five-year rolling window, the average beta across 

time and across stocks is equal to 1.107. If we replace 𝑚𝑘𝑡𝑡 by 𝑚𝑘𝑡𝑥𝑡, the average beta is equal to 1.109. 

Hence, the two average betas are identical to the second decimal. 
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where 𝑟𝑖,𝑡 is the return of asset i at time t, 𝑟𝑓,𝑡 is the riskless rate at time t, 𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 is the 

excess return to asset i at time t, 𝛽𝑖,𝑐 is the loading on the capital gains factor, 𝛽𝑖,𝑑 is the 

loading on the dividend yield factor, and 𝜀𝑖,𝑡 is the random error term.  

 

4.2 Portfolio Sorts 

We begin our empirical analysis with standard portfolio sorts. First, we estimate the 

coefficient 𝛽𝑖,𝑑 in Equation (9) for each stock in the cross-section using a five-year rolling 

window. Each month we form quintile portfolios by sorting stocks on 𝛽𝑖,𝑑. We then 

compute the one-month ahead mean returns of the quintile portfolios and rebalance 

monthly. We report results for both value-weighted (VW) portfolios based on NYSE 

weights and for equally-weighted (EW) portfolios (see, e.g., Hou, Xue and Zhang, 2020). 

Table 1 reports the performance of quintile portfolios sorted by exposure to the 

dividend yield factor. Our main finding is that there is a significant negative relation 

between expected returns and exposure to the dividend yield factor. For VW portfolios, 

the High-minus-Low zero-cost investment portfolio (denoted by H-L), provides a mean 

return of -0.28% per month, which is statistically significant: the Newey-West (1987) t-

statistic is equal to -2.04. Furthermore, the H-L portfolio delivers a negative and 

significant six-factor (FF6) alpha (-0.27% with t-stat=-2.38), where the FF6 model 

incorporates the five Fama and French (2015) factors plus momentum. The results are 

stronger for EW portfolios since the H-L mean return is equal to -0.36% with a t-stat=-

2.36. The EW six-factor alpha is equal to -0.71% with a t-stat=-5.62. In short, portfolios 
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with low exposure to the dividend yield factor consistently perform better than 

portfolios with high exposure.  

 

4.3 Subsample Analysis 

Our sample period begins in 1978 to mark the peak in the number of dividend payers 

and hence the beginning of the declining importance of dividends in the US equity 

market. In this section, we perform a subsample analysis to shed light on the pre-1978 

versus post-1978 performance of the two factor model. 

We report the subsample results in Table 2. Our main finding is that for the 1932-

1977 period, the VW H-L return spread is equal to 0.08% and insignificant. In contrast, 

for the 1978-2019 period, the H-L return spread is -0.28% and significant. Therefore, the 

predictive power of the dividend yield factor is due to the post-1978 sample. 

To provide a finer analysis, we also report results for sample periods beginning 

in 1963, 1968, 1973, 1978, 1983 and 1988. All these subsamples end in 2019. We find that, 

as the starting date moves forward, the H-L return spread tends to be higher (in 

absolute value) and more significant. Importantly, the six-factor alphas become 

significant from 1978 onwards for VW portfolios, which further enhances the 

importance of using the post-1978 sample period. Overall, these results provide an 

empirical justification for focusing on the post-1978 sample period.   
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4.4 Components of the Dividend Yield 

The dividend yield itself has two components: dividends (in the numerator) and lagged 

prices (in the denominator). It is well known that the two components have different 

behaviour since dividends are issued by corporate management at a low frequency, 

whereas stock prices are the result of high-frequency trading by market participants. 

We test whether the dividend yield factor is driven by one or both of its components by 

decomposing Δdy12 as follows: 𝛥𝑑𝑦12𝑡 ≈ 𝛥𝑑12𝑡 − 𝛥𝑝𝑡−1, where 𝛥𝑑12𝑡 =
𝑑12𝑡

𝑑12𝑡−1
− 1 is 

the year-over-year dividend growth rate, and 𝛥𝑝𝑡−1 =
𝑝𝑡−1

𝑝𝑡−2
− 1 is the lagged mktx.13  

 
4.5  Factor-Mimicking Portfolios 

The market factor is a tradable portfolio but its two components are not. In this section, 

we address the non-tradability of mktx and Δdy12 by constructing factor-mimicking 

portfolios (FMPs). As the FMP for mktx, we simply use mkt since the correlation 

between the two variables is equal to one and, as a result, the betas on either mkt or 

mktx are essentially the same. 

For Δdy12, we generate the FMP by implementing the ordinary least squares 

(OLS) cross-sectional approach based on Lehmann and Modest (1988). This approach is 

described in detail in the Online Appendix. The FMP for Δdy12 is denoted by FΔdy12. 

 
13 The decomposition of Δdy12 into Δp and Δd12 is not exact. However, the two components explain 

100% of the variance of Δdy12: 90.5% for Δp and 9.5% for Δd12. 
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For Δd12 and Δp, we follow a similar approach to Δdy12: we form the OLS FMP 

portfolios, denoted by FΔd12 and FΔp.14 

 

4.6 The Price of Dividend Yield Risk 

In this section, we estimate two-stage Fama-MacBeth (1973) regressions using the full 

cross-section of stocks. In the first stage, we estimate the time-series beta coefficients for 

each stock using the following seven-factor model: 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖,1(𝑚𝑘𝑡𝑥𝑡 − 𝑟𝑓,𝑡) + 𝛽𝑖,2𝛥𝑑𝑦12𝑡

+𝛽𝑖,3𝑆𝑀𝐵𝑡 + 𝛽𝑖,4𝐻𝑀𝐿𝑡 + 𝛽𝑖,5𝑅𝑀𝑊𝑡 + 𝛽𝑖,6𝐶𝑀𝐴𝑡 + 𝛽𝑖,7𝑀𝑂𝑀𝑡 + 𝜀𝑖,𝑡 , (10)
 

where SMB, HML, RMW and CMA are the Fama and French (1993, 2015) factors, and 

MOM is the Carhart (1997) momentum factor. Data on SMB, HML, RMW, CMA and 

MOM are obtained from Ken French’s online data library. The betas are estimated using 

a rolling window of 5 years of monthly data. 

In the second stage, we condition on the beta estimates and perform cross-

sectional estimation at each month t as follows: 

 𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝛾0 + 𝛾1�̂�𝑖,1,𝑡−1 + 𝛾2�̂�𝑖,2,𝑡−1

+𝛾3�̂�𝑖,3,𝑡−1 + 𝛾4�̂�𝑖,4,𝑡−1 + 𝛾5�̂�𝑖,5,𝑡−1 + 𝛾6�̂�𝑖,6,𝑡−1 + 𝛾7�̂�𝑖,7,𝑡−1 + 𝜖𝑖,𝑡 . (11)
 

We collect the time-series of gamma estimates and report the mean as well as the 

Newey-West (1987) t-statistic. The mean of each gamma coefficient represents the risk 

premium associated with each risk factor. The results are reported in Table 3.  

