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Could Experience Disconflrm 
the Propositions of Arithmetic? 

JESSICA M. WILSON 
Sage School of Philosophy 
Cornell University 
Ithaca, NY 14853-3201 
USA 

I regard the whole of arithmetic as a necessary, or at least a natural, consequence of 
the simplest arithmetical act, that of counting... 

Richard Dedekind1 

Albert Casullo2 has argued that the propositions of arithmetic could be 
experientially disconfirmed, with the help of an invented scenario 
wherein experiences involving our standard counting procedures, as 
applied to collections of objects, seem to indicate that 2+2*4. Our best 
response to this scenario would be, Casullo suggests, to accept the results 
of our standard counting procedures as correct, and give up our stand- 
ard arithmetical theory.3 This suggestion, interestingly enough, is not as 
bizarre as it initially appears. But indeed a problem lies in the assump- 
tion, common to Casullo's scenario and to his suggested resolution, that 
our arithmetical theory might possibly be independent of our standard 
counting procedures. Here I show that this assumption is incoherent, 

1 Richard Dedekind, 'Continuity and Irrational Numbers/ in Essays on the Theory of 
Numbers, trans. Wooster Woodruff Beman (New York: Dover 1963), 4; originally 
published in 1888. 

2 Albert Casullo, 'Necessity, Certainty, and the A Priori/ Canadian Journal of Philosophy 
18 (1988) 43-66. Future references to this article will be in the text. 

3 Here and throughout I take our standard arithmetical theory to be 2nd-order arith- 
metic, as axiomatized by Dedekind or Peano; details of this theory will be discussed 
in a later section. 
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56 Jessica M. Wilson 

whether the independence at issue is supposed to make room for the 
genuine possibility that 2+2*4, or the merely epistemic possibility that 
we could rationally believe that 2+2*4: given our standard counting 
procedures, then (on pain of irrationality) our arithmetical theory fol- 
lows. I conclude that the propositions of arithmetic would not be discon- 
firmed (or refuted) in Casullo's scenario, or in any scenario that depends 
similarly upon the world seeming to go (or going) wrong.4 

I Casullo's Disconf irming Scenario 

Casullo's larger agenda in providing a 'disconfirming' scenario (I'll leave 
off the scare quotes in what follows) is to investigate whether knowledge 
of mathematical propositions might plausibly be fit into an inductive 
empiricist framework.5 In an inductive empiricist framework, 'at least 
some mathematical propositions can be individually confirmed or dis- 
conf irmed and, furthermore, those mathematical propositions which are 
epistemically basic are confirmed on the basis of experience and induc- 
tive generalization' (43). Epistemically basic mathematical propositions 
are those involving small numbers (small enough, at any rate, to be able 
to confirm experientially, in the way to be described shortly). Such 
propositions act as the 'confirmation base' for the mathematical theory 
in question. Given this base, the inductivist can allow that other mathe- 
matical propositions, and indeed the extension of the confirmation base 
to a full-fledged axiomatic theory, may be justified non-inductively (via, 
for example, proof-theoretic methods, or abductive or holistic considera- 

4 This conclusion goes only part of the way towards establishing that experience 
could not disconfirm the propositions of arithmetic. In Casullo's scenario, the 
participants are justified in believing first, that they have wits enough about them 
to count, and second, that the objects being counted are stable throughout the 
counting process. Scenarios in which both assumptions are rejected depart too far 
from the circumstances of our own experience to provide any illuminating grip on 
the question of disconfirmation. And as I'll show later, scenarios in which (just) the 
second assumption is rejected are susceptible to the arguments presented here 
against Casullo's scenario. But scenarios in which (just) our mathematical wits are 
called into question, such as those considered by Philip Kitcher in The Nature of 
Mathematical Knowledge (New York: Oxford University Press 1985), are not suscep- 
tible to these arguments and may, for all I say here, represent live possibilities. 

5 The arguments and results of this paper transcend this particular agenda, however, 
applying to any account of arithmetical propositions on which these could be 
disconfirmed (or refuted) by experience, under the general conditions of Casullo's 
scenario. 
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Could Experience Disconfirm the Propositions of Arithmetic? 57 

tions). But it is the inductive confirmation of the epistemically basic 
propositions in the confirmation base that gets the theory off the ground: 
'the inductivist simply claims that in mathematics, as in science, justifi- 
cation originates in inductive generalization from experience' (45). 

One oft-cited argument against the thesis that mathematical proposi- 
tions, like scientific propositions, are confirmed via inductive generali- 
zation from instances, relies on the premise that unlike the propositions 
of science, mathematical propositions are not dfsconfirmable by experi- 
ence.6 The argument (which Casullo calls the Irrefutability Argument) 
proceeds as follows: 

(PI) No experiential evidence can disconfirm mathematical propo- 
sitions. 

(P2) If experiential evidence cannot disconfirm mathematical 
propositions, then it cannot confirm such propositions. 

/. Experiential evidence cannot confirm mathematical proposi- 
tions. 

Casullo's disconfirming scenario is intended to block the anti-inductivist 
conclusion by undermining (PI). In this, he follows John Stuart Mill, who 

provided a disconfirming scenario with a similar intention in A System 
of Logic.7 Casullo's scenario is, however, an extension of Mill's, and (as 
we'll soon see) one that evades the reasons usually given for rejecting 
Mill's scenario as showing that experiential evidence can disconfirm 
mathematical propositions. 

To set the stage for his scenario Casullo describes the process by which 
one of the epistemically basic propositions, that are to serve as the 

6 Prominent among those who have rejected an inductivist approach to mathematics 
on these grounds are empiricists such as A.J. Ayer, Language, Truth, and Logic (New 
York: Dover 1952), Ch. 4, excerpted and reprinted as /rThe a priori' in Paul Benacerraf 
and Hilary Putnam, eds., Philosophy of Mathematics (Englewood Cliffs, NJ: Prentice- 
Hall 1964) and Carl Hempel, 'On the Nature of Mathematical Truth/ The American 
Mathematical Monthly 52 (1945) 543-56, also reprinted in Philosophy of Mathematics 
who go on to argue that mathematical propositions are analytic, and so known a 

priori. See also Karl Britton, in 'The Nature of Arithmetic: A Reconsideration of 
Mill's Views/ Meeting of the Aristotelian Society 6 (1947) and Hartry Field, Science 
Without Numbers (Princeton: Princeton University Press 1980), Ch. 1. 

7 John Stuart Mill, A System of Logic (New York: Harper 1867). Mill's disconfirming 
scenario is discussed in chapter vi of Book II, and chapter xxiv of Book III. 
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58 Jessica M. Wilson 

confirmation basis for a theory of arithmetic, would be established 
empirically: 

One counts the number of objects in each of two distinct groups of objects, combines 
the objects into a single group, recounts the objects, and then notes the resulting 
numerical relations between the component groups and the combined group of 

objects. (44) 

During this process, it is assumed that participants in the scenario are 
justified in believing that certain background conditions are met. These 
are the Stability and Correct Counting conditions: 

Stability condition: Neither the operations of counting and combin- 
ing, nor the interactions of the objects to be counted, produce any 
changes in the relevant features of the objects being counted. 

Correct Counting condition: No miscounting (say, by repeating a 
number or missing an object) takes place. 

It is primarily in making explicit that these conditions are justifiably 
believed to hold that Castillo's scenario extends Mill's.8 

The scenario then proceeds as follows: the participants perform two 
countings to two, combine the objects, and recount - and the result is a 
counting to five. They repeat the process over and over, each time with 
the same result. Each time, they take pains to establish that the Stability 
and Correct Counting conditions are met, and in each case find that they 
are. Furthermore, they discredit all hypotheses forwarded in attempts to 
show that one or both of the conditions are not being met. Under these 
circumstances, 'the inductivist maintains that... the proposition [that 
2+2=4] would be disconfirmed by experiential evidence and, hence, that 
premise [PI] is false' (49). This leaves the way clear for arithmetic to be 
an inductive experimental science, where it is 'an open empirical ques- 
tion whether whenever one performs two countings to two, combines 
the objects, and recounts, the result will be a counting to four' (46).9 

8 Britton ('The Nature of Arithmetic/ 2-6) provides convincing textual evidence that 
Mill 'half-acknowledges' that these 'two general conditions' are assumed to be in 
place in his scenario, but it takes some doing. 

