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Abstract Inspired by Cantor’s Theorem (CT), orthodoxy takes infinities to come in

different sizes. The orthodox view has had enormous influence in mathematics,

philosophy, and science. We will defend the contrary view—Countablism—ac-

cording to which, necessarily, every infinite collection (set or plurality) is countable.

We first argue that the potentialist or modal strategy for treating Russell’s Paradox,

initially proposed by Parsons (2000) and developed by Linnebo (2010, 2013) and

Linnebo and Shapiro (2019), should also be applied to CT, in a way that vindicates

Countabilism. Our discussion dovetails with recent independently developed

treatments of CT in Meadows (2015), Pruss (2020), and Scambler (2021), aimed at

establishing the mathematical viability, and therefore epistemic possibility, of

Countabilism. Unlike these authors, our goal isn’t to vindicate the mathematical

underpinnings of Countabilism. Rather, we aim to argue that, given that Count-

abilism is mathematically viable, Countabilism should moreover be regarded as

true. After clarifying the modal content of Countabilism, we canvas some of

Countabilism’s many positive implications, including that Countabilism provides

the best account of the pervasive independence phenomena in set theory, and that

Countabilism has the power to defuse several persistent puzzles and paradoxes

found in physics and metaphysics. We conclude that in light of its theoretical and

explanatory advantages, Countabilism is more likely true than not.
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1 Introduction

Our goal is to motivate, defend, and apply the following claim:

Countabilism: Necessarily, every infinite collection (set or plurality) is

countable.

Typically, discussions of size and infinity are confined to the philosophy of

mathematics. However, Countabilism is best understood as a metaphysical claim

concerning ontology and modality. Even the staunchest nominalist, who denies the

existence of all abstract objects and treats the whole of mathematics as a useful

fiction, is welcome to endorse Countabilism. Countabilism applies just as much to

tables, planets, spacetime points, and propositions, as it applies to mathematical

abstracta.

We wish to emphasize this point because the near-universal rejection of

Countabilism, primarily due to Cantor’s Theorem, has had an enormous influence

outside of mathematics—notably, in contemporary metaphysics and the physical

sciences. Nonetheless, we will argue, Countabilism is true. We start by presenting

Cantor’s Theorem (CT) and noting its parallels with Russell’s Paradox (RP) (Sect.

2). We then consider a recent attempt to undercut CT, due to Whittle (2015, 2018),

and argue that it fails (Sect. 3). We then turn to considering whether, given the

structural similarities between CT and RP, certain commonly accepted strategies for

responding to RP might also provide the basis for an alternative understanding of

the import of CT. We argue that the potentialist or modal strategy for treating RP,

first proposed by Parsons (2000) and developed by Linnebo (2010), Linnebo (2013)

and Linnebo and Shapiro (2019), should also be applied to CT in a way that

vindicates Countabilism (Sect. 4). Our discussion dovetails with recent indepen-

dently developed treatments of CT in Meadows (2015), Pruss (2020), and Scambler

(2021), aimed at establishing the mathematical viability, and therefore epistemic

possibility, of Countabilism.1 While opening the door to Countabilism, however,

these authors don’t walk through; as Scambler (2021) registers, ‘‘like each of Pruss

1 Meadows (2015) ‘‘expands upon a way in which we might rationally doubt that there are multiple sizes

of infinity. [...] elements of contextualist theories of truth and multiverse accounts of set theory are

brought together in an effort to make sense of Cantor’s troubling theorem’’ (191). Scambler (2021)

develops the modal or ‘indefinite extensibility’ approach to CT that we favor, ‘‘generalizing [Linnebo’s]

theory L, which offers a modal, indefinite extensibility solution to Russell’s Paradox, to a theory I call

M [after Meadows], which offers an analogous ‘solution’ to Cantor’s theorem’’ (10), such that ‘‘in the

modal setting Cantor’s theorem can be reconciled with the existence of only one infinite cardinality’’ (2);

and which provides ‘‘a way of reconciling mathematics after Cantor with the idea there is one size of

infinity’’ (21); we will be helping ourselves to Scambler’s formal results down the line. Pruss (2020) also

develops a modal approach to CT, arguing that ‘‘there is an epistemic possibility that all infinite sets have

the same size as the natural numbers’’ (604).

2200 D. Builes, J. Wilson

123



and Meadows, I do not conclude [...] that all sets are really countable after all’’

(21).2

Unlike these authors, our goal isn’t to add to the mathematical underpinnings of

Countabilism. Instead, we will be concerned with whether, given that Countabilism

can be understood in a mathematically viable way, Countabilism should be regarded

as true.3 After clarifying the modal content of Countabilism (Sect. 5), we explore

some of the many positive implications that Countabilism has in the philosophy of

mathematics (Sect. 6), in physics (Sect. 7), and in metaphysics (Sect. 8). We

conclude that in light of its theoretical and explanatory advantages, Countabilism is

more likely true than not (Sect. 9).

2 Cantor’s theorem and Russell’s paradox

Cantor’s Theorem generally applies to any finite or infinite set, and states that there

is no bijection—no one-to-one correspondence—between a set and its ‘power set’,

containing all subsets of that set. When applied to the countably infinite set of

natural numbers N, Cantor’s Theorem is commonly taken to establish the existence

of ‘uncountable’ infinities, as follows:

Cantor’s Theorem (CT): The cardinality of P(N) is uncountably infinite.

Proof

1. Suppose for reductio that P(N), like N, is countably infinite, so that there exists

a bijection f : N ! PðNÞ.
2. Consider the set C = fx 2 N : x 62 f ðxÞg � N.

3. C 2 PðNÞ; hence C ¼ f ðcÞ for some c 2 N.

4. By construction, c 2 C $ c 62 f ðcÞ ¼ C: contradiction.

) P(N) is not countably infinite.

As a piece of formal mathematics, CT is unimpeachable. There is, however,

prima facie reason to be skeptical of the understanding of infinity that CT is

supposed to have vindicated. One major reason is that the reasoning behind CT

generates a plethora of puzzles and paradoxes of the Russellian variety. The most

salient such paradox is, of course, Russell’s Paradox (RP), one version of which

follows from an application of CT to the case of the universal set V, or set of all sets,

on the assumption that the relevant bijection f is the identity function between V and

P(V) (see Crossley (1973)):

2 Scambler moreover suggests that the moral to draw is broadly anti-objectivist: ‘‘I think the results are

best understood in the context of a kind of anti-objectivism about the question of whether there are

different sizes of infinity: the guiding idea being that, when set-theoretic practice is formalized one way,

one will find one verdict, and when it is formalized differently one will find quite a different one, with

nothing objective to tell between them’’ (1099).
3 Relatedly, we aim to push back against the sort of anti-objectivist line of thought registered in the

previous footnote.
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Russell’s Paradox (RP): There is no set of all sets.4

Proof

1. Suppose for reductio that V is the set of all sets.

2. By the power set axiom, P(V) exists.

3. Since V ¼ PðVÞ, the identity function f : V ! PðVÞ is a bijection.5

4. Consider the set C = fx 2 V : x 62 f ðxÞg � V .6

5. By construction, C 2 C $ C 62 f ðCÞ ¼ C: contradiction.

) There is no set of all sets.

As Klement (2010a) further observes, ‘‘Cantor’s diagonalization method

generalizes beyond mappings involving classes or sets’’ (18) to give rise to

paradoxes involving predications, properties, propositions, and descriptive senses,

among other categories. Russell himself remarked, in a 1902 letter to Frege, that

‘‘from Cantor’s proposition that any class contains more subclasses than objects we

can elicit constantly new contradictions’’. These deep structural parallels between

CT and RP should give us some pause. As a sociological point, it is surprising that

while an enormous amount of philosophical scrutiny has been directed at RP, very

little such scrutiny has been directed at CT.7 No doubt this reticence reflects an apt

appreciation for all the mathematical fruits that can be grown in Cantor’s paradise—

though as we’ll discuss down the line, recent mathematical results indicate that

these these fruits can be grown in countable soil.8

4 It is more common to encounter RP as the claim that there is no set of all sets not containing

themselves, but in the context of the axiom of foundation, the plurality of all sets not containing

themselves is the same as the plurality of all sets simpliciter.
5 Here we intend V to be the set of all pure sets (sets whose transitive closure only includes sets), so that

every x 2 V is a set whose elements are all included in V, implying V � PðVÞ.
6 This set will exist by the standard axiom schema of restricted comprehension.
7 We’ll discuss certain historical and contemporary exceptions to this rule shortly.
8 We should note that our position is not that there is anything inherently problematic about

diagonalization arguments. After all, several of the most important proofs in logic appeal to some kind of

diagonalization procedure, such as Gödel’s Incompleteness Theorems and the undecidability of the

Halting problem. Relatedly, we are not questioning that CT and RP (and other diagonalization proofs) are

perfectly valid formal results. We will only be arguing that CT does not have the philosophical import

that it’s generally taken to have. Moreover, our reasons for thinking this do not generalize to every

diagonalization argument, and our general skepticism about the uncountable typically will not apply to

these other arguments (since, e.g., neither Gödel’s Incompleteness Theorems nor the undecidability of the

Halting problem require any uncountable mathematics). See Meadows (2015: 206–7) for further

discussion of why skepticism about the philosophical import of CT does not generalize to other

diagonalization arguments.
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3 Whittle’s strategy for blocking Cantor’s theorem

A recent exception to the uncritical acceptance of the import of CT is found in

Whittle (2015a, b, 2018); however, as we’ll now argue, Whittle’s strategy for

blocking CT is uncompelling, such that if room is to be made for Countabilism in

light of CT, a different strategy is required.

To start, Whittle observes that CT shows that infinities come in different sizes

only given the following principle:

Size ! Function: For any sets A and B: A is the same size as B only if there is

a bijection from A to B.

Size ! Function is commonly accepted; but why? Whittle argues that the only

promising motivation involves an inference to the best explanation to the truth of

the contrapositive: why else would there fail to exist a bijection, in a given case, if

not for the fact that A and B have different sizes? By attending to the structural

analogy between CT and RP, Whittle suggests an alternative explanation—namely,

the availability of a diagonal function between the domains and co-domains at issue:

Diagonal: For any f : X ! PðXÞ, there is a Df 2 PðXÞ such that

Df ¼ fx 2 X : x 62 f ðxÞg.

As Whittle sees it: since Diagonal explains the failure of bijection at issue in CT

with no reference to the respective sizes of the collections, the principal motivation

for Size ! Function is undercut.

It strikes us that someone might reasonably maintain that Size ! Function

constitutes a better explanation of this failure of bijection than Diagonal, as

systematically accommodating the clear truth of Size ! Function for finite

collections. The main problem with Whittle’s argument, however, is that there is a

seemingly compelling motivation for Size ! Function which he does not address.

To appreciate this motivation, it’s useful to first consider Whittle’s treatment of a

different motivation for Size ! Function, according to which the associated

biconditional claim is ‘‘an analysis’’ of the same-size relation:

[Size $ Function] does not tell us what it is for infinite sets to be of the same

size. Why? Because the size of a set—whether infinite or finite—is an intrinsic

property of that set. It is a property the set has purely in virtue of what it is

like; specifically, in virtue of which members it has. Thus, what it is for A and

B to be the same size is for them to share a certain sort of intrinsic property. It

is not for there to exist a certain sort of function between the sets [...]. (33–34)

McGee (2015: 28) objects to this line of thought, on grounds, first, that size is not

intrinsic, but is rather ‘‘tied inextricably to size comparisons’’, and second, that an

intrinsic notion of size is problematically obscure. While we are sympathetic to

McGee’s concern that a conception of size wholly divorced from size comparisons

(e.g., bijections) is obscure, we are also sympathetic to Whittle’s point that size is

intrinsic. Even if (perhaps counterpossibly) there was only a single set in existence,

there still would be a fact of the matter about how many members that particular set
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has.9 Ultimately, what is needed is a compelling argument showing that, even if the

size of a collection is intrinsic, facts about size must always be associated with the

possibility of forming certain one-to-one correspondences.10 We now provide such

an argument.

