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Abstract

This paper models the attention allocation of portfolio investors. Investors choose the

composition of their information subject to an information flow constraint. Given their

expected investment strategy in the next period, which is to hold a diversified portfolio, in

equilibrium investors choose to observe one linear combination of asset payoffs as a private

signal. When investors use this private signal to update information about two assets,

changes in one asset affect both asset prices and may lead to asset price comovement. The

model also has implications for the transmission of volatility shocks between two assets.
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1 Introduction

Many empirical findings in economics and finance have been explained by assuming a particular

information structure. In recent years, there is a growing literature that lets agents choose

the information structure,1 usually under some restrictions on its composition. In finance

models, for example, investors are typically restricted to collect information about individual

assets. However, in practice, information is also available about portfolios of assets. This

paper studies a model in which investors can collect information about combinations of assets.

This paper presents a multiple asset, noisy rational expectations model with rationally

inattentive agents that builds on Admati [1], Peng and Xiong [20] and Van Nieuwerburgh and

Veldkamp [25,26]. The framework consists of two uncorrelated risky assets and a continuum

of agents who face information processing constraints as in Sims [22,23]. Investors process

information about the assets to reduce uncertainty about their portfolio. Investors process

information in prices for free, have limited capacity to process additional information, and

decide how to use this capacity. In particular, investors can choose between processing infor-

mation about individual asset payoffs or linear combinations of asset payoffs. The information

processing decision is formalized as choosing noisy signals about linear combinations of asset

payoffs. After allocating their attention, investors incorporate the information from their pri-

vate signals and from prices through Bayesian updating to form their posterior beliefs about

the asset payoffs and then choose their optimal asset holdings.

This paper represents a step forward towards introducing rational inattention, introduced

by Sims [22,23], in a general equilibrium finance model. Peng [19], Peng and Xiong [20] and

Van Nieuwerburgh and Veldkamp [25,26] are the first attempts at introducing information ca-

pacity constraints into finance. In these models, if assets are assumed to be independent, then

investors can process information only about individual assets because the ex-post variance-

covariance matrix of the payoffs is constrained to be diagonal. In other words, in their ap-

proach, sources of uncertainty that are ex-ante independent remain independent ex-post.

In contrast, I solve for the optimal form of the ex-post variance-covariance matrix of the

1See Hellwig and Veldkamp [7], Luo [15], Mackowiak and Wiederholt [16,17], Peng [19], Peng and Xiong [20]
and Van Nieuwerburgh and Veldkamp [25,26].
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payoffs, which is not initially constrained to be diagonal. Investors can get signals about

any linear combination of asset payoffs. They are able to choose the composition of their

information, i.e., investors decide if they want to observe a private signal about each asset

payoff or about a linear combination of asset payoffs. Given their expected investment strategy

in the next period, which is to hold a diversified portfolio, there is an equilibrium where all

investors choose to observe a linear combination of asset payoffs as a private signal. This result

is at the heart of the present paper. This result is consistent with the evidence provided by

Hameed, Morck, Shen and Yeung [6]. They find that analysts follow assets that contain more

valuable market and industry wide information, suggesting that investors use the information

about some assets not only to trade in that asset, but also to value other assets. In other

words, Hameed, Morck, Shen and Yeung [6] show that, in line with the central prediction of

the present paper, investors choose to observe signals that are good predictors of many assets.

This model has implications for excess comovement in asset prices of seemingly unrelated

assets. Excess comovement is defined as a high covariance of asset prices, relative to the

covariance of their fundamentals. Excess comovement of asset prices affects the benefits of

portfolio diversification and is, therefore, an important issue in economics and finance.2 This

paper demonstrates that asset price comovement can be explained by rationally inattentive

investors choosing to observe a linear combination of two uncorrelated asset payoffs. Intu-

itively, if there is good news about one asset, then investors observe a high realization of the

private signal and they attribute part of the effect to one asset and the rest to the other

asset. This leads to an increase in the price of both assets and, therefore, price comovement

of uncorrelated assets. A numerical example with reasonable parameters for the U.S. stock

market can generate an excess price correlation relative to fundamentals between 10.4% and

23.6% depending on the magnitude of the information processing capacity. These numbers

are close to the average excess correlation of 25.5% between the index returns of all major

industry groups in the U.S. stock market reported by Kallberg and Pasquariello [8].

2There is a large literature showing the existence of excess comovement of asset prices relative to the
comovement of their fundamentals (i) when there are announcements of common information content, (ii)
when there are announcements of unrelated news, and (iii) during non-announcement periods. See Pindyck
and Rotemberg [21], Barberis, Shleifer and Wurgler [2] and Greenwood [5].
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Although other complementary channels are important for shedding light on asset price

comovement, this paper studies a new mechanism: because investors choose to observe a

linear combination of two uncorrelated asset payoffs as a private signal, changes in one asset

are reflected in the information about the two assets and investors attribute part of the effect

to one asset and the remaining to the other asset. Thus, provided investors have a limited

capacity to process information, comovement between two uncorrelated assets arises even in

the absence of correlated liquidity shocks (Calvo [3]), wealth effects (Kyle and Xiong [14]),

direct or indirect macroeconomic links (King and Wadhwani [10], Kodres and Pritsker [13]),

borrowing constraints (Yuan [29]) and endogenous information supply (Veldkamp [27]).

Empirically, it is difficult to distinguish between these different channels that potentially

generate comovement. Nevertheless, this model has unique implications for the transmission of

volatility shocks that distinguishes its mechanism from those of the alternative explanations.

In my model, if there is an unexpected event that increases uncertainty about one asset,

investors optimally allocate more attention to this asset, and therefore less attention to other

assets. As a result, investors perceive these other assets to be riskier, and so my model predicts

that the prices of these other stocks decline.

The evidence presented in Corwin and Coughenour [4] provides strong support for the

implications of the model. They measure the attention allocated by a NYSE specialist to each

asset, constructing a proxy for attention allocation based on the number of transactions and

the absolute return during a given trading period. They find that when specialists increase

the attention allocated to their most active stocks, there is an increase in the bid-ask spread

of their remaining assigned stocks. This finding suggests that (i) the information processing

constraint is binding, even for professional investors, and (ii) an increase in the attention

allocated to a group of assets generates an increase in the perceived volatility of the other

assets assigned to the same specialist.

The remainder of the paper is organized as follows. Section 2 describes the model with

special emphasis on rationally inattentive agents and information theory. Section 3 solves the

investor’s optimization problem. Section 4 examines price comovement between uncorrelated
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assets. Section 5 discusses the transmission of volatility shocks. Section 6 provides a numerical

example with parameters chosen to reasonably match yearly asset price moments for the U.S.

stock market. Section 7 concludes. The Appendix provides technical derivations and proofs.

2 Model description

There are two risky assets and a continuum of agents of measure one. Agents live three periods

and are endowed with an initial wealth and a limited capacity to process information. In the

first period, investors choose their private signal. In the second period, each investor decides

on the optimal portfolio given the observation of a private signal and the price. In the last

period, agents consume the payoff of their portfolio.

Each agent invests her initial endowment in three different assets: a risk free asset that pays

Rf units of the consumption good and two uncorrelated risky assets. The first risky asset pays

r̃1 ∼ N
¡
r̄1, σ

2
r1

¢
units of the consumption good. The second risky asset pays r̃2 ∼ N

¡
r̄2, σ

2
r2

¢
units of the consumption good. Let R̄ and ΣR denote the mean vector and the diagonal

variance-covariance matrix of the vector R̃ = (r̃1, r̃2)
0. The numeraire in the market is the

price of the bond and P̃ = (p̃1, p̃2)0 is the price vector of the risky assets. The net supply of the

risky asset j is given by the realization of a random variable z̃j ∼ N
³
z̄j , σ

2
zj

´
, where z̄j > 0 for

any risky asset j. Let Z̄ and ΣZ denote the mean vector and the diagonal variance-covariance

matrix of the vector of net supply Z̃ = (z̃1, z̃2)
0. The vector of net supply, Z̃, is independent

of the vector of asset payoffs, R̃. Asset supply randomness can be viewed as the result of some

trade of a nonspeculative nature (liquidity traders) or some trade from agents lacking perfect

knowledge of the market structure (irrational traders). This randomness is necessary in order

to avoid perfect revelation of private information through the price.

2.1 Information theory

Investors face a constraint that limits the amount of information they can process. I will

refer to this constraint as the information processing constraint. Intuitively, there is a large

amount of information freely available relevant for decision making, but it takes time and
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mental attention for investors to incorporate this information into their decisions.

Following Sims [22,23], I use concepts from information theory to quantify the amount

of information that a private signal contains about the asset payoffs. Information theory

measures the rate of information flow as the rate of uncertainty reduction. Entropy is the

measure of uncertainty used to calculate the information flow. This measure of uncertainty

can be derived from four reasonable axioms, see Khinchin [9]. The entropy H (X) of a random

variable X with a continuous probability density p(x) is defined as

H (X) = −E ln [p(X)] = −
Z

p (x) ln p (x) dx

In the case where X ∼ N(X̄,Σ) is an n-dimensional multivariate normal, its entropy is then

H(X) =
1

2
ln ((2πe)n |Σ|)

where |Σ| is the determinant of Σ. Intuitively, for a Gaussian distributed variable, higher

uncertainty is associated with higher variance.