9 Casullo does not argue explicitly for the inverse of (P2) - that if experiential 
evidence can disconfirm mathematical propositions, then it can confirm such propo- 
sitions. Presumably his remarks here are intended to leave the inverse of (P2) open 
as a live possibility (in particular, for the inductive empiricist). Establishing this 
inverse would be a different project, and one that would have to respond to a priorist 
accounts that try to show that mathematical propositions are known a priori, in spite 
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Could Experience Disconfirm the Propositions of Arithmetic? 59 

Casullo sees participants in the discontinuing scenario as having two 
possible responses: 

(A) Keep standard arithmetical theory along with standard count- 
ing procedures, but maintain that either the Stability or Correct 
Counting conditions failed to hold, in spite of all evidence to 
the contrary.10 

(B) Accept the results of the standard counting procedures as 
correct and reject standard arithmetical theory. 

l 

In the past, (A) has been the usual response to Millian scenarios in which 
a series of countings seems to disconfirm an elementary arithmetical 
proposition. Ayer, for example, says 

It might easily happen, for example, that when I came to count what I had taken to 
be five pairs of objects, I found that they amounted only to nine.... But ... one would 
not say that the mathematical proposition "2x5=10" had been confuted. One would 

say that I was wrong in supposing that there were five pairs of objects to start with, 
or that one of the objects had coalesced, or that I had counted wrongly.... The one 

explanation which would in no circumstances be adopted is that ten is not always 
the product of two and five.12 

Hempel says of a scenario in which a collection of 2 microbes and a 
collection of 3 microbes, when counted together, give the result 6: 

Would we consider this as an empirical disconfirmation of the ... proposition [that 

2+3=5]? Clearly not; rather, we would assume we had made a mistake in counting 

of being potentially disconfirmable by experience. Cf. Donna Summerfield, 'Modest 

A Priori Knowledge/ Philosophy and Phenomenological Research 51 (1991) 39-66. 

10 Strictly speaking, Casullo presents a version of (A) where one maintains only that 

the Correct Counting condition failed to hold, in spite of all evidence to the contrary. 
However, there seems to be no reason why one couldn't instead maintain that it 

was the Stability condition that had failed to hold. 

11 Here Casullo is assuming an account of individuation of arithmetical theories 

according to which disconfirmation of even a single proposition of the theory 
disconfirms the theory as a whole. This is certainly true on an inductive empiricist 
account, given the foundational nature of the epistemically basic propositions at 

issue. But more generally, disconfirmation of the sort of elementary arithmetical 

propositions at issue here would likely render a sufficiently large tear in the fabric 

of standard arithmetical theory so as to render the theory disconfirmed as a whole, 
however one took that fabric to be woven. 

12 Ayer, 'The a priori/ 318 
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60 Jessica M. Wilson 

or that one of the microbes had split in two between the first and second count. But 
under no circumstances could the phenomenon just described invalidate the arith- 
metical proposition in question....13 

And Douglas Gasking remarks (upping the ante by emphasizing the 
pervasive nature of the experiences at issue): 

If I counted out 7 matches, and then 5 more, and then on counting the whole lot, got 
11, this would not have the slightest tendency to make anyone withdraw the 

proposition that 7+5=12 and say it was untrue. And even if this constantly hap- 
pened, both to me and to everyone else, and not only with matches, but with books, 
umbrellas, and every sort of object - surely even this would not make us withdraw 
the proposition.... There are plenty of alternative explanations to choose from.... We 

might try a psychological hypothesis.... Or we might prefer a physical hypothesis.... 
The one thing we should never say, whatever happened, would be that the propo- 
sition that 7+5=12 had been experimentally disproved.14 

These responses, without further argument, fail to appropriately ad- 
dress the possibility raised by Casullo's scenario. To see this, we need to 
get clear regarding what this possibility is supposed to be. It is part of 
Casullo's scenario that the participants are justified in believing that the 
Stability and Correct Counting conditions are being met. This leaves it 
open whether, in the scenario, the conditions are, in fact, being met, or 
whether they are not, in fact, being met, but the participants just aren't 
able to figure this out. These two cases correspond to two types of 
possibility that might be at issue in Casullo's scenario. Suppose first that 
the conditions are, in fact, being met. Since these conditions apparently 
exhaust the relevant ways in which things could go wrong, the possibil- 
ity at issue in this case is what I'll call the 'genuine' possibility that the 
participant's true justified beliefs in the conditions holding, coupled with 
their experience, could serve to (not only disconfirm, but) refute the 
proposition that 2+2=4. (This strikes many as immediately incoherent; 
but see the next section.) Now suppose that one or the other of the 
conditions isn't, in fact, being met. The possibility at issue in this case is 
what I'll call the 'epistemic' possibility that (although in fact one or the 
other of the conditions doesn't hold) the participant's justified beliefs in 
both conditions holding, coupled with their experience, could serve to 
disconfirm the proposition that 2+2=4. 

13 Hempel, 'On the Nature of Mathematical Truth/ 378-9 

14 Douglas Gasking, 'Mathematics and the World/ reprinted in Logic and Language, 
Antony Flew, ed. (New York: Anchor 1965), 430-1 
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Of course, if the participants were irrational or otherwise sufficiently 
cognitively impaired, either possibility would be (too) easy to defend; 
which is just to say that questions of what it is rational to believe are only 
interesting relative to a tacit background assumption that certain cogni- 
tive capacities - here, those humans generally possess - are in place. 
(Such a tacit assumption obviously comes into play, not only in assessing 
what participants could rationally believe about elementary arithmetical 
propositions, but also in giving content to the claim that the participants 
justifiably believe the Stability and Correct Counting conditions to hold.) 
To be sure, deciding just what cognitive capacities humans generally 
possess is no small matter. For present purposes, however, it will be 
enough to assume that the participants are as rational and inventive as 
we would need to be in order for us to say (of some sufficiently but not 
especially sophisticated group of us) that we were indeed justified in 

believing the Stability and Correct Counting conditions to hold. 
Given this tacit background assumption, there is a sense in which each 

of the aforementioned possibilities is epistemic (since the scenario pre- 
supposes that the participants have certain cognitive capacities, which 
mediate their experience of the scenario) and there is a sense in which 
each of the above possibilities is genuine (since there will presumably be 
a fact of the matter whether it is compatible with these capacities that, 
under the assumptions of the scenario, the participants rationally believe 
that 2+2*4).15 Even so, for convenience I'll continue to refer to the first 
sort of possibility (where the conditions hold in fact, and '2+2=4' is 

refuted) as 'genuine,' and the second sort (where one or the other of the 
conditions doesn't hold in fact, and '2+2=4' is disconfirmed) as 'epistemic.' 
Now, although Casullo does not explicitly distinguish between these 

possibilities, his restricting the participants to having justified belief in 

(rather than knowledge of) the conditions' holding strongly suggests 
that it is the epistemic possibility that he takes to be at issue (and in any 
case, his scenario presumably stands a much better chance of being 
coherent on this reading). My arguments against the coherence of his 
scenario will be directed accordingly. Along the way I'll show, however, 
how these arguments may be adapted for use against a scenario in which 
the conditions hold in fact, and that nonetheless the participants find 

(because it is the case) that 2+2*4, should anyone care to put such a 
scenario forth. 

15 Note that it would be enough for Casullo to establish that participants in the scenario 

could, consistent with the assumptions of the scenario, take their experience as 

disconfirming the proposition that 2+2=4; to block (PI) of the Irrefutability argu- 
ment, he need not argue that they should, or even that they would, do this. 
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It is easy to see that the above variations on response (A) fail to 
appropriately address the epistemic possibility at issue in Castillo's 
scenario. For in each response it is asserted that any seeming disconfir- 
mation would be resisted by appeal to some 'alternative explanation' in 
terms of psychological or physical goings-on. But Casullo has built into 
his scenario that all such 'alternative explanations' of the apparent 
disconf irmation have been investigated, and ruled out. And there seems 
nothing incoherent about this part of his scenario.16 

The question remains whether the best response to Casullo's scenario 
would be to take the given arithmetical proposition (and, by extension, 
standard arithmetical theory) to have been, as Gasking puts it, 'experi- 
mentally disproved' (as per [B]). Casullo says, of claims that the explana- 
tion of the apparent disconfirmation must be a matter of miscounting (as 
per [A]), that 'If this claim is not to be true by stipulation and, hence, 
question-begging, then the a priorist must provide some plausible hy- 
pothesis regarding the source of the mistaken counting' (51). This is 
incorrect, for it might be that the a priorist could bring some non-ques- 
tion-begging argument to bear which would support choosing (A) over 
(B), that none the less didn't involve any such hypothesis. (That will, in 
fact, be the approach in this paper.) Arguments previously given along 
these lines, however, have been either absent or so weak as to not defini- 
tively establish that (A) would be the best response to Casullo's scenario. 