To start, the operative notion of (cardinal) size is one ineliminably connected to

number: the size of a collection just is the number of objects in the collection;

correspondingly, two sets will be of the same size only if they each contain the same

number of objects. But what constitutes or determines what number—what answer

to the ‘how many members?’ question—is assigned to a given collection? It is that

number which is the output from a possible or potential act of counting (or an

objective abstraction therefrom—the existence of conscious counters is not at issue

here), which in turn involves matching each object in the collection with elements in

an initial segment of ordinal (natural) numbers. The first object is assigned 1, the

second is assigned 2, and so on.11 But such an assignment of objects to ordinal

numbers itself constitutes a one-to-one function from objects in the collection to

those ordinal numbers. Putting these thoughts together, two sets A and B have the

same size iff they have the same number of objects, and two sets have the same

number of objects iff there are possible acts of counting out the members of those

sets that yield the same number/ordinal, which is the case iff there are possible

bijections fA : A ! oA and fB : B ! oB, where oA and oB are the same ordinal.12

This account of size (i) explains why facts about size are connected with facts about

the possibility of certain kinds of bijections and (ii) is consistent with size being

intrinsic. Facts concerning the possibility of counting out a set in a particular way

are entirely explained by (and supervene on) the intrinsic features of that very set.

Now, in the case of infinite collections, there are certain complications. In particular,

this process of counting may result in assigning different ordinal numbers to the objects in

our collection, depending on the order in which we count. However, our account of size

applies nonetheless. It is sufficient for two sets to be the same size if there is some possible

act of counting out the members of the two sets that yields the same number/ordinal. In the

infinite case, it is clearly incorrect to require that two sets are the same size only if every
possible act of counting out the members of the two sets yields the same number/ordinal.

Since N can be counted out in different ways, this would imply that N is not the same size

as itself! At a bare minimum, the ‘same size as’ relation should be reflexive.13

9 Thanks to Øystein Linnebo for discussion here.
10 Note that this task may be accomplished even if Whittle is right that there is something like an intrinsic

conception of size. Compare certain realist accounts of dispositions (as per, e.g., Martin (1996)) according

to which these are intrinsic in that they might be had at a ‘lonely’ world, but which are necessarily such as

to produce certain manifestations in certain circumstances.
11 Indeed, it is plausible that the notion of number itself arises from just such acts of counting—or

tallying, as the simplest form of counting—and that the fact that this is so provides the basis for

arithmetical relations between numbers being a priori and not subject to empirical disconfirmation; see

Wilson (2000).
12 We think that even a Nominalist should be able to make sense of the possibility of there being such

bijections. We discuss the relevant modality in more depth in Sect. 5.
13 One potential concern with this account of size is that it implicitly relies on the axiom of choice. In

particular, someone who rejects the axiom of choice can consistently believe that some sets do not have a
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From this understanding of size, it’s a short hop to Size ! Function. Suppose that

A and B are the same size. Then, they will have the same number of elements. So,

there will be possible numberings of A and B, corresponding to possible bijections

fA : A ! oA and fB : B ! oB, where oA ¼ oB. From here, we can simply compose fA

with the inverse of fB, yielding the desired bijection at issue in Size ! Function,

namely f�1
B � fA : A ! B.

4 Post-Russellian strategies for blocking Cantor’s theorem

We turn now to a different approach to blocking CT and its presumed import. Given

the deep structural parallels between CT and RP, it is worth exploring whether any

popular strategies offered in response to RP can also be used to respond to CT. We

will find that, while each of these strategies can be generalized in a way that blocks

CT, the most promising strategy, which moreover vindicates Countabilism, is the

modal response to RP.14

Recall that RP is directed against the following account of when some collection

forms a set:

Naive Comprehension: Necessarily, for any things, there is a set of exactly

those things.

Footnote 13 continued

well-ordering. Consequently, such sets would not have any bijection from themselves to any ordinal

number. Given our conception of size, this would in turn imply that the ‘same size as’ relation is not

reflexive, since such sets would not have the same ‘number’ of elements as themselves (in fact, such sets

could not be assigned any ‘number’ at all in the absence of such a well-ordering). We have three

responses to this concern. First, as a dialectical matter, Whittle (2015) himself is perfectly content with

the axiom of choice. Second, pursuing this objection to our account of size is mathematically revisionary,

whereas Whittle’s initial case against Size ! Function was meant to be mathematically neutral. At the

very least, endorsing a conception of size that is mathematically revisionary implies a significant cost.

Lastly, the kind of denial of the axiom of choice that is needed for this objection to work is fairly radical.

Our account of size only relies on the possibility of there being an appropriate bijection to an ordinal

number. In order to pursue this kind of objection, one would have to maintain that there is a set such that

it’s impossible for there to be a well-ordering of that set. A pluralist approach to set theory, according to

which there are possible set-theoretic universes where the axiom of choice holds and possible set-

theoretic universes where the axiom of choice does not hold, could still allow for this modal principle.

Given the fact that ZFC is consistent so long as ZF is consistent, rejecting the mere possibility of there

being suitable well-orderings strikes us as a fairly radical view. We will further discuss the modality at

issue in our conception of size in Sect. 5.
14 We won’t be addressing every strategy for blocking RP. One notable strategy that we won’t discuss

(beyond the following remarks) proceeds via dialetheism, accepting Naive Comprehension and the

contradiction it generates, and altering the logic along paraconsistent lines (as in Priest (1995)). This

approach could presumably be extended to CT, and moreover in a way that would fail to vindicate

Countabilism (since moving towards a paraconsistent logic does not prevent there being, say, uncountably

many spacetime points). It remains, in our view, that a dialethic approach to CT would be unsatisfactory,

in facing the same main problem as the approach applied to RP: namely, the move to dialetheism and

paraconsistent logic is too theoretically costly in light of the availability of viable and consistent

approaches to the set-theoretic paradoxes.
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Naive Comprehension seems initially intuitive: after all, what could possibly stop a

given plurality of things from forming a set? RP shows, however, that Naive

Comprehension must be false. The reason why RP is called a ‘paradox’ in the first

place is because it contradicts Naive Comprehension, which can seem self-evidently

true prior to encountering RP.

4.1 Limitation of size

The limitation of size strategy was introduced by von Neumann (1925) and further

developed by Aczel (1988). According to this approach, ‘‘some things form a set

unless there are too many of them. ...The reason Russell’s paradox doesn’t lead to

ruin is that the sets that don’t contain themselves are more numerous than any set’’

(McGee 2015: 23).

The main objection to the limitation of size strategy is that the operative notion of

‘too big’ is amorphous, and existing suggestions for a precisification of the notion

are problematic. For example, Linnebo (2010) has argued that there is no non-

arbitrary way to motivate one particular size as being the ‘threshold’ size at which a

collection is too large to form a set. With respect to RP, a common suggestion is that

what it is to be ‘too big’ is to be equinumerous with the plurality of all ordinals oo
that actually exist. Linnebo (2010) objects to this suggestion, as follows:

Consider the question why there are not more ordinals than oo. For instance,

why cannot the plurality oo form a set, which would then be an additional

ordinal, larger than any member of oo? According to the view under

discussion, the explanation is that oo are too many to form a set, where being

too many is defined as being as many as oo. So the proposed explanation

moves in a tiny circle. The threshold cardinality is what it is because of the

cardinality of the plurality of all ordinals; but the cardinality of this plurality is

what it is because of the threshold. I conclude that the response fails to make

any substantial progress, and that the proposed threshold remains arbitrary.

(153–154)

If we were to apply this strategy to CT, then perhaps we could say that the boundary

between those pluralities that do form sets and those that do not corresponds to the

boundary between the countable and the uncountable. This immediately raises all

sorts of questions about how mathematics could be done without recourse to

uncountable sets, but it would serve to trivially block CT. As it happens, it would do

so in a way that would fail to vindicate Countabilism. For Countabilism is not

merely a claim about sets, but rather a claim about any plurality. And on this

approach, if there are pluralities of mathematical objects that are ‘too big’ to form

sets, then such pluralities would not be countable, contra Countabilism.

It remains, in our view, that a limitation of size approach to either RP or CT is

unsatisfactory. In particular: even if the boundary between the countable and the

uncountable is non-arbitrary, it remains unclear why this boundary should track

whether or not some objects are able to form a set. The deeper problem with the

limitation of size approach to RP, and hence to CT, is that the size of a plurality just

seems totally irrelevant to whether the plurality should be able to form a set. As long
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as the plurality of objects is perfectly definite and precise, it should be able to form a

set. So, limitation of size does manage to avoid RP, but it doesn’t seem like it has

much motivation otherwise; and similarly for its application to CT. By way of

contrast, as we will discuss down the line, the modal approach to naive

comprehension is independently attractive wholly apart from RP.

4.2 Nominalism

A different approach to RP is to deny the existence of sets altogether. According to

this Nominalist perspective, what the set-theoretic paradoxes show is that there is

something inherently problematic about our notion of set.
Rejecting the existence of sets is a principled way to reject Naive Comprehen-

sion, and hence RP. Such a rejection would also serve to block CT, which is the

main reason to believe in uncountable collections. However, by itself, Nominalism

doesn’t entail Countabilism, because it is consistent with Nominalism that there

might be uncountably many concrete objects, such as uncountably many spacetime

points.

It remains, in our view, that a Nominalist approach to either RP or CT, at least on

its own, is unsatisfactory. For a start, Russellian paradoxes can also be run on non-

set-theoretic objects, such as properties and propositions; so to work in full

generality, this nominalistic approach would have to deny the existence of every

kind of object associated with Russellian-like paradoxes. More importantly, unless

the Nominalist is prepared to be highly revisionary of mathematical practice, they

have to find some way to interpret mathematical practice, including set theory, in an

ontologically neutral way. The Nominalist should therefore have some story about

how the working mathematician should think about sets in a non-paradoxical way,

even if reality happens to contain no such things.15 The modal approach to set

theory that we will be defending provides a way of thinking about sets that even a

Nominalist can endorse.

4.3 Predicativism

The Predicativist approach to RP seeks to limit which pluralities of objects can form

sets in a way that is distinct from the limitation of size approach. As Feferman

(2005) notes, Russell’s initial characterization of the predicative/impredicative

distinction was one simply registering whether or not a condition (propositional

function) defined a set or class:

To begin with, the terms predicative and non-predicative (later, impredicative)

were introduced by Russell (1906) in his struggles dating from 1901 to carry

out the logicist program in the face of the set-theoretical paradoxes. Russell

called a propositional function /ðxÞ predicative if it defines a class, i.e., if the

15 We don’t intend to be arguing that Nominalism is false by making this point. In fact, one of us has

defended Nominalism on independent grounds (see Builes (forthcomingb)). Rather, our point is simply

that even a Nominalist should have a way of making sense of the practice of set theory.
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class fx : /ðxÞg exists, and non-predicative otherwise. Thus, for example, the

propositional function x 62 x figuring in Russell’s paradox is impredicative.

