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Assuming there is exactly one disease gene in a chromosomal region, a generalized 

estimating equations (GEE) approach can be used to estimate the location of the gene (Liang 

et al., 2001, Human Heredity 51: 64-78) using marker identical-by-descent (IBD) sharing 

data at multiple markers in a sample of affected sib pairs (ASPs). For diseases with complex 

genetic etiology, more than one susceptibility gene may exist in one chromosomal region. In 

such situations, linkage methods designed to detect a single locus may not successfully 

localize either of these two genes. We derived an expression for expected allele sharing in 

affected sib pairs at each point across a chromosomal segment containing two susceptibility 

genes, and proposed a GEE approach for localizing both disease genes simultaneously. We 

developed an algorithm that uses marker IBD sharing for a sample of ASPs to estimate the 

locations of the two genes and the expected ASP IBD sharing at these two loci. We also 

 ii



proposed methods to evaluate the evidence for two linked disease loci, in this GEE 

estimation framework, based on approximate quasi-likelihood ratio and generalized Wald 

and score test statistics. We evaluated the proposed estimation and testing methods by 

simulation, and found that the proposed estimation method can improve disease gene 

localization and aid in resolving large peaks when two disease genes are present in one 

chromosomal region. The performance of the estimation method for localizing two linked 

disease genes, and the power to detect the presence of two linked genes, improve with 

increased excess allele sharing at the disease gene loci, increased distance between the 

disease genes, and increased number of affected sib pairs. We applied the described methods 

to data from a genome scan for type 1 diabetes (Mein et al., 1998, Nature Genetics 19: 297-

300) and obtained estimates of two putative disease gene locations on chromosome 6, 

approximately 20 cM apart.  

 iii



 

Acknowledgements 

 
I would like to express my sincere gratitude to my supervisor, Dr. Shelley Bull, for 

her constant support and guidance, and for all the opportunities she presented to me during 

my PhD studies. I would like to thank my committee members, Dr. Lei Sun and Dr. James 

Stafford, for their assistance and valuable comments throughout the course of this research. I 

would also like to acknowledge my examiners, Dr. Andrew Paterson and Dr. Kung-Yee 

Liang, as well as Dr. Paul Corey, and thank them for their thought-provoking questions and 

helpful remarks.  

I am thankful to my colleagues and friends at the University of Toronto, for many 

helpful discussions and for making my years in the PhD program as much fun as educational. 

I would also like to thank my family, friends, and Steve for their encouragement, support, 

and absolute confidence in me. 

I gratefully acknowledge the Juvenile Diabetes Research Foundation/Wellcome Trust 

Diabetes and Inflammation Laboratory for allowing me to use their diabetes genome scan 

data (data version 2.0).  

This research was partially supported by a Natural Sciences and Engineering 

Research Council of Canada graduate award, an Ontario Graduate Scholarship in Science 

and Technology, and an Ontario Student Opportunity Trust Fund award from the Samuel 

Lunenfeld Research Institute. 

 iv



 

Table of Contents 

 

Page 

Chapter 1. Introduction.........................................................................................................1 

1.1  Genetic Terminology and Basic Genetic Concepts ........................................................2 

1.2  Linkage Analysis ............................................................................................................8 

1.2.1  Traditional model-free or allele-sharing-based linkage analysis ...........................9 

1.2.2  Estimation of gene location and effect using a GEE approach............................ 12 

1.3  Mapping Genes Contributing to Complex Diseases..................................................... 14 

1.4  Motivation for Thesis.................................................................................................... 15 

1.5  Thesis Summary............................................................................................................ 16 

 

Chapter 2. Literature Review: Statistics and Statistical Genetics Background.................. 17 

2.1  Statistical Methods for the Study of Multi-locus Disease Systems .............................. 17 

2.2  Generalized Estimating Equations Methods................................................................. 21 

2.3  Hypothesis Testing in the GEE Framework ................................................................. 25 

2.3.1  Background: Wald, score and likelihood ratio tests in the maximum likelihood 

estimation framework .................................................................................................... 25 

2.3.2  Tests in the GEE/quasi-likelihood framework..................................................... 27 

 v



2.4  Estimation of a Single Disease Gene Location and Expected IBD Sharing Using a     

GEE Approach .......................................................................................................................31 

 

Chapter 3. The One-Locus Model: Modifications and Extensions of the Original GEE 

Method ...................................................................................................................................34  

3.1  Alternative Formulations of Variances of Marker IBD Sharing ....................................35 

3.1.1  A simple variance approximation ..........................................................................35 

3.1.2  Alternative specifications of Var(S*(tm)|Φ): Corrected variance function and 

empirical variance estimation ..........................................................................................37 

3.1.3  Simulations ............................................................................................................39 

3.2  Modeling Correlation of IBD Sharing at Linked Markers..............................................43 

3.2.1  Introduction............................................................................................................43 

3.2.2  Alternative correlation structures...........................................................................44 

3.2.3  Simulations ............................................................................................................47 

3.3 Estimation of a Disease Gene Location and IBD Sharing Probabilities for ASPs ..........52 

3.3.1  Introduction............................................................................................................52 

3.3.2  Probabilities of sharing 0, 1, and 2 alleles IBD by ASPs at linked loci.................52 

3.3.3  Distribution, expectation, and variance of the IBD sharing statistics....................56 

3.3.4  Estimation of the disease gene location and IBD sharing probabilities at the  

disease gene .....................................................................................................................56 

3.3.5  Implementation and simulations ............................................................................59 

3.4 Discussion ........................................................................................................................65 

 

 vi



Chapter 4: A Two-locus Model for Estimation of Locations of Two Linked Disease     

Genes......................................................................................................................................68 

4.1  A Model for Mean IBD Allele Sharing at a Locus Linked to Two Disease Genes........69 

4.1.1  Expectation of IBD sharing at a locus t linked to two disease genes in terms of 

expected allele sharing at the two disease gene loci ........................................................69 

4.1.2 Expectation of IBD sharing at a locus linked to two disease genes in terms of an 

alternative set of parameters ............................................................................................76 

4.1.3 Variance of IBD sharing at a locus linked to two disease genes ............................78 

4.2  Estimation of the Locations of Two Trait Loci ..............................................................79 

4.2.1  Parameter estimation..............................................................................................79 

4.2.2  Specification of E[Si*|Φ] ........................................................................................80 

4.2.3  Specification of Cov[Si*|Φ]....................................................................................81 

4.2.4  Estimation of the covariance of parameter estimates and construction of  

confidence intervals .........................................................................................................83 

4.3 Implementation and Performance of the Algorithm (Numerical Issues/Convergence 

Problems) ..............................................................................................................................84 

 

Chapter 5: Assessment of the Estimation Method by Simulation........................................87 

5.1  Illustration of Localization of Two Linked Disease Genes through Simulated     

Examples................................................................................................................................88 

5.1.1  Simulated example 1: Data generated with GASP ................................................88 

5.1.2  Simulated example 2: Data generated with Allegro ..............................................89 

5.1.3  Summary of simulated examples ...........................................................................90 

 vii



5.2  Monte Carlo Simulation Study Methods ........................................................................93 

5.2.1 Simulation study design..........................................................................................93 

5.2.2  Relationship of joint IBD allele sharing at two linked disease genes to the 

underlying genetic model.................................................................................................94 

5.2.3 Generation of fully-informative IBD sharing data..................................................97 

5.3  Monte Carlo Simulation Study Results...........................................................................99 

5.3.1 Simulation study I: Different two-locus genetic models ........................................99 

5.3.2 Simulation study II: Effect of sample size and distance between loci.................. 105 

5.3.3 Simulation study III: Effect of density and number of markers ........................... 106 

5.3.4 Simulation study IV: Effect of marker informativeness ....................................... 108 

5.3.5 Simulation study V: Performance of the GEE method with an alternative 

parameterization............................................................................................................. 110 

5.4  Discussion ..................................................................................................................... 112 

 

Chapter 6: Tests for the Presence of One Disease Genes in a Region............................... 118 

6.1  Test Statistics for One versus Zero Disease Genes in a Region ................................... 119 

6.1.1  The “L-statistic” introduced by Liang et al. (2001a)........................................... 119 

6.1.2  Wald test .............................................................................................................. 121 

6.1.3  Approximate quasi-likelihood ratio tests ............................................................. 121 

6.1.4  Modified quasi-score test..................................................................................... 123 

6.2  Assessment of Tests by Simulation .............................................................................. 126 

6.2.1  Simulation study design....................................................................................... 126 

6.2.2  Simulation study results....................................................................................... 128 

 viii



 

Chapter 7: Tests for the Presence of Two Linked Disease Genes in One Region ............. 132 

7.1  Issues in Formulating Tests for the Number of Disease Genes in a Region................. 133 

7.1.1 Multiple roots of quasi-score estimating equations .............................................. 133 

7.1.2  Undefined nuisance parameter under the null hypothesis ................................... 135 

7.1.3  Approximation of critical values or p-values by simulation................................ 136 

7.2  Test Statistics for Two versus One Disease Genes in a Region ................................... 137 

7.2.1  Approximate quasi-likelihood ratio tests ............................................................. 138 

7.2.2  Wald test .............................................................................................................. 139 

7.2.3  Modified quasi-score tests ................................................................................... 142 

7.3  Assessment of Tests by Simulation .............................................................................. 144 

7.3.1  Comparison of properties of alternative test statistics ......................................... 145 

7.3.2  Performance of the statistic LRTLi....................................................................... 149 

7.4  Discussion ..................................................................................................................... 153 

 

Chapter 8: Application to Type 1 Diabetes Genome Scan Data........................................ 156 

8.1  Introduction................................................................................................................... 156 

8.2  Analysis of Selected Chromosomes.............................................................................. 157 

8.2.1  Chromosome 6 analysis ....................................................................................... 157 

8.2.2  Chromosome 16 analysis ..................................................................................... 159 

8.3  Discussion of Results.................................................................................................... 166 

 

Chapter 9: Conclusions ...................................................................................................... 169 

 ix



 

References ........................................................................................................................... 174 

 

Appendix ............................................................................................................................. 183 