Ayer, for example, rejects (B) on grounds that 'we cannot abandon [the 
propositions of mathematics] without contradicting ourselves, without 
sinning against the rules which govern the use of language, and so 
making our utterances self-stultifying,'17 but even he seems unconvinced 
by this vague, largely pragmatic justification: 'In rejecting [an inductive 
empiricist] theory, we are obliged to be somewhat dogmatic' (ibid., 318). 
Hempel justifies his choice of response (A) by appeal to the standard 
arithmetical relations being part of the definition of the number terms 
that result from counting: 'under no circumstances could [counting 
results] invalidate the arithmetical proposition [that 3+2=5]; for the latter 
... merely states that any set consisting of 3+2 objects may also be said to 
consist of 5 objects. And this is so because the symbols "3+2" and "5" 
denote the same number: they are synonymous by virtue of the fact that 
the symbols "2," "3," "5," and "+" are defined (or tacitly understood) in 
such a way that the above identity holds as a consequence of the meaning 

16 The above responses would also, for the same reason, fail to appropriately address 
the genuine possibility that might be at issue in Casullo's scenario. 

17 Ayer, /rThe a priori/ 319 
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attached to the concepts involved in it/18 But Hempel's appeal to defini- 
tion is indecisive against response (B), since the inductivist challenge can 
be refrained as the question whether, as a result of untoward experience, 
we might be compelled to revise those portions of our definitions of 
number symbols having to do with arithmetical relations.19 

Gasking offers a Wittgensteinian justification for choosing (A) over 
(B), claiming that it is a fact about our use of mathematical (and in 
particular, arithmetical) propositions that these are incorrigible (that is, 
not disconfirmable). But there are two problems with this approach. 
First, Casullo can deny that Gasking's 'language game' response shows 
that participants would be justified in choosing (A) over (B), as follows.20 
Consider the following two propositions: (1) it is a fact about our use of 
mathematical propositions that they are incorrigible; (2) it is a fact about 
our use of mathematical propositions that it is only under the direst 
epistemic circumstances that we are even to consider relinquishing the 
simplest such propositions. Presumably, Gasking would agree that we 
can't know a priori which of these correctly characterizes our practices. 
But then even if (1), not (2), is correct, then (not being in such dire 

epistemic circumstances ourselves), we have no reason for believing that 

18 Hempel, 'On the Nature of Mathematical Truth/ 379 

19 Admittedly, the inductive empiricist could do more to make intelligible how the 
definitions of number terms might be amenable to experience. Kitcher, in 'Arithme- 
tic for the Millian/ Philosophical Studies 37 (1980), 219, attempts this on Mill's behalf: 
'I suggest that we read [Mill] as offering an epistemological thesis about definitions: 
to be justified in accepting the definitions on which arithmetic rests we must have 

empirical evidence that those definitions are applicable.... Mill would allow that 
certain sentences of our language are true in virtue of the connotations of the 

expressions they contain, and that we can defend our assertion of these sentences 

by citing our understanding of the language. However ... our defense is adequate 
only so long as our right to use our language is not called into question. In particular, 
if experience gives us evidence that certain concepts are not well-adapted to the 

description of reality our assertion of sentences involving those concepts is no longer 
justified....' Kitcher supports his reading of Mill, in part, by reference to Mill's 
discussion of the term 'acid.' It was part of the original definition of this term that 
an acid had the property of containing oxygen, so that, at one point in time, the 
assertion of a sentence like 'All acids contain oxygen' could have been defended 

simply on grounds of understanding the terms involved. After the discovery of 

hydrochloric acid, consisting only of hydrogen and chlorine, both definition and 
defense were undermined. On this understanding, disconfirming scenarios can be 
seen as attempts to show that arithmetical relations stand to the definition of number 
terms as the property of containing oxygen stood to the original definition of 'acid.' 

20 Thanks to Mark Richard for this suggestion. 
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(1), rather than (2), obtains, and so no reason for thinking that partici- 
pants in the scenario would be justified in preferring (A) over (B). 
Second, on Gasking's account the incorrigibility in question would just 
as well attach to propositions in an alternative mathematical system in 
which, for example, 3x4=24: 'This latter proposition, if it were part of our 
mathematical system, would be incorrigible, exactly as "3x4=12" is to us 
now.'21 Thus even if Gasking's 'language game' approach does provide 
some reason for choosing (A) over (B), it is unlikely to be popular. For it 
carries with it all the disadvantages that attach to accepting Casullo's 
disconf irming scenario (namely, admitting that we might have believed 
arithmetical propositions different from those in our standard arithmeti- 
cal theory) without providing the justificatory basis for accepting non- 
standard propositions that Casullo's scenario provides (namely, that in 
the process of disconfirming the standard arithmetical propositions, 
certain non-standard arithmetical propositions are inductively con- 
firmed). 

It appears that the usual arguments for choosing (A) over (B) in 
response to disconfirming scenarios are inconclusive, at best. Moreover, 
Casullo takes accepting (A) to involve either accepting inexplicable 
failures in our counting procedures to yield results compatible with our 
arithmetical theory, or (as per Ayer, Hempel, and Gasking) introducing 
ad hoc explanations of why the Stability or Correct Counting conditions 
failed. (Since, in Casullo's scenario, all hypotheses that might have 
undermined the participant's justified beliefs in the conditions' holding 
have been investigated, and ruled out, any further explanation of why 
one or the other condition failed seems bound to be ad hoc.) Given the 
inconclusive nature of previous arguments in favor of (A), Casullo's 
suggestion that participants in his scenario should choose (B) over (A) is 
not unreasonable. If choosing between (A) and (B) ultimately came down 
to choosing between being ad hoc and being revisionary, we might be 
inclined to take the latter course. 

II Two Aspects of Number 

Although, by the above lights, the suggestion that we might dispense 
with standard arithmetical theory in the face of experience is not unrea- 
sonable, there is a strong prima facie intuition that disconfirming scenar- 
ios such as Mill's and Casullo's are incoherent (which accounts for the 
tendency for response [A], however dogmatic or problematic, to be 
preferred over response [B]). Casullo's scenario can be made more 

21 Gasking, 'Mathematics and the World/ 442 
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plausible by noting that in this scenario (as well as in response [B]) 
Casullo is tacitly separating two aspects of number. The first aspect of 
number has to do with a number's being the cardinality of a set, as 
illustrated by the sentence 'There are three objects on that table/ In the 
scenario this aspect of number is left intact, insofar as the participants 
are assumed to be in possession of standard counting procedures, that 
enable them to perform 'countings to two/ 'countings to five/ and so 
on.22 The second aspect of number concerns the relations of numbers to 
each other, as in 'Three plus two is five.' It is these relations (correspond- 
ing to addition and multiplication) that the propositions of arithmetic 
are partly about, and it is propositions predicating such relations that 
Casullo thinks are 'open empirical questions' insofar as they could be 
disconfirmed, in spite of standard counting procedures (determinations 
of cardinality) seeming to operate as usual. Casullo's disconfirming 
scenario, then, can be understood as asserting that the relational, 'arith- 
metical/ aspect of number is epistemically independent of the intrinsic, 
'cardinal/ aspect. This assertion amounts to the thesis that the following 
two assumptions could be rationally and concurrently held (for example, 
by participants in the scenario): 

(Al) We are in possession of standard counting procedures that 
result in correct determinations of cardinality, under condi- 
tions where (as we justifiably believe) the Stability and Correct 
Counting conditions hold (i.e., the cardinality aspect of num- 
ber is justifiably believed to remain the same). 

( A2) Relations (corresponding to addition and multiplication) hold- 

ing between the results given by standard counting procedures 
are different from those given by standard arithmetical theory 
(i.e., the arithmetical aspect of number is justifiably believed to 

vary). 