(590)

Feferman goes on to observe that the usefulness of this distinction for purposes of

resurrecting logicism from RP requires identifying some principled criterion of

impredicativity—a task usefully taken up by Poincaré:

Poincaré came up with two distinct diagnoses of the source of the paradoxes

[...]. The first was that there is in each case a vicious circle in the purported

definition. [...] Poincaré’s second diagnosis is distinct in its emphasis, namely

that the source of each paradox lies in the assumption of the ‘actual’ or

‘completed’ infinite. (591)

Poincaré’s second source of impredicativity is closely related to the modal strategy

we will next consider down the line, so in this subsection we focus on Poincaré’s

first source of impredicativity, as reflecting vicious circularity in a purported

definition or condition.16 While there have been a number of precisifications of this

notion of vicious circularity (see Gödel (1944); Goldfarb (1988); Feferman (2005);

Horsten (2019)), the guiding thought behind Predicativism is the following:

Predicativism: Every set must be definable without quantification over a class

to which it belongs.

Predicativism is a principled position in the philosophy of mathematics, endorsed by

logicians and philosophers such as Poincaré (1906), Russell (1908), Weyl (1918),

and Feferman (2005), that explains why Naive Comprehension is problematic: the

set of all sets V is explicitly defined by reference to a class (the class of all sets) in

which it belongs (since V is itself supposed to be a set), violating the non-circularity

condition.

Can a rejection of impredicativity be used to block CT? As CT is usually

formulated, the theorem does involve impredicative resources. Indeed, Poincaré

(1912) took this understanding of impredicativity to apply to CT, in an important

early historical critique of that theorem and its import.17 Hence, as Goldfarb (1988)

notes, ‘‘Poincaré [uses] the vicious circle principle to bar from membership in a set

anything that in some sense presupposes that set. In this form, the principle can also

16 We subsume the strategy of response to RP that involves appealing to a Ramified theory of types (see,

e.g., Russell (1908)) under the present strategy, since Ramified type theory assumes a sort of

predicativism/no circularity principle.
17 Poincaré’s critique targeted a version of CT aiming to show that arbitrary descriptions in a fixed

language (corresponding to a countable set ordered by alphabetized sentences consisting of a finite

number of words) could not be put in one-to-one correspondence with points of space; he characterizes

Cantor’s purported result as ‘‘an illusion’’, since ‘‘to classify these sentences and the corresponding points

according to the letters which form the sentences [...] is to construct a classification which is not

predicative’’ (61). See also Weyl’s (1918: 26–7) critique of Cantor’s theorem, which highlights that the

result reflects the ‘purely mathematical’ creation of an impredicative condition. It is worth noting that

these early critiques of Cantor’s theorem were less radical than Brouwer’s intuitionism: an entirely

classical conception of natural numbers is retained, and classical logic is retained for reasoning about

(predicatively acceptable) sets of natural numbers. Thanks to a referee here.
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be used to block the Cantor and Russell paradoxes’’ (72). More recently, Klement

(2010a) observes:

[Cantor’s] reasoning is validated within most forms of set theory and is

difficult to counter. However, it is not completely incontrovertible. In

particular, the supposition that [C] corresponds to a well-defined subclass of

[N] might be open to doubt, since it is defined in terms of a function whose

[range] is [N’s] powerclass, and perhaps there is a vicious circle in this if [C] is

to be included in that very range. (18)

Moreover, impredicative reasoning is arguably essential for Cantor’s proof,

following a result proved by Heck (1996), showing the consistency of an entirely

predicative system in second-order logic that both satisfies Frege’s ‘Basic Law V’

and blocks CT.18 As it happens, while Predicativism might block RP and CT, it

(again) doesn’t fully secure Countabilism on its own. Even if Predicativism is

correct about sets (and other kinds of mathematical objects), it might still be that

there are violations of Countabilism in the realm of concrete objects.

It remains, in our view, that a Predicativist approach to RP and CT is

unsatisfactory. Our main concern is that Predicativism is revisionary of mathemat-

ical practice.19 Moreover, as Gödel (1944) influentially argued, the philosophical

justification for Predicativism seems to be based on a kind of constructivism in the

philosophy of mathematics. It does seem to be viciously circular to suppose that the

construction of a mathematical object can presuppose the existence of some totality

to which it belongs. That totality of objects would only be there ‘after’ we have

finished constructing each of the objects in that totality! However, if there is a

totality of objects that exist independently of our constructions, then there doesn’t

seem to be any problem with the existence of objects that can only be described by

reference to a collection to which they belong. This broadly ‘constructivist’ spirit

behind Predicativism also goes against mathematical practice—again, unlike the

modal strategy we will next consider.

4.4 The modal strategy

The ‘modal’ response to RP was initially suggested by Parsons (2000) and recently

developed by Linnebo (2010, 2013) and Linnebo and Shapiro (2019). As Linnebo

and Shapiro highlight, this strategy is clearly related to Poincaré’s identification of a

second source of impredicativity, associated with the problematic assumption of

18 See Uzquiano (2015) for a more recent discussion on the relationship between CT and Predicativism.

In particular, Uzquiano discusses a version of Bernays’ theorem, a result related to Cantor’s

Theorem about classes, that can be proven with only predicative class comprehension. However, as

Uzquiano notes, ‘‘while the proof of Bernays’ theorem does not require impredicative class

comprehension, the link with the Cantorian lemma does presuppose it‘‘ (9), where the Cantorian lemma

is the claim that every class has more subclasses than members.
19 See Feferman (2005) and Crosilla (2017) for discussion of which parts of mathematics can and cannot

be justified on predicative grounds.
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‘completed’ infinities.20 The modal strategy will be our preferred strategy for

resisting the usual anti-Countabilist import of CT.

4.4.1 The modal strategy as applied to RP

Let’s get the strategy on the table. Recall Naive Comprehension:

Naive Comprehension: Necessarily, for any things, there is a set of exactly

those things.

As Linnebo (2013) argues, we should replace Naive Comprehension with a

corresponding modal principle:

Modal Naive Comprehension: Necessarily, for any things, it is possible that

there be a set of exactly those things.

Modal Naive Comprehension retains the intuitive plausibility of Naive Compre-

hension. As noted, the initial attraction of Naive Comprehension reflects its being

unclear what could prevent a given plurality from forming a set. Modal Naive

Comprehension, like Naive Comprehension, does not draw any problematic

distinctions between those pluralities that can form sets and those pluralities that

can’t form sets.

By endorsing Modal Naive Comprehension, we can get an illuminating

perspective on RP. Recall that RP shows that, necessarily, the plurality of all sets

does not actually form a set. This leaves open, however, whether that plurality could
form a set. As Menzel (2019) put it:

In brief: the axioms of set theory are implicitly modal [...]. Thus, the [set-

theoretic] hierarchy is indefinitely extensible: necessarily, no matter how

‘high’ the hierarchy happens to be, it could be higher still. Set theory is thus

the study, not of the sets there actually are—that’s irrelevant—but the study of

the various set theoretic universes there could be.

Here, Menzel describes height potentialism. Any set-theoretic structure V is

ultimately generated by two sorts of processes: the powerset operation, and the

length of the ordinals in V. This is witnessed by the standard cumulative hierarchy

of sets, which starts with the empty set and is generated by repeated applications of

the powerset operation. The process continues for as long as there are ordinals:

V0 ¼ ;
Vaþ1 ¼ PðVaÞ
Vb ¼

S
Va, for all a\b

V ¼
S

Va, for all ordinals a in V

According to height potentialists, set-theoretic structures might differ with respect

to their ‘height’, reflecting the length of ordinals in the structure. Within a set-

20 Another (if approximate) precursor of the modal strategy, applied by Dummett (1993) to both the set-

theoretic and semantic paradoxes, involves the claim that the notion of set is ‘indefinitely extensible’,

where the notion of extensibility is not explicitly modal.
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theoretic structure V, there will be some pluralities of sets (e.g. the plurality of all

ordinals oo and the plurality of all sets ss) that do not in fact form sets. However,

there could always be another set-theoretic structure V�, for which the original V is

merely an initial segment, such that every plurality of sets in V does form a set in

V�. Similarly, the pluralities of sets that do not form a set in V� will go on to form

sets in V��, and so on. On this picture, there is no canonical set-theoretic structure.

Rather, there is a series of possible set-theoretic structures that grow ever taller. This

picture elegantly avoids the awkward question of exactly how high the ordinals go:

no matter how high they go, they could always go higher. In response to RP, the

modal strategy maintains that within any given set-theoretic structure certain

pluralities will not form sets, but every such plurality could form a set in some larger

set-theoretic structure.

4.4.2 The modal strategy as applied to CT

An entirely analogous move can be made in response to CT: while within a given

set-theoretic structure certain sets will not stand in one-to-one correspondence to

N (because the structure lacks the relevant bijections), every such set is such that it

could stand in one-to-one correspondence to N in some larger set-theoretic structure

(because that larger structure would contain the relevant bijection). We corre-

spondingly maintain:

Modal Countability: Necessarily, for every infinite collection (set or plurality),

there could be a bijection from the members of the collection to N.

Modal Countability secures Countabilism conditional on the following claim:

Size $ Possible Function: For any two collections (sets or pluralities): the two

collections are the same size iff it is possible for there to be a bijection from

one to the other.

There are a number of reasons why this modal principle is preferable to Size $
Function (the commonly accepted biconditional of the previously discussed Size !
Function). First, the modalized version should be acceptable to Nominalists.

Whether two pluralities are the same size should not crucially depend on the actual

existence of any abstracta.21 Second, the modalized version encodes the account of

size that we previously defended: size is constitutively connected to possible or

potential acts of counting, which themselves constitute the relevant bijections.

Third, anyone who acknowledges that it should not be a contingent matter whether

two pluralities have the same size should want to endorse Modal Countability. If the

same-size-as relation is to supervene on the intrinsic properties of the pluralities in

question, we should adopt the modalized version.

An important consequence of Modal Countability is that the ‘powerset’ of any

infinite set is indefinitely extensible. More precisely, necessarily, for any infinite set

X and any plurality xx of sets which are subsets of X, it is possible for there to be a

21 We address the potential worry that the non-existence of abstracta is ‘necessary’ in Sect. 5.1.
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distinct subset Y � X, which is not among the xx. In other words, for any infinite set

X, there is no ‘maximal’ powerset of X. Here is an informal proof of this result:

For reductio, suppose there is some set-theoretic structure V that contains X
and its maximal powerset P(X). By Cantor’s Theorem, V will not include a

bijection f : X ! PðXÞ. By Modal Countability, there could be some other set-

theoretic structure V� that contains X, P(X), and a bijection f : X ! PðXÞ.22

Because Cantor’s Theorem holds in V�, there will be some subset Y � X in V�

that is not contained in P(X). So, P(X) is not maximal.

The fact that the powerset of any infinite set is indefinitely extensible has an

interesting, systematic, and elegant consequence. Recall that any set-theoretic

universe is ultimately generated by two sorts of processes: the powerset operation

and the length of the ordinals. Proponents of height potentialism maintain that the

length of the ordinals is indefinitely extensible: necessarily, for any ordinals, there

could always be more. The modal approach to CT simply extends this line of

thought to the powerset operation: necessarily, for any subsets of an infinite set,

there could always be more. This is width potentialism. For any set-theoretic

structure, there is both a taller one and a wider one.

4.4.3 The mathematical viability of the modal strategy

Is there a mathematically precise way of understanding both height and width

potentialism? There is. And can this mathematically precise way of understanding

height and width potentialism recover all of ordinary mathematics? It can. Since our

primary goal is to focus on the philosophical case for the truth of Countabilism, here

we’ll only briefly summarize these mathematical results.