Appendix A: Details of derivation of E(S(t)|Φ) under the two-locus model ....................... 183 

Appendix B: Variances of IBD sharing ............................................................................... 187 

Appendix C: Tests for two linked disease genes in a region ............................................... 189 

Appendix D: Extension of the model for E[S(t)|Φ] to three or more linked loci ................ 192 

 x



 

List of Tables 

 

Page 

3.1: Comparison of different formulations of Var(S(t)) in the one-locus GEE (Model A) ...41 

3.2: Comparison of different formulations of Var(S(t)) in the one-locus GEE (Model B) ...42  

3.3: Comparison of two different working correlations in the one-locus GEE with a       

simple variance approximation (Model A) ......................................................................48 

3.4: Comparison of two different working correlations in the one-locus GEE with a simple 

variance approximation (Model B)..................................................................................49 

3.5: Comparison of two different working correlations in the one-locus GEE with empirical 

variance approximation (Model A)..................................................................................50 

3.6: Comparison of two different working correlations in the one-locus GEE with empirical 

variance approximation (Model B)..................................................................................51 

3.7: Conditional IBD distribution at t given IBD status at τ: Pr(IBDt=i| IBDτ=j) .................53 

3.8: Properties of estimates of C, p1, and p2 from GEE estimation of (C,τ) and GEE 

estimation of (p1,p2,τ) (Model A) ....................................................................................61 

3.9: Properties of estimates of C, p1, and p2 from GEE estimation of (C,τ) and GEE 

estimation of (p1,p2,τ) (Model B).....................................................................................62 

3.10: Properties of estimates of τ from GEE estimation of (C,τ) and GEE estimation of 

(p1,p2,τ) (Model A) ..........................................................................................................63 

 xi



3.11: Properties of estimates of τ from GEE estimation of (C,τ) and GEE estimation of 

(p1,p2,τ) (Model B)...........................................................................................................64 

4.1: C1
* and C2

* for two genetic models ................................................................................77 

5.1: Models used for data generation for simulations presented in Tables 5.2-5.5, 5.7,         

and 5.8..............................................................................................................................99 

5.2: Parameter estimation with different genetic models..................................................... 101 

5.3: Results of fitting the one-locus model to data generated under a model with two      

linked disease genes....................................................................................................... 104 

5.4: Effect of sample size and distance between disease genes on estimation of τ1 and τ2 ..105 

5.5: Estimation of τ1 and τ2 with different marker maps (marker densities, number of 

markers) ......................................................................................................................... 107 

5.6: Evaluation of our estimation method applied to data from non-fully-informative    

markers........................................................................................................................... 109 

5.7: Estimation of (C1
*,C2

*,τ1,τ2) for different genetic models............................................ 111 

5.8: Effect of initial parameter values when fitting the two-locus model to data generated     

under a one-locus model ................................................................................................ 116 

6.1: Type I error of nominal 5% tests for one-versus-zero disease genes in a region ......... 128 

6.2: One-locus models used for power study....................................................................... 130 

6.3: Power of nominal 5% tests for one-versus-zero disease genes in a region .................. 130 

6.4: Approximate critical values of 5% tests for one-versus-zero disease genes in a        

region ............................................................................................................................. 131 

6.5: Approximate power of 5% tests for one-versus-zero disease genes in a region........... 131 

 xii



7.1: Type I error for tests of two-versus-one disease genes in a region for α = 5%     

(nominal)........................................................................................................................ 147 

7.2: Estimated 5% critical values for tests of two-versus-one disease genes in a region .... 147 

7.3: Two-locus models used for power study ...................................................................... 148 

7.4: Approximate power of α = 5% tests for two-versus-one disease genes in a region..... 148 

7.5: Type I error for the LRTLi test of two-versus-one disease genes in a region ............... 149 

7.6: Type I error: Sensitivity to initial values ...................................................................... 150 

7.7: Two-locus models used to study power of LRTLi ........................................................ 151 

7.8: Power of LRTLi ............................................................................................................. 152 

 

 xiii



 

List of Figures 

 

Page 

1.1: An example of transmission of alleles from parents to offspring.................................... 3  

1.2: An example of a penetrance matrix for a two-locus epistatic model............................... 5 

1.3: Recombination ................................................................................................................. 6 

1.4: Example of a NPL plot ...................................................................................................11 

1.5: Example of an expected IBD sharing curve fit using the GEE method .........................12 

3.1: IBD sharing probability curves across a chromosome containing a disease gene .........55 

4.1: Plots of E[S(t)|Φ] for two different genetic models with two linked disease genes.......75 

5.1: Plots for simulated example 1. (a) NPL plot; (b) observed average marker IBD allele-

sharing in the sample of ASPs with one-locus model fit and two-locus model fit ..........91  

5.2: Plots for simulated example 2. (a) NPL plot; (b) observed average IBD allele-sharing    

in the sample of ASPs with one-locus model fit and two-locus model fit.......................92 

5.3: Histograms of parameter estimates under model A......................................................102 

5.4: Histograms of parameter estimates under model B......................................................102 

5.5: Histograms of parameter estimates under model D......................................................103 

7.1: Diagram of null hypothesis for the Wald test for evaluating evidence for two linked 

disease genes..................................................................................................................141 

7.2: Power of LRTLi.............................................................................................................153  

 xiv



8.1: NPL plot for a 100cM region of chromosome 6 based on type 1 diabetes genome scan 

data.................................................................................................................................162 

8.2: Average IBD sharing at 18 chromosome 6 markers in a sample of ASPs with       

diabetes ..........................................................................................................................162 

8.3: NPL plot for chromosome 16 based on type 1 diabetes genome scan data..................163 

8.4: Average IBD sharing at 20 chromosome 16 markers in a sample of ASPs with          

diabetes ..........................................................................................................................163 

8.5: Power curve for detecting two putative disease genes on chromosome 16..................164 

8.6: Comparison of our chromosome 6 results to those from previous studies...................165  

 

 

 xv



 

List of Appendices 

 

 

Page 

Appendix A: Details of derivation of E(S(t)|Φ) under the two-locus model ....................... 183 

Appendix B: Variances of IBD sharing ............................................................................... 187 

Appendix C: Tests for two linked disease genes in a region ............................................... 189 

Appendix D: Extension of the model for E[S(t)|Φ] to three or more linked loci ................ 192 

 

 xvi



 

 

Chapter 1 

Introduction 

 

 

The aim of genetic linkage studies is the identification of genes which influence 

susceptibility to specific diseases. Various human traits and rare diseases, controlled by 

single genes and having simple inheritance patterns have been successfully studied for some 

time.  Recently, however, research in human genetics has focused on investigating the more 

complex, but also more prevalent, oligogenic disorders and multifactorial traits, which may 

be controlled by both genetic and environmental factors, as well as their interactions. Current 

techniques in molecular genetics and DNA technology allow scientists to collect large 

amounts of genetic data, which makes genome-wide searches for multiple disease 

susceptibility genes more feasible.  The data being gathered should be analyzed in the most 

efficient, effective, and accurate way possible. Application of appropriate statistical methods 

will further the development of knowledge in genetic research by allowing more efficient 

identification of genes responsible for various disorders with complex genetic bases. 

 

1 
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1.1   Genetic Terminology and Basic Genetic Concepts 

 

Before explaining some of the statistical methods used in human genetic research, we 

begin by providing definitions required for understanding genetic concepts in this thesis, as 

well as a brief description of the human genome, mechanism of genetic transmission from 

parents to offspring, and linkage analysis. Further details regarding these concepts can be 

found in introductory statistical genetic texts, such as Sham (1998), or review papers such as 

Olson et al. (1999). 

The human genome consists of 23 pairs of chromosomes (22 pairs of autosomes and 

one pair of sex chromosome). Each chromosome is composed of two long strands of DNA 

(deoxyribonucleic acid) molecules normally bound to each other lengthwise and twisted in a 

double helix structure. A specific location along a given chromosome, or a specific position 

in the genome, is called a locus. The term gene is sometimes defined as a segment of DNA 

within a chromosome that specifies the amino acid sequence, and therefore the structure and 

function, of a single subunit of a protein. However, gene is also defined more broadly as any 

segment of DNA; thus the term gene is often used interchangeably with the term locus. The 

presence of different DNA sequences at the same locus in a population is known as genetic 

polymorphism. The alternative DNA sequences at a locus, or different “versions” of the same 

gene, are known as alleles. 

Two chromosomes that belong to one of the pairs of chromosomes are said to be 

homologous. Thus, each of the 22 pairs of autosomes is made up of two homologous 

chromosomes. Consequently, humans have two copies of every gene found on the autosomal 

chromosomes, that is, two alleles of each autosomal gene. The two alleles that an individual 
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Figure 1.1: An example of transmission of alleles from parents to offspring. For

simplicity only two chromosomes, with a total of five genetic loci, are shown.

Father Mother

Sib 1 Sib 2

ossesses at a locus are referred to as their genotype at that locus. When the two alleles of an 

ndividual at some locus are identical, the genotype (or individual) is said to be homozygous 

or that gene, while if the two alleles for the same gene are different, that genotype is called 

eterozygous. For example, in Figure 1.1, the father is heterozygous at gene B, while the 

other is homozygous at this gene. A haplotype is the pattern of alleles for a single 

hromosome involving more than one locus. For example, in Figure 1.1, the father has 

aplotypes A1B1C1 and A2B2C2 for genes A, B, and C on chromosome 1. 

There are various ways that we can describe the effect of a gene on an observable 

rait, or phenotype. Let A1 and A2 be two different alleles at the same locus that influences a 

articular phenotype. If individuals with genotype A1A1 are phenotypically identical to 

ndividuals with genotype A1A2, but different from individuals with genotype A2A2, then 
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allele A1 is dominant to allele A2, and A2 is recessive to allele A1. Alleles A1 and A2 are said 

to be codominant if the phenotype of individuals with genotype A1A2 is different from the 

phenotypes of both A1A1 and A2A2 individuals. The methods developed in this thesis are 

applicable to binary traits, such as disease status. The effect of a gene on a binary trait can be 

described by a penetrance vector. The penetrance of a given genotype is defined as the 

probability of a particular phenotype given the genotype value. In this thesis, the particular 

phenotype of interest will be disease status, and thus penetrance will mean probability of 

being affected, given the genotype at a disease susceptibility gene. For example, if a disease 

is caused by a mutation at a single gene, such that having two copies of the mutant allele (D) 

leads to disease, then the penetrances for the three genotypes d/d, d/D, D/D would be 0, 0, 

and 1, respectively. These three penetrances can be written as a penetrance vector (0,0,1). 