Casullo's scenario drives a wedge between two aspects of number that 
we don't ordinarily consider separately. This explains the prima facie 

22 Of course (as per the epistemic possibility) if the participants are wrong about either 
the Correct Counting or Stability conditions holding, it might be the case that a given 
'counting to two' failed to accurately reflect the number of objects being counted 

(although such inaccuracy would have to be persistent, systematic, and undetect- 
able by participants in the scenario, who are justified in believing the conditions to 

hold). As it turns out, the accuracy of the counting results is irrelevant to the question 
of whether Casullo's scenario is coherent. For the moment, it is enough to note that 
Casullo's scenario is not designed to call counting results into question. 
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implausibility of the scenario, as well as the resistance to allowing that 
participants might appropriately respond to the scenario (as per [B]) by 
accepting the results of standard counting procedures as correct and 
rejecting standard arithmetical theory. More importantly, given that 
there are two aspects of number, it is not obvious that participants in 
Casullo's scenario couldn't rationally find these to be independent of 
each other, as required. 

Ill Keeping our Counting Procedures and 
Rejecting our Arithmetic 

Determining whether Casullo's scenario represents a coherent possibil- 
ity thus comes down to the question of whether the arithmetical aspect 
of number could possibly be epistemically independent of the cardinal 
aspect. (I'll sometimes call this 'the independence question/) We can 
start by investigating the presuppositions of (Al); that is, by investigat- 
ing what is involved in possessing standard counting procedures, under 
conditions where the Stability and Correct Counting conditions are 
justifiably believed to hold. H.N. Casteneda has provided the following 
formulation of the principles involved in counting: 

(Cl) To count the objects of a collection or aggregate K is to establish 
a one-to-one correspondence between the objects of K and a set 
N of numbers (or numerals) such that: 

(C2) N includes 1; 

(C3) There is at most one number in N whose immediate successor 
is not in N; 

(C4) The number of objects in K is the number mentioned in (C3) if 
it exists; otherwise the number of objects in K is infinite; 

(C5) The one-to-one correspondence may be carried out (i) by actu- 
ally attaching one number (or numeral) to each object; or (ii) 
by forming partial non-overlapping correspondences of type 
(i), as when we count by twos or fives or hundreds; or (iii) by 
specifying a rule for actually attaching numerals to as many 
objects as we please.23 

23 Hector Neri Casteneda, 'Arithmetic and Reality/ The Australasian Journal of Philoso- 

phy 37, 2 (1959), 103. It is uncontroversial that something like these principles is 
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Since the participants in the scenario are in possession of standard 
counting procedures, Casteneda's formulation gives us some indication 
of the relevant concepts we can take the participants to possess. To start, 
we can note that, according to this formulation, the participants will 
possess the concept of a one-to-one correspondence: as per (Cl), to count 
just is to establish such a correspondence. Although this notion can be 
defined in mathematical terms, 

4 there is nothing especially technical 
about the notion of a one-to-one correspondence. The idea is simply to 
match up all the objects in one collection with all the objects in another 
collection - something any kid who knows how to set a table can do. 
As a separate issue, one might think that this formulation of counting 
already spells deep trouble for Casullo's scenario. For Casteneda's use 
of the terms 'number' and 'successor' would seem to presuppose the 
axioms (P1)-(P5) of 2nd-order Peano Arithmetic (PA2)25 (henceforth, the 

involved in standard counting procedures. To see how Casteneda's principles could 
be applied to a concrete example (involving say, counting a collection of apples on 
a table), do the following: 

(1) Take the set N of numbers in (Cl) to be drawn from the ordered sequence of 
natural numbers (1, 2, 3, ...). 
(2) Establish a 1-1 correspondence between the apples and the set N by pointing 
once and only once (mentally or physically) to each apple on the table, each time 

attaching (mentally or physically) the next number in the sequence of natural 
numbers (starting with 1). Note that here we would be carrying out (C5), 
version (i). 
(3) When done, investigate N, and apply (C4). If (C2) has been satisfied (this will 

happen when there is at least one apple on the table), then either there will be a 
last number in N (this is just what it means to say that (C3) is satisfied), and this 
last number N will be the number of apples on the table, or the number of apples 
on the table is infinite. If (C2) was not satisfied, then there were no apples on the 
table. 

24 In mathematical terms, a one-to-one correspondence (a.k.a. a Injection') is a relation 
R:S->T that is 1-1 (distinct elements of S are R-related to distinct elements of T) and 
onto (for every element in T, there is some element in S that is R-related to it). 

25 The axioms of 2nd-order Peano Arithmetic (PA2) (in whole numbers, for purposes 
of counting) are: 

(PA1) 1 is a number. 

(PA2) Every number n has an immediate successor, s(n), which is also a number. 

(PA3) If two successors s(m) and s(n) are the same number, then m and n are the 
same number. 

(PA4) 1 is not the successor of any number. 

(PA5) Every property P is possessed by all numbers if 1 has P and if, when n has 

P, s(n) has P. (mathematical induction) 
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Teano axioms') and as it is usually presented (for example, by Peano) 
PA2 contains both addition and multiplication. If the ability to count 
presupposes even a tacit acceptance of the Peano axioms, and acceptance 
of these axioms entails acceptance of addition and multiplication, we 
might conclude that (justified belief in) the arithmetical aspect of number 
is not independent of (justified belief in) the cardinal aspect, in the way 
Casullo's scenario requires. 

This conclusion would be too hastily drawn, however. To begin with, 
note that the train of thought leading to the above conclusion depends 
upon a thesis to the effect that attention to features of a formal theory 
(such as whether and how certain operations are therein defined) can 
provide some indication of the level of cognitive competence associated 
with understanding various components of the theory.26 While the thesis 
has some intuitive appeal (after all, it wouldn't be surprising if our 
theories mirrored our understanding), the thesis would need further 
motivation before it could support accepting the above conclusion. More 
importantly, even if such motivation were given, an approach based on 
this thesis doesn't eventuate in a determinate answer to the independence 
question. It's worth noting the reasons why this is so, both in order to 
see the overly hasty response for what it is, and in order to point us in 
the direction of an approach that does eventuate in a determinate an- 
swer.27 

Suppose, then, that if the definitions for addition and multiplication 
were seen to follow, in some appropriate sense of 'follow,' from the 

Peano's original formulation invoked 9 axioms, but 4 of these dealt with identity; 
these latter, being considered part of the assumed underlying logic of the theory, 
have been dropped from subsequent formulations. See Giuseppe Peano, 'The 
Principles of Arithmetic, Presented by a new Method' (1889) reprinted in Jean van 
Heijenoort, ed., From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931 

(Cambridge: Harvard University Press 1967) 83-97. 
Peano's 1889 axioms are directly based on Dedekind's 1888 definition of a simply 

infinite system (article 71) and theorem of complete (that is, mathematical) induction 
(article 80) in 'The Nature and Meaning of Numbers/ Essays in the Theory of Numbers 
44-115). While Dedekind should be credited as such, I will follow current (inertial) 
usage in discussing the Peano (rather than the Dedekind, or Dedekind-Peano) 
axioms. 

26 Thanks to Harold Hodes for making clear that this thesis underlies the present 
discussion, and for his generous assistance in investigating the question of defin- 
ability of arithmetical operations in PA2 in what follows. 

27 Those who are uninterested in how arithmetical operations may be defined in 
formalizations of PA2 can skip ahead to the paragraph starting 'We might wonder, 
however, if another line of inquiry../ without undue loss of continuity. 
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Peano axioms, then this would be (at least prima facie) evidence for 
taking the arithmetical aspect of number not to be epistemically inde- 
pendent of the cardinal aspect. A natural place to look for such a sense 
would be by way of considering how addition and multiplication are 
defined within formal languages for PA2. Within a formal language, a 
definition of a given operation may be either explicit or implicit. In an 
explicit definition, the symbol representing the operation being defined 
on the left-hand side of the definition does not appear on the right-hand 
side. Now, one might think that the relevant contrast to explicit defini- 
tions would be inductive or recursive definitions, where the symbol 
representing the operation being defined does appear on the right-hand 
side (in the definition's inductive clause or clauses). We need to be 
careful, however, since in certain languages (with the right sort of 
2nd-order or higher-order variables, or with lst-order variables whose 

range includes the right sets) some inductive definitions can (for reasons 
to be discussed shortly) be presented as explicit definitions. Thus the 
relevant contrast is between definitions that can be presented explicitly, 
and definitions (including some inductive definitions of operations) that 
can't be so presented. That said, I'll use the terms 'explicit' and 'implicit' 
to mark out this contrast.28 Now, if addition and multiplication were 

explicitly definable in PA2, this would plausibly provide prima facie 
indication that the arithmetical aspect is not independent of the cardinal 

aspect of number. On the other hand, if addition and multiplication were 

only implicitly definable, this would plausibly provide a contrary prima 
facie indication. 