Linnebo (2010, 2013) has developed a modal set theory L that embodies height

potentialism. Linnebo’s modal set theory is formulated in terms of first-order modal

logic with both singular and plural variables, so as to be able to formulate Modal

Naive Comprehension as an explicit axiom in his theory:

Modal Naive Comprehension: h8xx�9y8xðx � xx $ x 2 yÞ.

Linnebo’s theory also includes several standard set-theoretic axioms, such as the

axiom of foundation and extensionality, together with modalized versions of certain

axioms, such as a modal version of the axiom of extensionality (in which sets are

individuated by their members across worlds) as well as a modal version of the

axiom schema of replacement. Intuitively speaking, one can think of the ‘possible

worlds’ in Linnebo’s theory as stages in the cumulative hierarchy of the form Va,

where Vb is accessible to Va just in case b� a. The informal interpretation of �/
corresponds to ‘/ can be made true by adding enough sets’, where �/ is true at Va

just in case / is true at some higher stage in the cumulative hierarchy. The informal

interpretation of h/ corresponds to ‘/ will remain true no matter what sets are

22 This follows from the fact that there is a possible set-theoretic structure witnessing the countability of

both X and P(X).
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introduced’, where h/ is true at Va just in case / is true at all higher stages in the

cumulative hierarchy.

The reason why Linnebo’s theory is not a form of width potentialism is because

he includes an axiom to the effect that the powerset of any given set is

‘completeable’. In other words, contrary to width potentialism, Linnebo’s theory has

as an axiom that for any arbitrary set z, it is possible to form all possible subsets of

that set:

Completability of Subsets: h8z�9xxh8yðy � xx $ y 	 zÞ.

For our purposes, the most important fact about L is that it can reproduce all of

ordinary mathematics, because L can interpret the full theory of ZFC using the

following translation:

Definition 1 (�-translation) Where � is any modal operator, the �-

translantion of a formula / in the first-order language of set theory is the

formula /�, which results from / by replacing every universal quantifier 8x
with h8x, and every existential quantifier 9x with �9x.

Theorem 1 (Linnebo Interpretation Theorem) The theory L interprets ZFC
under the �-translation.23

In recent work, Scambler (2021) has expanded on Linnebo’s framework to develop

a modal set theory M (which he names after Meadows (2015) that drops the axiom

of Completability of Subsets and axiomatizes a version of set-theoretic potentialism

consistent with both width and height potentialism, where any set-theoretic universe

has possible ‘vertical’ and ‘horizontal’ expansions.

The central mathematical technique used to create ‘horizontal’ expansions of any

set-theoretic universe is Cohen’s (1966) method of forcing, which was used initially

to prove the independence of the axiom of choice and the continuum hypothesis.

With forcing, one typically starts with a transitive model M of ZFC and a ‘forcing

notion’ P 2 M, which is a partially ordered set. Supposing that there exists an ‘M-

generic filter’ G 	 P (meaning that G is a filter that contains members from every

dense subset of P in M), then one can build a forcing extension M[G], where (i)

M � M½G
, (ii) G 2 M½G
 (but G 62 M), (iii) M[G] is also a model of ZFC, and (iv)

M and M[G] contain the same ordinals (meaning that M[G] is a horizontal rather

than vertical expansion of M). By choosing an appropriate forcing notion P, one is

able to precisely control the set-theoretic truths found in M[G], which is why the the

method of forcing is able to produce such a wide range of different models of ZFC
for the purposes of establishing independence results.

While the mathematical technique of forcing is uncontroversial, there are certain

philosophical controversies about how it should be interpreted. According to a

‘multiverse’ conception of set theory, defended by Hamkins (2012), for any set-

23 Here we are following Scambler (2021) presentation of L, since Linnebo does not build in the axiom

of choice in his presentation of the theory. Scambler includes the axiom of plural choice as part of the

background plural logic, which, together with Modal Naive Comprehension, ensures the possible

existence of a choice set for any set of disjoint non-empty sets.
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theoretic universe V, one can always construct a larger set-theoretic structure

V ½G
 � V by the method of forcing. The multiverse approach to forcing is

especially promising with respect to Countabilism, because from the multiverse

perspective one can prove that, for any set-theoretic structure V and any cardinal

j 2 V , one can consider a forcing extension V[G] that ‘collapses’ that cardinal to a

countable size by including a bijection f : N ! j inside V[G]. In other words,

arbitrary uncountable cardinals can always be seen to be countable in a larger set-

theoretic universe. However, on a conception of set theory where there is a single

canonical set-theoretic structure V that includes all sets, it doesn’t make sense for

there to be a ‘larger’ structure than V itself. On this single universe view, while there

can be no forcing extensions of V as a whole, there can still be forcing extensions of

models of set theory inside V, where M � M½G
 � V .

Scambler’s modal logic M is an instance of the multiverse approach to set theory,

which allows vertical extensions of any universe (like L) and horizontal extensions

of any universe using a non-trivial forcing notion P in that universe. One can think

of the possible worlds of M as stages Va in the cumulative hierachy, but this time

one can extend upwards (to Vb for b� a) or outwards (to some Va½G
, where G is a

Va-generic filter for a non-trivial forcing notion P 2 Va). Because of these different

processes of expansion, M has two basic modal operators: hvi and hhi. hvi
corresponds to a ‘vertical’ sense of possibility, where hvi/ is true at a world Va just

in case / holds at a possibility that is vertically accessible from Va, and hhi
corresponds to a ‘horizontal’ sense of possibility, where hhi/ is true at a world Va

just in case / holds at a possibility that is horizontally accessible from Va. M also

has a generic modal operator �, where �/ is true just in case / holds in some

expanded set-theoretic universe that is reachable by arbitrary combinations of

vertical and horizontal expansion techniques (two basic axiom schemas of M state

that ‘hvi/ ! �/’ and ‘hhi/ ! �/’ are true for arbitrary /).

In addition to giving up on Completeability of Subsets, perhaps the central

difference between M and L is the addition of an axiom governing the horizontal

expansion process, corresponding to the technique of forcing. The axiom roughly

states that for any set-theoretic universe V and any forcing notion P, it is always

(horizontally) possible for there to be a V-generic filter on P. If we let D(x, xx)

abbreviate the claim that x is a partial order, and the xx are the dense subsets in x,

and if we let FMeets(y, xx) abbreviate the claim that y is a filter that intersects all the

xx, then the axiom can be written as follows:

Horizontal Extendability: Dðx; xxÞ ! hhi9y½FMeetsðy; xxÞ


We won’t be presenting every axiom of M here (for a full presentation of M, see

Scambler (2021)). For our purposes, what is crucial is that from the modal set theory

M one is able to prove the following results:

Theorem 2 The theory M interprets ZFC under the hvi-translation.

Theorem 3 The theory M proves h8xx�9y8xðx � xx $ x 2 yÞ.

Letting f : A�B abbreviate the claim that f is a surjective function from A to B, then

we also have:
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Theorem 4 The theory M proves h8xxð½9yðy � xxÞ ! �9f ½f : N�xx
.

Theorem 2 establishes that M can recover all of standard mathematics. Theorem 3
establishes that M is a mathematical framework that entails Modal Naive

Comprehension. Finally, Theorem 4 establishes that M entails Modal Countability.

These formal results show that the modal approach to RP and CT, embodied by

Modal Naive Comprehension and Modal Countability, can be understood in a

mathematically precise way that is able to recover all of ordinary mathematics.

5 Clarifying the content of Countabilism

Here we clarify the modal content of Countabilism and its relation to the

neighbouring thesis of Finitism.

5.1 The modality at issue in the modal strategy

How are we to understand the kind of modality associated with Modal Naive

Comprehension, Modal Countability, Size $ Possible Function, and Countabilism?

As it happens, there are various options which would serve the Countabilist

purposes. Here we discuss what we take to be the three most plausible options.

We start with the most natural interpretation—namely, one in terms of

metaphysical possibility. On this sort of approach, just as different metaphysically

possible worlds can differ with respect to the physical objects they contain, possible

worlds can also differ with respect to the mathematical objects they contain (e.g.

different metaphysically possible worlds might contain different set-theoretic

universes). By understanding the modal operators in this way, one can derive a

number of general metaphysical consequences that go far beyond the interests of the

working mathematician. For example, given Modal Countability and Size $
Possible Function, no metaphysically possible world can contain more than

countably many concrete objects (such as uncountably many spacetime points),

since, necessarily, every concrete plurality of objects can be put into one-to-one

correspondence with N. As Countabilists, we embrace these implications for

concrete reality, as we discuss further in Sect. 7.

Perhaps the main concern with this metaphysical approach is the common

assumption that the existence or non-existence of abstract mathematical objects is a

matter of metaphysical necessity. We have three responses to this concern. First, a

number of philosophers have argued against this common assumption on the

grounds that no ontological facts, mathematical or otherwise, are metaphysically

necessary—the empty world is a genuine possibility, for example (see, e.g.,

Balaguer (1995), Rosen (2006), and Clarke-Doane (2019)). Second, there are some

conceptions of mathematical objects which require rejecting the necessitist

assumption. For example, on an Aristotelian conception of abstracta, mathematical

objects are dependent on the existence of contingent physical objects (see, e.g.,

Maddy (1990a, b). Lastly, some philosophers interpret mathematical discourse

about objects like sets and bijections in a way that is neutral on the existence of
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abstract objects. On these sorts of approaches, the necessary existence or non-

existence of abstracta is irrelevant to the truth-conditions (or correctness-conditions)

concerning claims about sets or bijections. For example, according to Hellman’s

(1989, 1996) modal structuralism, claims that are seemingly about mathematical

abstracta, such as numbers or sets, should instead be interpreted as claims about

possible concrete structures that are models of the relevant arithmetical or set-

theoretic axioms. On this kind of approach, the central claim of set-theoretic

potentialism is roughly the following: necessarily, for any plurality of physical

objects that instantiate a set-theoretic structure, it is possible for there to be some

other plurality of physical objects that instantiate a ‘larger’ set-theoretic structure

(either larger in height or width). In addition, various fictionalist approaches to

mathematics have been developed that are also neutral on the (non-)existence of

abstract mathematical objects. For example, while maintaining that there might be

no fact of the matter about whether abstract objects exist, Balaguer (1998, 2021) and

Yablo (1998, 2001, 2005) each develop fictionalist approaches to the philosophy of

mathematics according to which there is nonetheless an objective sense in which

certain mathematical claims (e.g. ‘there are infinitely many primes’) are ‘correct’

whereas other mathematical claims (e.g. ‘there are finitely many primes’) are

‘incorrect’. If these ontologically neutral interpretations of mathematics can be

made to work, then the Countabilist’s central claims about the metaphysical

possibility of the existence of certain kinds of bijections can be understood as claims

about the possibility of certain kinds of ontologically neutral facts obtaining, which

are compatible with the necessary (non-)existence of abstracta.24

A second way to interpret the relevant notion of possibility is in terms of what is

ideally conceivable (or otherwise rationally intelligible; here we focus on

conceivability), such that to say that it is ‘possible’ for there to be a bijection

from a certain plurality of objects to N is simply to say that it is ideally conceivable

for there to be a bjiection from that plurality of objects to N.25 In light of Kripke’s

(1972/80) influential arguments against the connection between conceivability and

possibility (such that, e.g., it is conceivable yet metaphysically impossible for water

not to be H2O), many philosophers will regard this interpretation as importantly

distinct from the first interpretation in terms of metaphysical possibility.26 The main

24 See Dorr (2008, 2010) and Azzouni (2004) for related ontologically neutral approaches to

mathematics. Just as these approaches often claim that they can vindicate the ‘nominalistic content’ of

scientific theories that quantify over mathematical objects, such approaches can use similar means to

extract the ‘nominalistic content’ of Countabilism, as we will further discuss in Sect. 7.
25 See Chalmers (2002) for discussion of the relevant notion of idealized conceivability.
26 There are also a number of historical challenges to the connection between conceivability and

metaphysical possibility. For example, in her Essays Upon the Relation of Cause and Effect (1824), Mary

Shepherd maintains that Hume errs in supposing that whatever he can conceive (e.g., that a new existent

could occur without a cause, or that some similar cause might produce a different effect) is genuinely

possible: ‘‘Mr. Hume makes also a great mistake in supposing because we can conceive in the fancy the

existence of objects contrary to our experience, that therefore they may really exist in nature; for it by no

means follows that things which are incongruous in nature, may not be contemplated by the imagination,

and received as possible until reason shows the contrary’’ (83). For a prominent attempt to reforge an

indirect link between conceivability and metaphysical possibility in terms of ‘epistemic two-

dimensionalism’, see Chalmers (1996, 2002, 2006). For criticisms of Chalmers’s proposal, see Wilson
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advantage of this second proposal is that it avoids the main criticism of the first

proposal. Although the (non-)existence of mathematical objects might be

metaphysically necessary, the conceivability approach makes no claims about the

actual or (metaphysically) possible existence of mathematical objects. This second

approach is also closely related to certain broadly logical or conceptual modal

notions which have been defended by a variety of philosophers. For example,

Russell, in his (1919), endorses a notion of ‘logical possibility’ according to which

facts about ontology are never logically necessary, and Field (1993) defends a

notion of ‘conceptual possibility’, according to which it is conceptually contingent

which mathematical objects there are.