More generally, penetrance vectors will contain values between 0 and 1. For example, the 

penetrance vector (0.01,0.10,0.20) would indicate that even if a person does not have any 

copies of allele “D”, they may still get the disease with probability 0.01, for example because 

of environmental exposures or effects of other genes. If a person has one copy of allele “D” 

their probability of developing the disease increases to 0.1, while two copies of this allele 

increase this probability to 0.2. When two genes contribute to disease susceptibility, the 

disease-generating model can be described by a penetrance matrix; an example is shown in 

Figure 1.2. In this example, loci A and B interact to affect the probability of developing the 

disease. In other words, the phenotypic effect of the genotype at one of the genes depends on 

the genotype at the other gene. Generally, these types of interactions between two genes 

affecting one phenotype can be referred to as epistasis, and these genetic models are known 

as epistatic models. However, there is no clear consensus in the literature regarding the exact 
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Genotype at disease gene A

A1A1 A1A2 A2A2

B1B1 0.001 0.001 0.001

B1B2 0.001 0.001 0.001

Genotype
at disease
gene B

B2B2 0.001 0.001 0.100

Pr(Disease|two-locus genotype = A2A2B2B2)
 

 
Figure 1.2: An example of a penetrance matrix for a two-locus epistatic model. 
 

definition of the term “epistasis”. See Cordell (2002) for a good discussion of this topic. 

Genetic models in which disease genes act independently to influence the disease, for 

example if the disease is caused by different genes in different populations, are referred to as 

heterogeneity models. 

Analysis of genetic family data relies on an understanding of the mechanism of 

heredity. A brief introduction to this topic follows. An offspring receives one set of 

chromosomes from each parent, consisting of 22 autosomes and one sex chromosome. 

Mendel’s first law, or the law of segregation, states that during reproduction, an offspring 

receives with equal probability one of the two alleles from the genotype of each parent. 

Alleles at two loci that are found on different chromosomes are transmitted independently of 

one another. This law of independent assortment (Mendel’s second law) does not apply to 

some loci found on the same chromosome, because alleles on the same chromosome are 

more likely to be transmitted together. Typically, however, grand-parental chromosomes 

found in the parent are not transmitted to the offspring intact. Rather, during the production 

of gametes, segments of grand-parental homologous chromosomes are reshuffled during a 

process known as crossing-over resulting in recombination. Gametes are produced through a 
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Figure 1.3: Recombination. Note that during meiosis (cell division that results in 

gamete production) each chromosome is duplicated producing two sister 

chromatids. Cross-overs between non-sister chromatid strands lead to recombinant 

chromosomes being transmitted to the offspring. (Griffiths et al. 1993, pg 123) 

cell division process known as meiosis. At the beginning of meiosis each chromosome is 

duplicated creating a pair of sister chromatids. Cross-overs may then occur between two 

chromatids from the same pair of chromosomes as illustrated in Figure 1.3. The resulting 

exchange of genetic material between homologous chromosomes that produces a 

chromosome with alternating segments of paternally and maternally derived DNA is known 

as recombination.  

Consider two loci: A and B. Assume that an individual inherits the haplotype AmBm 

from the mother, and AfBf from the father. Thus, the individual has genotype AfAmBfBm. The 

haplotype of a gamete produced by this individual will in general contain a mixture of alleles 

from that person’s maternal and paternal haplotypes, for example AmBf. When the haplotype 

of the gamete is the same as one of the parental haplotypes (i.e. AmBm or AfBf), it is said to 
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be a parental-type, or non-recombinant with respect to these two loci. On the other hand, if it 

contains one maternal allele and one paternal allele (i.e. AmBf or AfBm) then it is said to be 

non-parental or recombinant. The probability of a recombinant gamete is called the 

recombination fraction, commonly denoted by θ. Because of the independent assortment of 

chromosomes during gamete formation, θ is ½ for two loci found on different chromosomes. 

When two loci are on the same chromosome, separation of two maternal or two paternal 

alleles happens only if a crossover (or more precisely an odd number of crossovers) occurs 

between the two loci. The closer the two loci are to one another, the lower the probability of 

a crossover, and hence the lower the probability of a recombinant gamete, leading to a lower 

recombination fraction between the two loci. 

The expected number of crossovers occurring between two loci on a single chromatid 

during meiosis is the genetic map distance between the two loci, measured in units of 

Morgans. The centiMorgan (cM), 1/100th of a Morgan, is the more commonly used map 

distance unit. A map function is a mathematical relationship that converts map distance (m 

measured in Morgans) to a recombination fraction (θ). The Haldane function is based on the 

assumption that crossovers occur at random independently of one another. The resulting 

function is θ = (1-exp(-2m))/2. The Haldane map function does not appear to be accurate at 

small distances, because of a phenomenon known as interference, whereby the probability of 

two crossovers occurring in close proximity is lower than would be predicted by the Haldane 

map function. However, at larger distances interference becomes negligible and the Haldane 

map function is more accurate (Sham 1998, pg 55). 

The process of recombination is of central importance to the statistical method of 

mapping genes known as linkage analysis. When the recombination fraction between two 
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loci is lower than ½, the two loci are said to be linked. Linkage leads to co-segregation of 

alleles at two loci on the same chromosome. This phenomenon of linkage makes it possible 

to infer relative positions of two or more loci, by examining the patterns of allele co-

transmission from parent to offspring at the loci. In the context of gene mapping, the goal of 

linkage analysis is to infer the position of a gene that contributes to a specific trait, by 

studying the co-segregation of the trait with alleles at polymorphic loci with known 

chromosomal locations, known as genetic markers.  

 

1.2   Linkage Analysis 

 

In the absence of good candidate genes, multipoint linkage analysis is the most 

commonly used technique as a first step in finding disease susceptibility genes. Usually a 

genome scan approach is taken, and all chromosomes are searched for regions containing 

disease susceptibility genes. Linkage analysis methods can be classified into two broad 

categories. The first category, commonly known as parametric or model-based linkage 

analysis, requires the specification of an underlying genetic model. With the assumed genetic 

model and the pedigree structures, the likelihood of the observed data can be constructed, as 

a function of the recombination fraction between a marker and the putative disease gene. The 

null hypothesis of no linkage (θ = 0.5) can then be tested. The test statistic usually used in 

model-based linkage analysis is the LOD score (base 10 logarithm of the likelihood ratio). 

The second category of linkage analysis methods, allele-sharing methods (also known as 

non-parametric or model-free methods), do not require the assumption of a specific genetic 

model. Because these methods are not as dependent on assumptions about the underlying 
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genetic model (such as penetrances), they are preferred by many researchers at early stages in 

the study of complex traits (e.g. see Ott 1996; Elston 2000). Since the methods developed in 

this thesis are based on allele-sharing, only this type of linkage analysis will be described. 

 

1.2.1 Traditional model-free or allele-sharing-based linkage analysis 

Markers having some alleles shared by the affected family members and other alleles 

shared by the unaffected members are likely to be located near disease susceptibility genes. 

This association between the sharing of disease status and the sharing of marker alleles by 

sets of relatives is the basis of model-free/allele-sharing linkage analysis methods. Allele-

sharing linkage methods for binary traits usually use data from pairs (or sets) of affected 

relatives, most commonly affected sib-pairs. Because the methods described in this thesis are 

developed for affected sib-pairs, the discussion that follows will focus on this design. 

Two alleles are said to be identical by descent (IBD) if they are not only of the same 

allelic form, but also are descended from the same ancestral allele. For example, the two A1 

alleles of the two siblings in Figure 1.1 are identical by descent, whereas their two C1 alleles 

are identical by state, but not identical by descent. In some cases, IBD sharing is known 

based on the observed marker genotypes. For example, in Figure 1.1, it can be 

unambiguously determined that the two siblings share 1 allele IBD at gene A, and 0 alleles 

IBD at gene C. In such cases the marker data for the sib-pair is said to be fully informative. 

More generally, IBD sharing at a genetic marker cannot be unequivocally determined from 

genotype data, but rather, is determined probabilistically. In such situations, when the marker 

for a sib pair is not fully informative, the probability that the sib-pair shares i alleles IBD can 

be estimated conditional on the available marker data. In the example shown in Figure 1.1, 
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because the two siblings share 1 allele IBD at gene A, and gene B is linked to gene A, it is 

more likely that the two siblings share 1 allele (rather than 2) IBD at gene B. In methods 

known as multipoint linkage analysis, multiple markers are used to probabilistically 

determine the number of alleles shared IBD at genetic markers, increasing the overall marker 

informativity. The software GENEHUNTER is one of many programs that can carry out such 

multipoint calculations to estimate IBD sharing probabilities for pairs of relatives. 

GENEHUNTER uses genotype information at multiple marker loci from all available family 

members to derive the probability distribution of all possible IBD configurations at a given 

locus, via the Lander-Green algorithm (Lander and Green 1987) based on a hidden Markov 

formulation of the pattern of inheritance at several loci. 

If the parents are non-inbred and unrelated, then a pair of siblings is expected to share 

0, 1, or 2 alleles IBD with probabilities ¼, ½, and ¼ respectively. However, if both of the 

siblings are affected, they are expected to share more alleles IBD at loci linked to a disease 

gene. Affected-sib-pair IBD-based linkage methods test for departures of IBD sharing from 

the expectations under the null hypothesis of no linkage, in a sample of ASPs. 