 
14 The correlations of the variables with their FMPs are reported in Table B3 of the Online Appendix. 
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Our main finding is that the premium on the dividend yield factor is negative 

and significant. Specifically, Δdy12 exhibits a risk premium of -0.26% per month with a 

t-stat=-2.18. The risk premium is equal to -0.28% for the FMP with a t-stat=-1.84. It is 

interesting to note that the dividend yield factor has the highest statistical significance 

among the risk factors. Notably, the capital gains factor (𝑚𝑘𝑡𝑥𝑡 − 𝑟𝑓,𝑡) and its FMP 

(𝑚𝑘𝑡𝑡 − 𝑟𝑓,𝑡) display a small and insignificant risk premium. In conclusion, we find clear 

evidence that the dividend yield factor has a negative and statistically significant price 

of risk. This finding indicates that the dividend yield is disconnected from capital gains 

in asset pricing. 

To understand why the dividend yield factor carries a negative premium, recall 

that this factor is strongly countercyclical. If an asset has a high positive beta on the 

Δdy12 factor, then it will perform well when Δdy12 is high. However, Δdy12 is high in 

recessions. Therefore, this asset performs well in recessions. Since the asset performs 

well when we need it the most (in the bad states of the world), investors do not require 

a high expected return to hold it.  As a result, high-beta assets on the Δdy12 factor will 

have low expected returns and vice versa. This provides an explanation for the negative 

premium that is consistent with asset pricing theory. 

In Panel B of Table 3, we replace Δdy12 by its two components: Δd12 and Δp. We 

find that the premium for Δp is high (0.26%) and significant (t-stat=2.26) but the 

premium for Δd12 is much lower (0.03%) and less significant (t-stat=1.69). These premia 

remain similar in value for the FMPs but their significance drops slightly. In short, 

therefore, between the two components of the dividend yield factor, it is the lagged 
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capital gains factor that remains strong and significant in pricing the cross-section of 

expected stock returns. 

 
4.7 Post-Formation Factor Loadings 

In this section, we assess the contemporaneous relation between factor loadings and 

expected returns. Following a long line of research in asset pricing (see, e.g., Black et al., 

1972, Fama and French, 1992, 1993, and Ang et al., 2006), we use pre-formation loadings 

to form portfolios, and then proceed to examine contemporaneous post-formation 

loadings. Specifically, we use the FMP for FΔdy12 to compute post-formation loadings 

reported on the last column of Table 1. The port-formation loadings are estimated ex-

post for the full data sample using the seven factor model of Equation (10). 

The results show that, for all EW portfolios, the quintile portfolio returns load 

significantly on FΔdy12 being negative and significant at the 1% level. Importantly, the 

post-formation loadings for EW portfolios consistently increase (i.e., decrease in 

absolute value) as we move from the Low to the High portfolio. For VW portfolios, 

three of the five quintile portfolios exhibit a significant post-formation loading. These 

results establish that average returns are related to the unconditional covariance 

between returns and market dividend yield risk for EW portfolios but for VW portfolios 

the results are slightly weaker.15  

 
15 Note that we use individual firms as base assets to construct an FMP that is maximally correlated to the 

original factor. Consequently, smaller firms may receive FMP weights, which are larger than their 
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5 The Role of Individual Dividend Yields 

In this section, we address two questions: (1) is exposure to the dividend yield factor 

relevant for both dividend-payers and non-dividend payers?; and (2) for dividend-

payers, are portfolios sorted on exposure to the dividend yield factor related to 

portfolios sorted on the individual dividend yield?  

  

5.1 Dividend Payers vs Non-Dividend Payers 

We begin by first separating firms into dividend payers and non-dividend payers, and 

then re-estimating the Fama-MacBeth regressions for the two separate groups. 

Dividend payers are identified as firms, which at time t have paid a dividend in any 

month from time t to time t-11. The remaining firms are labelled as non-payers. On 

average, 46.5% of firms are identified as dividend payers and 53.5% are identified as 

non-payers. The results are reported in Table 4.  

The results indicate that the predictive power of the FΔdy12 is significant for 

both dividend payers and non-dividend payers but it is stronger for dividend payers. 

Using the original Δdy12 series, the factor premium is -0.41% for payers (t-stat=2.92) 

versus -0.25% for non-payers (t-stat=-2.41). The results are similar for FMPs. It is 

interesting to note that the significance of the dividend yield factor rises when we 

divide the cross-section in dividend payers and non-payers. In conclusion, the price of 

 
weights in a value-weighted portfolio. This can explain the limited variation in post-formation betas for 

value-weighted portfolios. It can also explain the large variation for equally-weighted portfolio loadings. 
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risk for the dividend yield factor is significantly negative for both dividend payers and 

non-dividend payers but it is more so for dividend payers.  

 

5.2  Portfolio Sorts Based on Individual Dividend Yields 

If exposure to the dividend yield factor reflects information on the firm’s individual 

dividend yield, then portfolio sorts based on individual dividend yields should display 

significant return spreads between high-dividend yield stocks and low-dividend yield 

stocks. In Table 5, we report results for mean excess returns of VW and EW quintile 

portfolios sorted on the firms’ individual dividend yields. Portfolios for fiscal year t are 

formed using firm dividend yields measured in June of fiscal year t-1.  

The main finding here is that there is little cross-sectional variation in the 

performance of stocks according to their dividend yield.  For the VW H-L portfolio, the 

mean return and the six-factor alpha are low (both at 0.12% per month) and 

insignificant. In short, our evidence indicates that exposure to market dividend yield 

risk appears to be unrelated to firms’ individual dividend yields. 

 

6 A Predictive CAPM Framework 

We have previously demonstrated that the factor premium associated with Δp is 

substantially higher than the factor premium of Δd12, and Δp is more significant than 

Δd12 (see Table 3). For this reason, we examine Δp separately by augmenting the 

standard CAPM to include the lagged excess return to the market. This additional 

variable essentially captures the effect of Δp since the two variables are perfectly 
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correlated. We refer to this model as the “predictive CAPM,” which is described by the 

following regression: 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖,1(𝑚𝑘𝑡𝑡 − 𝑟𝑓,𝑡) + 𝛽𝑖,2(𝑚𝑘𝑡𝑡−1 − 𝑟𝑓,𝑡−1) + 𝜀𝑖,𝑡 . (12) 

We then consider three cases. First, we sort stocks solely on 𝛽𝑖,1, which is the 

standard CAPM beta. This approach removes the lagged market return from the 

analysis. Second, we sort stocks on 𝛽𝑖,𝐷 = 𝛽𝑖,1 + 𝛽𝑖,2, which we refer to as the “Dimson 

beta.” Following Dimson (1979), this is a popular approach that has been implemented 

by Fama and French (1992) and Liu, Stambaugh and Yuan (2018) among others.  Third, 

we sort stocks solely on 𝛽𝑖,2, which we refer to as the “predictive beta.” In all cases, the 

loadings are estimated over a 5-year rolling window as previously. 

The portfolio sorts are reported in Panels A and B of Table 6. Consistent with our 

previous results, the standard CAPM betas deliver an H-L spread that is low and 

insignificant. The six-factor alphas are also low and insignificant. 