Unfortunately, the literature contains some formalizations of PA2 in 
which addition and multiplication are explicitly definable, and others in 
which they are not. Consider, for example, Peano and Dedekind's for- 
malizations.29 Both Peano and Dedekind define addition and multipli- 
cation inductively. But in Peano's formalization, his formal language 
doesn't have the right sort of variables - his variables range only over 

28 This usage of 'implicit definition7 applies to interpreted languages, e.g., a language 
about the natural numbers as interpreted in a standard model. In this way it is 

weaker than current standard usage in model theory, which requires that every 
model for the definiens (the sentences doing the implicit defining) uniquely deter- 
mines the interpretation of the definiendum (the constants] being implicitly de- 

fined). See C.C. Chang and H. Jerome Keisler, Model Theory, 3rd ed. (The Netherlands: 
North-Holland 1990), 90. 

29 In these formalizations, the first-order variables range only over natural numbers, 
and talk of first-order and second-order variables should be understood accord- 

ingly. 
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natural numbers and 1-place properties of the natural numbers; hence 
his inductive definitions cannot be transformed into explicit definitions, 
and so are effectively additional axioms for his theory, which introduce 
two new primitive constants.30 In Dedekind's formalization, however, 
his formal language has variables that permit the transformation of his 
inductive definitions into explicit definitions; hence his definitions of 
addition and multiplication do not introduce any new primitive con- 
stants (or axioms defining these constants). 

As indicated, this distinction between the definitions depends on 
differences between the languages underlying the f ormalizations of PA2 
at issue. It is a fairly familiar fact that lst-order PA (PA1), where the 
quantifiers V and 3 range only over natural numbers, fails to pick out 
the intended model of the natural numbers, which fact motivates the 
move to PA2, where the underlying language contains 2nd-order quanti- 
fiers ranging over properties (or functions) of the natural numbers.31 But 
it is less often observed that having made this move, there is a choice as 
regards which properties or functions the 2nd-order quantifiers may range 

30 Peano inductively defines addition by introducing the constant '+' and defining this 
constant as follows: 

Take the base clause to be: n + 1 = s(n) 
Take the induction clause to be: n + s(m) = s(n+m) 
As an example, consider 2 + 2, i.e., s(l) + s(l). Apply the induction clause once 

to get 
s(l) + s(l) = s(s(l) + l) 

Apply the base clause to get 
s(s(l) + l) = s(s(s(l))) = 4. 

Peano's definition of addition does not explicitly call attention to the fact that he is 
introducing an (inductively defined) primitive symbol, and so effectively introduc- 
ing two new axioms (corresponding to the base and induction clauses above), 
apparently due to his expressing the successor function in the original axioms as 
'x+1.' (Two additional axioms are also needed to inductively define multiplication 
in Peano's system.) It is for this reason that later expositions of PA do not express 
the successor function using the '+' symbol. As van Heijenoort (Trom Frege to 
Godel/ 83-4) remarks in his introduction to Peano's article, Trom the outset, Peano 
uses the notation x + 1 for the successor function. He then introduces addition 
(section 1) and multiplication (section 4) as "definitions".... Peano does not explicitly 
claim that these definitions are eliminable, but, just as he does for ordinary defini- 
tions ... he puts them under the heading "Definition," although they do not satisfy 
his own statement on that score' (93), namely, that the right side of a definitional 
equation is 'an aggregate of signs having a known meaning.' 

31 This move allows the lst-order axiom schema for mathematical induction (For P a 
property: (PI & (Pn -> Pn+1)) -» VxPx) to be replaced by the 2nd-order closure of 
the schema (VP ((PI & (Pn -> Pn+1)) -> VxPx)), and it is this replacement which 
rules out the unintended models. 
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over - a choice that bears on whether addition and multiplication can 
be explicitly defined. These quantifiers must at least range over the 
monadic (1-place) properties of natural numbers appearing in the 
mathematical induction axiom (P5). Now, if the underlying language 
allows only quantification over monadic properties, addition and multi- 
plication can only be implicitly defined.32 But if the underlying language 
allows the 2nd-order quantifiers to range over dyadic properties or mo- 
nadic functions of natural numbers, inductive definitions of these opera- 
tions can be converted into explicit definitions.33 Now, in Peano's system, 
the 2nd- order quantifiers range only over monadic properties, while in 
Dedekind's system, the 2nd-order quantifiers may range over monadic 
functions. Hence Peano's inductive definitions of addition and multipli- 
cation are implicit, while Dedekind's are (presentable as) explicit.34 

Now, if there were a single standard for choosing between these 
formalizations (or if different standards agreed), perhaps attention to 
issues of definability would help us determine whether the arithmetical 

aspect was epistemically independent of the cardinal aspect of number: 
if Peano's was preferable, then (prima facie) yes; if Dedekind's, then 

(prima facie) no. It seems, though, that the differences embedded in these 
formalizations reflect two attractive conceptions of theoretical elegance. 
According to the first conception, an elegant theory is as weak as it is able 
to be, and still get the job done (we don't need Goliath to pick up a brick). 
In the case of arithmetic, the job to be done is the formal representation 
of the sequence of natural numbers, along with the operations of addi- 
tion and multiplication on this sequence. On the second conception, an 

32 This follows from Buchi's theorem (Dirk Siefkes, Buchi's Monadic Second-Order 
Successor Arithmetic [Berlin: Springer-Verlag 1970]) that the monadic second-order 

theory of zero and successor is a decidable theory; if addition and multiplication 
could be explicitly defined in this theory, it would include PA1, which then would 
be decidable. But PA1 isn't decidable (by Church's theorem), so (by modus tollens) 
addition and multiplication cannot be explicitly defined in this theory. 

33 If the 2nd-order quantifiers range over dyadic properties, we can explicitly define 
addition as follows: x+y=z <-> 3R2 (R2ls(x) & VuVvVv'(R2uv & R2uvr -> v=v') & 

Vu,v(R2uv <-> R2s(u)s(v) & R2yz)). If the 2nd-order quantifiers range over monadic 

functions, we can explicitly define addition as follows: x+y=z <-> 3f (f(l)=s(x) & 

Vuf(s(u))=s(f(u)) & f(y)=z). We can also provide explicit definitions in a way that 
utilizes the universal, rather than the existential, prefix. 

34 In fact, Dedekind didn't transform his inductive definitions into explicit definitions, 

although the technique was semi-available at the time of his writing 'The Nature 

and Meaning of Numbers.' Frege used something like this technique in defining the 

ancestral of a sequence in his 1879 Begriffsschrift (reprinted in From Frege to Godel, 

1-82), at the end of section 26. 
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elegant theory is one which is able to get the job done with the least 
amount of primitive ideology - where the amount of primitive ideology 
is reflected in the number of primitive symbols and/or axioms. Here we 
might be willing to accept a certain amount of theoretical overkill, in 
order to arrive at a conceptually simpler framework. Now, by the standard 
of the first conception, Peano's formalization is more elegant, for it does 
the job - in particular, expresses a categorical theory of arithmetic - 
without the additional functional machinery contained in Dedekind's 
formalization. But by the standard of the second conception, Dedekind's 
formalization is more elegant, since Peano's formalization contains two 
more primitive constants (and four more axioms) than Dedekind's. 
Absent any means of choosing between these two conceptions of theo- 
retical elegance, this line of inquiry fails to move us any closer to an 
answer to the independence question. 

We might wonder, however, if another line of inquiry, in the vicinity 
of attention to formalizations of PA2, could bring us closer to an answer. 
After all, whichever sort of formalization we favor, it remains to be 
explained why addition and multiplication are, however defined, univer- 
sally taken to be part of PA2. Why is it part of the 'job' to be accomplished 
by any arithmetical theory that it incorporate these operations? Attention 
to this prior question, rather than to the question of how addition and 
multiplication are definable in a particular formalization of PA2, might 
be more likely to result in insight into the nature of the relation between 
the cardinal and arithmetical aspects of number. 