Using multipoint IBD sharing estimates, GENEHUNTER computes a commonly 

used model-free linkage statistic, known as the NPL (non-parametric linkage) statistic. Very 

generally, the NPL statistic measures the amount of excess IBD sharing between affected 

individuals in a sample of families. An example of a NPL plot is shown in Figure 1.4. A 

large NPL value at a locus provides evidence of linkage between that locus and a disease 

gene. Although multipoint methods can be used in the estimation of marker IBD sharing, 

which is then used to calculate the NPL score at a given locus, testing for linkage is still done 

at each locus separately. Independently testing for linkage at a series of locations, which is 
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Figure 1.4: Example of a NPL plot 

common to many linkage methods, gives rise to multiple testing problems. If the NPL peak is 

sufficiently high, the location of the peak is usually taken as a point estimate of a disease 

gene location. However, it is clear that the NPL method is primarily designed as a testing 

method (testing for linkage), rather than an estimation method (for estimating the location of 

a disease gene). Since linkage genome scans are usually only the first step in the search for 

disease susceptibility genes, identification of regions that may harbor such genes is their 

main goal. Regions that are likely to contain disease genes can then be further analyzed in 

fine-mapping studies. Although allele-sharing linkage methods are widely used for the study 

of complex traits, most of these methods are not designed to estimate the location(s) of 

disease gene(s) with a specified level of certainty, and they do not provide confidence 

intervals for disease gene locations. Although several authors have suggested approaches for 
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constructing confidence regions (see Kruglyak and Lander 1995; Lin 2002; and Hössjer 

2003), they have not been widely applied.  

 

1.2.2 Estimation of gene location and effect using a GEE approach 

Recently, Liang et al. (2001a) proposed analyzing marker IBD sharing data from a 

sample of affected sib pairs using generalized estimating equations (GEE) to estimate the 

location of a trait gene within a chromosomal region framed by multiple markers, as well as 

the effect size of the gene, measured in terms of expected allele-sharing among affected sibs. 

It is well known that for affected relative pairs, deviations from the null expectations for 

marker allele sharing depend on mode-of-inheritance parameters and the number of loci 

involved, as well as on the recombination fraction between the marker and the disease locus 
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 1.5: Example of an expected IBD sharing curve fit using the GEE method.

oints are the average marker IBD sharing in a sample of affected sib pairs.) 
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(Risch 1990). Liang et al. (2001a) derived an expression for the expected allele sharing 

among affected sib-pairs at any position in a chromosomal region, in terms of the expected 

allele sharing at a disease locus in that region and the recombination fraction between that 

position and the disease locus. They used this expression as a basis for estimating the 

location of the disease gene and the expected allele sharing at that gene. A key feature of this 

method is that it uses data from all the linked markers simultaneously to fit the expected IBD 

sharing curve to IBD sharing data from a sample of ASPs, thereby providing estimates of the 

location of the disease gene and expected IBD sharing in ASPs at that gene. An example of 

an expected IBD sharing curve, estimated by this method for a particular data set, is shown in 

Figure 1.5. The method will be described in detail in section 2.4. 

This approach overcomes some of the shortcomings of other allele-sharing based 

methods. Using data at all markers simultaneously, can presumably improve accuracy and 

precision of gene location estimates. A confidence interval for the map position of the 

susceptibility gene can be constructed using this method, which is useful for defining regions 

for further fine-mapping studies. Furthermore, multiple testing for linkage to many linked 

markers is avoided. These advantages come at a cost: the method relies on the explicit 

assumption that there is exactly one disease gene in the region, and is not robust to violations 

of this assumption.  

Liang et al. (2001a) pointed out that their GEE approach is not meant as a substitute 

to currently used linkage methods such as the NPL. Rather, they propose it as an adjunct to 

genome scanning approaches. Given (suggestive) evidence of linkage from a standard 

linkage genome scan, they propose applying their method to refine the estimate of the disease 

gene location and assess evidence for linkage at that position. 
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1.3  Mapping Genes Contributing to Complex Diseases 

 

Recent research in human genetics has focused largely on investigating traits 

controlled by multiple genetic and environmental factors, as well as their interactions. These 

so-called complex traits, such as diabetes, hypertension and many psychiatric disorders, are a 

major public health concern, and an improved understanding of their etiology can potentially 

result in substantial health care benefits. Standard linkage methods have not been very 

successful in mapping genes that contribute to these traits. Primarily, this is because each 

individual gene may have relatively small impact on disease susceptibility, leading to 

reduced power of linkage methods.  

Methods that take into account the role of multiple genes and environmental factors 

may be more powerful and improve the precision of disease-gene localization in the analysis 

of genetic data for complex traits. This idea has led to increased interest in methods that 

incorporate the fact that there may be more than one gene contributing to the disease. A 

review of research concerning such methods will be presented in section 2.1. The literature 

review revealed that most “two-locus” methods were designed primarily to test for linkage to 

multiple susceptibility genes, rather than to localize multiple disease genes. Two-locus 

methods that can be used to map a second interacting gene, generally require the first disease 

gene to have already been mapped (Cordell et al. 1995; Farrall 1997; Cox et al. 1999; Cordell 

et al. 2000; Strauch et al. 2000; Liang et al. 2001b; Holmans 2002; Chiu and Liang 2004). In 

addition, the majority of methods that attempt to take into account the existence of two 

disease genes assume that the two putative genes are unlinked to one another.  
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1.4   Motivation for Thesis 

 

As was mentioned in the previous section, one drawback of most of the two-locus 

linkage methods described in the literature is that they are designed to deal only with two 

unlinked disease genes. The few existing methods designed for the study of the effects of two 

linked disease genes (Delépine et al. 1997; Farrall 1997) can be classified as “conditional 

methods”, in that they require prior localization of a primary gene, and subsequently assess 

evidence for a second putative gene, conditional on the effect of the first gene with a 

“known” location. However, the location of the first locus that is being conditioned on may 

be inaccurate if it was mapped without taking into account the existence of linked trait genes. 

Conditioning on this inaccurate position may further lead to incorrect results for the second 

gene. Methods for simultaneously mapping two linked disease genes are likely to improve 

the accuracy of localization of both genes. 

The existence of linked genes contributing to a single trait appears to be plausible in 

complex diseases (e.g. Luo et al. 1996; Delépine et al. 1997; Ghosh et al. 1999; Hampe et al. 

2002). Evidence suggesting this comes both from animal model and human disease studies. 

Non-parametric linkage genome scans can yield wide peaks, or multiple peaks within the 

same region. Such observations could be the result of two or more susceptibility genes for the 

same disease in one chromosomal region. Conventional linkage analysis can be misleading in 

such situations, and the peak linkage score may not occur at either trait gene location (Hauser 

et al. 2003). We extended the methods of Liang et al. (2001a) to localize two linked disease 

susceptibility genes. Our method is designed to estimate the locations of the two genes 
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simultaneously using all marker data in a region, leading to more accurate and more precise 

localization. Furthermore, use of the GEE approach allows construction of confidence 

intervals for disease gene locations, which may be useful for defining regions for fine-

mapping studies. 

 

1.5   Thesis Summary 

 

In chapter 2 a more detailed review of relevant literature is provided and the method 

proposed by Liang et al. (2001a) for estimation of a single disease gene location by a GEE 

approach is described. In chapter 3 several extensions and modifications of this method are 

discussed. In section 3.1 alternative formulations of the variance function in the 

implementation of a GEE approach for estimation of a single disease gene location are 

considered. In section 3.2 a different working correlation matrix is investigated. In section 

3.3 an alternative parameterization of the problem is presented, which allows the estimation 

of additional parameters from the genetic disease model and may improve estimation of the 

disease gene location. In chapter 4 a method of estimating the locations and expected allele 

sharing at two linked disease genes is derived and its implementation is described. Chapter 5 

contains a summary of a simulation study carried out to assess properties of the GEE 

estimation method proposed in chapter 4. In chapter 6 we introduce test statistics to help 

determine the number of disease genes in a single chromosomal region. Properties of these 

test statistics are evaluated by simulation in chapter 7. In chapter 8, an application of the 

methods described in this thesis to type 1 diabetes data is presented. The main findings from 

this thesis are summarized in chapter 9. 



 

 

Chapter 2  

Literature Review: Statistics and 

Statistical Genetics Background 

 

 

2.1 Statistical Methods for the Study of Multi-locus Disease Systems 

 

For complex diseases, methods that take into account the role of multiple genes and 

environmental factors may be more powerful and improve the precision of disease-gene 

localization. Several analysis methods that take into account existence of multiple (usually 

two) disease genes have been developed. Both “parametric” (e.g. Goldin and Weeks 1993; 

MacLean et al. 1993; and Schork et al. 1993) and “nonparametric” (e.g. Knapp et al. 1994; 

Cordell et al. 1995; Cox et al. 1999; Cordell et al. 2000) approaches to modeling the effects 

of multiple loci have been considered. The main concerns with parametric methods are that 

they require specification of many unknown parameters, and they tend to be computationally 

intensive. 

17 
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When developing and assessing multi-locus linkage methods, it is important to 

identify the main purpose of the analysis. The primary purpose of a study may be the 

detection or localization of new disease loci, perhaps taking into account “known” disease 

loci. Alternatively, the primary purpose may be to resolve the nature of interactions among a 

number of loci. Schork et al. (1993) comment that they do not expect “2-trait-locus 2-marker-

locus analyses” to be used in initial genome scans. They believe these methods would be 

more useful for a set of candidate loci, or in situations where preliminary evidence of linkage 

exists. On the other hand, Cordell et al. (1995) propose using their two-locus statistics as the 

basis of a semi-simultaneous search procedure. Cordell et al. (2000) state that the primary 

aim of their methods is the detection of disease loci in the presence of epistasis, rather than 

modeling the interaction. 

The benefits of a two-locus or multilocus method can be measured in various ways, 

including the magnitude of the test statistic (e.g. expected maximum lod score), power, or 

accuracy of gene localization. The potential increase in power of linkage analysis resulting 

from the simultaneous consideration of two susceptibility genes has been assessed for various 

methods (e.g. Goldin and Weeks 1993; Knapp et al. 1994; Sham et al. 1994; Cordell et al. 