The Dimson betas slightly improve the CAPM performance. The H-L return is 

higher than for the CAPM-betas but is still low and insignificant. For VW portfolios, the 

six-factor alphas are also low and insignificant.  

Turning to portfolios sorted solely on the predictive betas, the results are 

striking. There is a positive and almost monotonic relation between the predictive beta 

and average excess returns. For VW returns, the H-L spread is 0.28% with a t-stat=1.79. 

For EW returns, the H-L spread is 0.41% with a t-stat=2.32. The six-factor alphas are 

positive and significant: the VW H-L alpha is 0.33% with a t-stat=2.75 and the EW H-L 

alpha is 0.78% with a t-stat=5.79. These findings indicate that cross-sectional 
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predictability lies exclusively in the predictive betas, not in the contemporaneous 

CAPM betas. Sorting on predictive betas alone (not in conjunction with the 

contemporaneous betas) delivers a positive beta-return relation.  To our knowledge, this 

is a novel finding in the literature.  

We further investigate this finding with Fama-MacBeth (1973) regressions. In 

Panel C of Table 6, we report the factor premium of the Dimson beta in the presence of 

the SMB, HML, RMW, CMA and MOM factors. Consistent with the portfolios sorts, we 

find that the Dimson beta has a positive (0.11) and insignificant market price of risk (t-

stat=0.92).  

In Panel D, we use the contemporaneous beta and the predictive beta. The 

contemporaneous CAPM beta has a low and insignificant price of risk: 0.01% with a t-

stat=0.11. In contrast, the predictive beta has a positive price of risk (0.25%) and is 

highly significant (t-stat=2.25). Therefore, the lagged market return alone is powerful in 

predicting the cross-section of expected stock returns. 

As a final exercise, we add FΔd12 to the predictive CAPM framework. In doing 

so, we are effectively estimating a version of the original three-factor model (mktx, Δd12 

and Δp) that was initially displayed in Panel B of Table 3. This is because 𝑚𝑘𝑡𝑡−1 and 

∆𝑝𝑡−1 have a perfect correlation. The results are reported in Panel E of Table 6. We find 

that FΔd12 is low (0.03) and marginally significant (t-stat=1.69), while its presence has 

no effect on the size and significance of the lagged market return. We conclude that the 

lagged market return, which is the strongest component of the dividend yield factor, is 

robust and highly significant in predicting the cross-section of expected stock returns.  
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7 Conclusion 

In estimating the CAPM, the beta on the market factor is almost exclusively driven by 

the capital gains component of the market portfolio. Although the dividend yield makes 

a substantial contribution to the mean return of the market portfolio, it practically 

contributes nothing to its variance. As a result, the market dividend yield is effectively 

ignored in estimating the market beta. This is crucially important if the market dividend 

yield contains distinct information from market capital gains. 

We propose a two-factor CAPM model, which separates the two components of 

the market portfolio and, therefore, allows the dividend yield to make a distinct 

contribution to predicting the cross-section of expected stock returns. The results are 

striking: the capital gains factor performs poorly (same as the market portfolio), but the 

dividend yield factor performs well in distinguishing between high-performing and 

low-performing assets. This finding is particularly strong in the post-1978 period that 

coincides with the persistent decline in the number and proportion of US dividend-

paying firms. For this sample period, the high-minus-low VW quintile portfolio delivers 

a statistically singificant mean return of -0.28% per month, which rises to -0.36% for EW 

portfolios. The VW and EW six-factor alphas are also significantly negative. Finally, 

Fama-MacBeth (1973) regressions confirm the presence of a significant negative 

premium for the dividend yield factor in the presence of other well-known risk factors. 

Separating the market factor into a capital gains factor and dividend yield factor 

is consistent with recent evidence on the dividend disconnect. Hartzmark and Solomon 

(2019, 2022) find that in practice investors do not treat dividends and capital gains in the 
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same manner and often disregard dividends in making financial decisions. We 

conjecture that this behavioural bias against dividends became stronger in the post-1978 

period as the number and proportion of dividend-paying firms declined significantly in 

the US. Motivated by this idea, we propose a theoretical model which shows that when 

investors tend to ignore dividends and the market capital gains have substantially 

higher variance than the market dividend yield, then the market dividend yield factor 

has strong predictive ability for stock returns. In this context, our work can be seen as 

an application of the disconnect between price changes and dividends to asset pricing. 

The dividend yield factor has two components: the dividend growth rate and 

lagged capital gains. The latter is the strongest of the two components since it has a 

higher risk premium and is consistently significant. This finding is used to motivate a 

simple extension to the CAPM that we term the “predictive CAPM.” The predictive 

CAPM conditions on both the contemporaneous and the lagged market return. We 

show that the beta on solely the lagged market return delivers a significant positive 

factor premium in the cross-section of stock returns. 

Overall, our analysis proposes simple extensions of the CAPM that address the 

dividend disconnect in the market portfolio and the enormous variance differential 

between capital gains and the dividend yield. The empirical evidence indicates that 

these extensions to the CAPM can establish a significant beta-return relation, which is 

the cornerstone of an asset pricing model. Consequently, the two-factor CAPM model 

can be a useful addition to the toolkit implemented in asset pricing research and 

financial practice.  
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Table 1: Portfolios Sorted by Exposure to the Dividend Yield Factor 

This table presents the performance of portfolios sorted by the exposure (beta) of stock excess returns to the dividend yield factor, 
Δdy12. We form value-weighted portfolios based on NYSE breakpoints and equally-weighted portfolios, which are rebalanced 
monthly. The betas are estimated using Equation (9) based on the most recent five years of monthly data. The mean and standard 
deviation are for monthly percentage excess returns. Size and B/M report the average log market capitalization and book-to-market 
ratio for firms in each portfolio. The “H-L” row refers to the difference in monthly excess returns between the High and Low quintile 
portfolios. The FF6 Alpha column reports the alpha with respect to the Fama–French (2015) five-factor model plus momentum. 
Post-formation betas are according to Equation (10) using the FMP. Statistical significance is assessed using Newey–West (1987) t-
statistics. The sample period ranges from January 1978 to December 2019.  