Perhaps the main objection to this second approach is that it might not fit well

with our overall methodological strategy down the line. Instead of directly arguing

that certain kinds of bijections are conceivable or otherwise rationally intelligible,

our methodology will be broadly abductive.27 We think that the theoretical and

explanatory advantages of Countabilism in mathematics, science, and philosophy

jointly make Countabilism more plausible than its negation. However, one might

naturally object that this kind of ‘cumulative case’ in favor of Countabilism is too

weak.28 Because of the reasoning in Sect. 4.4.2, this second interpretation of

Countabilism is committed to the inconceivability (or unintelligibility) of a

‘maximal’ powerset of N, because the supposition that there could be a bijection

from the maximal powerset of N to the natural numbers leads to a contradiction, via

Cantor’s theorem.

In response, we think that a plausible case can be made that, at least for non-ideal

agents like us, abductive reasoning has an important role to play in establishing

what is ultimately conceivable or intelligible. Consider, for example, the ZFC
axioms of set theory. Either these axioms are consistent or inconsistent, where

presumably only one of these options would be ideally conceivable to an ideal

reasoner. However, given that we are not ideal reasoners, our belief that the ZFC
axioms are consistent is not justified by some conclusive a priori proof, but rather

by the overall longterm success that ZFC set theory has enjoyed as a unified

foundation for mathematics.29 Examples like this are easily multiplied. For

example, among theoretical computer scientists, it is widely believed that P 6¼ NP

on broadly abductive grounds. However, to an ideal reasoner, presumably only one

of P = NP or P 6¼ NP is ultimately coherent or ideally conceivable. We think the

Footnote 26 continued

(2006) and Melnyk (2008). For an alternative approach to implementing epistemic two-dimensionalism

which appeals to abduction rather than conceiving, see Biggs and Wilson (2017, 2019).
27 However, in Sect. 6.3, we argue that width potentialism can be motivated on the grounds that there

cannot be brute necessities. Insofar as one thinks that brute necessities are inconceivable, then this would

motivate width potentialism as understood in terms of conceivability.
28 Thanks to a referee for raising this concern, and more generally for encouraging us to expand on what

understanding(s) of modality is supposed to be at issue in Countabilism.
29 As Feferman (2005) observes, ‘‘the success of axiomatic set theory—as developed by Zermelo,

Skolem and Fraenkel—[succeeded] in allaying fears about the paradoxes. Though not demonstrably

consistent, intensive development of the subject without running into any difficulties gave comfort and

confidence to its practitioners and gradually won the support of mathematicians at large’’ (11).
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situation is similar with respect to Countabilism. The disagreement between the

Countabilist and the anti-Countabilist, at least on this second interpretation, is also a

disagreement about what is ultimately coherent or conceivable. The anti-

Countabilist maintains that there is a conceivable plurality of objects (e.g. the

maximal powerset of N) such that it’s inconceivable that there exists a bijection

from those objects to N, whereas the Countabilist disagrees. Just as in the case of the

consistency of ZFC or the question of whether P = NP, we think that non-ideal

beings like us are capable of making progress on this question on broadly abductive

grounds.30

A third and final interpretation of the modality at issue takes it to be one that is

distinctive to mathematics. In his formulation of set-theoretic potentialism, Linnebo

(2010, 2013) endorses an unanalyzable kind of mathematical or set-theoretic

modality, and Scambler (2021) is inclined to understand the modal operators as

involving a ‘dynamic’ notion of mathematical possibility:

I should say a word about the interpretation of the modal operators. One might

be concerned that the results are inherently insignificant, because they make

use of a non-trivial sense of mathematical possibility, and no such sense exists.

I am not persuaded by negative thoughts of this kind. Clearly set-theorists

have been driven to use modal operators in discussing their subject matter, and

probably they have something sensible in mind. I myself favor (as has

probably been clear throughout) a dynamic reading of the modal operators,

wherein they concern possibilities for action on the part of some (unspecified

and idealized) individual. This way of thinking of mathematics has been alive

since the time of Euclid, and I believe it has just as much application to

modern set theory as it did to geometry. Such ideas are also being developed

today, in one form or another, by Kit Fine [3] and Martin Pleitz [16]. (22)

We agree with Linnebo and Scambler that there is no in-principle problem with an

appeal to a distinctive and perhaps unanalyzable kind of mathematical modality, so

we will consider this to be another viable approach for the interpretation of the

modal operators found in Countabilism.

We now turn to a question for both the second and third approaches. In

discussing the first interpretation in terms of metaphysical modality, we noted the

implication that Countabilism has important consequences for what is metaphys-

ically possible, and hence for what is actual. If it is metaphysically necessary that

everything is countable, then clearly the actual world cannot contain an uncount-

able plurality of objects. Does the same implication hold for the second and third

interpretations? We think it does. Regarding the second interpretation, if it is ideally
inconceivable (unintelligible) for there to be a genuine uncountable plurality of

objects, then on the usual understanding (embraced by proponents of conceivability

as a guide to metaphysical possibility, including Hume and Chalmers), it is not

metaphysically possible for there be a genuine uncountable plurality of objects

30 One might also naturally wonder about the utility of abductive reasoning with respect to metaphysical

modality. For a defense of the epistemology of abduction with regards to metaphysical modality, see

Biggs (2011), Williamson (2013: 423–424), and Biggs and Wilson (2017).
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either, since such inconceivability or unintelligibility would reflect the incoherence

of the notion at issue, and it is a minimum requirement on a metaphysically possible

scenario or world that it should be coherent. Regarding the third interpretation,

given the fact that it is mathematically impossible for there to be a genuinely

uncountable plurality of objects, does it follow that such a plurality is metaphys-
ically impossible? We think that a plausible constraint on our understanding of

mathematical possibility is that this inference should be satisfied. After all, the

realm of mathematical possibility should at least be able to account for the kinds of

structures present in the actual world. Moreover, the requirement that mathematics

should be able to account for the structures present in the actual world should hold

robustly: mathematics should be able to account for the structures present in the

actual world regardless of which metaphysically possible world turns out to be

actual. We therefore conclude that all three interpretations rule out the actual and

metaphysically possible existence of an uncountable plurality of (concrete or

abstract) objects.

In sum, we think that there are three different viable interpretational options for

the modal operators in Countabilism, each of which implies that uncountable in-

finities are metaphysically impossible (and hence not actual). We therefore conclude

that skepticism about Countabilism on the grounds that there is no (non-trivial)

sense to be made of the modal operators in the formulation of Countabilism is

unwarranted.31

All this being said, there remain important questions of detail about how the

associated modality interacts with specific mathematical implementations of

Countabilism, and before any specific mathematical implementation of Countabil-

ism is to be defensible, these details need to be addressed. For example, Scambler’s

modal set theory M makes non-trivial assumptions about the correct principles of

plural modal logic that govern the relevant modality, and one’s views about the

plausiblity of these logical principles might be sensitive to how one chooses to

interpret the relevant modal operators.32 We cannot hope to settle these delicate

questions about the correct principles of plural modal logic here, so we will leave

the defense of these important details for future work.33

31 As a referee points out, one could perhaps introduce a stipulated notion of ‘possibility’ that makes

Countabilism come out as trivially true, but we don’t think any of the three interpretations that we have

discussed makes Countabilism come out as trivial. All three interpretations draw on modal notions whose

coherence and importance have been defended on independent grounds by several philosophers. One

could of course adopt a more radically skeptical stance that questions the intelligibility or objectivity of

these modal notions (see, e.g., Clarke-Doane (2019, 2021), but arguing against this kind of view is beyond

the scope of the current paper. At the end of the day, we think that the best reason for believing that

Countabilism is both true and non-trivial is by looking at its many downstream consequences in

mathematics, science, and philosophy. After all, Countabilism cannot be trivial or unintelligible if it has

important non-trivial consequences about intelligible matters.
32 For relevant work on the appropriate modal logic of plurals, see Williamson (2010), Uzquiano (2011),

and Linnebo (2016).
33 Another complicating factor about M is that it utilizes three different modal notions, a notion of

‘vertical’ possibility, a notion of ‘horizontal’ possibility, and a ‘combined’ notion of possibility that

results from arbitrary iterations of vertical and horizontal possibility. The different interpretations of

modality that we have so far been discussing are best viewed as interpretations of the more generalized
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5.2 Comparison with finitism

How does Countabilism contrast with Finitism, according to which, necessarily, any

collection (set or plurality) is finite? Strictly speaking, Finitism is compatible with

our formulation of Countabilism. Indeed, the truth of Finitism would render

Countabilism immediately true, since in that case there would be no infinite sets or

pluralities whatsoever. The Countabilist’s main claim is that one cannot move

beyond the countably infinite, which the Finitist would of course accept. Finitism

should therefore be seen as a strictly stronger claim than Countabilism.

Nonetheless, we think there are good reasons not to go so far as Finitism. Perhaps

the main reason is that Finitism is far more revisionary of both mathematics and

physics. As Klement (2010b: 30) observes, the supposition that only finite pluralities

can form sets would ‘‘cripple’’ mathematics. Relatedly, there is no correlate to the

method of forcing that would enable Finitism to account for infinite mathematics.

With respect to physics, Finitism is also inconsistent with basic and empirically

open physical possibilities, such as a universe that never ends, either temporally or

spatially. In addition, while we find it difficult to form a positive conception of an

uncountable plurality of objects, it seems to us that countable pluralities of objects

are easily conceivable: consider, e.g., an unending sequence of dominoes. Lastly,

our reasons for being sympathetic to Countabilism, which we will further discuss

below, do not generalize to Finitism.

6 Countabilism: the philosophy of mathematics

We finally turn to the case(s) in favor of Countabilism. As noted above, one

important advantage of Countabilism is that, when understood in terms of both

height and width potentialism, it offers a unified response to both RP and CT,

reflecting the deep structural parallels between both mathematical results. We now

canvass several other advantages of Countabilism in the philosophy of mathematics.