1995; Zinn-Justin and Abel 1998; Cordell et al. 2000; Farrall 1997; Cox et al. 1999; Lin 

2000; Holmans 2002). It has been demonstrated that allowing for different modes of 

interaction between potential disease loci can lead to increased power to detect any one of the 

loci, however, this increase in power may be modest (Cordell et al. 2001).  

Several papers have described methods that can be used to study interactions between 

two susceptibility genes (e.g. Cordell et al. 1995; Tiwari and Elston 1997; Cox et al. 1999; 

Cordell et al. 2001). MacLean et al. (1993) and Cox et al. (1999) proposed using single-locus 
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statistics for inferences about interactions, and found that correlation between single-locus 

statistics can be useful for detecting multi-locus systems, however, not all types of interaction 

can be detected by correlation. In order to study the interactions between genes, one must 

first identify the genes involved by finding their positions in the genome. Thus precise 

localization of disease susceptibility genes is of primary importance. 

Schork et al. (1993) compared accuracy of estimates of recombination fractions, and 

found that they were more accurate for their analyses that took into account the effects of two 

trait loci. Many of the early two-disease-gene methods designed for discovery of linkage or 

for studying interactions between loci did not use a map of markers, but rather used only a 

single marker or pair of unlinked markers (Schork et al. 1993; Knapp et al. 1994; Tiwari and 

Elston 1997; Zinn-Justin and Abel 1997). Thus, most of these methods are not well suited to 

localizing disease genes. Even those two-locus methods that can be used to map a second 

interacting gene, generally require the first disease gene to have already been mapped 

(Cordell et al. 1995; Farrall 1997; Cox et al. 1999; Cordell et al. 2000; Strauch et al. 2000; 

Liang et al. 2001b; Holmans 2002; Chiu and Liang 2004). Methods for simultaneously 

mapping two disease genes are likely to improve the precision of gene localization. 

A major drawback of most of the two-locus linkage methods described in the 

literature is that they are designed to deal only with unlinked disease genes. The problem of 

two linked loci has not been examined extensively in the literature, excepting the work of 

Delépine (1997), Farrall (1997), Cordell et al. (1998) and Biswas et al. (2003). Cordell et al. 

(1998) described association methods for mapping multiple linked QTLs in inbred animal 

populations. The focus of Farrall’s (1997) work was to resolve genetic interactions between 

linked loci and improve power to detect linkage to a second gene, by taking into account 
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evidence for linkage at a linked gene with an established location. Their results showed that 

the power to detect linkage was maintained, provided the two susceptibility genes were not 

tightly linked. They suggested using their methods to assess independent support for putative 

susceptibility genes that map close to established genes, or to analyze “ill-defined” or 

“broad” peaks that may be due to multiple disease genes. This approach was applied to 

IDDM data by Cordell et al. (2000), showing some evidence for a second type 1 diabetes 

gene on chromosome 6 linked to IDDM1. Motivated by an analysis of type 1 diabetes data, 

Delépine et al. (1997) also developed a method to test for the presence of a second 

susceptibility gene linked to a known first susceptibility gene. Their method applies weighted 

logistic analysis to fully informative IBD sharing data at two markers to test for evidence of 

linkage to a second marker conditional on linkage to a first marker, rather than mapping the 

two disease genes simultaneously. No simulation study assessing the performance of this 

method was reported. For both Delépine et al. (1997) and Farrall’s (1997) methods, the 

localization of the first locus that is being conditioned on could be inaccurate if it was 

mapped without taking into account the existence of linked trait genes. Conditioning on an 

inaccurate position of the first gene may lead to incorrect results regarding the second gene. 

Biswas et al. (2003) applied a Bayesian approach that accounts for heterogeneity to the 

simultaneous detection of two linked disease genes. This method, however, is a parametric 

approach requiring the specification of the penetrance vectors, designed to detect genes under 

locus heterogeneity. The method provides point estimates of the two disease gene locations, 

but no confidence intervals for these locations were reported. 
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2.2 Generalized Estimating Equations Methods 

 

In ASP-based model-free genome scans, we consider IBD sharing of sibling pairs at a 

series of markers, and test for deviations from the expectation under the null hypothesis of no 

linkage to a disease gene at each marker. It is well known, that for a pair of relatives, 

regardless of the mode of inheritance, IBD sharing at two linked markers is correlated due to 

transmission of chromosomal fragments. Therefore, the outcome of interest in IBD-based 

genome scans, i.e. the IBD sharing at a series of linked markers for a sample of affected 

sibling pairs, is comprised of independent clusters, i.e. sibpairs, with correlated outcomes, i.e. 

marker IBD allele sharing, within clusters. A similar data structure is observed in, for 

example, longitudinal studies, where multiple observations are made on each individual over 

a period of time. While observations made on different individuals are independent, 

observations made on the same individual at different times are correlated. In an allele-

sharing genome scan, marker map position is analogous to a time covariate in longitudinal 

data. To obtain valid inference, correlation among values for a given subject should be taken 

into account during analysis of such data. Liang and Zeger (1986) proposed the use of 

generalized estimating equations (GEEs) for longitudinal data analysis. In this section some 

general concepts and features of the GEE approach will be described. 

The GEE approach can be viewed as an extension of quasi-likelihood to the analysis 

of dependent data (Zeger and Liang 1986). With the quasi-likelihood approach (Wedderburn 

1974; McCullagh 1983), parameters β = (β1,…,βp)T are estimated by solving the quasi-score 

estimating equations: 

( ) 1ˆ ( )T σ−= −U β D V Y 2 =µ 0       (2.1) 
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where Y = (Y1,…,Yn)T is a vector of observations, µ = E(Y) = (µ1,…, µn)T and cov(Y) = 

σ2V(µ).The parameters of interest, β, relate to the dependence of µ on the covariates, so µ is 

a function of the parameters of interest, i.e. E(Y) = µ(β). The covariance of the data vector, 

cov(Y) = σ2V(µ), is assumed to be a function of the mean, µ, and potentially a scale 

parameter, σ. The components of the n×p matrix D are Dir = ∂µi/∂βr. It is evident from the 

above estimating equations that quasi-likelihood estimation does not require specification of 

the likelihood. Instead, only the mean, µ and the variance σ2V(µ) need to be specified.  

If a data vector YT = (Y1
T,…, YK

T) consists of sets of correlated observations from K 

independent individuals, the covariance matrix of Y, will be block-diagonal. Block-diagonal 

covariance matrices arise frequently, for example in longitudinal data. The correlation 

between data within blocks is often unknown and difficult to specify. Liang and Zeger (1986) 

and Zeger and Liang (1986) suggested the use of generalized estimating equations in such 

situations. Before describing the GEE approach, some notation more suitable for discussion 

of this type of block-data will be introduced. With correlated data, for each cluster or subject 

i, there are several measurements of a response Yij, j=1,…,ni. [If ni=n for all i, then Yi = 

(Yi1,…,Yin) for i=1,…,K.] Assume E(Yi) = µi and cov(Yi) = Ai
½RiAi

½ where Ai is a ni×ni 

diagonal matrix with var(Yij) j=1,…, ni on the diagonal, and Ri is a matrix of correlations of 

elements of Yi. Also let Di be the ni×p matrix of derivatives of the mean function for the ith 

subject with respect to the parameters, i.e. Di(m,r) = ∂µim/∂βr.  

In this case, parameter estimates, , are also obtained by solving the estimating  

equations (2.1) which for this type of block-structured data can be written as a sum over the 

K independent subjects. Liang and Zeger (1986) explain that the covariance of the data for 

the ith subject, cov(Y

β̂

i) = Ai
½RiAi

½, can be replaced by Vi = Ai
½R0i(α)Ai

½ where R0i(α) is 
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referred to as the “working” correlation, and may depend on a set of parameters α. This 

formulation leads to the generalized estimating equations: 

1

1
( )

K
T
i i i i

i

−

=

− =∑D V Y µ 0 .       (2.2) 

An attractive feature of the GEE approach is that obtaining a consistent estimator for β does 

not require R0i(α) to be specified correctly. The consequence of an incorrectly specified 

working correlation is reduced efficiency of the estimator. Likewise, it is not necessary in 

this approach to specify var(Yij) = (Ai)jj correctly. Under mild regularity conditions, Liang 

and Zeger (1986) show that as K → ∞, β  obtained by solving the estimating equations (2.2) 

is a consistent estimator of β and is asymptotically multivariate normal with covariance 

matrix V

ˆ

R given by: 

1 1
1 1 1

1 1 1
cov( )

K K K
T T T

R i i i i i i i i i i i
i i i

− −
− − −

= = =

    
=    
     
∑ ∑ ∑V D V D D V Y V D D V D1− 



i



  (2.3) 

(Huber 1967, White 1982). In the above, cov(Yi) is the actual covariance of Yi, rather than 

the assumed covariance under the “working correlation” R0i(α). The estimator VR is known 

as the robust, or sandwich, variance estimator. To estimate VR, cov(Yi) can be approximated 

by (yi -µi)( yi - µi)T and β can be approximated by β . Note that if the working correlation for 

the data has been correctly specified so that cov(Y

ˆ

i) = Vi, then the above estimator reduces 

to: 

1
1

1

K
T

N i i
i

−
−

=


= 
 
∑V D V D  .       (2.4) 

This estimator is known as the naïve variance estimator.  
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Assume that R0i(α) = R0(α) for all i. Some simple correlation structures that are 

frequently assumed are the independence correlation structure where R0 = I (the identity 

matrix), the exchangeable correlation matrix where [R0]jk = α for all j≠k, or the first-order 

autoregressive correlation where [R0]jk = α|k-j| for all j≠k. An advantage of the independence 

assumption is that the estimator is easier to compute and it may be reasonably efficient for a 

few simple designs. However, using an overly simple working correlation may yield less 

efficient estimates in cases where the correlation is large (Liang and Zeger 1986). 

Parameter estimates and estimates of their variances provided by the GEE approach 

are typically used to construct Wald Chi-square test statistics and asymptotic confidence 

intervals. However, in small samples, the sandwich estimator, VR, has been shown to result in 

downwardly biased variance estimates (e.g. Pan 2001). Drum and McCullagh (1993) 

discussed the fact that the sandwich estimator may not work well in small samples. A Wald 

test based on approximating cov(β ) by  ignores both the bias and variation of the 

variance estimator. Methods have been proposed to correct for the bias (e.g. Mancl and 

DeRouen 2001; Pan 2001) and the variability (e.g. Mancl and DeRouen 2001; Pan and Wall 

2002) of the robust variance estimator. 