Panel A: Value-Weighted Portfolios 
 Returns    Factor Loadings 

Rank Mean St Dev Size B/M 
FF6 

Alpha 
Pre-Formation 

𝛽௱ௗ௬ଵଶ 
Post-Formation 

𝛽ி௱ௗ௬ଵଶ 
High 0.66 4.48 17.34 0.49 0.01 0.33 -0.01 
4 0.63 3.95 17.56 0.51 -0.16*** 0.09 0.02* 
3 0.79 4.22 17.50 0.52 0.05 -0.06 0.03** 
2 0.75 4.60 17.42 0.54 0.01 -0.21 0.01 
Low 0.94 5.77 16.28 0.60 0.26*** -0.57 -0.06*** 
        
H-L -0.28** 2.74   -0.27**  0.05 
(t-stat) (-2.04)    (-2.38)  (1.40) 

 
Panel B: Equally-Weighted Portfolios 

 Returns    Factor Loadings 

Rank Mean St Dev Size B/M 
FF6 
Alpha 

Pre-Formation 
𝛽௱ௗ௬ଵଶ 

Post-Formation 
𝛽ி௱ௗ௬ଵଶ 

High 0.70 5.39 14.57 0.73 0.22** 0.47 -0.16*** 
4 0.89 4.51 15.00 0.74 0.27*** 0.06 -0.13*** 
3 0.91 4.69 14.82 0.78 0.34*** -0.13 -0.15*** 
2 0.99 5.42 14.04 0.85 0.50*** -0.36 -0.23*** 
Low 1.06 7.50 12.79 0.91 0.93*** -0.99 -0.35*** 
        
H-L -0.36** 3.36   -0.71***  0.19*** 
(t-stat) (-2.16)    (-5.62)  (4.17) 
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Table 2: Portfolios Sorted by Exposure to the Dividend Yield Factor Across Subsamples 

This table presents the performance of the High-minus-Low (H-L) portfolio across subsamples. The H-L portfolio refers to the 
difference in monthly excess returns between the High and Low quintile portfolios. The quintile portfolios are generated by sorts 
on the exposure (beta) of stock excess returns to the dividend yield factor, Δdy12. We form value-weighted and equally-weighted 
portfolios with monthly rebalancing. The betas are estimated using Equation (9) based on the most recent five years of monthly 
data. The FF6 alpha is computed using the Fama–French (2015) five-factor model plus momentum. For the 1932-1977 sample period, 
we use a four-factor model to compute the alpha because data on RMW and CMA are not available. Statistical significance is 
assessed using Newey–West (1987) t-statistics.  

Panel A: Value-Weighted H-L Portfolios 
 1932-1977 1978-2019  1963-2019 1968-2019 1973-2019  1978-2019 1983-2019 1988-2019 
H-L Returns 0.08 -0.28**  -0.18 -0.21 -0.23*  -0.28** -0.41*** -0.33** 
(t-stat) (0.48) (-2.04)  (-1.38) (-1.59) (-1.76)  (-2.04) (-2.80) (-2.02) 
           
FF6 Alpha 0.23* -0.27**  0.01 0.00 -0.03  -0.27** -0.38*** -0.29** 
(t-stat) (1.78) (-2.38)  (0.07) (-0.03) (-0.26)  (-2.38) (-3.09) (-2.18) 

 
Panel B: Equally-Weighted H-L Portfolios 

 1932-1977 1978-2019  1963-2019 1968-2019 1973-2019  1978-2019 1983-2019 1988-2019 
H-L Returns -0.06 -0.36**  -0.28** -0.34** -0.34**  -0.36** -0.49*** -0.51** 
(t-stat) (-0.36) (-2.16)  (-2.00) (-2.37) (-2.25)  (-2.16) (-2.63) (-2.50) 
           
FF6 Alpha 0.14 -0.71***  -0.42*** -0.48*** -0.50***  -0.71*** -0.83*** -0.81*** 
(t-stat) (0.90) (-5.62)  (-4.16) (-4.42) (-4.36)  (-5.62) (-5.93) (-5.39) 
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Table 3: Fama-MacBeth Regressions 

This table reports the Fama–MacBeth (1973) factor premiums using the full cross-section of stock returns. The factor premiums are 
the time-series means of the cross-sectional coefficients γ in Equation (11). The table also reports Newey–West (1987) t-statistics. 
“Original” denotes the original Δdy12, Δd12 and Δp factors and FMP denotes the factor mimicking portfolios. All regressions 
condition on the five Fama-French (2015) factors plus momentum. The sample period ranges from January 1978 to December 2019. 

Panel A: Dividend Yield Factor 
 Original  FMP 
 Mean t-stat  Mean t-stat 

mkt-rf 0.02 0.13  0.01 0.11 
FΔdy12 -0.26 -2.18  -0.28 -1.84 

SMB -0.03 -0.37  -0.03 -0.49 
HML 0.09 1.13  0.09 1.13 
RMW -0.01 -0.17  -0.01 -0.18 
CMA 0.02 0.52  0.03 0.58 
MOM -0.11 -1.53  -0.10 -1.37 

  
Panel B: Components of the Dividend Yield Factor 

 Original  FMP  
 Mean t-stat  Mean t-stat 

mkt-rf 0.01 0.10  0.02 0.17 
FΔd12 0.03 1.69  0.03 1.41 

FΔp 0.26 2.26  0.26 1.89 
SMB -0.03 -0.41  -0.03 -0.48 
HML 0.08 1.10  0.08 1.07 
RMW -0.01 -0.11  -0.01 -0.10 
CMA 0.02 0.48  0.02 0.50 
MOM -0.11 -1.49  -0.09 -1.31 
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Table 4: Dividend Payers vs Non-Dividend Payers 

This table reports the Fama–MacBeth (1973) factor premiums for the cross-section of two separate groups: dividend payers and 
non-dividend payers. The specification of the regressions is the same as in Table 3. The sample period ranges from January 1978 to 
December 2019.  

Panel A: Dividend Payers 
 Original  FMP 
 Mean t-stat  Mean t-stat 

mkt-rf 0.12 0.82  0.12 0.79 
FΔdy12 -0.41 -2.92  -0.45 -2.57 

SMB 0.06 0.77  0.05 0.62 
HML 0.12 1.57  0.13 1.59 
RMW -0.07 -1.26  -0.07 -1.32 
CMA 0.03 0.60  0.03 0.70 
MOM -0.02 -0.26  -0.02 -0.22 

  
Panel B: Non-Dividend Payers 

 Original  FMP 
 Mean t-stat  Mean t-stat 

mkt-rf 0.00 -0.04  -0.01 -0.06 
FΔdy12 -0.25 -2.41  -0.27 -2.09 

SMB -0.02 -0.39  -0.03 -0.52 
HML 0.06 0.85  0.06 0.83 
RMW 0.00 -0.06  0.00 -0.07 
CMA 0.02 0.47  0.02 0.50 
MOM -0.10 -1.51  -0.09 -1.34 
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Table 5: Portfolios Sorted on the Individual Dividend Yield 

This table displays the performance of portfolios sorted on the individual dividend yield of each stock. We form value-weighted 
and equal-weighted portfolios rebalanced monthly. Stocks are sorted into quintiles from lowest dy12 (Low) to highest dy12 (High). 
The mean and standard deviation are for monthly percentage excess returns. The “H-L” row refers to the difference in monthly 
excess returns between the High and Low portfolios. Size and B/M report the average log market capitalization and book-to-market 
ratio for firms in each portfolio. The FF6 alpha is computed using the Fama–French (2015) five-factor model plus momentum. The 
sample period ranges from January 1978 to December 2019. 