Consider Dedekind's discussion of his reasons for regarding 'the 
whole of arithmetic as a necessary, or at least natural, consequence of the 
simplest arithmetic act, that of counting': 

I regard ... counting itself as nothing else than the successive creation of the infinite 
series of positive integers in which each individual is defined by the one immedi- 
ately preceding; the simplest act is the passing from an already-formed individual 
to the consecutive new one to be formed.... Addition is the combination of any 
arbitrary repetitions of the above-mentioned simplest act into a single act; from it 
in a similar way arises multiplication.35 

It is not hard to see that the successor function formally represents 
Dedekind's 'simplest act.' Each positive integer corresponds to a series 
of 'repetitions' of this act - that is, an act of counting. Addition and 
multiplication in turn correspond to ('arise from') combining arbitrary 
such repetitions into single acts. Since the 'single act' resulting from any 

35 Dedekind, 'Continuity and Irrational Numbers/ 4 
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such combination corresponds to repetitions of acts of counting, 
Dedekind seems to be suggesting that addition and multiplication are in 
some sense reducible to acts of counting (and ultimately to repeated 
applications of the successor function). Hempel motivates the introduc- 
tion of the operations of addition similarly. After laying out the first five 
Peano axioms, he goes on to say 'As the next step, we can set up a 
definition of addition which expresses in a precise form the idea that the 
addition of any natural number to some given number may be consid- 
ered as a repeated addition of 1; the latter operation is readily expressible 
by means of the successor relation/36 Like Dedekind, Hempel seems to 
be implying that addition is 'nothing over and above' repeated applica- 
tions of the successor function. Such motivating considerations provide 
at least some evidence that anyone who accepted the original Peano 
axioms would necessarily, or at least naturally, be led to accept defini- 
tions (whether explicit or implicit, no matter) of addition and multipli- 
cation.37 

Still, it seems that Casullo could resist this verdict, on grounds that 
even if we can (as per Dedekind) see addition as 'the combination of any 
arbitrary repetitions' of some 'simplest act' associated with counting by 
l's, or even if we can (as per Hempel) see addition as expressing 'the idea 
that the addition of any natural number to some given number may be 
considered as a repeated addition of 1/ we are not conceptually obliged 
to do so. Casullo might maintain that we could be able to perform 
whatever simplest act allows us to count, without automatically being 
in possession of the 'idea' that not only counting, but addition, can be built 

up out of this simplest act. Moreover, he might maintain that we could 
understand addition (and even be able to do sums) without under- 

standing it as a matter of multiple iterations of the successor function. 
After all, Hempel himself notes that possession of this idea is associated 
with a 'next step' (beyond whatever steps are codified in the Peano 
axioms) in the formal development of arithmetic. This 'next step' effec- 

tively amounts to combining two (or more) countings. Casullo could 

agree that, as it happens, the epistemically basic propositions that we 
now take to be confirmed do conform to the idea that addition may be 
understood in terms of combinations of repeated applications of the 
successor function. But, he might argue, if things were different - if, for 

36 Hempel, 'On the Nature of Mathematical Truth/ 382 

37 This understanding of addition and multiplication plausibly explains why Peano 
did not take his 'Definitions' of addition and multiplication to be introducing new 

primitive constants (and hence, to be new axioms for his theory). 
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example, we were in the conditions described by his scenario - it would 
not be appropriate to understand addition in this way. And this possi- 
bility shows (he might say) that counting and addition could be epistemi- 
cally independent of one another. 

It seems to me that there is something to the observation that there is 
a difference between the level of cognitive competence associated with 
repeated applications of the successor function (as in counting), and the 
level associated with combinations of repeated applications of the succes- 
sor function. The seed of truth in Casullo's disconfirming scenario is 
precisely that there is such a difference. To say that there is a difference 
in the levels of cognitive competence associated with counting and 
adding is not, however, to say that the results of adding float free of the 
results of counting. It is in maintaining the latter that Casullo's scenario 
goes wrong. 

IV Keeping our Tallying Procedures and 
Rejecting our Arithmetic 

To see where the problem lies, we need to move closer to the ground 
regarding what is actually going on in the act of counting. After all, it is 
clear that we can count - and most of us do - without having any 
knowledge of the 2nd-order Peano axioms. Since we do this, there must 
be some other way, besides via these axioms, in which the terms 'num- 
ber' and 'successor,' appearing in Casteneda's formulation of counting, 
could get their meanings fixed. And there is: namely, tallying proce- 
dures, as the simplest form of counting.38 In tallying, one makes a mark 
for every object in the collection being tallied; when the tally is done, the 
cardinality of the collection is represented simply by the set of tally 
marks resulting from this process. I take the tallying procedure to 
involve the following single step: 

Tallying procedure: While there are objects to be tallied that are not 
yet pointed to, point to such an object and make a tally mark. 

The tallying procedure establishes a one-to-one correspondence be- 
tween objects and marks; thus the resulting set of tally marks is naturally 
considered as a representation of the cardinality of the objects tallied. 

38 For an excellent discussion of how counting may be seen as a transformation of 
tallying, see R. L. Goodstein, 'The Meaning of Counting/ in Essays in the Philosophy 
of Mathematics (Leicester: Leicester University Press 1965). 
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The set of tally marks - what we might call a 'number sign' - is what 
I will call a 'pure' (that is, an 'arithmetic-free') representation of the 
cardinality of the collection, if any representation is. Moreover, it is not 
hard to see how we might explicate counting in terms of tallying. 
Counting procedures, on any formulation, are committed to the exist- 
ence of an ordered sequence of representations of cardinality. But tally- 
ing provides a means of obtaining this sequence: we can build this 
sequence up out of the 'number signs' that result from each step in the 
tallying process. The tallying procedure, in other words, gives rise to a 
sequence of the following sort: 

Tallying sequence: The ordered sequence of marks (taken as pure 
representations of cardinality): 

1,1 LI I LI I I LI I I I L- 
We gesture towards infinity with the ellipses, a gesture which reflects 
the plausible assumption that the tallying procedure could be continued 
indefinitely. Under this assumption, the tallying sequence is clearly 
isomorphic to the intended model of the natural numbers.39 

Given this isomorphism, each element in the tallying sequence will 

correspond to the element occupying the same position in the sequence 
of natural numbers. (That is, the first element in the sequence corre- 

sponds to the number 1, the second to the number 2, and so on.) A 

tallying sequence thus provides us with a non-theoretical means of 

understanding the terms 'number' and 'successor' as they appear in 
Casteneda's formulation of counting: a number is any member of the 

tallying sequence, and the successor of a number is the next member of 
the tallying sequence. The possibility of such a reconstruction establishes 
that counting and tallying are, for purposes of determining cardinality, 
structurally the same procedures. The only difference lies in the repre- 
sentation of the results, and in the distinction between (in counting) 
drawing members from a previously established ordered sequence and 
(in tallying) creating such a sequence on the fly. These differences are 

39 In fact, for purposes of fulfilling the requirements of Casullo's scenario, participants 
in the scenario need not have in hand an infinite sequence of cardinal repre- 
sentations, since the arithmetical propositions at issue (being epistemically basic 

propositions) involve only relatively small numbers. A sufficiently large finite 

sequence, isomorphic to some initial segment of the natural numbers, would do the 
trick. For conceptual and expository purposes, it is convenient to make the gesture 
towards infinity, but the arguments to follow would go through on an under- 

standing of the tallying sequence as large, but finite. 
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merely ones of convenience and conceptualization - we can think of 
counting as a representationally convenient form of tallying, and tallying 
as a representationally primitive form of counting.40 

These representational differences are such that it seems clear that 
anyone who was in possession of standard counting procedures of the 
sort required by Casullo's scenario - who was able to perform 'count- 
ings to 2/ and so on, and who understood what such procedures were 
supposed to do - would accept that these procedures were repre- 
sentational variants of tallying procedures as here described. Of course, 
we don't require of participants in the scenario that they be aware (for 
example) that an infinite tallying sequence is order-isomorphic to the 
sequence of natural numbers. We just require that they be capable of 
seeing that counting and tallying one representational variants, which 
capability (under the tacit assumption that they possess the usual cog- 
nitive capacities of humans) they will clearly possess, since we do. 