ˆ ˆ
RV

In summary, the key features of the GEE approach are that it does not require a fully 

specified likelihood, and the asymptotic validity of the GEE estimates depends only on the 

correct specification of the mean function of the data, µi = E(Yi). Generalized estimating 

equations allow one to estimate parameters with greater efficiency by accounting for 

correlation between observations, rather than simply assuming an independence correlation 

structure, while still obtaining valid estimates of the variances of parameter estimates via the 

sandwich estimator. 
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2.3 Hypothesis Testing in the GEE Framework 

 

2.3.1 Background: Wald, score and likelihood ratio tests in the maximum likelihood 

estimation framework 

 

Assume θ is an unknown parameter vector of length p. Let L(θ|y) = f(y;θ) be the 

likelihood function for the parameter θ, and  be the maximum likelihood estimate (MLE) 

of θ. That is,  is the value of θ that maximizes the likelihood function. The function S(θ) = 

∂logL/∂θ is referred to as the score function, and the MLE θ =  solves the equations S(θ) = 

∂logL/∂θ = 0. The asymptotic covariance matrix of  is I 

θ̂

θ̂

θ̂

θ̂ -1 where
2

2

log LI E
θ

 ∂
= −  ∂ 

 is the 

Fisher information matrix for θ. 

The Wald, score, and likelihood-ratio test statistics for testing H0: θ = θ0 vs HA: θ ≠ θ0 

can be calculated as: 

( ) (2
0 0

ˆ ˆ ˆ( )wald I )χ θ θ θ θ θ
′

= − − , 

( ) ( ) ( 00
1

0
2 θθθχ SISscore

−′= ) , and 

( ) ( ){ }2
0

ˆ2 log L | log L |LR y yχ θ= − − θ . 

Asymptotically, under the null hypothesis, all three of the above test statistics follow a chi-

squared distribution with p degrees of freedom. 
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More generally one may want to test hypotheses that restrict a certain subset of 

parameters. In other words, we may want to test a hypothesis which specifies a sub-model of 

the fully parameterized model. Let  and  be the MLEs of θ under the null hypothesis or 

sub-model and the unrestricted model, respectively. Then asymptotically, under the null 

hypothesis, the likelihood ratio statistic and score statistic given by: 

0θ̂ θ̂

( ) ( ){ }2
0̂

ˆ2 log L | log L |LR y yχ θ= − − θ

0
ˆ

 and 

( ) ( ) ( )00
1

0
2 ˆˆˆ θθθχ SISscore

−′
=  

are both approximately chi-squared with degrees of freedom equal to the difference between 

the numbers of parameters specified under the sub-model and the unrestricted model. Now 

assume that the hypotheses about a subset of parameters can be formulated as H0: Cθ = (Cθ)0 

vs HA: Cθ ≠ (Cθ)0 where C is a matrix of dimension r by p. Then the Wald statistic for 

testing these hypotheses is given by: 

( ) ( )( ) ( ) { } ( )12 1 1
0 0 0

ˆ ˆ ˆ ˆCovwald Iχ θ θ θ θ θ θ θ θ θ
−− −

′ ′
′= − − = − −C C C C C C C C C C C ,  

and has an asymptotic  distribution under H2
rχ 0. 

Further, suppose θ ′ = (θ1′, θ2′) where θ1 is a vector of r parameters of interest and θ2 

is vector of p-r nuisance parameters, and we are interested in testing the hypothesis H0: θ1 = 

θ10. If the null hypothesis can be stated in this way, as a simple hypothesis for a subset of 

parameters, the score test statistic can also be calculated as follows. Partition the score vector 

and matrix I in a way corresponding to the partition of θ, and let  be the MLE of θ20θ̂ 2 given 

θ1 = θ10, and . Then the score statistic is: 




 ′′=′ 20100

ˆ,ˆ θθθ
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( ) ( ){ } ( )01

1

02.1101
2

2.1
ˆˆˆ θθθχ SIS

−′
=  

where  (I12
1

2212112.11 IIIII ′−= −

2
rχ

ij represents a submatrix of I). Under H0, this statistic is 

asymptotically a  random variable. 

 

2.3.2 Tests in the GEE/quasi-likelihood framework 

 

The generalized estimating equations approach for parameter estimation was 

described in section 2.2. This approach only requires specification of the mean and 

covariance functions, without specifying the entire distribution of the observations. Since in a 

GEE framework a likelihood function is not defined and maximum-likelihood estimates are 

not calculated, the Wald, score, and likelihood ratio tests described in section 2.3.1 cannot be 

applied directly. However, there are analogous tests which can be applied in the GEE or 

quasi-likelihood framework. 

With the GEE approach, estimates of a parameter β are obtained by solving the 

generalized estimating equations. Consistent estimates of the parameters can be obtained if 

the mean function is correctly specified, even if the covariance matrix for the data is 

misspecified (Liang and Zeger 1986). Furthermore, the solution of the GEEs is 

asymptotically normally distributed with mean β. If the covariance matrix of the data is 

correctly specified, then the covariance matrix of the parameter estimate is given by the 

model-based (or naïve) variance estimator (equation 2.4); whereas, if the covariance matrix 

of the data may be misspecified, covariance of β  can be estimated by the robust variance 

estimator V

ˆ

R (equation 2.3) 
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GEE Wald Test: 

Since the GEE estimate of β is asymptotically normally distributed with mean β and 

covariance matrix VR (equation 2.3), Wald tests can be formulated using the GEE estimate β  

and the robust variance estimate V

ˆ

R. Rotnizky and Jewell (1990) described extensions of the 

usual chi-squared tests for testing hypotheses about a subset of regression parameters for 

cluster correlated data. Let β  be the GEE estimate of β, obtained by solving the equations ˆ

i( ) 1

1
( )

n

i i i
i

−

=

′= −∑U β D V Y =µ 0  where i
i

∂
=
∂
µ

D
β

,  with 

A

1/ 2 1/ 2
0 ( )i i i iα=V A R A

i=diag{var(yij)} and R0i being the working correlation. Again consider partitioning the 

regression parameter vector such that β′ = (β1′, β2′) where β1 is r by 1 and β2 is p-r by 1, r ≤ 

p, and assume we are interested in testing the hypothesis H0: β1 = β10. Because of the 

asymptotic normality of β , the generalized Wald test statistic: ˆ

( ) (1

1
1 10 1 10

ˆ ˆˆ
wT β

−
′

= − −β β V β β )        (2.5) 

has a  distribution under H2
rχ 0. 

1
ˆ
βV  is the r by r sub-matrix of , comprised of elements 

corresponding to the elements of β

ˆ
RV

1. 

 

GEE Score Test: 

Rotnizky and Jewell (1990) define the generalized score test statistic as: 

( ) (1 1 1

1
10 20 10 20,ST β β β

−′
= ΣU β β U β β% % ), %        (2.6) 
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where β  is the GEE estimator of β20
% 2 in the restricted parameter space under H0, 

1

1

1

( )i
i i iβ
−

′
 ∂

= − ∂ 

µ
V Y

β1

n

i=
∑U µ

1

1

, and  

1 1 1

1
β β β β

−Σ = W V W−           (2.7) 

with 
1β

W  being a sub-matrix of 
1

1

1

n
T
i i i

i

−
−

=

 
=  
 
∑W D V D . 

Breslow (1990) provides a computationally simpler formula for estimating 
1β

Σ : 

21
1

2222
1

221221
1

221221
1

221211 AABAAAABBAAB −−−− +−−     (2.8) 

where , , and A1 1

1
( )( )

n
T
i i i i i i i

i
B − −

=

′= − −∑D V y µ y µ V Di i
1

1

n
T
i i

i
A −

=

= ∑D V D ij and Bij are sub-

matrices of A and B. 

 

Approximate Quasi-Likelihood Ratio Tests: 

Given the score function, S(θ), for a likelihood L(θ), the likelihood ratio L(η)/L(θ) is 

given by: 

( )L( )( , ) exp
L( )

S t dt
η

θ

ηλ θ η
θ

 
= =   

 
∫ . 

By analogy, given the quasi-score function, QS(θ), the quasi-likelihood ratio is defined as: 

( ) ( )QLR , exp QS t dt
η

θ

θ η
 

=   
 
∫ . 

McCullagh and Nelder (1989) point out that when θ is a vector-valued parameter, definition 

of the quasi-likelihood is problematic. The most direct analogy to the above would be a line 

integral between θ and η, however, generally, this line integral would be path-dependent, and 
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therefore, the quasi-log-likelihood is not uniquely defined. Although the quasi-score can still 

be used to construct confidence sets even in the absence of the quasi-log-likelihood, it has 

undesirable properties when the quasi-score has multiple roots (McCullagh 1991; McLeish 

and Small 1992). 

McLeish and Small (1992) introduce a class of inference functions for independent 

observations that contain analogues of likelihood ratios under semiparametric assumptions. 

They consider the projection of the likelihood ratio into this class of inference functions and 

show that this projected likelihood is first order equivalent to the quasi-likelihood. Based on 

their projected likelihood, McLeish and Small (1992) propose approximating the likelihood 

ratio by: 

( )( ) 2

1

ˆ( , ) 1 ( ) ( ) ( ) ( )
n

i i i i i
i

Yλ θ η µ η µ θ µ θ σ θ
=

 = + − − ∏  

where (Y1,…,Yn) is the data vector, µi = E(Yi) and σi
2 = Var(Yi), and describe how it can be 

used to test statistical hypotheses for independent random variables. For multivariate 

observations they suggest the following extension of their quasi-likelihood ratio which uses 

the covariance matrix of Yi, Σi: 

{ } {1

1

ˆ( , ) 1 ( ) ( ) ( ) ( )
n

T
i i i i i

i

λ θ η η θ θ θ−

=

 = + − − ∏ µ µ Σ Y µ }     (2.9) 

where Yi is the ith vector-valued (multivariate) observation, µi = E(Yi), and Σi = Cov(Yi). 