Panel A: Value-Weighted Portfolios 
 Returns     

Rank Mean St Dev Size B/M 
FF6 

Alpha 
Dividend  

Yield 
High 0.74 4.03 17.39 0.77 -0.07 5.67 
4 0.80 3.94 17.61 0.57 -0.05 3.29 
3 0.76 4.20 17.80 0.45 -0.18*** 2.29 
2 0.74 4.63 17.31 0.44 -0.15** 1.50 
Low 0.62 5.08 17.06 0.43 -0.19*** 0.63 
       
H-L 0.12 4.04   0.12  
(t-stat) (0.61)    (0.90)  

 
Panel B: Equally-Weighted Portfolios 

 Returns     

Rank Mean St Dev Size B/M 
FF6 

Alpha 
Dividend 

Yield 
High 0.87 3.84 15.00 0.95 0.16** 7.45 
4 0.96 4.04 15.24 0.80 0.12* 3.28 
3 0.91 4.45 15.25 0.74 -0.02 2.30 
2 0.93 4.58 15.08 0.69 -0.02 1.49 
Low 0.79 5.02 15.03 0.63 -0.14** 0.65 
       
H-L 0.08 2.62   0.30***  
(t-stat) (0.60)    (3.22)  
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Table 6: Predictive CAPM 

This table displays the performance of the predictive CAPM. Panels A and B report the performance of value-weighted and equally-
weighted quintile portfolios sorted on (1) the standard CAPM betas, (2) the Dimson (1979) CAPM betas, and (3) the predictive betas 
on the lagged market excess return. Panels C, D and E report the Fama–MacBeth (1973) cross-sectional factor premiums for the full 
cross-section of stock returns. The sample period ranges from January 1978 to December 2019. 

Panel A: Value-Weighted Portfolios 
 Standard CAPM 

beta 
 Dimson (1979) 

CAPM beta 
 Predictive CAPM beta 

Rank Return FF6 
Alpha 

 Return FF6 
Alpha 

 Return FF6 
Alpha 

Post-
Formation 
𝛽ிெ ்షభ 

High 0.70 0.06  0.78 0.12  0.92 0.29*** 0.11*** 
4 0.85 -0.05  0.79 -0.04  0.75 0.03 0.01 
3 0.85 -0.07  0.85 -0.02  0.81 0.05 -0.02 
2 0.76 -0.13**  0.75 -0.11***  0.66 -0.11** -0.03*** 
Low 0.64 -0.07  0.66 -0.08  0.64 -0.05 -0.03*** 
          
H-L 0.06 0.13  0.12 0.21  0.28* 0.33*** 0.14*** 
(t-stat) (0.19) (0.81)  (0.39) (1.32)  (1.79) (2.75) (4.29) 

Panel B: Equally-Weighted Portfolios 
 Standard CAPM 

beta 
 Dimson (1979) 

CAPM beta 
 Predictive CAPM beta 

Rank Return FF6 
Alpha 

 Return FF6 
Alpha 

 Return FF6 
Alpha 

Post-
Formation 
𝛽ிெ ்షభ 

High 0.86 0.45***  0.96 0.58***  1.10 0.97*** 0.44*** 
4 0.92 0.20***  0.99 0.30***  1.00 0.53*** 0.29*** 
3 1.03 0.23***  0.94 0.17***  0.90 0.33*** 0.21*** 
2 0.93 0.19***  0.94 0.17***  0.86 0.24*** 0.17*** 
Low 0.82 0.26***  0.73 0.11  0.69 0.19* 0.18*** 
          
H-L 0.05 0.19  0.23 0.47***  0.41** 0.78*** 0.25*** 
(t-stat) 0.15 (1.26)  (0.73) (2.78)  (2.32) (5.79) (4.73) 
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Panel C: Fama-MacBeth Regressions 
 Original  FMP 
 Mean t-stat  Mean t-stat 

Dimson Beta 0.11 0.92  0.11 0.92 
SMB -0.03 -0.48  -0.06 -0.78 
HML 0.07 1.02  0.07 0.94 
RMW -0.02 -0.31  -0.02 -0.33 
CMA 0.01 0.24  0.01 0.26 
MOM -0.12 -1.64  -0.09 -1.27 

      
Panel D: Fama-MacBeth Regressions 

 Original  FMP 
 Mean t-stat  Mean t-stat 

(mkt-rf)t 0.01 0.11  0.01 0.12 
F(mkt-rf)t-1 0.25 2.25  0.25 1.85 

SMB -0.03 -0.39  -0.03 -0.48 
HML 0.09 1.15  0.09 1.13 
RMW -0.01 -0.16  -0.01 -0.17 
CMA 0.02 0.52  0.03 0.58 
MOM -0.11 -1.53  -0.10 -1.34 

  
Panel E: Fama-MacBeth Regressions 

 Original  FMP 
 Mean t-stat  Mean t-stat 

(mkt-rf)t 0.01 0.10  0.02 0.17 
F(mkt-rf)t-1 0.25 2.24  0.26 1.86 

FΔd12 0.03 1.69  0.03 1.41 
SMB -0.03 -0.41  -0.03 -0.48 
HML 0.08 1.10  0.08 1.07 
RMW -0.01 -0.11  -0.01 -0.10 
CMA 0.02 0.48  0.02 0.50 
MOM -0.11 -1.49  -0.09 -1.30 
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Figure 1 
The top panel displays the number of dividend payers vs non-payers for the sample period of 
January 1927 to December 2019. The bottom panel displays the proportion of dividend payers for 
the same sample period. 
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A. Factor-Mimicking Portfolio 

This section provides details on how we construct the factor-mimicking portfolio (FMP) 

by implementing the OLS cross-sectional approach based on Lehmann and Modest 

(1988). The OLS approach involves performing estimation of two-step Fama-MacBeth 

(1973) regressions. In the first stage time-series regression, loadings are estimated for 

each firm using the following univariate model: 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖𝛥𝑑𝑦12𝑡 + 𝜀𝑖,𝑡 . (𝐴1) 

The beta estimates from Equation (A1) are used in the second stage cross-

sectional regressions with 𝛽𝑖 as the only explanatory variable. This leads to the 

following OLS estimates of the factor premium: 

 �̂�𝑡 = (�̂�′�̂�)−1�̂�′(𝑟𝑡 − 𝑟𝑓,𝑡), (𝐴2) 

where �̂� is the vector of estimated betas using the full sample and 𝑟𝑡 − 𝑟𝑓,𝑡 is the vector 

of excess stock returns. Then, the factor mimicking portfolio, FΔdy12, is simply the �̂�𝑡 

estimate from Equation (A2) above. By design, the OLS approach generates an ex-post 

full sample FMP, which is maximally correlated with the original Δdy12 variable.  
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We generate the OLS FMP using data only from dividend-paying firms. This 

ensures that only firms which contribute to the market dividend are included in 

mimicking the dividend yield factor. Consequently, both from a methodology point of 

view and from a data selection point of view, the OLS FMP is maximally correlated 

with the dividend yield factor. For this reason, the OLS FMP is the factor mimicking 

portfolio used in our analysis. 