According to information theory, the amount of information that a random variable con-

tains about another random variable is measured as uncertainty reduction. This measure of

uncertainty reduction is called mutual information. Consider two random variables X and Y

with a joint density function p(x, y) and marginal density functions p(x) and p(y). Mutual

information I(X;Y ) is defined as

I(X;Y ) =

Z
p (x, y) ln

p (x, y)

p (x)p(y)
dxdy = H(X)−H(X | Y )

The amount of information that a random variable contains about another random variable

is quantified as the difference between unconditional uncertainty and conditional uncertainty.

Mutual information is invariant to any linear transformations of both random variables X

and Y

I(X;Y ) = I(aX + b; cY + d)
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This measure is independent of the scale of the underlying variables, unlike other measures of

information such as the precision of the error in the private signal in Verrechia [28]. Given a

limited information processing capacity, κ,3 which is the maximum rate at which agents can

process information, the information processing constraint can be expressed as

I(X;Y ) = H (X)−H (X | Y ) ≤ κ

The information processing constraint limits the information flow by introducing an upper

bound to the mutual information. Intuitively, this constraint restricts the amount of informa-

tion contained in Y about X.

2.2 Investors’ information processing constraint

Investors want to obtain information about the risky assets in order to reduce the uncertainty

of their optimal portfolio. However, agents have a limited capacity to process information

about asset payoffs, which can be interpreted as limited time or mental attention. Investors

face an information processing constraint as in Sims [22,23]. Agents optimally decide how much

information they want to process about each asset given their limited information processing

capacity and choose the form of the private signal through which they process this information.

Agents are not allowed to process information about the net asset supply. In other words, the

cost of processing information about the net asset supply is infinite.

I assume investor i is constrained to choose a signal of the following form

Ỹi = CiR̃+ ε̃i where ε̃i ∼ N(0,Σi) (1)

where Ci is any 2× 2 matrix, ε̃i is independent of R̃, and Σi is the variance-covariance matrix

of ε̃i. The private signal provides information about linear combinations of asset payoffs. The

precision of a signal is higher if more attention is allocated to that particular signal. The

3The information processing capacity is the infomation flow measure used in, among other things, char-
acterizing modems or internet connections. An advantage of this measure of information is that there is no
need to characterize the physical nature of the channel (wires, optical cables, human brain) through which the
information is sent, it is enough to specify the capacity of the channel, κ.
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private signals are incorporated into the investor’s beliefs through rational Bayesian updating.

Investors optimally solve for the form of the conditional variance-covariance matrix of the

payoffs by choosing Ci and Σi subject to the information processing constraint. Note that the

conditional variance-covariance matrix of the payoffs is not constrained to be diagonal.

All investors have the same level of limited capacity to process information κ, which is

assumed to be a strictly positive and finite parameter. For tractability reasons, they are as-

sumed to process information about prices for free.4 Investors choose an optimal private signal

to reduce the uncertainty about asset payoffs subject to the following information processing

constraint

H
³
R̃
´
−H

³
R̃ | Ỹi

´
≤ κ

which is written as in Peng [19] and Peng and Xiong [20].5 Assuming Gaussian distributions

for the asset payoffs and the private signals, the information processing constraint can be

rewritten as

ln
¯̄̄
V ar(R̃)

¯̄̄
− ln

¯̄̄
V ar

³
R̃ | Ỹi

´¯̄̄
≤ 2κ (2)

The information processing constraint restricts the information flow or, in other words,

the amount of information about the asset payoffs contained in the private signal.

2.3 Investors’ objective function

Investors, with a constant risk tolerance parameter ρ, maximize their expected certainty equiv-

alent wealth

EUi = E

½
− lnE

∙
exp

µ
−W

0
i

ρ

¶
| Ỹi, P̃

¸¾
(3)

4See Mackowiak and Wiederholt [17] for a model where rationally inattentive agents do not perfectly observe
prices.

5 In Van Nieuwerburgh and Veldkamp [26], the information processing constraint restricts the mutual infor-
mation between the asset payoffs, and prices and private information signals. All the results of the paper are
robust to the information constraint used in Van Nieuwerburgh and Veldkamp [26] as shown in the additional
appendix.
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whereW 0
i is the wealth of agent i in the last period.

6 The constant risk tolerance parameter ρ is

assumed to be strictly positive and finite. Following Van Nieuwerburgh and Veldkamp [25,26],

I assume that investors have a preference for early resolution of uncertainty, as in Kreps and

Porteus [11,12].7 This is equivalent to maximizing a mean-variance objective function

EUi =
1

ρ
E

µ
E
h
W 0

i | Ỹi, P̃
i
− 1

2ρ
V ar

h
W 0

i | Ỹi, P̃
i¶

(4)

Van Nieuwerburgh and Veldkamp [25] discuss this objective function in detail. One justifi-

cation for these preferences is that there is an unmodeled intertemporal consumption choice.

If investors had to choose their optimal consumption each period and they had a standard

expected utility, then they would have a desire for early resolution of uncertainty as suggested

by Spence and Zeckhauser [24]. Here the intertemporal consumption decision is not modeled

because it unnecessarily complicates the model. Instead, I gain tractability while maintaining

a preference for early resolution of uncertainty by employing Kreps and Porteus preferences.

Investors maximize their objective function subject to the following budget constraint

W 0
i =Wi0Rf +X 0

i(R̃−Rf P̃ ) (5)

where Wi0 is the initial wealth of agent i, Xi = (xi,1, xi,2)
0 is the asset holdings vector of agent

i, R̃ is the vector of risky asset payoffs and P̃ is the price vector of the risky assets. The

market clearing conditions are given by
R 1
0 Xidi = Z̃.

2.4 Timing

In period one, investors choose Ci and Σi by maximizing the utility function in (3) or (4)

subject to the information processing constraint in (2) and rational expectations about Xi.

In period two, investors incorporate the information about asset payoffs from their optimally

6Ex post Gaussian uncertainty is typically optimal when the associated optimization problem is linear-
quadratic. Here Gaussian uncertainty is assumed for tractability.

7A preference for early resolution of uncertainty is expressed with a convex aggregator over the expected
utility. I use the following convex transformation in order to obtain closed form solutions f(x) = − ln (−x)
where x = −E exp −W 0

i
ρi

| Ỹi, P̃ .

8



chosen private signal, Ỹi, and the price, P̃ , into their beliefs through Bayesian updating.

Finally, given their posterior beliefs about asset payoffs, investors decide the optimal asset

holdings, Xi, by maximizing the expected utility subject to the budget constraint in (5).

3 Solving the model

The model is solved using backward induction. First, given an arbitrary attention allocation,

each agent decides the optimal asset holdings. Second, given the optimal risky asset demand

as a function of each attention allocation, each agent chooses the optimal attention allocation.

3.1 Optimal asset holdings

In the second period, each agent chooses the optimal risky asset demand taking as given the

private signal. After observing the private signal and the asset prices, investors derive their

posterior beliefs about the payoffs in order to choose their optimal asset holdings

Xi

³
Ỹi, P̃

´
= ρV −1i E

h
R̃−Rf P̃ | Ỹi, P̃

i

where

Vi = V ar
h
R̃ | Ỹi, P̃

i
=
¡
Σ−1R +ΠΣ−1Z Π+ C 0iΣ

−1
i Ci

¢−1
(6)

The linear rational expectations equilibrium price is found by aggregating these asset demands

and imposing the market clearing conditions.

Proposition 1 For a given signal choice by the investors, there exists a unique linear rational

expectations equilibrium price vector.

A mean-variance objective function implies a linear demand for risky assets, which does

not depend on wealth. If agents only faced the asset holdings decision given exogenous and

independent private signals, then prices and holdings of both assets would be uncorrelated.
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3.2 Attention allocation

In the first period, each agent chooses the optimal attention allocation by maximizing her ob-

jective function taking into account the optimal asset demand. The following lemma expresses

the first period objective function.

Lemma 1 The objective function for the attention allocation in the first period is given by

EUi =
Wi0Rf

ρ
+
1

2

©
Tr
¡
V −1i Q− I

¢
+R̄e0V −1i R̄e

ª
(7)

where I is the identity matrix, Tr(·) is the trace of a matrix, Vi is given by (6) and R̄e and Q

are respectively given by

R̄e = E
h
E
³
R̃ | Ỹi, P̃

´
−Rf P̃

i
=
¡
ρΣ−1R + ρΠΣ−1Z Π+Π

¢−1
Z̄ (8)

and

Q = V ar
³
R̃−Rf P̃

´

Investors choose the matrix of weights, Ci, and the variance-covariance matrix of the error

term, Σi, in the private signal (1) by maximizing the utility function given by (7) subject to

the information processing constraint given by (2). The following lemma shows that investors

choose to observe one linear combination of asset payoffs as a private signal.

Lemma 2 In the first period, each investor allocates all of the limited information processing

capacity to learn about one linear combination of asset payoffs.

Lemma 2 shows that for any matrix of weights, investors choose to learn about one linear

combination of asset payoffs. Because investors are indifferent between observing a specific

linear combination with either one or two private signals, I normalize the matrix of weights

Ci to be a 1 × 2 matrix such that Ci = (c1i, c2i). This implies in particular that Σ−1i is a

scalar. Hence, investors receive a private signal of the following form Ỹi = c1ir̃1 + c2ir̃2 + ε̃i.