Li (1993) introduced a linear deviance function that can be used in conjunction with 

the quasi-likelihood method and is defined for both independent and dependent observations. 

He proposes approximating the quasi-log-likelihood ratio by 

( ) ( ) ( ) (1 11 1ˆ( , , ) ( ) ( )
2 2

T T

i iR )η θ θ η θη θ θ η− −= − − + − −Y ηµ µ Σ Y µ µ µ Σ Y µ  (2.10) 
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where YT = (Y1
T,…, Yn

T), µ = E(Y), and Σ = Cov(Y). 

In certain situations, when the quasi-score has multiple roots, the confidence set based 

on this statistic is better than that based on the score test. Li (1993) notes that is a 

useful alternative to the method of McLeish and Small (1992) partly because it applies to 

dependent observations. Li also comments that if the quasi-score has multiple roots, 

 can be used to distinguish the correct solution from incorrect ones. 

),,(ˆ XR θη

),,(ˆ XR θη

  

2.4 Estimation of a Single Disease Gene Location and Expected IBD 

Sharing Using a GEE Approach 

 

Recently an IBD-based procedure to estimate the location of a susceptibility gene 

within a chromosomal region framed by multiple markers was proposed by Liang et al. 

(2001a). The authors noted that the main purpose of the procedure is to estimate the location 

of a susceptibility gene when there is preliminary evidence that the chromosomal region 

includes a disease gene. Liang et al. (2001a) derived a simple representation relating the 

expected IBD sharing at a single marker to its distance from the disease locus. The authors 

first proposed exploratory analysis for locating the disease gene. They then developed a 

formal procedure to infer point and interval estimates of the location of the disease gene by 

applying the GEE approach to the problem. 

The proposed procedure requires no assumptions about the mode of inheritance, 

except that the region contains no more than one susceptibility gene. Under the assumptions 

of random mating, linkage equilibrium, and generalized single ascertainment, Liang et al. 

derived a simple representation relating the mean IBD sharing in affected sib pairs (ASPs) at 
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any position, t, to their mean sharing at the disease locus, and the distance between t and the 

disease locus. Assuming a region with one susceptibility gene at location τ, they showed that: 

)1)|)(()(12(1)|)(()( ,1 −Φ−Ψ+=Φ= τµ τ SEtSEt t  

where S(t) = number of alleles (0, 1, or 2) shared IBD by an ASP at locus t and Φ denotes the 

event that both sibs are affected. The subscript 1 on the mean function µ signifies that this is 

the expected sharing assuming one disease gene in the region, i.e. under the one-locus model. 

The above expression for µ1(t) is robust, in the sense that it applies regardless of the true 

mode of inheritance. The map distance between t and τ is measured by: 

2
,

2
,,, )1()( ττττ θθθ tttt −+=Ψ=Ψ ,  

where θt,τ is the recombination fraction between t and τ. Using Haldane’s map function to 

relate recombination fraction to genetic distance leads to: 

CetSEt t ||04.
1 1)|)(()( τµ −−+=Φ= ,   

where 1)|)(( −Φ= τSEC  (i.e. one less than the expected number of alleles shared IBD at τ 

by an ASP). It is easily seen that µ1(t) is strictly decreasing in |t-τ| and attains its maximum at 

τ. 

Liang et al. (2001a) developed an inferential procedure to estimate the location of the 

disease gene, τ, and 1)|)(( −Φ= τSEC  using marker IBD sharing data from ASPs. 

Assume an ASP design with M markers at positions t1,...,tM. For each sib-pair Yi = 

(Yi(t1),…,Yi(tM)) is observed, where Yi(tj) represents all the marker information at locus tj 

(j=1,…,M) for the ith pedigree, i = 1,…,n. In a situation with fully informative markers, Si(tj) 

could be counted directly and µ1(tj) could be estimated by: 
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1
( ) ( ) /

n

j i j
i

S t S t n
=

= ∑  

If the jth marker is not fully informative for family i, Si(tj) is unknown, but can be estimated 

by considering all possible IBD configurations consistent with the observed marker 

information, i.e. Si(tj) can be imputed given Yi by:  

2
*

0
( ) Pr( ( ) | )i j i j i

l
S t l S t l Y

=

= ⋅ =∑ . 

In such situations, µ1(tj) can be estimated by: 

* *

1
( ) ( ) /

n

j i j
i

S t S t n
=

= ∑  

Therefore, Liang et al. (2001a) propose using the statistics Si
*(tj) as the basis for 

estimating δ1 = (τ,C). They estimate the parameters of the one-locus model δ1= (τ,C) by 

solving the following estimating equations: 

1 * *1 1
1 1

1 1

( )
Cov ( | )( ( )) 0

n

i i
i

S S
µ δ

µ δ
δ

−

=

′
 ∂

Φ − = ∂ 
∑  

where Si
* = (Si

*(t1),…, Si
*(tM))′, and µ1(δ1) = (µ1(t1;δ 1),…, µ1(tM;δ 1))′. Estimates for τ and C 

and their estimated precision are consistent as long as E[Si
*(tj)] = µ1(tj) holds for ASPs, which 

is true at fully informative markers or if there are no disease genes linked to t. 

Misspecification of Cov(Si
*|Φ) reduces the asymptotic efficiency of the parameter estimates, 

but does not affect their consistency (Liang and Zeger 1986). An algorithm to solve this GEE 

is incorporated in a program called GENEFINDER (Liang et al. 2001a). 

 



 

 

Chapter 3  

The One-Locus Model: Modifications 

and Extensions of the Original GEE 

Method 

 

 

For simplicity of presentation, in this chapter it will be assumed that the sample 

consists of independent ASPs; that is, there is only one ASP per nuclear family. In general, 

the discussion could easily be extended to multiple sib pairs per family. 

Recall that in the one-locus method proposed by Liang et al. (2001a), estimates of δ1 

= (τ,C) are obtained by solving the estimating equations: 

1 * *1 1
1 1

1 1

( )
Cov ( | )( ( )) 0

n

i i
i

S Sµ δ
µ δ

δ
−

=

′
 ∂

Φ − ∂ 
∑ =     (3.1)  

where Si
* = (Si

*(t1),…, Si
*(tM))′ = (Si1

*,…, SiM
*)′ is the vector of estimated IBD sharing at all 

markers for the ith sib pair, given all marker data for the ith family.  

34 
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Cov(Si
*|Φ) can be written as Ai

1/2RiAi
1/2 where Ai is the M × M diagonal matrix of 

variances of the elements of the data vector for the ith sib pair Si
*, expressed as a function of 

the expectation µim, and Ri is the M × M correlation matrix of Si
*. If Ri is unknown or 

complicated, we may substitute it with R0i(α), an M × M working correlation matrix for Si
*, 

fully specified by a vector of unknown parameters, α. Although consistent estimates of the 

parameters and their standard errors can be obtained even if the choice of R0i is not correct, 

careful modeling of Cov(Si
*|Φ) may improve efficiency. In their formulation of the one-locus 

model GEE, Liang et al. (2001a) assumed an independence correlation structure and 

approximated the diagonal elements of Cov(Si
*|Φ) by assuming that Pr(Si(τ)=0|Φ) = 0. In 

section 3.1 we consider approximating these diagonal elements of Cov(Si
*|Φ) in different 

ways. In section 3.2 we introduce a different correlation structure that does not assume 

independence of marker IBD sharing at linked markers. In section 3.3 we extend the one-

locus model of Liang et al. to estimate not only the excess mean ASP IBD sharing (C), but 

also the ASP identical-by-descent (IBD) sharing proportions at a single disease gene. 

 

3.1 Alternative Formulations of Variances of Marker IBD Sharing  

 

3.1.1 A simple variance approximation 

In their implementation of the one-locus model, Liang et al. (2001a) used the 

independence working correlation, setting R0i(α) = I (the identity matrix). This leads to a 

M×M diagonal matrix for Cov(Si
*|Φ), with Var(Si

*(tm)|Φ), m=1,…,M on the diagonal. 

Furthermore, in the original implementation Var(Si
*(tm)|Φ) was approximated by 

Var(Si(tm)|Φ), i.e. variances of fully informative marker IBD sharing. Liang et al. (2001a) 
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showed that Var(Si(tm)|Φ) is a function of C, τ, and one additional parameter, p0 = 

Pr(S(τ)=0|Φ): 

( ) ( ) ( )2

.08| | 2
0

1 1Var ( ) | 2 1 Var ( ) |
2

1 12
2 2

m

m

t

S t S

e C C pτ

τ

− −

 Φ = Ψ − Φ − + 


 = − + − + 
 

2    (3.2). 

Note that under the null hypothesis, C = 0, p0 = 0.25, and Var(S(τ)|Φ) = Var(S(tm)|Φ) = ½. In 

the original version of Genefinder, rather than estimating p0, it was set to 0 and Var(Si
*(tm)|Φ) 

was approximated by: 

( ) ˆ.08| | 2
GF

1ˆ ˆˆVar ( ) |
2 2

mt
mS t e C Cτ− − Φ = − − +

 

1
     (3.3) 

where C  and ˆ τ̂  are the GEE estimates of the corresponding parameters. 

Under some genetic models, the assumption p0 = 0 may be quite accurate. However, 

under many models, it may lead to bias in estimates of Var(Si
*(tm)|Φ), especially at markers 

near the disease gene. For instance, if the penetrance vector is (0,0,1) and the frequency of 

the high-risk allele is 0.05, then (p0,p1,p2) = (.002,.091,.907) and C = .905. In that case, 

Var(S(τ)|Φ) = 0.090, and under the assumption that p0 = 0, Var(S(τ)|Φ) would be 

approximated to be 0.086. This approximation is quite accurate. However, if the penetrance 

vector is (0.001,0.001,0.2) with a disease allele frequency of 0.01, then (p0,p1,p2) = 

(0.127,0.263,0.610), C = .483 and Var(S(τ)|Φ) = 0.504, whereas the assumption that p0 = 0 

would lead to the approximation Var(S(τ)|Φ) ≈ 0.250, which is not an accurate 

approximation. 
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3.1.2 Alternative specifications of Var(S*(tm)|Φ): Corrected variance function and 

empirical variance estimation 

Although it is known that the GEE approach is robust to misspecification of 

variances, we compared the performance of GEE estimation with the approximate variance 

formula shown in equation 3.3, to GEE estimation with other specifications of the variances 

of marker IBD sharing. 