 

B Robustness 

B.1 Bad Beta, Good Beta 

Our two-factor CAPM has some intuitive similarities with the “bad-beta, good-beta” 

two-factor model proposed by Campbell and Vuolteenaho (2004). This section evaluates 

the empirical relation between our dividend yield factor and the bad-beta, good-beta 

two-factor model, which is based on the Campbell and Shiller (1988) log-linear 

approximate decomposition of returns in two components: 

𝑟𝑡+1 − 𝐸𝑡[𝑟𝑡+1] = 𝑁𝐶𝐹,𝑡+1 − 𝑁𝐷𝑅,𝑡+1, (𝐵1) 

where 𝑁𝐶𝐹,𝑡+1 = (𝐸𝑡+1 − 𝐸𝑡) ∑ 𝜌𝑗∆𝑑𝑡+1+𝑗
∞
𝑗=0  denotes news about future cash flows 

(dividends) and 𝑁𝐷𝑅,𝑡+1 = (𝐸𝑡+1 − 𝐸𝑡) ∑ 𝜌𝑗𝑟𝑡+1+𝑗
∞
𝑗=1  denotes news about future discount 

rates (expected returns). In these equations, 𝑟𝑡+1 is the log stock return at time t+1, 

𝐸𝑡[𝑟𝑡+1] is the time t expectation of the t+1 return, 𝑑𝑡+1 is the log dividend paid by the 

stock at t+1, and 𝜌<1 is a discount coefficient. In words, Equation (B1) suggests that 

unexpected stock returns are associated with changes in expectations of future cash 

flows and future discount rates. 
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Based on this decomposition, Campbell and Vuolteenaho (2004) propose a two-

factor model in which they define the cash-flow beta as:  

𝛽𝑖,𝐶𝐹 =
𝐶𝑜𝑣(𝑟𝑖,𝑡 , 𝑁𝐶𝐹,𝑡)

𝑉𝑎𝑟(𝑟𝑚,𝑡
𝑒 − 𝐸𝑡−1𝑟𝑚,𝑡

𝑒 )
, (𝐵2) 

and the discount-rate beta as: 

𝛽𝑖,𝐷𝑅 =
𝐶𝑜𝑣(𝑟𝑖,𝑡 , 𝑁𝐷𝑅,𝑡)

𝑉𝑎𝑟(𝑟𝑚,𝑡
𝑒 − 𝐸𝑡−1𝑟𝑚,𝑡

𝑒 )
, (𝐵3) 

where 𝑟𝑚,𝑡
𝑒  is the excess market return. Since both betas have the same denominator, it is 

straightforward to show that the market beta (𝛽𝑖,𝑚) is given by: 

𝛽𝑖,𝑚 = 𝛽𝑖,𝐶𝐹 + 𝛽𝑖,𝐷𝑅. (B4)  

In this two-beta model, Campbell and Vuolteenaho (2004) refer to 𝛽𝑖,𝐶𝐹 as the 

“bad beta” and 𝛽𝑖,𝐷𝑅 to as the “good beta.” The intuition for this distinction is based on 

the following argument. The value of the market portfolio may decrease because 

investors receive bad news about future cashflows (i.e., 𝑁𝐶𝐹,𝑡+1 decreases) or because 

investors increase future discount rates (i.e., 𝑁𝐷𝑅,𝑡+1 increases). The first case 

corresponds to a bad beta (𝛽𝑖,𝐶𝐹) because wealth decreases but investment opportunities 

are unchanged. The second case corresponds to a good beta (𝛽𝑖,𝐷𝑅) because wealth 

decreases but now investment opportunities improve. 

The decomposition implemented in this paper and the Campbell and Shiller 

(1988) decomposition are similar but distinct. In this paper, we decompose current 

market returns into current capital gains and the current dividend yield and then use 

the latter to form a market dividend yield factor. In contrast, Campbell and Shiller 
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(1988) decompose shocks to future market returns into shocks to future cash flows and 

shocks to future discount rates. In this section, we rely on an empirical analysis to 

determine the relation between the two models. 

We empirically evaluate the bad-beta, good-beta model using a first-order VAR 

model to estimate expected returns (𝐸𝑡[𝑟𝑡+1]) and discount rate shocks (𝑁𝐷𝑅,𝑡+1). Then, 

we use the realized return (𝑟𝑡+1) and Equation (B1) to back out the estimated cash flow 

shocks (𝑁𝐶𝐹,𝑡+1). This allows us to compute the cash-flow beta and the discount-rate 

beta defined above. Our empirical approach follows exactly Campbell and Vuolteenaho 

(2004). VAR estimation conditions on four state variables: the excess return on the 

market portfolio, the yield spread between short-term and long-term government 

bonds, the market smoothed price-earnings ratio, and the small-stock value spread.1 To 

be consistent with the ex-ante nature of our analysis, each month we compute ex-ante 

beta estimates using a 20-year rolling window. Therefore, our bad-beta, good-beta 

estimates avoid the forward-looking bias. 

Armed with the ex-ante estimates of bad-beta and good-beta for each stock, we 

re-estimate the Fama-MacBeth regressions to include these betas. The results are 

reported in Table B4. Our main finding is that the factor premiums for bad-beta and 

 
1 The yield spread is defined as the 10-year treasury bond yield less the 3-month T-bill rate obtained from 

the FRED database of the Federal Reserve Bank of St. Louis. The smoothed S&P500 price-earnings ratio is 

obtained from Robert Shiller’s website. The small-stock value spread is defined as the difference between 

the log book-to-market value ratios of small value and small growth stocks obtained from Ken French’s 

online data library. 
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good-beta are small and statistically insignificant. More importantly, their inclusion in 

the Fama-MacBeth regressions seems to have no effect on the size and statistical 

significance of either the dividend yield factor (Δdy12) or its two components (Δd12 and 

Δp). We conclude, therefore, that empirically the dividend yield factor is unrelated to 

the bad-beta and good-beta of Campbell and Vuolteenaho (2004). 

 

B.2 Is the Dividend Yield Factor Related to Taxes? 

The decomposition of the market return into capital gains and the dividend yield 

warrants a discussion of taxation since the two return components are subject to a 

different tax treatment. In this section, we investigate the extent to which the 

explanatory power of the dividend yield factor can be attributed to taxes.  

It is standard in the asset pricing literature to assess the tax effect using the 

implied tax rate from the municipal bond market (see, e.g., Naranjo, Nimalendran and 

Ryngaert, 1998). Following Poterba (1986), the implied tax rate is the tax rate that makes 

an investor indifferent between taxable and non-taxable bonds. Specifically, it is defined 

as the ratio of the (tax-exempt) municipal yield over the (taxable) treasury yield. This 

implied tax rate is used as a proxy for the tax differential between dividend income and 

capital gains income.  

We measure the implied tax rate using data from (1) the Standard and Poor’s 

high-grade tax-exempt municipal bond yields with a 20-year maturity, and (2) the 20-

year Treasury yield. Both series are obtained from the LSEG Eikon database. We form 

the ΔTax series, which is the change in the implied tax rate. Using the differenced series 
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(ΔTax) ensures that the tax variable is stationary with low persistence. We also generate 

FΔTax, which is the factor-mimicking portfolio for the change in the implied tax rate. 