The private signal contains more information about the first asset the higher the variance of
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the first term, c21iσ
2
r1, and it contains more information about the second asset the higher the

variance of the second term, c22iσ
2
r2. Because investors only care about the relative weight that

each asset has in the private signal, I also normalize the weight of the first asset in the private

signal c1i to 1. The matrix of weights is then Ci = (1, c2i), and the investor’s decision problem

is reduced to choosing the optimal relative weight of each asset in the private signal, c2i.

The next proposition provides a parameter condition under which a unique linear symmetric

rational expectations equilibrium exists and solves for the equilibrium values of c2i and Σi. In

the statement, r̄e+1 , r̄e+2 and Q+12 are functions of exogenous parameters and are defined in the

appendix.

Proposition 2 A unique linear symmetric rational expectations equilibrium exists if and only

if

r̄e+1 r̄e+2 +Q+12 ≥ 0 (9)

In this equilibrium, all investors allocate all their information processing capacity to learn

about a unique linear combination of asset payoffs, C = (1, c∗2), with a weight in the second

asset given by

c∗2 =
(σ2r2σ2z2+σ2r2z̄22−σ2r1σ2z1−σ2r1z̄21)+ (σ2r2σ2z2+σ2r2z̄22−σ2r1σ2z1−σ2r1z̄21)

2
+4σ2r1σ

2
r2z̄

2
1 z̄
2
2

2σ2r2z̄1z̄2
(10)

and a variance of the error term given by

Σ
∗
=

σ2r1 + c∗22 σ2r2
(e2κ − 1) (11)

Proposition 2 solves the attention allocation problem. There is a unique linear rational

expectations equilibrium within the class of symmetric equilibria if and only if condition (9)

is satisfied. This condition depends only on exogenous parameters. In equilibrium, Q+12 is the

covariance between the excess returns of both assets, r̄e+1 and r̄e+2 are the expected values of the

excess returns. Consequently, condition (9) restricts the equilibrium covariance between excess

returns of the two assets from being too negative. This parameter restriction is satisfied when
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the uncertainty in the economy is high relative to the level of risk tolerance and the amount

of information that investors are able to process.

In this symmetric equilibrium, all investors choose to observe a linear combination of two

asset payoffs as a private signal. Intuitively, given their expected investment strategy in the

next period, which is to hold a diversified portfolio, the relevant information is about a linear

combination of assets.8 One special feature of this equilibrium is that the weight of the second

asset in the private signal is independent of the investors’ information capacity, κ, and the

investors’ risk tolerance, ρ.

In this model, for some parameter values, there can be asymmetric equilibria.9 The next

proposition shows that in any equilibrium, at least a positive fraction of investors chooses a

private signal to learn about the two assets in the economy.

Proposition 3 In any equilibrium, a positive measure of investors chooses to learn about the

two asset payoffs using only one linear combination as a private signal.

Proposition 3 implies, in particular, that an equilibrium where agents specialize in process-

ing information about one asset or the other does not exist unlike in Van Nieuwerburgh and

Veldkamp [25,26]. In their model, if risky assets are uncorrelated, a fraction of investors al-

locates all of their attention to the first asset and the remaining fraction of the agents pay

attention only to the second asset. In their setup, increasing returns to information dominates

diversification. In contrast, here, by introducing the more general form of private signals

in (1), investors are able to exploit both increasing returns to information processing and

diversification.
8 In the additional appendix, I show that if investors are not able to process information from prices as in

Peng and Xiong [20], then there exists a symmetric equilibrium where investors allocate all the information
processing capacity to observe a private signal about the payoff of their expected portfolio. The optimal private
signal in that case is given by Ỹi = r̃1 +

z̄2
z̄1
r̃2 + ε̃i, which is equivalent, as shown in the proof of Lemma 2, to a

signal about the payoff of the expected portfolio given by Ỹ ∗i = z̄1Ỹi = z̄1r̃1 + z̄2r̃2 + ε̃∗i . However, if investors
are able to process information from prices, the private signal is not exactly about the payoff of the expected
portfolio. The reason is that, although investors care about the payoff of their expected portfolio, they choose
a private signal taking into account the information they expect to learn from prices. Note that the expected
portfolio is the expected supply, E (Xi) = Z̄. The payoff of the expected portfolio is given by Z̄0R̃ = z̄1r̃1+ z̄2r̃2.

9 In numerical simulations, for a wide range of parameters, I have been only able to construct asymmetric
equilibria when r̄e+1 r̄e+2 +Q+

12 < 0. See the additional appendix for more details on asymmetric equilibria.
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3.3 Discussion

The model presented has two formal differences relative to Van Nieuwerburgh and Veld-

kamp [26].

First, investors can choose a non-diagonal matrix of weights Ci in the private signal in (1).

In Van Nieuwerburgh and Veldkamp [25,26], as in Peng [19], Peng and Xiong [20], the matrix

of weights in the private signal Ci is the identity matrix. In the case in which the risky

assets are ex-ante independent, they assume independence of uncertainty across assets ex-

post, which means that investors collect separately information about each asset. In other

words, they constrain the ex-post variance-covariance matrix of the payoffs to be diagonal,

which means that independent sources of ex-ante uncertainty remain independent ex-post.

Their assumption implies that an agent collects information one asset at a time, so that the

only way to reduce uncertainty on a broad portfolio is to reduce variance on each asset, leaving

the assets conditionally independent after the information collection. However, in this model,

Ci is optimally chosen by investors. In other words, investors optimally find the form of the

conditional variance-covariance matrix of the payoffs, which is not initially constrained to be

diagonal. For the case of two independent assets, according to Proposition 3, it is optimal at

least for some investors to choose as a signal a weighted sum of asset payoffs instead of only

receiving a signal about each asset. Also, according to Proposition 2, there exists a symmetric

equilibrium in which all investors choose to observe a linear combination of the two assets in

the economy as a private signal.

Second, asset prices do not appear in the information flow constraint. The information

capacity constraint used in Van Nieuwerburgh and Veldkamp [26] is given by

H
³
R̃
´
−H

³
R̃ | P̃ , Ỹi

´
≤ κ (12)

where H
³
R̃
´
is the entropy of the asset payoffs. In this information processing constraint,

investors use information capacity when processing information from prices. However, in my

model, investors do not use information capacity when getting information from prices as in

Peng [19], Peng and Xiong [20]. Nevertheless, the difference in the information flow constraints
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plays no role in the different implications of the model with respect to Van Nieuwerburgh and

Veldkamp [26].10 In my model, there exists a symmetric equilibrium where all investors opti-

mally devote all their attention to process information about the linear combination of asset

payoffs given by (10) if the information processing constraint is that used by Van Nieuwerburgh

and Veldkamp [26], given by (12).

4 Implications for comovement of asset prices

This section studies the implications of the linear symmetric equilibrium defined by (10) and

(11) for stock price comovement of seemingly unrelated assets. In what follows, I describe the

intuition behind the potential comovement. Investors choose to observe a linear combination

of asset payoffs as a private signal. If they observe a high realization of the private signal,

they attribute part of the effect to the first asset and the rest to the second asset. For a given

of asset supply, a high realization of the private signal leads to an increase in the price of both

assets and price comovement of seemingly unrelated assets. This is formalized in the following

Proposition 4.

Proposition 4 Suppose condition (9) holds. Then in the linear symmetric equilibrium, for a

given realization of asset supplies, Z̃, there is comovement of asset prices Cov
³
P̃1, P̃2 | Z̃

´
> 0.

Although there is comovement of asset prices for a given asset supply according to Propo-

sition 4, I obtain a similar unconditional result in Proposition 5 only under a parameter

restriction.

Proposition 5 Suppose condition (9) holds and that

min
©¡
ρ2 − σ2z1σ

2
r1

¢
,
¡
ρ2 − σ2z2σ

2
r2

¢ª
≥ σ2z1σ

2
r1σ

2
z2σ

2
r2

ρ2

Then in the linear symmetric equilibrium, there is unconditional comovement of asset prices,

Cov
³
P̃1, P̃2

´
> 0.

10See the additional appendix for details.
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According to the parameter restriction in Proposition 5, if investors’ level of risk tolerance

is high relative to the uncertainty in the economy, then there is stock price comovement.11

As argued above, an increase in the realization of one of the asset payoffs, increases both

prices, yielding a positive covariance of asset prices. However, if this parameter restriction in

Proposition 5 is violated, then an increase in the realization of one of the asset supplies may

lead to a negative covariance of asset prices.

5 Transmission of volatility shocks to asset prices

This section studies whether the linear symmetric equilibrium defined by (10) and (11) offers

an explanation for the transmission of volatility shocks in one asset to the prices of other

seemingly unrelated assets. Intuitively, an unexpected event that raises the uncertainty of

one asset (i) may increase the attention allocated to this asset, (ii) may raise the posterior

uncertainty of the other uncorrelated asset through attention reallocation and thus (iii) may

lead to a stock price decline of the other asset.

In the linear symmetric equilibrium, investors choose to receive a private signal of the

following form Ỹi = r̃1 + c∗2r̃2 + ε̃i. The private signal contains more information about the

first asset the higher the variance of the first term, σ2r1, and it contains more information about

the second asset the higher the variance of the second term, c∗22 σ2r2. Therefore, I measure the

attention allocated to the first asset relative to the attention allocated to the second asset by

σ2r1
c∗22 σ2r2

. Proposition 6 formalizes the intuitive argument (i) above by summarizing the impact

of the assets’ payoff and supply volatilities on investors’ attention allocation.