6.1 Countabilism and the intuition of limitlessness

Countabilism nicely corresponds to an intuitive understanding of infinity as

limitless, such that it cannot itself be surpassed in number, and hence can only have

one ‘size’. Such an understanding of the infinite as limitless or inexhaustible has

been registered by a number of different mathematicians and philosophers,

Footnote 33 continued

combined notion of modality, whereas Scambler’s vertical and horizontal notions of possiblity should be

seen as restrictions on this modality from which one can ‘generate’ the more general combined notion of

modality. We also leave the important question of whether the relevant interpretation of the combined

modal notion in M can be entirely ‘factored’ into restricted vertical and horizontal modalities for future

work. Thanks to a referee for raising this concern.
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including Gauss, Cauchy, Poincaré, and Weyl,34 and it is precisified by the modal

indefinite extensibility approach to set theory.

These intuitions of infinity’s being limitless or inexhaustible are sometimes

expressed in terms of a distinction between ‘actual’ and ‘potential’ infinity, as when,

e.g., Linnebo and Shapiro (2019) say, ‘‘Beginning with Aristotle, and until the

nineteenth century, the vast majority of major philosophers and mathematicians

rejected the notion of the actual infinite. They argued that the only sensible notion is

that of potential infinity’’ (160). It is important to be clear, however, that the

underlying intuition here is not that nothing could be infinite: that would be to

endorse Finitism. We do not find it ‘intuitive’ that there are only finitely many

natural numbers! Less radically, the intuition of limitlessness is one that simply

maintains than an infinite collection is one that, since itself inexhaustible, cannot be

surpassed in number.

An appeal to the limitlessness intuition may not persuade philosophers inclined

towards present Cantorian orthodoxy. However, given that the primary reason for

endorsing the highly counterintuitive claim that there are different sizes of infinity is

now absent (since the import of CT and, more generally, contemporary mathemat-

ical results, can be interpreted in a Countabilist setting), we maintain that it makes

sense for the default position to be the intuitive one according to which there is only

one size of infinity.

6.2 Countabilism and independence

An important advantage of Countabilism is that, as we’ll now argue, it provides the

best explanation for the pervasive independence results in contemporary set theory.

The most famous example of independence is the Continuum Hypothesis (CH),

which states that there is no set whose cardinality is strictly between that of N and

P(N). Following a result from Levy and Solovay (1967), the truth of CH is not

decidable within ZFC, together with any additional large cardinal axioms. CH,

however, is only the tip of the iceberg. Since the advent of Cohen’s forcing

technique, countless other natural set-theoretic statements have been proven to be

independent of ZFC.

Broadly speaking, we believe, like Hamkins (2012), that the pervasive

independence phenomena in set theory support anti-realist approaches according

to which set-theoretic statements like CH lack a determinate truth-value. After all, if

the history of set theory had turned out differently, and there was as little

independence in set theory as there is in arithmetic, then this would have provided

strong support for the realist view; such relative lack of independence would

indicate that our set-theoretic axioms successfully pin down a robust conception of

the true set-theoretic universe, yielding answers to any naturally formulated set-

theoretic questions. If this sort of history would have provided confirmation of the

realist view, it follows that the opposite history, where independence is pervasive,

34 As Poincaré (1912) puts it, ‘[W]hen we speak of an infinite collection, we understand a collection to

which we can add new elements unceasingly [...]’ (47), and as Weyl (1918) puts it, ‘Inexhaustibility is

essential to the infinite’ (23).
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provides confirmation for the anti-realist view.35 After all, anti-realist views which

entail that CH has no determinate truth-value make the (so far correct) empirical

prediction that we will not find an answer to CH and other natural set-theoretic

statements.

All this being said, the strongest support here for Countabilism consists in the

specific kind of anti-realism that it delivers. In what follows, we will consider two

specific advantages that a modal potentialist version of Countabilism has over other

kinds of anti-realism.

6.2.1 Independence with a univocal concept of set

There are many different accounts of why statements like CH lack a truth value; due

to considerations of space we focus on what we see as our main competitor—

namely, an account of the sort endorsed by Balaguer (1995), Field (1998), and

Hamkins (2012), on which the independence results reflect there being multiple set-

theoretic structures that are equally good candidates for being the total set-theoretic

universe, with CH being true in some such structures and false in others.

Such an account, if feasible, would explain why CH lacks a truth-value in the

same way that semantic supervaluationists (e.g., Fine (1975) and Lewis (1982) think

that vague sentences lack a truth-value. In the latter case, for example, if ‘Bob is

bald’ lacks a truth value, this reflects that there are multiple equally good ways of

precisifying ‘bald’ in such a way as to draw a determinate boundary between the

bald things and the not-bald things, with Bob counting as bald on some

precisifications and not-bald on others. As Martin (2001) compellingly argues,

however, such a supervaluationist strategy faces a serious problem. A simplified

version of his argument is as follows. Suppose that there are two set-theoretic

structures V and V� that are each equally good candidates for being the complete

set-theoretic universe. Then we may compare them level by level and see which one

‘leaves out’ sets that the other has. Clearly, it will have to be the case that

V0 ¼ ; ¼ V�
0 . As our inductive step, suppose that Va ¼ V�

a . Then, if V is to be a

candidate for the complete set-theoretic universe, then it must be that Vaþ1 � V�
aþ1,

for if V failed to contain sets that were included in V�, then it would not be a live

candidate for the complete set-theoretic universe. For similar reasons, it must be the

case that Vaþ1 � V�
aþ1, if V� is to be a live candidate for the complete set-theoretic

universe. So, Vaþ1 ¼ V�
aþ1. The limit stage of the induction is trivial, since for any

limit ordinal b, if Va ¼ V�
a for all a\b, it follows by definition that Vb ¼ V�

b . By

similar reasoning, each must contain the ordinals that the other contains if they are

both to be candidates for the complete universe of sets, so V ¼ V�. The upshot is

that it is impossible for there to be two different but equally good candidates for the

entire set-theoretic universe.

In response to Martin’s argument, Hamkins (2012) suggests that there are distinct

concepts of set. For example, V might be a complete universe of sets1 and V� might

35 This follows from a basic theorem of confirmation theory, according to which if some evidence E

confirms H over :H, then the evidence :E confirms :H over H.
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be a complete universe of sets2. In order to compare these universes level by level,

one must illegitimately assume (according to Hamkins) that there is a unique

background concept of ‘set’ that both these universes answer to. We find this

response unsatisfactory, however. To start, there is plausibly a unique concept of set
that is at the heart of the iterative conception of sets—sets are simply well-founded

and extensional objects that are fully determined by their members.36 Given any

plurality whatsoever of (well-founded) sets, there could be a set with exactly that

plurality as its members, as per Modal Naive Comprehension. Hamkin’s skepticism

leads him to be skeptical that there is a unique concept of well-foundedness, or even

a unique concept of natural number. We agree that if our notion of well-foundedness
(or natural number) is inherently vague, then so too will be the concept of set that is

at the heart of the iterative conception. However, we find such a skepticism to be

implausibly radical.

We thus seem to face a dilemma: either we can have the explanatory benefits of

anti-realism at the cost of implausibly multiplying our concept of set, or we can

avoid implausibly multiplying our concept of set at the cost of taking on board the

realist assumption that there are innumerable set-theoretic claims whose truth lies

beyond our reach.

Luckily, with Countabilism and its width-potentialist underpinning in hand, we

can have our cake and eat it too. We needn’t multiply concepts in order to explain

why CH lacks a truth-value. We can endorse Martin’s conclusion that there can’t be

multiple equally good candidates for being the complete set-theoretic universe,

while at the same time denying that there is a unique candidate for being the

complete set-theoretic universe (whose status determines the truth value of CH), by

maintaining that there are zero candidates for being the complete set-theoretic

universe! This follows directly from height and width potentialism. For any set-

theoretic structure V, there could always be a strictly ‘better’ structure V� that is

either taller or wider than V. So, for any V, V (determinately) fails to be a candidate

for the complete set-theoretic universe. Moreover, this explanation of the

indeterminacy of CH crucially relies on width-potentialism. If set-theoretic

structures only disagreed with respect to how high the ordinals can extend, such

structures would agree on CH, which is a claim that is settled merely by Vxþ2.

However, if set-theoretic structures differ in their width, then CH will not have an

answer. For example, as Hamkins (2015) notes, for any set-theoretic structure V,

one could always go to a forcing extension V[G] of V which disagrees with V on the

truth-value of CH.

36 We do not have any qualms with there being other conceptions of set besides the iterative conception,

such as those that deny the axiom of foundation. We also don’t want to defend the claim that the concept

of set at the heart of the iterative conception is in any way metaphysically superior than other conceptions

of set. Our main interest lies in questions about the possible sizes of infinity, which we think has

ramifications far outside mathematics. We are only focusing on the iterative conception of set here

because such a conception provides an ideal setting for reasoning about possible sizes of infinity. If there

are additional non-well founded sets that lie outside the cumulative hierachy, then in any case those sets

will not influence any standard mathematics (see, e.g., Kunen (1980)). For an extended defense of the

iterative conception of set and its advantages over other conceptions, see Incurvati (2020).
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6.2.2 Predicting the right amount of independence

Different versions of anti-realism differ with respect to which kinds of mathematical

truths have determinate truth-values. For example, does every statement in the

language of arithmetic have a determinate truth-value? Some radical versions of

anti-realism say ‘no’. For example, one might hold that mathematical truth is fully

captured by weaker axiomatic systems such as Robinson Arithmetic (Q), Primitive

Recursive Arithmetic (PRA), or Peano Arithmetic (PA) (see, e.g., Koellner (2013)).

In a set-theoretic context, it is useful to measure the strength of different anti-

realist positions by focusing on fragments of the set-theoretic universe of the form

ðHj;2Þ, where Hj is the collection of all sets that are hereditarily of cardinality less

than j. In other words, Hj is the collection of all sets X such that X, the elements of

X, the elements of the elements of X, etc., all have cardinality less than j. It turns out

that claiming that every statement about ðN;þ;�Þ has a determinate truth-value is

equivalent to claiming that every statement about ðH@0
;2Þ has a determinate truth

value.37 More simply, claiming that arithmetic is determinate is equivalent to

claiming that finite set theory is determinate. Since ZFC provides a more or less

complete theory of ðH@0
;2Þ (and hence of ðN;þ;�Þ), it is very common to hold

that claims about finite set theory have determinate truth values.38

The next step up is countable set theory. Do claims about the hereditarily

countable sets, ðH@1
;2Þ have determinate truth values? Of late, there seems to be a

growing consensus among set theorists that the answer is ‘yes’. Adding the axiom of

‘Projective Determinacy’ (PD) to ZFC seems to provide as robust a theory for

ðH@1
;2Þ as ZFC provides for ðH@0

;2Þ. As Woodin (2001a) remarks, ‘‘The only

known examples of unsolvable problems about [ðH@1
;2Þ] are analogous to the

known examples of unsolvable problems in number theory: Gödel sentences and

consistency statements’’ (575). With respect to the status of PD, Koellner (2013)

notes that the case for the axiom ‘‘has gained wide acceptance by the set-theorists

(in particular, inner model theorists and descriptive set theorists) who know the

37 This follows from the fact that both theories are mutually interpretable (in the model-theoretic sense).
38 Of course, by Gödel’s theorem, there can be no truly complete axiomatization of ðH@0

;2Þ, but ZFC
seems to determine the truth values of ‘natural’ mathematical statements about ðH@0

;2Þ. There are also

less orthodox views on which the axioms of ZFC are simply false of their intended subject matter, which

is (at least for our purposes) the iterative conception of set (see footnote 33). Although entering into the

details of the controversies behind the particular axioms of ZFC is beyond the scope of the present paper,

a few remarks are in order. With respect to the axiom of infinity, it seems to us that the only principled

view which denies the possibilty of infinite sets is some version of Finitism, which we (pessimistically)

discuss in Sect. 5.2. With respect to the axiom of choice, we are inclined to agree with Pollard (1988) that

the axiom of choice for plurals (as opposed to sets) should be uncontroversial. With respect to plurals, the

axiom of choice simply states that, for any disjoint non-empty sets there are some things which comprise

exactly one element from each. Together with Modal Naive Comprehension (which we think is the most

plausible substitute for Naive Comprehension), this plural version of the axiom of choice implies the

standard axiom of choice for sets (this is how the modal set theory M derives the axiom of choice). With

respect to the axiom schema of replacement, see Incurvati (2020: 90–100) for three different arguments

that the iterative conception of set implies the axiom schema of replacement. For wider discussion of

these controversies about ZFC, see Clarke-Doane (2013, 2020: Ch. 2).
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details of the constructions and theorems involved in the case that has been made for

PD’’ (25).