Since counting is merely a variation of tallying, and participants in 
Casullo's scenario are cognitively equipped to see this, we are within our 
rights to continue the present discussion at the level of standard tallying 
procedures. We can now return to the question whether Casullo's sce- 
nario is coherent - that is, to the question whether participants in his 
scenario could find the cardinal aspect of number ('number signs') to be 
independent of the arithmetical aspect ('number relations'). Refraining 
the scenario in terms of tallying, the correlate of the participants' per- 
forming a 'counting to two' will now be equivalent to performing a 'tally 
to I I ' on a collection of objects, placing the tally marks on (say) a tablet, 
as follows: 

II 
The participants are then to perform another 'tally to I I ' on another 
collection of objects, again placing the tally marks on (say, a different) 
tablet: 

II 
They are then supposed to place the two sets of objects together and 
perform another tally. On Casullo's scenario, they might come up with 
the following result: 

40 Consider: beings with extremely fine-grained perceptual abilities might not find it 
necessary to move to symbolic representations of tally marks, if they were, in virtue 
of these abilities, capable of instantaneously grasping the cardinality represented 
by a given set of tally marks. 
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Mill 
Is this possible? Under the assumptions of the scenario, could the par- 
ticipants find the result of separately tallying two sets to be different from 
the result of tallying the union of these sets? 

My claim is that this is not possible. The key to establishing this claim 
turns on the fact that tallying does not, as does more sophisticated 
counting, distinguish between 'accumulations' and 'new starts.' An 
example will illustrate. Suppose that participants in the scenario perform 
the first two steps of the process above (the two 'tallyings to I I '), with 
the following difference: they place both sets of tally marks on the same 
row of the same tablet, instead of on two different tablets. For future 
reference, let us call this procedure 'successive tallying.' The first two 

steps would then be: 

| | (At end of first tally) 

| | I I (At end of second tally) 

When they do this they arrive at an interesting result. Because of the 
cumulative nature of tally marks, the resulting combination of these 
marks already represents a cardinality, which, when they compare the 

tallying and natural number sequences, is seen to be the natural number 
4. The relevant question to ask, for purposes of investigating whether 
Casullo's scenario is coherent, is: Under the assumptions of the scenario, 
could the participants find the cardinality resulting from the successive 

tallying of two exclusive collections (call this procedure 1 ) to be something 
other than the cardinality resulting from the tallying of the union of the 
two collections (procedure 2)1 In what follows, I give two arguments for 

thinking that the answer to this question is no, and hence for thinking 
that Casullo's scenario is, after all, incoherent. 

The first argument proceeds by a consideration of the relevant differ- 
ences involved in the two tallying procedures. If the cardinality resulting 
from procedure 1 were to be something other than the cardinality 
resulting from procedure 2, there would presumably have to be some 

possible relevant difference in the two cases, between either the objects 
being tallied, the carrying out of the procedures, or the procedures 
themselves. Since the participants are justified in believing that the 

Stability and Correct Counting conditions hold, they are justified in 

believing that no relevant difference can derive from either the objects 
being tallied, or from their carrying out the procedures - they are 

justified in believing that the objects are stable and that they get it right 
in both cases. Most crucially, since tallying does not distinguish between 
accumulations and new starts, they are justified in believing that no 
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relevant difference can be found in the procedures themselves. All there 
is to the tallying procedure is that each object tallied gets a single tally 
mark. This will be true whether they perform a tally of one collection 
and successively append a second tally onto the first, or they perform a 
tally of the union of the two collections: from the standpoint of tallying, 
the two procedures are indistinguishable. But if the participants are 
justified in believing that the objects are relevantly the same (by the 
Stability condition), that the acts of tallying are relevantly the same (by 
the Correct Counting condition) and that the procedures are relevantly 
the same (as above), then there doesn't appear to be any way for them 
to rationally believe the results of the procedures to be different. If the 
participants rationally believe the result of the first procedure to be N, 
then they will rationally believe the result of the second procedure to be 
N, and they (and we) can say this a priori. Contra Casullo's claim, the 
result of going through the second tallying procedure would not then 
qualify as an 'open empirical question.'41 Under the assumptions of the 
scenario, only one outcome is epistemically possible as regards the result 
of tallying all the objects together, and this will be represented by 
whatever 'number sign' results from tallying any exclusive and exhaus- 
tive subcollections of the collection, under conditions that the partici- 
pants append these results to each other.42 

The second argument proceeds by reductio.43 Suppose Casullo's sce- 
nario occurs. At the end of procedure 1 (the successive tally of two 

41 It should be clear that this argument holds against Casullo's claim (as does the 

argument to follow) even if the participants (misguided about one or other of the 
conditions' holding) don't get it right about how many objects there were - that is, 
even if the results of their counting procedures aren't, in fact, correct. Casullo's claim 
is just the claim that given some counting results, the arithmetical relations holding 
between these results is 'an open empirical question.' Whether the counting results 
are correct is irrelevant to this claim, and to my arguments against it. 

42 This argument can also be used to show that, under the assumption that the 
conditions in fact hold, only one outcome is genuinely possible. Just replace all 
references to justified belief with references to knowledge (or to what knowledge 
entails - namely, truth). The argument then goes: Since the Stability and Correct 
Counting conditions hold, no relevant difference can derive from either the objects 
being tallied, or from the participants carrying out the procedures - the objects are 
stable and the participants get it right in both cases. Most crucially, since tallying 
does not distinguish between accumulations and new starts, no relevant difference 
can be found in the procedures themselves... [as such] there doesn't appear to be 
any way for the results of the procedures to be different. If the result of the first 
procedure is known, then so is the result of the second procedure, and the partici- 
pants (and we) can say this a priori. 

43 Many thanks to Eric Hiddleston for the heart of this argument. 
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disjoint collections, SI and S2) the participants end up with the following 
tally: 

MM 
Let Tl be the set of marks in this tally. At the end of procedure 2 (the tally 
of the union of these two collections, SI u S2) the participants end up 
with the following tally: 

MMI 
Let T2 be the set of marks in this tally. Since the participants are justified 
in believing that the Stability condition holds, they are justified in 
believing that the second tally is of SI u S2, the same sets as in the first 
tally, and since they are justified in believing that the Correct Counting 
condition holds, they are justified in believing that both tallies are 
correct. Now, in order for participants to be in possession of the tallying 
procedure, they must understand that in any correct tally there will be 
a one-to-one correspondence between the tally marks and the objects in 
the set tallied. So, the participants are justified in believing that there is 
a one-to-one correspondence between T2 and SI u S2. Unfortunately for 
Casullo, they are also justified in believing there to be a one-to-one 
correspondence between Tl and SI u S2. In any (justifiably believed 
correct) tally the participants make, they will take each tally mark to bear 
the following relation R to exactly one member of the set tallied: _ was 
marked while I was pointing at _. They will take each member of Tl to 
bear R to exactly one object in either SI or S2, and to no other object. And 

they will take each member of SI to have R born to it by exactly one 
member of Tl, and the same for each member of S2. So, they will (just as 
we do) justifiably believe there to be a one-to-one correspondence be- 
tween Tl and SI u S2. But they also justifiably believe there to be a 
one-to-one correspondence between T2 and SI u S2, so (just as we do) 
they will justifiably believe there to be a one-to-one correspondence 
between Tl and T2.44 But according to Casullo's scenario, they don't 

44 Here I am assuming that participants in the scenario could easily see that the 

composition of two one-to-one correspondences (where the range of the first is the 
domain of the second) will itself be a one-to-one correspondence. This seems right, 
since they can surely see (as we do) that this follows straightforwardly from even a 
non-technical understanding of the notion of a one-to-one correspondence (from 
the 'transitivity of matching/ as it were). In addition, attention to what participants 
would do with the results of counting /tallying procedures indicates their accep- 
tance of compositionality. For example, given their justified beliefs that the Correct 

Counting and Stability conditions hold, participants would surely justifiably believe 
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justifiably believe there to be a one-to-one correspondence between Tl 
and T2. Consequently, the scenario is epistemically impossible.45 

The cumulative nature of tally marks means that counting, when 
performed as a tallying procedure, defines its own arithmetical relations. 
We can establish, for example, arithmetical relations involving addition 
(of positive numbers) for a given 'number sign' by drawing one or more 
conceptual lines in between the various tally marks making up the set 
and seeing what 'number signs' we can divide the original set into. An 
example will make this clear. Consider the following set of tally marks: 

I I I I 
By drawing purely conceptual lines between these tally marks we can 
determine arithmetical relations holding between the original tally 
marks and other sets of tally marks: 

I I I I 
I I II 
II II 
I III 

From the first of these groupings, we can read off from the sequence of 
tally marks that | and land | and | tally marks make I I I I tally marks, 
from the second, that | and | and | | tally marks make I I I I tally marks; 
and so on. It is easy to see that such relations are informal versions of the 
standard arithmetical relations. Replacing the word 'and' with '+,' the 
word 'make' with '=,' and the various sets of tally marks with their 
natural number correlates, these purely conceptual divisions correspond 
to various elementary propositions of arithmetic (namely, 1+1+1+1=4, 
1+1+2=4, 2+2=4, 1+3=4). Moreover, since each tally mark is undistin- 

that the copying of a given tally onto another tablet would preserve the cardinality 
associated with the collection originally tallied. (After all, Casullo's scenario is not 

designed to call the results of countings/tallyings into question.) But to justifiably 
believe this is to justifiably believe that the compositionality of two one-to-one-cor- 

respondences (where the range of the first is the domain of the second) is itself a 
one-to-one correspondence. 