Proposition 6 Suppose condition (9) holds. Then in the linear symmetric equilibrium, the

relative attention allocated to asset j = 1, 2 increases with its payoff volatility, σ2rj, and supply

volatility, σ2zj.

Investors allocate more attention to an asset the higher is its payoff or supply volatility

and the lower is the payoff or supply volatility of the other asset. For expositional purposes,
11 In the additional appendix, I show using numerical simulations that excess comovement of asset prices

exists even in the presence of asymmetric equilibria.
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in what follows I focus on the second asset. The attention reallocation response to an increase

in the uncertainty of the second asset payoff can be decomposed in two effects: a direct effect,

which is given by an increase in the prior variance of the second asset, σ2r2; and second, an

indirect effect, which is given by an increase in the weight of the second asset in the private

signal, c∗2. Both effects generate an increase in the attention allocated to the second asset.

In the direct effect, for a given weight of the second asset c∗2, the private signal now provides

more information about the second asset. The reason is that the private signal contains more

information about the second asset the higher the variance of the second term, c∗22 σ2r2. In the

indirect effect, when there is an increase in prior variance of the second asset, σ2r2, investors

increase the weight of the second asset in the private signal, ∂c∗2
∂σ2r2

> 0. This increases the

information about the second asset since it increases the variance of the second term in the

private signal, c∗22 σ2r2.

Proposition 6 provides a testable implication for attention allocation: a variable that

captures the information processed about a given industry should be higher in industries with

a higher uncertainty about fundamentals. Another way to test the implication for attention

allocation of Proposition 6 is by analyzing if an unexpected event that raises the uncertainty

of one asset leads to a decrease in the information processed about other unrelated assets.

According to Proposition 6, an unexpected event that raises the uncertainty of the second

asset decreases the attention allocated to the first asset. Proposition 7 formalizes the intuitive

argument (ii) above by showing that this decrease in the attention allocated to the first asset

may lead to an increase in the posterior uncertainty of the first asset:

Proposition 7 Suppose condition (9) holds and that either

σ2z2σ
2
r2 ≥ ρ2

¡
e2κ − 1

¢
(13)

or

σ2z2σ
2
r2 ≥ σ2z1σ

2
r1 (14)

Then in the linear symmetric equilibrium, an increase in the variance of the second asset leads
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to an increase in the posterior variance of the first asset.

The increase in the variance of the second asset spreads to the first asset through attention

reallocation when one of the parameter restrictions in (13) or (14) is satisfied. If none of the

parameter conditions is satisfied, it is possible that an increase in the variance in the second

asset leads to a decrease in the conditional variance of the first asset due to the information

content of prices.

To explain the intuition of this proposition, I decompose the attention reallocation effect

in two pieces: first, an increase in the prior variance of the second asset, σ2r2, and second,

an increase in the weight of the second asset in the private signal, c∗2. According to the first

piece of the attention reallocation effect, if there is an increase in the variance of the second

asset, then the signal, Ỹi, provides less information about the first asset. This first piece of

the attention reallocation effect, which abstracts from any change of the weights in the private

signal, c∗2, leads to an increase in the conditional variance of the first asset, V ar
h
r̃1 | Ỹi, P̃

i
without requiring any parameter restrictions.

The second piece of the attention reallocation effect is the change in the weights of the

private signal. An increase in the variance of the second asset leads to an increase in the weight

of the second asset in the private signal. Therefore, the signal provides less information about

the first asset. The key to understand the possibility of a decrease in the posterior variance of

the first asset is that a change in the weights of the private signal also changes the way investors

learn from prices. If neither (13) nor (14) are satisfied, it is possible that the reduction in

information processed about the first asset through the private signal is dominated by the

increase in information processed about this first asset by asset prices, leading to a decrease

in the posterior variance of the first asset.

Proposition 7 provides a testable implication for the perceived volatility of investors: if

(13) or (14) hold, an increase in the attention allocated to one asset leads to an increase in

the perceived volatility of other unrelated assets.

According to Proposition 7 an unexpected event that raises the uncertainty of the second

asset raises the posterior uncertainty of the first asset through attention reallocation under
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the parameter condition (14). Proposition 8 formalizes the intuitive argument (iii) above by

showing that under the same parameter restriction, such unexpected event also leads to a

stock price decline of the first asset.

Proposition 8 If conditions (9) and (14) hold, then in the linear symmetric equilibrium, an

increase in the variance of the second asset leads to a decrease in the expected price of the first

asset.

If the parameter restriction (14) is satisfied and there is an increase in the uncertainty of

the second asset, then there is an increase in the attention allocated to this asset, and the

concurrent decrease in the attention allocated to the first asset. This leads to an increase

of the posterior variance of the first asset and an increase in its risk premium. Hence, the

expected excess return of the first asset increases and its expected price falls. If the parameter

restriction (14) is not satisfied, it is possible that an increase in the variance of one asset leads

to an increase in the expected price of the other asset.

6 Numerical analysis

This section conducts a numerical example with parameters chosen to reasonably match

yearly asset price moments for the U.S. stock market. I take my parameter values from

Van Nieuwerburgh and Veldkamp [26]. Each asset payoff has a standard deviation of prior

beliefs σr1 = σr2 = 15%, which reflects historical levels of payoff volatility, and an expected

payoff r̄1 = r̄2 = 1. The mean of the asset payoffs does not affect second moments. Each

asset has an expected net supply z̄1 = z̄2 = 100 and a considerably high standard deviation

σz1 = σz2 = 10 for prices not to reveal too much information. The coefficient of risk tolerance

is ρ = 2. The return of the riskless asset is 2%, so that Rf = 1.02.12

Panel A in figure 1 shows that, as long as the information processing capacity, κ, is higher

than zero, stock prices are correlated even though fundamentals are uncorrelated. In this figure

and for these particular parameter values, the higher the information capacity, the higher is

12These parameter values satisfy the conditions in Propositions 2, 5, 7 and 8.
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the level of correlation. Intuitively, if the information capacity is zero, no information is

processed and stocks are uncorrelated. However, if there is a positive information processing

capacity, then because the parameter restriction in Proposition 5 is satisfied, there is asset price

comovement. An information processing capacity κ = 0.4 implies an asset price correlation

of 21%. This asset price correlation predicted by the model is close to the average excess

correlation of 25.5% between the index returns of all major industry groups in the U.S. stock

market reported by Kallberg and Pasquariello [8].13

Panel B in figure 1 shows that if information capacity is held constant at κ = 0.4 and the

standard deviation of the prior beliefs in the second asset is increased to σr2 = 17%, then the

expected price of the second asset decreases by 11.2% and the expected price of the first asset

decreases by 2.26%.

7 Conclusion

This paper presents a rational expectations model of asset prices with information processing

constraints and explains asset price comovement and transmission of volatility shocks between

seemingly unrelated assets.

The model represents a step forward towards the introduction of rational inattention into

a general equilibrium finance model. Investors choose the composition of their information,

i.e., investors can process information about individual assets or linear combination of assets.

Unlike previous papers, where investors collect information about individual assets, investors

optimally decide the form of the conditional variance-covariance matrix of the asset payoffs,

which is not initially constrained to be diagonal. However, several assumptions should be

relaxed in order to have a general equilibrium model with rationally inattentive agents. The

model assumes that investors have Gaussian uncertainty about the random variable of interest,

in this case asset payoffs, ex-ante and ex-post. Sims [23] presents a methodology to find the

nature of the ex-post uncertainty about the random variable of interest. Another assumption of

13Pasquariello and Vega [18] reported the correlation matrix of the earnings of all major industry groups
in the U.S. stock market and noted that the fundamentals of many industries in the U.S. stock market are
uncorrelated.
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the model is that rationally inattentive agents are able to freely observe prices, which means

that investors have an unbounded capacity to process information about prices. They are

also unable to process information about the random asset supply, so the cost of processing

information about the noisy asset supply is infinite. A potential extension of the model is

to relax these two assumptions by having investors who observe prices with a measurement

error. Then, the noisy asset supply assumption can be dropped since prices are unobservable.

In this case, I conjecture that investors will not process information about prices or payoffs

individually, but the variable of interest for investors will be the asset excess returns. Hence,

investors, when deciding their asset holdings, will not pay attention to the price, but they will

process information about the asset excess returns.