We assess the cross-sectional evidence on the tax effect by incorporating FΔTax 

in the Fama-MacBeth regressions, and report the results in Table B5 for dividend-payers 

and non-dividend payers. Our main finding here is that the tax effect is small and 

statistically insignificant. Additionally, the inclusion of FΔTax does not affect the size 

and significance of Δdy12 for either dividend-payers or non-dividend payers. Indeed, 

the factor premium for Δdy12 is almost the same in Table 4 (no tax effect) and Table B5 

(with tax effect). We conclude, therefore, that taxation is an unlikely explanation for the 

predictive power of the dividend yield factor. 

 

B.3 Orthogonalizing the Dividend Yield Factor 

In this section, we orthogonalize the dividend yield factor to the risk-free rate, 

the term spread and the default spread. This is motivated by Petkova (2006), who shows 

that these three variables together with the dividend yield describe well the time-

variation in the investment opportunity set. Orthogonalization removes the effect of 

three prominent variables, which are likely to be correlated with the dividend yield 

factor. We orthogonalize by estimating a regression of Δdy12 on the three variables and 

then using the fitted residuals as our orthogonal Δdy12. We use a 20-year window and 

perform ex-ante estimation to avoid a forward looking bias. 

The data used in the orthogonalization are obtained as follows. Data on the long-

term yields are obtained from Ibbotson’s Stocks, Bonds, Bills and Inflation Yearbook. 
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Data on the 3-month treasury bill and the corporate bond yields on AAA-rated and 

BAA-rated bonds are obtained from the FRED database of the Federal Reserve Bank at 

St. Louis. The term spread is the difference between the long term yield on government 

bonds and the Treasury bill rate. The default yield spread is the difference between 

BAA and AAA-rated corporate bond yields. 

The results for portfolio sorts based on the orthogonalized dividend yield factor 

are in Table B6 and the corresponding Fama-MacBeth regression results are in Table B7. 

The results indicate that the main findings are similar whether we use the 

othogonalization or not. Specifically, for VW quintile portfolios rebalanced monthly by 

sorting on the beta to the orthogonalized Δdy12 factor, the H-L portfolio delivers a 

mean return of -0.34% per month with a t-stat=-2.68. The six-factor alpha of the VW H-L 

portfolio is equal to -0.26% with a t-stat=-2.49. The results are stronger for EW 

portfolios: the H-L mean return is equal to -0.39% with a t-stat=-2.58 and the H-L alpha 

is equal to -0.60% with a t-statistic of -5.05. The significant negative premium of the 

dividend yield factor is also confirmed in Fama and MacBeth (1973) regressions in the 

presence of standard asset pricing factors. We conclude, therefore, that with or without 

the orthogonalization, the dividend yield factor has strong predictive power for the 

cross-section of expected stock returns.  
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Table B1: Summary Statistics 
This table reports summary statistics for the following monthly variables: mkt is the market excess return, mktx is the 
market excess return excluding dividends, dy is the market dividend yield, Δdy12 is the monthly proportional change in 
the 12-month market dividend yield, Δd12 is the year-over-year dividend growth rate and Δp is the lagged rate of capital 
gains. AR(1) is the degree of serial correlation at a lag of one month. The sample period ranges from January 1978 to 
December 2019. Expansions and recessions are defined according to the NBER. 
 

Panel A: Full Sample 
 Mean St. Dev. Min Max Skewness Kurtosis AR(1) 

mkt 1.04 4.40 -22.64 12.88 -0.75 5.24 0.05 
mktx 0.82 4.39 -22.84 12.73 -0.76 5.24 0.05 
dy 0.22 0.14 0.06 0.92 2.26 8.81 0.25 
Δdy12 -0.09 4.67 -11.42 28.99 1.07 6.86 0.06 
Δd12 0.53 1.47 -8.76 18.52 3.33 51.42 0.04 
Δp 0.82 4.39 -22.84 12.73 -0.76 5.24 0.05 

        
Panel B: Expansions 

mkt 1.17 4.07 -22.64 12.88 -0.79 5.97  
mktx 0.96 4.05 -22.84 12.73 -0.79 5.99  
dy 0.21 0.13 0.06 0.82 2.26 9.13  
Δdy12 -0.26 4.36 -11.27 28.99 1.21 8.37  
Δd12 0.58 1.50 -8.76 18.52 3.47 52.44  
Δp 1.01 4.05 -22.84 12.73 -0.80 6.03  

        
Panel C: Recessions 

mkt 0.01 6.44 -17.15 11.90 -0.29 2.56  
mktx -0.28 6.41 -17.28 11.61 -0.29 2.53  
dy 0.29 0.21 0.06 0.92 1.50 4.34  
Δdy12 1.25 6.55 -11.42 18.72 0.31 2.69  
Δd12 0.10 1.10 -2.52 2.53 -0.13 3.02  
Δp -0.74 6.31 -17.28 11.61 -0.16 2.58  
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Table B2: Cross-Correlations 
This table reports the cross-correlations for the variables defined in Table B1. The sample period ranges from January 1978 
to December 2019. Expansions and recessions are defined according to the NBER. 
 

Panel A: Full Sample 
 mkt mktx dy Δdy12 Δd12 Δp 
mkt 1      
mktx 1.00 1     
dy 0.10 0.07 1    
Δdy12 -0.05 -0.05 0.07 1   
Δd12 0.01 0.00 0.17 0.25 1  
Δp 0.05 0.05 0.00 -0.95 0.06 1 

       
Panel B: Expansions 

mkt 1      
mktx 1.00 1     
dy 0.11 0.08 1    
Δdy12 0.04 0.04 0.10 1   
Δd12 0.01 0.00 0.15 0.29 1  
Δp -0.04 -0.04 -0.04 -0.94 0.05 1 

       
Panel C: Recessions 

mkt 1      
mktx 1.00 1     
dy 0.16 0.13 1    
Δdy12 -0.32 -0.31 -0.13 1   
Δd12 -0.05 -0.07 0.54 0.09 1  
Δp 0.32 0.31 0.22 -0.99 0.07 1 
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Table B3: Factor-Mimicking Portfolios 

This table reports the cross-correlations between the original factors and the factor-mimicking portfolios (FMPs). The 
FMPs implement ordinary least squares (OLS) estimation using the cross-section of dividend-paying firms. The sample 
period ranges from January 1978 to December 2019.  
 

Cross-Correlations 
Corr(Δdy12, FΔdy12) 0.79 
Corr(Δd12, FΔd12) 0.85 
Corr(Δp, FΔp) 0.79 
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Table B4: Bad-Beta, Good-Beta 

This table reports the Fama–MacBeth (1973) factor premiums for bad-beta, good-beta regressions using the full cross-
section of stock returns. We use the Campbell and Vuolteenaho (2004) decomposition of the market beta into a cash flow 
beta (𝛽𝐶𝐹) and a discount rate beta (𝛽𝐷𝑅). The specification of the regressions is the same as in Table 3 of the paper. The 
sample period ranges from January 1978 to December 2019.  
 