45 As with the first argument, this argument can be adapted to show that, under the 
assumption that the conditions in fact hold, only one outcome is genuinely possible. 
Again, just replace all references to justified belief, and to what the participants 'take' 
to be the case, with references to knowledge (or truth). 
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guished from the point of view of being a 'unit/ we can read off various 
other arithmetical properties (for example, commutativity) from such 
conceptual groupings of a single set of tally marks. The important point 
is that we are able to do all this on the basis of purely conceptual 
manipulations on a single tally, so that arithmetical relations involving 
the number represented by the tally are neither epistemically nor genu- 
inely 'up for grabs/ as it were, but instead are crucially dependent upon 
(one is tempted to say, are supervenient on) the cardinal aspect of 
number. 

More would need to be said in order to establish that multiplication 
could be treated similarly, but I see no barriers to such a development.46 
And it should be clear that I am not suggesting that arithmetic is 'really 
about' conceptual divisions of concrete (or, for that matter, non-concrete) 
tally marks; there are obvious problems with such a suggestion, espe- 
cially as pertaining to arithmetical relations involving large numbers, 
and to our conception of the numbers as infinite. But even if we cannot 
verify the arithmetical relations involving numbers represented in any 
but relatively small tallies, there is no reason to think that matters would 
be different for tallies representing large numbers, so the above consid- 
erations will likely apply to all of the propositions in standard arithmeti- 
cal theory. In any case, there can be no question that for the epistemically 
basic propositions with which Casullo is concerned, we have arrived at 

46 Roughly: to multiply m by n, we (in tally notation) tally m, n times. That is, (keeping 
track, perhaps with another tally) we string together n tallies of the number m. For 

example, to multiply 3 by 2, we write one tally of I I I : 

ill 

and then append a second tally of III, to get 

Mini 

which member of the tallying sequence corresponds to the arabic numeral '6/ 

Multiplication, it should be clear, just amounts to successive additions of a number 
to itself, so seeing this relation, too, as (we might say) supervening on the cardinal 

aspect of number, should not be surprising. And as in the case of addition, we can 
read off various properties of multiplication from a single tally. For example, we 
can draw purely conceptual marks in the previous tally as follows: 

II n M 
Ml III 

to see (after appropriate translations) that 2-3 = 6; that 2-3 = 3-2 (multiplication is 

commutative), and so on. 
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a final verdict: for these propositions, the arithmetic aspect of number is 
not epistemically (nor is it genuinely) independent of the cardinal aspect. 
Casullo's disconfirming scenario is, after all, incoherent (and so, by the 
way, is Mill's). We could not rationally hold both (Al) and (A2) concur- 
rently; we could not keep the results of our standard counting proce- 
dures, while rejecting our standard arithmetical propositions: both are 
drawn with the same marks.47 

V Revisiting the Irrefutability Argument 

What, then, can we say about the status of the Irrefutability Argument? 
Casullo's extension of Mill's original scenario, which was intended to 
undermine this argument by establishing that the propositions of arith- 
metic could be empirically disconf irmed, did not go through. If we have 
in hand a standard counting (tallying) procedure, and are justified in 
believing that the Stability and Correct counting conditions hold, we can 
rest assured that the propositions of arithmetic won't be disconfirmed 
(or refuted) by experience. 

Might there be some other disconfirming scenario, which an inductive 
empiricist could use to undermine the Irrefutability argument? Finding 
Casullo's scenario incoherent depended upon (what the scenario as- 
sumed) the participants' justifiably believing the Stability and Correct 
Counting conditions to hold. This finding is compatible with the propo- 
sitions of arithmetic being disconfirmed by scenarios experientially more 
drastic than the one Casullo envisioned, in which one or the other belief 
is unjustified. But such scenarios can provide no support for an inductive 
empiricist account of mathematics. For, as Casullo himself notes, in order 
to appropriately inductively generalize to the propositions of mathemat- 
ics, we must justifiably believe both conditions to be in place. 

47 Both Casullo and Mill may have been drawn into thinking that the cardinality and 
arithmetical aspects of number were independent of each other, as a consequence 
of framing their discussions using the standard (arabic numeral) representations of 
the natural numbers. Using these numerals as representations of cardinality, it 

might seem that if we perform one 'counting to two' and then a second 'counting 
to two/ then we are still in the dark as regards the results of a counting of the objects 
taken altogether. Certainly placing the results of the first two countings next to each 
other (in this case, placing the second "21 next to the first '2' to achieve "22!) is in no 

way informative as to the result of the counting of the objects taken as a single 
collection. But by now it will be seen that this is an artificial feature of any 
representation of cardinality which, in counting, distinguishes 'new starts7 from 
'accumulations/ 
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We might wonder, however, whether scenarios in which one or the 
other justified belief was dropped could be forwarded in service of a 
holist empiricist account. As mentioned earlier, I am here neglecting 
scenarios which (only) drop the assumption that the Correct Counting 
condition is justifiably believed. But it is worth noting that any scenario 
which (only) drops justified belief in the Stability condition will succumb 
to the same arguments as those given above against Casullo's scenario. 
To see this, note that if the Correct Counting condition is justifiably 
believed to hold, then any supposed instability of objects will presum- 
ably not extend to the ideas of participants in the scenario. For if it did, 
then the participants would not be justified in taking themselves to be 
correctly counting. In order for participants in the scenario to be justified 
in believing that the Correct Counting condition holds, they must be able 
to verify that, in counting, they are not, for example, counting the same 
object twice. Plausibly, this means that in order for one participant to be 
justified in correctly counting, some other participant will have to count 
the number of times the first participant counts each object in the 
collection to be counted. If the second participant finds (for example) that 
the answer is 'no count' or 'two counts/ then the assumption of the 
scenario (that the participants were justified in believing the Correct 
Counting condition to hold) would fail. So, in order to maintain this 
assumption, the actions involving countings must themselves be exempt 
from (the justified belief in) the failure of the Stability condition. But if 
so, then these actions themselves will provide a collection of objects that 
are justifiably believed to remain stable throughout counting. The sce- 
nario under consideration thus reduces to a variation on Casullo's 
scenario, and the same arguments legislating against Casullo's scenario 
legislate against it, as well. 

Casullo's disconfirming scenario, and the variation just considered, 
fail to undermine the Irrefutability argument. But Casullo's challenge to 
this argument served a useful purpose, for in exploring his extension of 
Mill's original scenario, two gaps were revealed. First, Casullo's empha- 
sizing that participants in the scenario are justified in believing the 
Correct Counting and Stability conditions to hold, revealed a gap in the 
usual arguments against Mill-type disconfirming scenarios, and hence 
in the support for (PI), the claim that mathematical propositions cannot 
be experientially disconfirmed. Second, exploration of the assumptions 
underlying Casullo's scenario revealed that there was plausibly a gap 
between the levels of cognitive competence associated with counting 
and addition. Here I hope to have closed the first gap (in the Irrefutability 
argument) for the case of arithmetical propositions, and shown the 
second gap to be incapable of grounding Casullo's claim that elementary 
arithmetical propositions could float free of the results of our standard 
counting procedures, by showing that (to paraphrase Dedekind) arith- 
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metic is indeed a necessary, or at least a natural, consequence of the 
simplest arithmetical act, that of tallying.48 

Received: September, 1998 
Revised: November, 1999 

48 I would like to thank Carl Ginet, Eric Hiddleston, Mark Richard, Jeff Roland, Jason 
Stanley, Zoltan Szabo, Stephen Yablo, two anonymous referees for the Canadian 
Journal of Philosophy, and especially Harold Hodes, for invaluable assistance in 

improving this paper and my own understanding. 
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