8 Appendix

8.1 Proof of Proposition 1

Following Admati [1], one can show that there exists a unique linear rational expectations equilibrium
price vector. Define Π as

Π =

Z 1

0
ρC 0iΣ

−1
i Cidi (15)

The price vector is given by

P̃ = A0 +A1R̃−A2Z̃, with A2 nonsingular (16)

where

A0 =
ρ

Rf

¡
ρΣ−1R + ρΠΣ−1Z Π+Π

¢−1 ¡
Σ−1R R̄+ΠΣ−1Z Z̄

¢
A1 =

1

Rf

¡
ρΣ−1R + ρΠΣ−1Z Π+Π

¢−1 ¡
Π+ ρΠΣ−1Z Π

¢
A2 =

1

Rf

¡
ρΣ−1R + ρΠΣ−1Z Π+Π

¢−1 ¡
I + ρΠΣ−1Z

¢
8.2 Proof of Lemma 1

The objective function in the first period is given by (4) where

E
h
W 0

i | Ỹi, P̃
i
=Wi0Rf + ρE

h
R̃−Rf P̃ | Ỹi, P̃

i0
V ar

h
R̃ | Ỹi, P̃

i−1
E
h
R̃−Rf P̃ | Ỹi, P̃

i
and

V ar
h
W 0

i | Ỹi, P̃
i
= ρ2E

h
R̃−Rf P̃ | Ỹi, P̃

i0
V ar

h
R̃ | Ỹi, P̃

i−1
E
h
R̃−Rf P̃ | Ỹi, P̃

i
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Define VER as the variance-covariance matrix of the conditional expected excess returns

VER = V ar
³
E
h
R̃−Rf P̃ | Ỹi, P̃

i´
By standard results from statistics, if X and Y are arbitrary random variables for which the necessary
expectations and variances exist, then V ar (Y ) = E [V ar (Y | X)] + V ar (E [Y | X]). Using this
result, the variance-covariance matrix of the conditional expected excess returns is given by

VER = V ar
³
E
h
R̃−Rf P̃ | Ỹi, P̃

i´
= V ar

³
R̃−Rf P̃

´
− V ar

³
R̃ | Ỹi, P̃

´
= ΣR +R2fA1ΣRA

0
1 +R2fA2ΣZA

0
2 −RfA1ΣR −RfΣRA

0
1 − Vi

where Vi is given by (6). By standard results from statistics, if x = (x1, x2, ..., xn)0 ∼ N(μ, V ) and
q = x0Ax, then the expected value of q is E(q) = tr[AV ] + μ0Aμ. Using this result, the objective
function in (4) is given by

EUi =
Wi0Rf

ρ
+
1

2

©
Tr
¡
V −1i Q− I

¢
+R̄e0V −1i R̄e

ª
where I is the identity matrix, R̄e is given by (8) and Q is given by

Q = V ar
³
R̃−Rf P̃

´
= ΣR +R2fA1ΣRA

0
1 +R2fA2ΣZA

0
2 −RfA1ΣR −RfΣRA

0
1 (17)

8.3 Proof of Lemma 2

I will follow three steps to show that each investor allocates all of the limited information processing
capacity to learn about one linear combination of asset payoffs. First, I will show that a normalization
of the variance-covariance matrix of the error term in the private signal, Σi, is required. Second, I will
show that a normalization of the matrix of weights, Ci, is required. Finally, I will solve the optimization
problem of an infinitesimal investor.

Step1: Normalization of Σi
Given that the variance-covariance matrix of the error term in the private signal, Σi, can be

decomposed as follows
Σi = PiΛiP

0
i

where Λi is a diagonal matrix and P 0 = P−1, I will show that for every non-diagonal Σi, an equilibrium
with a private signal Ỹi is indistinguishable from an equilibrium with a private signal Ỹ ∗i given by

Ỹ ∗i = P−1i Ỹi = P−1i CiR̃+ P−1i ε̃i = C∗i R̃+ ε̃∗i

where V ar (ε̃∗i ) = Λi is a diagonal matrix.
First, I show that the new private signal satisfies the information capacity constraint. Mutual

Information is invariant to any invertible linear transformation of the random variables, which implies

I(X;Y ) = I(X;P−1Y ) = H (X)−H (X | Y ) ≤ κ

Second, in order to prove that an equilibrium with a private signal Ỹi is indistinguishable from an
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equilibrium with a private signal Ỹ ∗i , there is enough to show that C
0
iΣ
−1
i Ci = C 0i

³
PiΛiP

0
i

´−1
Ci =

C∗0i Λ
−1
i C∗i . More details are provided in Admati [1].
Therefore, for a given matrix of weights Ci, I let investors choose a normalized diagonal variance-

covariance matrix of the error term in the private signal

Σi =

µ
σ2i1 0
0 σ2i2

¶
(18)

Step 2: Normalization of Ci

I will show that for every matrix of weights , Ci, and diagonal variance-covariance matrix of the
error term, Σi, an equilibrium with a private signal Ỹi is indistinguishable from an equilibrium with a
private signal Ỹ ∗i given by

Ỹ ∗i = ΓỸi = ΓCiR̃+ Γε̃i = C∗i R̃+ ε̃∗i

where Γ is a diagonal non-singular matrix and V ar (ε̃∗i ) is still a diagonal matrix.
First, I show that the new private signal satisfies the normalization of the variance-covariance

matrix of the error term in the private signal, Σi, from step 1. Because Γ is a diagonal matrix, then the
variance-covariance matrix of the new error term, ε̃∗i = Γε̃i, is still diagonal and given by ΓΣiΓ. Second,
as in step 1 of this proof, the new private signal satisfies the information capacity constraint. Finally, in
order to prove that an equilibrium with a private signal Ỹi is indistinguishable from an equilibrium with
a private signal Ỹ ∗i , there is enough to show thatC

0
iΣ
−1
i Ci = C 0iΓ (ΓΣiΓ)

−1 ΓCi = C∗0i (ΓΣiΓ)
−1C∗i .

More details are provided in Admati [1].
Therefore, I normalize the first column of Ci to be a column of ones such that the matrix of weights

is given by

Ci =

µ
1 ci12
1 ci22

¶
(19)

Step 3: Optimization problem of an infinitesimal investor.
According to steps 1 and 2, for a given normalized matrix of weights, Ci, given by (19), I can

let investors choose a normalized diagonal variance-covariance matrix of the error term in the private
signal given by (18). Investors maximize the objective function given by (7) that can be expressed as

max
σ−2i1 ,σ−2i2

³³
(r̄e1)

2 +Q11

´
+
³
(r̄e2)

2 +Q22

´
c2i12 + 2 (r̄

e
1r̄

e
2 +Q12) ci12

´
σ−2i1 +

+
³³
(r̄e1)

2 +Q11

´
+
³
(r̄e2)

2 +Q22

´
c2i22 + 2 (r̄

e
1r̄

e
2 +Q12) ci22

´
σ−2i2 +Ω

where

Ω =
Wi0Rf

ρ + 1
2

h³
1
σ2r1

+
π211
σ2z1

+
π212
σ2z2

´³
(r̄e1)

2 +Q11

´
+ 2

³
π11π12
σ2z1

+ π12π22
σ2z2

´
(r̄e1r̄

e
2 +Q12)+

+
³

1
σ2r2

+
π212
σ2z1

+
π222
σ2z2

´³
(r̄e2)

2 +Q22

´
− 1
i
is a constant term

(20)
subject to the information constraint given by (2) that can be expressed as¡

σ2r1 + c2i12σ
2
r2

¢
σ−2i1 +

¡
σ2r1 + c2i22σ

2
r2

¢
σ−2i2 + σ2r1σ

2
r2(ci22 − ci12)

2σ−2i1 σ
−2
i2 =

¡
e2κ − 1

¢
where π11, π12 and π22 are each of the elements in the matrix Π given by (15), r̄e1 and r̄

e
2 are each of
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the elements of the expected excess returns vector R̄e given by (8) and Q11, Q12 and Q22 are each of
the elements in the matrix Q given by (17). The investor when optimizing takes as given r̄e1, r̄

e
2, π11,

π12, π22, Q11, Q12 and Q22. The optimization problem can be rewritten as

max
σ−2i1 ,σ−2i2

ai1σ
−2
i1 + ai2σ

−2
i2

subject to
bi1σ

−2
i1 + bi2σ

−2
i2 + bi3σ

−2
i1 σ

−2
i2 = bi4;σ

−2
i1 ≥ 0;σ−2i2 ≥ 0

where ai1, ai2, bi1, bi2 and bi4 are strictly positive constants and bi3 ≥ 0. If the first constraint, which
is the information constraint, is introduced into the objective function, the maximization problem
becomes

max
σ−2i1

ai1σ
−2
i1 + ai2

µ
bi4 − bi1σ

−2
i1

bi2 + bi3σ
−2
i1

¶
where σ−2i1 ∈

∙
0,
bi4
bi1

¸
The second order condition is given by

∂2

∂
¡
σ−2i1

¢2 = 2ai2 (bi1bi2 + bi3bi4) bi3¡
bi2 + bi3σ

−2
i1

¢3 ≥ 0

If bi3 > 0, then the objective function is a strictly convex function over a compact set, σ
−2
i1 ∈

h
0, bi4bi1

i
.

Thus, the solution to the optimization problem is a corner solution and investors allocate all their
attention to one linear combination of asset payoffs. If bi3 = 0, then ci22 = ci12, the objective function
is independent of the choice variable and there is a continuum of solutions. Investors are indifferent
between any two private signals with identical weights of the asset payoffs. This implies that investors
are indifferent with any allocation of limited information capacity between the two signals. Therefore,
investors choose to learn about one linear combination of asset payoffs, but they can do so by observing
one or two private signals. In this case, when ci22 = ci12, I normalize the matrix of weights Ci to be
a 1× 2 matrix, which implies that investors are restricted to observe one private signal.

8.4 Proof of Proposition 2

I will show that there is a unique linear symmetric rational expectations equilibrium if and only if
condition (9) holds. The proof proceeds in five steps. First, I will solve the optimization problem of
an infinitesimal investor. In step 2, I will characterize all potential symmetric equilibria and show that
there are four candidates. In step 3, I will eliminate three of these symmetric candidates. In step 4, I
will show that there is a unique linear symmetric rational expectations equilibrium if r̄e+1 r̄e+2 +Q+12 ≥ 0
and solve for the equilibrium values of c2i and Σi. Finally, in step 5, I will conclude that there exists
a linear symmetric rational expectations equilibrium only if r̄e+1 r̄e+2 +Q+12 ≥ 0.