However, our mathematical theories seem to give out when moving beyond

countable set theory. There is no corresponding consensus about the truths

concerning ðH@2
;2Þ, which is where the case for CH needs to be decided.39 As a

result, Countabilism exactly predicts the current state of affairs regarding set-

theoretic truth. It predicts that truths about (hereditarily) countable sets should be

within reach, but truths about the uncountable should lapse into indeterminacy. We

see this as a strong point in favor of Countabilism.

6.3 Explainability

It is one thing to argue that Countabilism is true; it is another to be able to explain

why it is true. In this section, we offer an explanation of the truth of width

potentialism, and the associated understanding of Countabilism, that is closely

connected to the explanation of the truth of height potentialism.

To start, there is a straightforward explanation of why height potentialism is true.

Height potentialism is the claim that, necessarily, for any ordinals, there could

always be more. In order to deny height potentialism, one has to maintain that there

could be some ordinals, oo, such that it is impossible for the oo to form a set,

constituting a greater ordinal. However, if this is to be impossible, then there must

be an explanation for why it is impossible. Otherwise, one would be saddled with an

inexplicable brute necessity, which many philosophers have wanted to avoid.40 The

explanation for the truth of height potentialism is simply that there is no reason why

any given plurality of ordinals couldn’t go on to form a set. In other words, the

absence of an explanation for why the ordinals should stop at any particular place

constitutes an explanation for why they can always be extended further.

We think a similar explanation applies to width potentialism. The height

potentialist is skeptical of the idea of a ‘maximal’ collection of all ordinals on the

grounds that it would give rise to inexplicable brute necessities (where are the

ordinals supposed to stop?). Similarly, it is natural for the width potentialist to be

skeptical of the idea of a ‘maximal’ collection of all the subsets of an infinite set,

such as N, on the grounds that such a maximal powerset would raise all sorts of

questions, most particularly the cardinality of P(N), for which there don’t seem to be

any non-arbitrary answers. As discussed in Sect. 6.2, all of the axioms of ZFC
(supplemented with large cardinal axioms) do very little to constrain the cardinality

of P(N). In fact, the only constraint imposed by ZFC on the cardinality of P(N) is

that the cardinality of P(N) is an uncountable cardinal with uncountable cofinality.

Insofar as our repeated efforts to find a non-arbitrary answer to the cardinality of

39 For some speculative research programs which seek to provide answers for CH, see Woodin

(2001b, 2017) and Incurvati (2017). Given the line we are pushing here, should such research programs

come to fruition, that would count as evidence against the truth of Countabilism.
40 The rejection of brute necessities has a long tradition, ranging back to Hume’s (1739-40) rejection of

necessary causal connections, and recently endorsed by, e.g., Lewis (1986), Dorr (2004), and Goswick

(2018). See Van Cleve (2018) for an overview.
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P(N) fail, this gives us more evidence that there is no explanation for why

P(N) should have one cardinality as opposed to another. This fact can then be used

to explain why width potentialism is true. The absence of any explanation for why

the maximal powerset of N should ‘stop’ at one cardinality rather than another

constitutes an explanation for why there can be no maximal powerset. If there were

a maximal powerset, it would give rise to the same kinds of inexplicable brute

necessities as a maximal collection of all the ordinals.

It is still not obvious, however, how one gets an explanation of Countabilism

from an explanation of width potentialism. One way one can bridge the divide is by

appealing to the set-theoretic technique of forcing. The most mathematically

developed way we have for ‘horizontally’ expanding the set-theoretic universe (by

‘adding’ new subsets of infinite sets) is by forcing, and as we saw in Sect. 4.4.3,

forcing vindicates Countabilism insofar as uncountable cardinalities can always be

seen to be countable in appropriate forcing extensions. A second way to bridge the

divide from width potentialism to Countabilism starts from Cantor’s own account of

how the ordinals are generated (1883, Sections 1, 11). Starting from x, Cantor

thought that countable ordinals were generated by a successor operation, as well as

by taking limits of ordinal sequences:

0; 1; 2; :::;x;xþ 1; :::;xþ x ¼ x � 2; :::;x � 3; :::;x2; :::;xx; :::

No matter how often we apply these two operations, however, we will only ever

get countable ordinals.41 As Fletcher (2007) notes:

It seems clear that by applying the two generating principles we can form a

long (but always countable) succession of countable ordinal numbers...It

seems that we would need to generate uncountably many countable ordinals to

justify the leap to x1; but the possibility of doing this is itself in question. How

can we pull ourselves up by our countable bootstraps into the realm of the

uncountable? (539)

We simply cannot pull ourselves into the realm of the uncountable by our

countable bootstraps. No matter how many countable ordinals there are, we can

always construct a larger countable ordinal by Cantor’s two operations. It is

impossible to ever reach an uncountable ordinal: the countable ordinals are

indefinitely extensible. No matter how many countable ordinals there are, there

could always be more. On this sort of picture, @1 is akin to Cantor’s notion of The

Absolute Infinite, which is an ‘inconsistent multiplicity’. If one is willing to accept

the indefinite extensibility of ordinals in general (as per height potentialism), it is

natural to accept the indefinite extensibility of countable ordinals by similar

reasoning. The only reason to think that one could ever reach an uncountable ordinal

is by appealing to maximal powersets. For suppose there were an infinite set X that

had a ‘maximal’ powerset, P(X). Then, by CT, P(X) would be genuinely

uncountable. By the Axiom of Choice, P(X) could be well-ordered as an

uncountable ordinal a. Once we have pulled ourselves into the realm of the

41 This follows from the claim that @1 is a regular cardinal.
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uncountable ordinals by appeal to maximal powersets, then as a matter of logic there

will be some ordinal x1 2 a that is the least uncountable ordinal. x1 will then

contain the totality of all possible countable ordinals, contradicting the indefinite

extensibility of the countable ordinals. However, once the appeal to maximal

powersets is blocked (via width potentialism), there is no reason to think that one

can go beyond the realm of the countable.42

To sum up: there is an explanation of why width potentialism, and hence the

associated understanding of Countabilism, is true; and moreover, this explanation is

intelligibly connected to the explanation of why height potentialism is true.

7 Countabilism: physics

Orthodox physics uses mathematical objects that are ‘uncountable’ as a means of

modeling certain physical phenomena, such as the use of continuous manifolds

made up of zero-dimensional points to model the geometric structure of spacetime.

According to Countabilism, these mathematical objects are not well-suited to

accurately represent the physical world. This is because, according to Countabilism,

there are no canonical examples of ‘uncountable’ objects. Just as there is no

canonical powerset of N, understood as containing all possible subsets of N, there is

no canonical set of all real numbers R. Necessarily, for any set of real numbers,

there could always be a larger set of real numbers. Because of this, there will be no

canonical examples of mathematical objects that are defined in terms of the real

numbers, such as arbitrary n-dimensional manifolds. Intuitively, such objects will

always be inherently ‘incomplete’ since they can be further supplemented with extra

points or real numbers. However, in the case of physical spacetime, it would be very

strange to think that there are ‘missing’ spacetime points! Even if one granted that

there could be these kinds of ‘holes’ in spacetime, any precise account of which
holes there are in spacetime would be wholly arbitrary. Because Countabilism

implies that there are no genuinely uncountable mathematical objects that represent

the structure of the physical world, it is therefore to some extent revisionary of

orthodox physics. On the face of it, this might be thought to count against

Countabilism. However, there are several reasons to see this consequence as a

feature, not a bug.43

First, as a historical and methodological matter, the supposition that spacetime is

actually composed of uncountably many extensionless, zero-dimensional points is

comparatively recent and poorly motivated. As Hellman and Shapiro (2018) make

clear, the orthodox approach prior to the nineteenth century reflected the

42 The mathematical fact that ZFC without the powerset axiom is consistent with the statement ‘every set

is countable’ supports this fact (the model ðH@1
;2Þ of hereditarily countable sets satisfies all of the ZFC

axioms, excluding the powerset axiom).
43 We should emphasize that Countabilism does not say that the pure mathematics that these scientific

theories are based on (e.g. differential geometry) needs to be revised. It only says that the structure of the

physical world is not adequately captured by the ‘uncountable’ mathematical objects studied in these

mathematical theories.
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Aristotelian view that a true continuum cannot be composed of zero-dimensional

points. It was only through the mathematical work of Bolzano, Cauchy, Dedekind,

Cantor, and others that the present approach became orthodoxy. As we have seen in

the case of CT, however, the interpretation of the relevant mathematical work

motivating this shift is fraught with mistaken philosophical assumptions, involving

the reification of the reals as a complete uncountable totality, along with the rest of

the Cantorian hierarchy. The right thing to do, it seems to us, is to face up to and

correct this methodological wrong turn. Moreover, rejecting the orthodox point-

based characterization of the continuum does not necessarily mean rejecting

continuous spacetime in favor of discrete spacetime.44Hellman and Shapiro (2018)

mathematically develop a number of different regions-based, or ‘gunky’, charac-

terizations of the real line which formalize the traditional Aristotelian view of the

continuum. From a Countabilist perspective, Hellman and Shapiro’s accounts of

‘Aristotelian and Predicative Continua’ in Ch. 3 are especially relevant, since their

accounts of Aristotelian and Predicative Continua do not resort to uncountable in-

finities. They also generalize their regions-based accounts of the continuum to

multi-dimensional Euclidean and non-Euclidean spaces. When discussing further

mathematical applications of their regions-based theories in measure theory and

differential geometry, they conclude:

In short, the proponent of a regions-based theory can legitimately ‘have it both

ways’, adhering throughout to an ontology of regions, yet theorizing with

points, point-sets, and point-set-sets, as needed for applications. There is

nothing in a regions framework that implies that defined superstructural items

may not be genuinely useful or even ‘required’, say in physical applications of

mathematics. It is one thing to say that the point-concept may be unavoidable

in certain situations (by us humans?), and quite another to say that, ‘therefore

reality must be constituted of points’. It is not even accurate to say that

‘quantification over points is indispensable’ (say in physics); the full-fledged

reduction already achieved of points to pluralities of sequences of regions

simply belies that. (159–60)

Second, as an epistemic matter, it is clear that the assumption that the world is

actually composed of an uncountable totality of zero-dimensional points goes far

beyond what any possible empirical data could support. After all, our measurement

instruments can only ever operate with a finite level of precision. It seems, then, that

no matter what observations we make, there will always be an empirically adequate

theory that does not assume that spacetime is continuous. Indeed, in recent work,

Miller (forthcoming) argues that, notwithstanding that many fundamental physical

theories characterize their observables with real number precision, there are no

present grounds for thinking that such characterization is tracking worldly structure:

44 While we focus here on gunky characterizations of spacetime, on which every spacetime region has a

proper part, versions of Existence Monism, according to which the only concrete objecte object is the

whole of spacetime, are also compatible with Countabilism. For more on Existence Monism, see Horgan

and Potrc (2008), Cornell (2016), and Builes (2021).
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When we ascribe real number precision to physical quantities we are using an

exceptionally rich structure. Fundamental physical facts might come struc-

tured so richly, but for all we know, they do not. For this reason, it strikes me

as well worth considering the possibility that much of the structure that we

employ when we ascribe real numbers to quantities is in fact surplus structure.