Panel A: Dividend Yield Factor 
 Original  FMP 

 Mean t-stat  Mean t-stat 

𝛽𝐶𝐹 -0.03 -0.23  -0.04 -0.29 

𝛽𝐷𝑅 0.04 1.29  0.04 1.44 
FΔdy12 -0.26 -2.19  -0.28 -1.83 

SMB -0.03 -0.42  -0.04 -0.52 
HML 0.08 1.11  0.08 1.11 
RMW -0.01 -0.10  -0.01 -0.11 
CMA 0.02 0.51  0.03 0.56 
MOM -0.11 -1.54  -0.10 -1.38 

  
Panel B: Components of the Dividend Yield Factor 

 Original  FMP  

 Mean t-stat  Mean t-stat 

𝛽𝐶𝐹 -0.04 -0.34  -0.04 -0.31 

𝛽𝐷𝑅 0.05 1.56  0.05 1.67 
FΔd12 0.03 1.70  0.03 1.38 

FΔp 0.26 2.27  0.26 1.88 
SMB -0.03 -0.46  -0.04 -0.52 
HML 0.08 1.08  0.08 1.06 
RMW 0.00 -0.05  0.00 -0.04 
CMA 0.02 0.47  0.02 0.49 
MOM -0.11 -1.52  -0.10 -1.33 
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Table B5: Tax Effects on Dividend Payers and Non-Dividend Payers 
This table displays the effect of taxes on the Fama–MacBeth (1973) factor premiums for the cross-section two separate 
groups: dividend payers and non-dividend payers. FΔtax is the factor-mimicking portfolio for the change in the implied 
tax rate. The specification of the regressions is the same as in Table 4 of the paper. The sample period ranges from January 
1978 to December 2019.  
 

Panel A: Dividend Payers 
 Original  FMP 

 Mean t-stat  Mean t-stat 

FΔtax -0.05 -0.67  -0.06 -0.50 
Mkt-rf 0.13 0.87  0.14 0.93 
FΔdy12 -0.41 -2.94  -0.41 -2.66 

SMB 0.06 0.76  0.06 0.75 
HML 0.12 1.55  0.11 1.44 
RMW -0.07 -1.23  -0.07 -1.28 
CMA 0.03 0.62  0.03 0.54 
MOM -0.02 -0.27  -0.03 -0.27 

  
Panel B: Non-Dividend Payers 

 Original  FMP 

 Mean t-stat  Mean t-stat 

FΔtax -0.01 -0.21  0.01 0.11 
Mkt-rf 0.00 0.04  0.01 0.12 
FΔdy12 -0.25 -2.40  -0.24 -2.33 

SMB -0.02 -0.38  -0.03 -0.52 
HML 0.05 0.79  0.05 0.66 
RMW 0.00 -0.06  0.00 -0.04 
CMA 0.02 0.33  0.01 0.27 
MOM -0.11 -1.57  -0.10 -1.46 
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Table B6: Portfolios Sorted by Exposure to the Orthogonalized Dividend Yield Factor 
This table presents the performance of portfolios sorted by the exposure (beta) of excess stock returns to the 
orthogonalized dividend yield factor, Δdy12. The table reports the same information as Table 1 of the paper but uses a 
dividend yield factor that is orthogonalized to the risk-free rate, the term spread and the default spread. Statistical 
significance is assessed using Newey–West (1987) t-statistics. The sample period ranges from January 1978 to December 
2019.  
 

Panel A: Value-Weighted Portfolios 
 Returns    Factor Loadings 

Rank Mean St Dev Size B/M 
FF6 

Alpha 

Pre-Formation 
𝛽𝛥 ⅆ𝑦12 

Post-Formation 
𝛽𝐹𝛥 ⅆ𝑦12 

High 0.65 4.64 17.28 0.48 0.00 0.35 0.00 
4 0.62 4.00 17.51 0.51 -0.17*** 0.10 0.01 
3 0.78 4.14 17.52 0.53 0.07 -0.05 0.01 
2 0.74 4.53 17.40 0.55 -0.02 -0.22 0.02 
Low 0.99 5.65 16.54 0.59 0.26*** -0.58 -0.03* 
        
H-L -0.34*** 2.61   -0.26**  0.03 
(t-stat) (-2.68)    (-2.49)  (1.02) 

Panel B: Equally-Weighted Portfolios 
 Returns    Factor Loadings 

Rank Mean St Dev Size B/M 
FF6 
Alpha 

Pre-Formation 
𝛽𝛥 ⅆ𝑦12 

Post-Formation 
𝛽𝐹𝛥 ⅆ𝑦12 

High 0.70 5.57 14.48 0.74 0.06 0.51 -0.06*** 
4 0.88 4.55 14.96 0.75 0.13*** 0.08 -0.05*** 
3 0.93 4.67 14.83 0.78 0.20*** -0.12 -0.07*** 
2 0.94 5.30 14.16 0.85 0.26*** -0.35 -0.11*** 
Low 1.10 7.40 12.96 0.89 0.66*** -0.99 -0.23*** 
        
H-L -0.39** 3.11   -0.60***  0.17*** 
(t-stat) (-2.58)    (-5.05)  (4.30) 
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Table B7: Fama-MacBeth Regressions with an Orthogonalized Dividend Yield Factor 
This table reports the Fama–MacBeth (1973) factor premiums using the orthogonalized dividend yield factor, Δdy12. The 
table reports the same information as Table 3 of the paper but uses a dividend yield factor that is orthogonalized to the 
risk-free rate, the term spread and the default spread. The sample period ranges from January 1978 to December 2019. 
 

Panel A: Dividend Yield Factor 
 Original  FMP 

 Mean t-stat  Mean t-stat 

mkt-rf 0.02 0.13  0.02 0.15 
FΔdy12 -0.21 -2.35  -0.28 -2.24 

SMB -0.03 -0.40  -0.03 -0.48 
HML 0.08 1.07  0.08 1.07 
RMW -0.01 -0.16  -0.01 -0.17 
CMA 0.02 0.50  0.02 0.50 
MOM -0.11 -1.56  -0.10 -1.41 

  
Panel B: Components of the Dividend Yield Factor 

 Original  FMP  

 Mean t-stat  Mean t-stat 

mkt-rf 0.01 0.11  0.02 0.20 
FΔd12 0.03 1.56  0.03 1.43 

FΔp 0.22 2.49  0.27 2.29 
SMB -0.03 -0.46  -0.03 -0.48 
HML 0.08 1.02  0.08 1.00 
RMW -0.01 -0.12  -0.01 -0.09 
CMA 0.02 0.47  0.02 0.43 
MOM -0.11 -1.50  -0.10 -1.34 
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Figure B1 

This figure displays the autocorrelation function of the monthly market dividend yield 
(dy, top graph) and the 12-month market dividend yield (dy12, bottom graph) for the 
sample period of January 1978 to December 2019.  
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Figure B2 

This figure displays the time series of the market dividend yield, dy12, and the 
dividend yield factor, Δdy12, for the sample period of January 1978 to December 2019. 
The shaded areas indicate NBER recessions. 
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