Step 1: Solve the infinitesimal agent’s optimization problem.
Investors maximize the objective function given by (7) subject to the information capacity con-

straint

Σ−1i =

¡
e2κ − 1

¢
σ2r1 + c22iσ

2
r2

(21)

Following the proof of Lemma 2, I normalize the matrix of weights to be Ci = (1, c2i). Substituting
the information constraint given by (21) into the objective function given by (7), the optimization
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problem becomes

max
c2i

h³
(r̄e1)

2 +Q11

´
+
³
(r̄e2)

2 +Q22

´
c22i + 2 (r̄

e
1r̄

e
2 +Q12) c2i

i ¡
e2κ − 1

¢
σ2r1 + c22iσ

2
r2

+Ω (22)

where Ω is given by (20), r̄e1 and r̄e2 are given by (8) and Q11, Q12 and Q22 are given by (17).
Infinitesimal investors have no effect on prices and take as given Ω, r̄e1, r̄

e
2,Q11,Q12 and Q22 when

optimizing. The first order condition is given by

[−σ2r2 (r̄e1r̄e2 +Q12) c
2
2i − (σ2r2

³
(r̄e1)

2 +Q11

´
− σ2r1

³
(r̄e2)

2 +Q22

´
)c2i+

+σ2r1 (r̄
e
1r̄

e
2 +Q12)]

2

(σ2r1+c22iσ2r2)
2 = 0

(23)

Step 1.1: Best response when (r̄e1r̄
e
2 +Q12) 6= 0

I will show that the best response of an infinitesimal investor when (r̄e1r̄
e
2 +Q12) 6= 0 is given by

c∗2i =
σ2r1 (r̄e2)

2
+Q22 −σ2r2 (r̄e1)

2
+Q11 + σ2r1 (r̄e2)

2
+Q22 −σ2r2 (r̄e1)

2
+Q11

2
+4σ2r1σ

2
r2(r̄e1 r̄e2+Q12)

2

2[σ2r2(r̄e1 r̄e2+Q12)]
(24)

If (r̄e1r̄
e
2 +Q12) 6= 0, the first order condition (23) has two interior solutions. One is a local

maximum and one is a local minimum. The local maximum is given by (24). This is the reaction
function where investors take as given the aggregate variables of the economy. The relevant term in
the second order condition evaluated at c2i = c∗2i is given by

−2σ2r2 (r̄e1r̄e2 +Q12) c
∗
2i −

h
(σ2r2

³
(r̄e1)

2 +Q11

´
− σ2r1

³
(r̄e2)

2 +Q22

´i
< 0

The other interior solution to the first order condition is always a local minimum. The local maximum
c∗2i given by (24) is a global maximum because the second order condition at this point is strictly
negative and the objective function is not maximized by setting c2i = ±∞.

Step 1.2: Best response when (r̄e1r̄
e
2 +Q12) = 0.

I will show that the best response of an infinitesimal investor when (r̄e1r̄
e
2 +Q12) = 0 is given

by either c∗2i = ±∞ or c∗2i = 0 or the objective function is independent of c2i and any c2i is a best
response.

If (r̄e1r̄
e
2 +Q12) = 0, the first order condition (23) is given by

[−(σ2r2
³
(r̄e1)

2 +Q11

´
− σ2r1

³
(r̄e2)

2 +Q22

´
)c2i]

2¡
σ2r1 + c22iσ

2
r2

¢2 = 0
If (r̄e1r̄

e
2 +Q12) = 0 and (σ2r2

³
(r̄e1)

2 +Q11

´
> σ2r1

³
(r̄e2)

2 +Q22

´
), then c2i = 0 is a global

maximum.
If (r̄e1r̄

e
2 +Q12) = 0 and (σ2r2

³
(r̄e1)

2 +Q11

´
< σ2r1

³
(r̄e2)

2 +Q22

´
), then c2i = ±∞ is a global

maximum.
If (r̄e1r̄

e
2 +Q12) = 0 and (σ2r2

³
(r̄e1)

2 +Q11

´
= σ2r1

³
(r̄e2)

2 +Q22

´
), then an infinitesimal in-

vestor is indifferent between any c2i.
Step 2: There are four potential symmetric equilibria.

In any linear symmetric equilibrium all investors choose the same weight in the private signal
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c2i = c2. By substituting the values of r̄e1 and r̄
e
2 given by (8) and Q11, Q12 and Q22 given by (17)

into the first order condition given by (23) and imposing that all investors choose the same c2i = c2, I
obtain the following expression£
−σ2r2z̄1z̄2c22 +

¡
σ2r2σ

2
z2 + σ2r2z̄

2
2 − σ2r1σ

2
z1 − σ2r1z̄

2
1

¢
c2 + σ2r1z̄1z̄2

¤ 2∆¡
σ2r1 + c22σ

2
r2

¢2 = 0 (25)

where ∆ is a strictly positive expression and it is given by

∆ =
σ2r1σ

2
r2σ

2
z1σ

2
z2

¡
σ2r1 + c22σ

2
r2

¢
ρ2
h
ρ2 (e2κ − 1)2

¡
c22σ

2
z1 + σ2z2

¢
+ σ2z1σ

2
z2e

2κ
¡
σ2r1 + c22σ

2
r2

¢i
There are four values of c2 that satisfy (25). Thus, there are four potential candidates to a linear
symmetric equilibrium given by c2 = ±∞, c2 = c+2 and c2 = c−2 where

c+2 =
(σ2r2σ2z2+σ2r2z̄22−σ2r1σ2z1−σ2r1z̄21)+ (σ2r2σ2z2+σ2r2z̄22−σ2r1σ2z1−σ2r1z̄21)

2
+4σ2r1σ

2
r2z̄

2
1 z̄
2
2

2σ2r2z̄1z̄2
(26)

and

c−2 =
(σ2r2σ2z2+σ2r2z̄22−σ2r1σ2z1−σ2r1z̄21)− (σ2r2σ2z2+σ2r2z̄22−σ2r1σ2z1−σ2r1z̄21)

2
+4σ2r1σ

2
r2z̄

2
1 z̄
2
2

2σ2r2z̄1z̄2
(27)

In the following steps, I will use the following definitions and expressions. I define b̄re1 and b̄re2 as the
expressions of the expected excess returns given by (8) when all investors choose the same weight of
the second asset in the private signal c2i = c2. I also define dQ11,dQ12 and dQ22 as the expressions for
the elements of the variance-covariance matrix of the excess returns given by (17) when all investors
choose the same weight of the second asset in the private signal c2i = c2. Finally, the expression for³ b̄re1 b̄re2 +dQ12´ is given by³ b̄re1 b̄re2 +dQ12´ = σ2r1σ

2
r2

ρ2ς

¡
τ0 − τ1c2 + τ2c

2
2 − τ3c

3
2 + τ4c

4
2 − τ5c

5
2 + τ6c

6
2 − τ7c

7
2

¢
(28)

where τ0, τ1, τ2, τ3, τ4, τ5, τ6, τ7, ς are reported in the additional appendix and are strictly positive

expressions. This expression
³ b̄re1 b̄re2 +dQ12´ depends only on exogenous parameters and c2.

Step 3: Eliminate c2 = c−2 and c2 = ±∞ as candidates to a symmetric equilibrium.
I will use the agent’s best response function to select a unique candidate, c2 = c+2 , from the set of

candidates identified in step 2.
Step 3.1: A symmetric equilibrium where c2 = c−2 given by (27) does not exist.

In a symmetric equilibrium with c2 = c−2 , because c
−
2 is strictly negative, the expression

³ b̄re1 b̄re2 +dQ12´
given by (28) when all investors choose c2 = c−2 is strictly positive. According to step 1.1, this implies

that the best response of the infinitesimal investor, c∗2i, is given by (24). Because
³ b̄re1 b̄re2 +dQ12´ eval-

uated at c2 = c−2 is strictly positive, c
∗
2i is also strictly positive. This is a contradiction because c

−
2

is a strictly negative expression. In an economy where all investors choose c2 = c−2 , the infinitesimal
investor chooses c∗2i 6= c−2 .

Step 3.2: A symmetric equilibrium where c2 = ±∞ does not exist.
In a symmetric equilibrium with c2 = ±∞, all investors learn only about the second asset. Hence,
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in equilibrium π12 = 0, π11 > 0, π22 > 0, where π11, π12 and π22 are each of the elements in the
matrix Π given by (15). This implies that the matrices A1 and A2 in the equilibrium price (16) are
diagonal. Hence, in equilibrium Q12 = 0, where Q12 is the covariance of the excess returns given by
(17) and r̄e1 > 0, r̄e2 > 0, where r̄e1 and r̄e2 are the expected excess returns given by (8). Because in
equilibrium (r̄e1r̄

e
2 +Q12) is strictly positive, according to step 1.1, the best response of the infinitesimal

investor, c∗2i, is given by (24), which is finite. This is a contradiction. In an economy where all investors
choose c2 = ±∞, the infinitesimal investor chooses c∗2i 6= ±∞.

Step 4: If r̄e+1 r̄e+2 +Q+12 ≥ 0, then there exists a unique linear symmetric rational expec-
tations equilibrium.