(16)

Third, as a metaphysical matter, the supposition that spacetime is composed of an

uncountable infinity of zero-dimensional points leads to several notorious puzzles

and paradoxes. Perhaps the most famous measure-theoretic paradox is the Banach-

Tarski paradox, whereby any spacetime region with a fixed radius will have five

subregions that can be translated and rotated to obtain two spacetime regions, each

with the same size as the original—a result clearly incompatible with our usual

understanding of physical space. More generally, such spaces have non-measurable
regions, with no well-defined size; again, as Forrest (2004) plausibly maintains, this

cannot be true of any physical space. Relatedly, Segal (2017) presents a puzzle that,

conditional on some plausible metaphysical assumptions, suggests that ‘‘it’s not

possible for something that is made of points to have any size at all’’ (358). A

continuous spacetime made of points also gives rise to classic puzzles of contact,

whereby physical objects that occupy closed regions (e.g. point particles) can never

come into contact, but must rather always be a finite distance apart (see, e.g., Kline

and Matheson (1987)). And as Builes and Teitel (2020) argue, pointy physical

spaces lead to other puzzles concerning how one might reduce rates of change

quantities (e.g. the acceleration of a material body or the gradient of an electric

field) to other fundamental physical quantities. These and related puzzles and

paradoxes dissolve upon the rejection of uncountable collections, as per

Countabilism.

Fourth, as a purely scientific matter, there are reasons to be skeptical of the

existence of such a point-based continuum. Arntzenius (2002) has argued, for

example, that the formalism of both Quantum Mechanics (QM) and Quantum Field

Theory (QFT) suggests that spacetime is pointless. In the case of QM, from the fact

that QM uses separable Hilbert spaces (spaces with a countable basis) that lack

continuous position eigenstates, Arntzenius concludes that it is more natural to

interpret wave functions as living on a pointless space, of the kind studied by

Caratheodory (1963) and Skyrms (1993). Similarly, in the case of QFT, Arntzenius

(2002) writes:

In quantum field theory there are no well-defined field operators associated

with points in spacetime. Rather than field operators defined at points, there

are ‘smeared’ field operators associated with weighted regions [...] the

procedure whereby such smeared field operators are defined does not

presuppose the existence of spacetime points. (1455)

Moreover, certain prominent approaches to Quantum Gravity, such as Loop

Quantum Gravity and Causal Set Theory, suggest abandoning continuous spacetime

altogether in favor of a discrete approach (see Rovelli (2001) for relevant

discussion). Indeed, it is still an open question whether anything analogous to
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spacetime exists at the fundamental level (see Huggett and Wüthrich (2013) and

Baron (forthcoming)).

In sum, we believe that there are already methodological, epistemological,

metaphysical, and scientific reasons to be skeptical of the present orthodoxy of a

continuum-based physics formulated in terms of an uncountable totality of zero-

dimensional points. In its place, the Countabilist has a number of options. First, they

could reformulate orthodox theories using a regions-based conception of the

continuum as developed by Hellman and Shapiro (2018).45 Second, the Countabilist

(along with everyone else) could point out that our best physical theories cannot be

strictly speaking true anyway. After all, our current continuum-based physical

theories are inconsistent with each other (since Quantum Field theory is

incompatible with General Relativity), so they should only be regarded as

empirically adequate within certain regimes. Consequently, even if the Countabilist

ran into trouble trying to reformulate these theories in a way that avoided

‘uncountable’ physical structures, the fact that Countabilism might be in tension

with theories that we already know to be false on independent grounds should not be

seen as much of a cost. Third, although it is still very unclear what the final ‘theory

of everything’ might look like, the Countabilist can already point to ‘discrete’

approaches to Quantum Gravity that avoid the kinds of uncountable mathematical

structures present in contemporary theories.

An interesting upshot of these physical consequences is that Countabilism can

also help guide our future physical theorizing. Insofar as we are led to a final ‘theory

of everything’ that essentially models the structure of the physical world in terms of

‘uncountable’ mathematical objects, we should be doubtful that such a theory can

accurately reflect the structure of reality. We consider the fact that Countabilism has

these concrete, empirical consequences for the physical structure of the world as a

theoretical virtue of the view.

8 Countabilism: metaphysics

Since Countabilism is a claim about ontology and modality, it unsurprisingly has

many substantive and arguably positive consequences in ontology and modal

metaphysics. We briefly mention some highlights here.

First, Countabilism alters our understanding of the space of possibility. For

example, Countabilism entails that modal space is far smaller than current

orthodoxy supposes. Not only is there no possible world with uncountably many

spacetime points, there are also no possible worlds with @17 or @xþ17 entities either.

More generally, Countabilism falsifies certain natural principles that have been

thought to delineate the space of possible worlds, including:

Recombination: For each cardinal number j, there is a larger cardinal k such

that it is possible that there are exactly k concrete objects.

45 See also Arntzenius and Hawthorne (2005) for a discussion of how a gunky conception of spacetime

should be supplemented with an account of the variation of physical quantities across regions.
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Given Countabilism, the case of j ¼ @0 is a counterexample to Recombination.

That’s a good thing, since as Uzquiano (2015) argues, Recombination leads to

paradox.

Second, Countabilism has consequences for mereology. Specifically, Countabil-

ism provides the basis for an argument against a version of Universalism, according

to which ‘‘every plurality of objects has a fusion, and, in particular, the plurality

consisting of all things has a fusion’’ (Korman 2011). For if there are countably

many concrete entities, then the possible fusions of those concrete entities are

indefinitely extensible (just as the possible subsets of N are indefinitely extensible):

necessarily, no matter how many fusions there are of those concrete entities, there

could always be more. Universalism aims to secure the maximal number of fusions

there could be, but according to Countabilism, such a feat is impossible, just as it is

impossible to secure the maximal number of sets or ordinals. If one believes that

(i) Universalism is true iff it is necessarily true and (ii) there could be countably

many concrete objects, then it follows from Countabilism that Universalism is false.

It is worth noting, however, that there is a natural substitute to Universalism, namely

Modal Universalism, which is the thesis that, for any things, it is possible that they

form a fusion.46 The retreat from Universalism to Modal Universalism precisely

mirrors the retreat from Naive Comprehension to Modal Naive Comprehension.

Third, the modal approach to set theory that Countabilism is predicated on makes

trouble for ‘Plenitudinous Platonism’ (PP), defended by Balaguer (1995, 1998) and

Linsky and Zalta (1995), Linsky and Zalta (2006), which is the thesis that ‘all the

mathematical objects that logically possibly could exist actually do exist’ (1998:

6).47 If PP is true, then all possible well-founded pure sets actually exist, which we

may formalize as follows:

Set Plenitude: 9xxð8xðx � xx ! SetðxÞÞ ^ :�9yðSetðyÞ ^ 8xðx � xx !
y 6¼ xÞÞ.

Informally, Set Plenitude says that Plato’s heaven cannot contain more well-

founded pure sets than it already contains. However, the modal approach to the set-

theoretic paradoxes claims that any plurality of things can form a set:

Modal Naive Comprehension: h8xx�9y8xðx 2 y $ x � xxÞ.

Modal Naive Comprehension implies that Set Plenitude is false. For suppose Modal

Naive Comprehension is true, and consider the plurality ss of all well-founded pure

sets that actually exist (quantifying unrestrictedly). By Modal Naive Comprehen-

sion, it is possible for the ss to form a set, which would be a well-founded pure set

not contained within ss. So, Modal Naive Comprehension entails the possibility of a

well-founded pure set that doesn’t actually exist, contrary to Set Plenitude. In effect,

set-theoretic potentialism implies that talk of ‘all possible sets’ (or more generally,

46 Thanks to a referee for this suggestion.
47 The following argument is generalized and defended at greater length in Builes (forthcominga).
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talk of ‘all possible mathematical objects’) is illegitimate. The modal space

associated with the modal operators involved in set-theoretic potentialism is

indefinitelty extensible, or open-ended.48

Fourth, the supposition that there are uncountable infinities generates seemingly

irresolvable questions. Consider the following two questions: (i) How many angels

could dance on the point of a needle? (see Hawthorne and Uzquiano (2011)), and

(ii) How many isolated island universes is it possible for the world to contain? (see

Rayo (2020)). On an orthodox approach to infinity, it’s hard to know what to say.

Countabilism, however, provides a straightforward answer: countably many!

Lastly, the modal approach to set theory that we have defended here naturally

generalizes to other kinds of metaphysical categories that generate Russellan

paradoxes. For example, in the case of propositions, the Russell-Myhill paradox

poses a problem for certain fine-grained ‘structured’ theories of propositions, but Yu

(2017) has developed a modal approach to propositions that responds to the Russell-

Myhill paradox in much the same way that modal approaches to sets respond to RP.

Here we are only scratching the surface; but even so it should be clear that a great

deal of orthodox metaphysics looks very different from the perspective of

Countabilism.

9 Conclusion

There’s much to be said in favor of Countabilism, understood along modal width-

potentialist lines:

• Countabilism entails no loss of mathematical power: for mathematical purposes,

Cantor’s paradise remains intact.

• Countabilism is part of a systematic and unified modal response to both RP and

CT, properly reflecting their deep structural parallels.

• Countabilism is compatible with a wide range of approaches to modality.

• Countabilism is pre-theoretically intuitive: it affirms the commonsense claim

that there is no way to surpass an infinite collection in number.

• Countabilism provides the best explanation for the independence phenomenon

in set theory, by explaining this phenomenon while affirming a univocal concept

of set and predicting just the right amount of independence.

• Countabilism can be motivated and explained from first principles in much the

same way that the indefinite extensibility of the ordinals has been motivated and

explained.

• Countabilism defuses a wide range of puzzles and paradoxes in both physics and

metaphysics.

48 One way to resist this argument (and the previous argument about mereology) is by rejecting the

legitimacy of absolutely unrestricted quantification, which is the intended reading for the quantifiers in

both Countabilism and Modal Naive Comprehension. For defenses of the legitimacy of absolutely

unrestricted quantification, see Lewis (1991: 68), Sider (2001: xx-xxiv), van Inwagen (2002), and

Williamson (2003, 2013). See Clarke-Doane (2019) and Rayo (2020) for independent reasons to think

that metaphysical possibility (or ‘absolute’ possibility) might be open-ended.
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On the other side, there is little to be said against Countabilism. Perhaps the main

potential concern is that Countabilism is in some ways revisionary of orthodox

physics, at least with respect to the common view that spacetime is composed of an

uncountable totality of zero-dimensional points. But this orthodoxy in physics, like

the post-Cantorian orthodoxy in mathematics, is based in a methodologically

problematic understanding of the import of CT as motivating the reification of the

real numbers as a complete uncountable totality, along with the rest of Cantor’s

hierarchy; and again, there are epistemic, metaphysical, and scientific reasons to

depart from the present orthodoxy in physics, as is increasingly endorsed by both

physicists and philosophers.

We conclude that the many substantive advantages, and lack of undercutting

disadvantages, jointly tip the scales: Countabilism is not just epistemically possible

and mathematically viable, but is most likely true.49
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