I will show that c2 = c+2 is an equilibrium if r̄
e+
1 r̄e+2 +Q+12 ≥ 0. According to step 3, c2 = c+2 is the

only candidate to constitute a linear symmetric rational expectations equilibrium. Hence, if c2 = c+2
is an equilibrium, then it is a unique linear symmetric equilibrium. Denote by

¡
r̄e+1 r̄e+2 +Q+12

¢
the

expression
³ b̄re1 b̄re2 +dQ12´ given by (28) evaluated at c2 = c+2 . The sign of expression r̄

e+
1 r̄e+2 +Q+12

can be positive and negative and it is fully determined by exogenous parameters.
Step 4.1: If r̄e+1 r̄e+2 + Q+12 > 0, then there exists a unique linear symmetric rational

expectations equilibrium.
Assume r̄e+1 r̄e+2 + Q+12 > 0. In order to prove that c2 = c+2 constitutes a linear symmetric

equilibrium, I will show that the best response of an infinitesimal investor when all investors choose
c2 = c+2 is given by c

∗
2i = c+2 . The first order condition in (23) when all investors choose c2 = c+2 can

be rewritten as h
σ2r1

³¡
r̄e+2
¢2
+Q+22

´
− σ2r2

³¡
r̄e+1
¢2
+Q+11

´i
¡
r̄e+1 r̄e+2 +Q+12

¢ =

¡
c+22 σ2r2 − σ2r1

¢
c+2

(29)

where r̄e+1 and r̄e+1 are the expressions of the expected excess returns given by (8) when all investors
choose c2i = c+2 andQ

+
11, Q

+
12 andQ

+
22 are the elements of the variance-covariance matrix of the excess

returns given by (17) when all investors choose c2i = c+2 . Substituting the RHS of (29) into the best
response function given by (24), the revised reaction function if r̄e+1 r̄e+2 + Q+12 > 0 and all investors
choose c2i = c+2 can be rewritten as

c∗2i =

¡
c+22 σ2r2 − σ2r1

¢
2σ2r2c

+
2

+

vuut"¡c+22 σ2r2 − σ2r1
¢

2σ2r2c
+
2

#2
+

σ2r1
σ2r2

(30)

Substituting the expression for c+2 given by (26) into (30), the revised best response function becomes

c∗2i =

¡
σ2r2σ

2
z2 + σ2r2z̄

2
2 − σ2r1σ

2
z1 − σ2r1z̄

2
1

¢
2σ2r2z̄1z̄2

+

vuut"¡σ2r2σ2z2 + σ2r2z̄
2
2 − σ2r1σ

2
z1 − σ2r1z̄

2
1

¢
2σ2r2z̄1z̄2

#2
+

σ2r1
σ2r2

If
¡
r̄e+1 r̄e+2 +Q+12

¢
> 0, then c+2 is a fixed point because c

∗
2i = c+2 . The optimal precision of the error

term in the private signal is given by (21) and in equilibrium the variance of the error term can be
characterized as

Σ+ =
σ2r1 + c+22 σ2r2
(e2κ − 1) (31)

Step 4.2: If r̄e+1 r̄e+2 + Q+12 = 0, then there exists a unique linear symmetric rational
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expectations equilibrium.
If r̄e+1 r̄e+2 + Q+12 = 0, then σ2r1

³¡
r̄e+2
¢2
+Q+22

´
= σ2r2

³¡
r̄e+1
¢2
+Q+11

´
because, according to

step 2, the first order condition in (23) is always satisfied when all investors choose c2 = c+2 and because
c+2 is strictly positive. Consequently, according to step 1.2, the objective function given by (22) does
not depend on c2i and the infinitesimal investor is indifferent between any attention allocation. Thus,
if r̄e+1 r̄e+2 +Q+12 = 0, then c2 = c+2 is a rational expectations equilibrium. The optimal precision of
the error term in the private signal is given by (31).

Step 5: There exists a linear symmetric rational expectations equilibrium only if r̄e+1 r̄e+2 +
Q+12 ≥ 0.

Assume c2 = c+2 is a linear symmetric equilibrium when r̄e+1 r̄e+2 + Q+12 < 0. Substituting the
RHS of the first order condition when all investors choose c2 = c+2 given by (29) into the best response
function given by (24), the revised reaction function if r̄e+1 r̄e+2 + Q+12 < 0 and all investors choose
c2i = c+2 can be rewritten as

c∗2i =

¡
c22σ

2
r2 − σ2r1

¢
2σ2r2c2

−

vuut"¡c22σ2r2 − σ2r1
¢

2σ2r2c2

#2
+

σ2r1
σ2r2

(32)

Substituting the expression for c+2 given by (26) into (32), the revised reaction function becomes

c∗2i =

¡
σ2r2σ

2
z2 + σ2r2z̄

2
2 − σ2r1σ

2
z1 − σ2r1z̄

2
1

¢
2σ2r2z̄1z̄2

−

vuut"¡σ2r2σ2z2 + σ2r2z̄
2
2 − σ2r1σ

2
z1 − σ2r1z̄

2
1

¢
2σ2r2z̄1z̄2

#2
+

σ2r1
σ2r2

which is a contradiction because c∗2i 6= c+2 . Thus, if r̄
e+
1 r̄e+2 + Q+12 < 0, then a linear symmetric

rational expectations equilibrium does not exist.
Hence, there exists a unique linear symmetric rational expectations equilibrium if and only if

r̄e+1 r̄e+2 +Q+12 ≥ 0. In this equilibrium, all investors allocate their information processing capacity to
learn about a unique linear combination of asset payoffs where the weight of the second asset is given
by (10) and the variance of the error term is given by (11). For expositional purposes, in the main text
of the paper, I use c2 = c∗2 to refer to the linear symmetric equilibrium c2 = c+2 .

8.5 Proof of Proposition 3

I will show that an equilibrium where all investors specialize in learning does not exist. Proposition 2
shows that a symmetric equilibrium where all investors specialize in learning about one asset does
not exist. In what follows, I will show that for any λ such that 1 > λ > 0, there does not exist an
asymmetric equilibrium where a fraction λ of investors learns only about the first asset, Cλ = (1, 0)
and chooses Σλ and a fraction (1− λ) of investors learns only about the second asset, C1−λ = (1,∞)
and chooses Σ1−λ. Assume such an equilibrium exists. Hence, the infinitesimal investor is indifferent
between choosing (Cλ,Σλ) and (C1−λ,Σ1−λ). The objective function given by (22) provides the same
utility to both types of agents when³

(r̄e1)
2 +Q11

´
σ2r1

=

³
(r̄e2)

2 +Q22

´
σ2r2

Furthermore, in this economy, because investor’s private information is about only one asset, in
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equilibrium π12 = 0, π11 > 0, π22 > 0 where π11, π12 and π22 are each of the elements in the matrix
Π given by (15). This implies that the matrices A1 and A2 in the equilibrium price (16) are diagonal.
Hence, in equilibrium Q12 = 0, where Q12 is the covariance of the excess returns given by (17) and
r̄e1 > 0, r̄e2 > 0, where r̄e1 and r̄

e
2 are the expected excess returns given by (8). Thus, in equilibrium,

r̄e1r̄
e
2 +Q12 > 0 and according to (24), the best response of an infinitesimal investor in this economy

is given by

c∗2i =

s
σ2r1
σ2r2

This leads to a contradiction because the infinitesimal investor wants to deviate from specialization.
Therefore, an equilibrium where all investors specialize in learning does not exist.

8.6 Proof of Proposition 4

The covariance of asset prices conditional on the asset supplies, Z̃, is given by the element (1,2) of the
conditional variance-covariance matrix of asset prices

V ar
³
P̃ | Z̃

´
= A1ΣRA

0
1

where the expression for A1 is given in the proof of Proposition 1 in the section 8.1 of the appendix. I
define π∗11, π

∗
12 and π

∗
22 as each of the elements in the matrix Π given by (15) when all investors choose

the same weight of the second asset in the private signal, c2i = c∗2, and they can be expressed as

π∗11 =
R 1
0 ρΣ

−1
i di = ρ

Σ∗ π∗12 =
R 1
0 ρΣ

−1
i c2idi =

ρc∗2
Σ∗ π∗22 =

R 1
0 ρΣ

−1
i c22idi =

ρc∗22
Σ∗

(33)

where c∗2 and Σ
∗ are defined in (10) and (11) respectively and are functions of only exogenous parame-

ters. The conditional covariance of the asset prices in the linear symmetric equilibrium, Cov∗
³
P̃1, P̃2 | Z̃

´
,

can be expressed as

Cov∗
³
P̃1, P̃2 | Z̃

´
= 1

R2f
ρ

σ2r1
+ρΨ ρ

σ2r2
+ρc∗22 Ψ −ρ2c∗22 Ψ2

2

∙
ρ2π∗211c

∗
2(σ2z1σ2z2+ρπ∗11σ2z2+ρπ∗11c∗22 σ2z1)

2
(σ2r1+c∗22 σ2r2)

σ2r1σ
2
r2(σ2z1)

2
(σ2z2)

2

¸
> 0

where π∗11 is given by (33) and Ψ is given by

Ψ =

∙µ
ρ2

σ2z1
+

ρ2c∗22
σ2z2

¶
1

Σ∗2
+
1

Σ∗

¸
(34)

Hence, Cov∗
³
P̃1, P̃2 | Z̃

´
depends only on exogenous parameters and is a strictly positive expression.

8.7 Proof of Proposition 5

The unconditional covariance of asset prices is given by the element (1,2) of the variance-covariance
matrix of asset prices

V ar
³
P̃
´
= A1ΣRA

0
1 +A2ΣZA

0
2

where the expressions for A1 and A2 are given in the proof of Proposition 1 in the section 8.1 of
the appendix. The unconditional covariance of asset prices can also be expressed in terms of the
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conditional covariance as Cov
³
P̃1, P̃2

´
= E

h
Cov

³
P̃1, P̃2 | Z̃

´i
+Cov

³
E
h
P̃1 | Z̃

i
, E
h
P̃2 | Z̃

i´
.

The unconditional covariance of the asset prices in the linear symmetric equilibrium, Cov∗
³
P̃1, P̃2

´
,

can be expressed as

Cov∗
³
P̃1, P̃2

´
= 1

R2f
ρ

σ2r1
+ρΨ ρ

σ2r2
+ρc∗22 Ψ −ρ2c∗22 Ψ2
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2
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2
(σ2z2)

2

¡
θ1c

∗
2 + θ2c

∗3
2 + θ3c

∗5
2 + θ4c

∗7
2

¢
where Ψ is given by (34), π∗11 is given by (33) and θ1, θ2, θ3, θ4 are given by

θ1 = ρ
¡
σ2z1
¢2 ¡

σ2z2
¢2 £

ρ2 − σ2r2σ
2
z2

¤
+ ρ

¡
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¤
+ ρ2π∗311σ
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+2ρπ∗211σ
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2
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2
z2

¤
+ π∗11σ

2
z1
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ρ4 − ρ2σ2r2σ
2
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z1σ
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r2σ

2
z2

¤
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2π∗311σ
2
z1σ

2
z2σ

2
r1
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2
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¤
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2
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¤
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2
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2
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If the following two sufficient conditions are satisfied£

ρ4 − ρ2σ2r1σ
2
z1 − σ2r1σ

2
z1σ

2
r2σ

2
z2

¤
≥ 0

and £
ρ4 − ρ2σ2r2σ

2
z2 − σ2r1σ

2
z1σ

2
r2σ

2
z2

¤
≥ 0

then the unconditional covariance of asset prices is strictly positive because θ1, θ2, θ3, θ4 are strictly
positive expressions. These two sufficient conditions can be summarized by a single sufficient condition
given by

min
©¡
ρ2 − σ2z1σ

2
r1

¢
,
¡
ρ2 − σ2z2σ

2
r2

¢ª
≥ σ2z1σ

2
r1σ

2
z2σ

2
r2

ρ2

8.8 Proof of Proposition 6

I will show that the relative attention to the second asset in the linear symmetric equilibrium, which

is given by
c∗22 σ2r2
σ2r1

, is strictly increasing in its payoff volatility, σ2r2, and supply volatility, σ
2
z2. It is

enough to show that
∂c∗2
∂σ2r2

> 0 and
∂c∗2
∂σ2z2

> 0. The weight of the second asset in the private signal is

strictly increasing in σ2r2 since

∂c∗2
∂σ2r2

=
σ2r1

2z̄1z̄2(σ2r2)
2

⎡⎢⎣σ2z1 + z̄21 +
2 σ2z2+z̄

2
2−

σ2r1
σ2r2

σ2z1−
σ2r1
σ2r2

z̄21 (σ2z1+z̄21)−4z̄21 z̄22

2 σ2z2+z̄
2
2−

σ2r1
σ2r2

σ2z1−
σ2r1
σ2r2

z̄21

2

+4
σ2r1
σ2r2

z̄21 z̄
2
2

⎤⎥⎦ > 0

See the additional appendix for additional details on the derivation of this result. The weight of the
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second asset in the private signal is strictly increasing in σ2z2 since

∂c∗2
∂σ2z2

= 1
2z̄1z̄2

⎡⎢⎣1 + σ2z2+z̄
2
2−

σ2r1
σ2r2

σ2z1−
σ2r1
σ2r2

z̄21

σ2z2+z̄
2
2−

σ2r1
σ2r2

σ2z1−
σ2r1
σ2r2

z̄21

2

+4
σ2r1
σ2r2

z̄21 z̄
2
2

⎤⎥⎦ > 0

Similarly, one can show that the relative attention to the first asset, which is given by
σ2r1

c∗22 σ2r2
, is strictly

increasing in its payoff volatility, σ2r1, and supply volatility, σ
2
z1.

8.9 Proof of Proposition 7

I will show that the posterior variance of the first asset in the linear symmetric equilibrium, V ar∗
h
r̃1 | Ỹi, P̃

i
,

is increasing in the prior variance of the second asset, σ2r2, under a parameter condition. The posterior
variance-covariance matrix Vi is given by (6) and in equilibrium it can be expressed as

V ∗i =

Ã
1
σ2r1

+Ψ c∗2Ψ

c∗2Ψ
1
σ2r2

+ c∗22 Ψ

!−1
where Ψ is given by (34). The posterior variance of the first asset is given by

V ar∗
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i
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´
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¡
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¢
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1

1
σ2r1

+ Ψ
1+c∗22 σ2r,2Ψ

In order to prove that
∂V ar∗[r̃1|Ỹi,P̃ ]

∂σ2r2
> 0, it is enough to show that

∂ Ψ

1+c∗22 σ2r,2Ψ

∂σ2r2
< 0, which is given
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¸
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³
1 + c∗22 σ2r,2Ψ

´2
where
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2ρ2
³

1
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´
∂Σ∗
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Σ∗3
+
2ρ2c∗2

∂c∗2
∂σ2r2

σ2z2Σ
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∂Σ∗

∂σ2r2

Σ∗2
(35)

If ∂Ψ
∂σ2r2

< 0, then
∂ Ψ

1+c∗22 σ2r,2Ψ

∂σ2r2
< 0. If either(13) or (14) is satisfied, then ∂Ψ

∂σ2r2
< 0 and

∂V ar∗[r̃1|Ỹi,P̃ ]
∂σ2r2

>

0. Similarly, one can show that the posterior variance of the second asset is increasing with the prior
variance of the first asset if σ2z1σ

2
r1 ≥ ρ2

¡
e2κ − 1

¢
or σ2z1σ

2
r1 ≥ σ2z2σ

2
r2.
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8.10 Proof of Proposition 8

I will show that the expected price of the first asset in the linear symmetric equilibrium, p̄+1 , is decreasing
in the prior variance of the second asset, σ2r2, under a parameter condition. Expected asset prices can be
written as p̄1 = (r̄1 − r̄e1) /Rf and p̄2 = (r̄2 − r̄e2) /Rf . The expected excess returns R̄e = (r̄e1, r̄

e
2)
0

are given by (8) and in equilibrium they can be expressed as
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+
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+
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where expressions for π∗11, π

∗
12 and π

∗
22 are given by (33). The expected excess return of the first asset

is given by

r̄e+1 =
ρ
³
1
σ2r2

+ c∗22 Ψ
´
z̄1 − ρc∗2Ψz̄2

ρ2
³

1
σ2r1

+Ψ
´³

1
σ2r2

+ c∗22 Ψ
´
− ρ2c∗22 Ψ

2

=
σ2r1
ρ

"
z̄1 + c∗2σ

2
r2 (c

∗
2z̄1 − z̄2)Ψ

1 +
¡
σ2r1 + c∗22 σ2r2

¢
Ψ

#

where Ψ is defined in (34). In order to prove that
∂p̄+1
∂σ2r2

< 0, it is enough to show that ∂r̄e+1
∂σ2r2

> 0, which

is given by
∂r̄e+1
∂σ2r2

= D0 (D1 +D2)

where

D0 =
σ2r1
ρ

1£
1 +

¡
σ2r1 + c∗22 σ2r2

¢
Ψ
¤2 (36)

D1 = −
µ
c∗2z̄2 + σ2r2

∂c∗2
σ2r2

z̄2

¶
Ψ−

¡
σ2r1z̄1 + c∗2σ

2
r2z̄2

¢ ∂Ψ

∂σ2r2
(37)

D2 =

∙
σ2r1c

∗
2 (c

∗
2z̄1 − z̄2) + σ2r1σ

2
r2

∂c∗2
σ2r2

(c∗2z̄1 − z̄2) + c∗2σ
2
r2

∂c∗2
σ2r2

¡
σ2r1z̄1 + c∗2σ

2
r2z̄2

¢¸
Ψ2 (38)

The expression forD0 given by (36) is strictly positive. If σ2z2σ
2
r2 ≥ σ2z1σ

2
r1, thenD1 > 0 andD2 > 0.

Hence, if σ2z2σ
2
r2 ≥ σ2z1σ

2
r1, then

∂r̄e+1
∂σ2r2

> 0 and
∂p̄+1
∂σ2r2

< 0. Similarly, one can show that the expected

price of the second asset is decreasing in the prior variance of the first asset if σ2z2σ
2
r2 ≤ σ2z1σ

2
r1.
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9 Figures
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Figure1: Panel A shows the price correlation of the first and second asset for several values of information

processing capacity, κ. Panel B shows the percentage change of expected asset prices for several values of the
standard deviation of the second asset with respect to the benchmark (σr2 = 0.15). The parameter values
are the following σr1 = 0.15, r̄1 = r̄2 = 1, σz1 = σz2 = 10, z̄1 = z̄2 = 100, ρ = 2, κ = 0.4.
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