One alternative to the implementation in Genefinder is to again estimate 

Var(Si
*(tm)|Φ) by Var(Si(tm)|Φ), but to apply the exact formula for Var(Si(tm)|Φ) (equation 

3.2) by estimating the additional parameter p0 = Pr(S(τ)=0|Φ) rather than setting it to zero. 

The parameter p0 is not estimated by the solution of the GEE (equation 3.1) because the 

mean function, µ1(t), does not directly depend on it. We estimate p0 by the proportion of sib 

pairs in the sample sharing 0 alleles IBD at the marker nearest to τ. If this marker is not fully 

informative, we estimate the proportion of sib pairs sharing 0 alleles IBD by the proportion 

of sib pairs for which the estimated marker IBD sharing Si
* is less than 0.5. That is 

*

1
0 0

( 0.
ˆˆ ˆ Pr( ( ) 0 | )

n

ik
i

k k

I S
p p S t

n
=

<
≈ = = Φ ≈

∑ 5)
     (3.4) 

where tk is the location of the kth marker, the marker closest to τ, and I is the indicator 

function. Using an estimate of p0 (e.g. equation 3.4), Var(Si
*(tm)|Φ) can be approximated by: 

( ) ˆ.08| | 2
c

1ˆ ˆˆ ˆVar ( ) | 2
2 2

mt
mS t e C C pτ− − Φ = − + − +

 
0

1
  .   (3.5) 

Usually marker data is not fully informative, and the outcome variable for the ith ASP 

is the estimated IBD sharing, Si
*, rather than the true IBD sharing, Si, as is shown in equation 

3.1. In both of the approaches described above the variance function for fully informative 
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IBD sharing, Var(Si(tm)|Φ), is used to model variance of estimated IBD sharing, 

Var(Si
*(tm)|Φ). To avoid this, Var(Si

*(tm)|Φ) can be estimated empirically using data from n 

independent ASPs by: 

( 2* *
emp

1

1ˆVar ( ( ) | ) ( ) ( )
1

n

i m i m m
i

S t S t S t
n =

Φ = −
− ∑ )*      (3.6)  

where 
n

tS
tS

n

i
mi

m

∑
== 1

*

*
)(

)(  ,  

or  

( )2* *
emp

1

1ˆ ˆVar ( ( ) | ) ( ) ( )
2

n

i m i m m
i

S t S t t
n

µ
=

Φ = −
− ∑ .  

Benefits of this (ad-hoc) approach include: (1) the fact that variances of the observations do 

not need to be modeled, (2) computational simplicity, and (3) variances of the imputed data, 

Si
*, are used rather than variances of the unknown marker IBD sharing, Si. The main 

disadvantage is that these empirical variances may be less stable than modeled variances 

such as those in the first two approaches, and may therefore lead to larger sample size 

requirements. Using empirical variances of marker data is essentially equivalent to 

introducing a new variance parameter for each marker. Thus, if the number of markers is 

large, it may be more beneficial to model the variances rather than estimating them 

empirically. 

Three FORTRAN programs were written for fitting the model for E(S(t)|Φ) to marker 

IBD sharing data by solving the GEE (equation 3.1), implementing the three alternative 

formulations of Var(Si
*(tm)|Φ). 
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1. GEE_GFv: Approximates Var(Si
*(tm)|Φ) by the simple variance formula implemented in 

the original version of GENEFINDER, ( )GFˆVar ( ) |mS t Φ . 

2. GEE_cv: Implements the “corrected” formula ( )cˆVar ( ) |mS t Φ  to approximate 

Var(Si
*(tm)|Φ), by first estimating the additional parameter p0. 

3. GEE_empv: At marker tm, Var(Si
*(tm)|Φ) is estimated using Var , i.e. the 

sample variance of the estimated sharing among all the sib-pairs in the sample. 

*
empˆ ( ( ) | )i mS t Φ

 

3.1.3 Simulations 

Results of a small simulation study designed to compare estimates obtained by the 

one-locus GEE method with the three alternative variance formulations are shown in Tables 

3.1 and 3.2. For each simulation, 1000 data sets were generated consisting of fully 

informative IBD sharing at either 11 or 21 equally spaced markers covering 100 cM. 

Samples of 100 or 500 ASPs were generated under two different genetic models, referred to 

as models A and B, with a single disease gene at τ = 50 cM.  

Although the simulations performed were not extensive, they did demonstrate that 

overall, in terms of bias and standard errors of estimates, and confidence interval coverage, 

GEEs with the three variance formulations had similar performance. For model B (Table 

3.2), use of the simple variance function implemented in Genefinder, ( )GFˆVar ( ) |mS t Φ , 

resulted in location estimates with smaller variances, and narrower confidence intervals. 

With the small sample size of 100 ASPs, for each of the three variance formulations, the 

average robust standard error of location estimates is smaller than the corresponding 

empirical standard deviation, indicating a downward bias of the robust standard errors. In 
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large samples of 500 ASPs, however, an upward bias of the robust standard error estimates is 

observed. Most importantly, we can conclude that empirically estimating variances of S* 

provides comparable results to those obtained by modeling the variance function, although 

for some underlying genetic models it may be less efficient. 
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3.2 Modeling Correlation of IBD Sharing at Linked Markers 

 

3.2.1 Introduction 

For a pair of relatives, IBD sharing at two linked markers is correlated. Assuming 

fully informative markers and one disease gene in the region at position τ, Liang et al. 

(2001a) derived the following expressions for Cov(S(tj),S(tl)|Φ): 

( )Cov ( ), ( ) | ;j l AS t S t HΦ =  

( ) ( ),2 1 Var ( ) |
l jt t S τΨ − Φ            if [ ]lj tt ,∈τ , and 

( )( ) ( )( ) ( ), , ,
12 1 2 1 Var ( ) | 1 2 2
2j l j lt t t tSτ τ τΨ − Ψ − Φ − + Ψ −1   if [ ]lj tt ,∉τ . (3.7) 

Using Haldane’s map function, the covariance can be re-written as: 

( )Cov ( ), ( ) | ;j l AS t S t HΦ =  

(.04| | 2
02j lt te C C− − − + )p     if [ ]lj tt ,∈τ , and 

.04| | .04| | .04| |2
0

1 12
2 2

j l jt t te C C p eτ τ− − − − − − − + − + 
 

lt  if [ ]lj tt ,∉τ . 

Under the null hypothesis of no linkage (i.e. τ = ∞), the above expression reduces to: 

( ) ( ) .04| |
0 ,

1 1Cov ( ), ( ) | ; 2 1
2 2

j l

l j

t t
j l t tS t S t H e− −Φ = Ψ − = . 

Despite the fact that IBD sharing status at linked markers is known to be correlated, 

in the GENEFINDER software program (Liang et al. 2001a), the independence working 

correlation structure was used. With this working correlation Cov(Si|Φ) = Ai
1/2RIAi

1/2 where 

RI = I is the in the M×M identity matrix. This model simplifies computations considerably. 

Even if the correlation is misspecified, consistent estimates of the parameters and their 
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variances can be obtained by solving generalized estimating equations and using the robust 

“sandwich” estimator for variance estimation (Liang and Zeger 1986). However, efficiency 

of the estimators may be reduced by assuming an incorrect correlation structure for the 

observations. We investigated the potential improvement in the efficiency of estimates by 

incorporating correlation between data at linked markers.  

 

3.2.2 Alternative correlation structures 

Although the exact correlation of IBD sharing for a pair of affected siblings at two 

fully informative linked markers is known (equations 3.7), we consider an approximate 

correlation structure that simplifies computation. The justification is that: first, even if the 

correlation is misspecified, estimates will remain consistent; and second, incorporating a new 

correlation structure, even if not exactly correct, may improve properties of the estimates if 

that correlation structure more closely approximates the true correlation structure than the 

assumption of complete independence. One possible correlation structure is the AR-1 model: 

2 1

2

2 3
1

1 2 3

1 ...
1 ...

1 ...

... 1

m

m

m
AR

m m m

R

ρ ρ ρ
ρ ρ
ρ ρ ρ

ρ ρ ρ

−

−

−
−

− − −

 
 
 
 =
 
 
  

M M M O M

ρ
 

This correlation model assumes that the correlation of IBD sharing at consecutive markers is 

ρ, at markers separated by one marker is ρ2, etc. Because it assumes equal correlation for any 

two consecutive markers, this model is more appropriate for equally spaced markers. Also, it 

ignores the fact that the level of correlation depends on the positions of the markers relative 

to the position of the disease gene. However, RAR-1 seems to be a reasonable approximation to 

the true correlation matrix, because it specifies that the correlation of IBD sharing at two 
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particular markers decreases as a function of the number of markers between those two 

markers. This means that correlation decreases as a function of distance between markers, if 

they are equally spaced. Other useful features of RAR-1 include the fact that it has a simple 

inverse, leading to simpler computations. Furthermore, because the correlation does not 

depend on the position of the disease gene, the covariance matrix only needs to be computed 

once. 

The inverse of the correlation matrix RAR-1 is 

2

1
1

2

1 0 ... 0
1 ...

0
1

0 ... 0 1

ARR

ρ
ρ ρ ρ

ρ ρ
ρ ρ ρ

ρ

−
−

− 
 − + − 
 = − −
 − + − 
 − 

M

O M

M M

 

That is,  

2
1

1

1 for 1 and 
1 for 2,..., 1

( , )
for | | 1

0 otherwise

AR

i j i j m
i j m

R i j
i j

ρ
ρ

−
−

= = = =
 + = ==  − − =


−
 

With this correlation matrix, ( ) 1/ 2 1/ 2
1Cov i ARS A R A−=   

where A is the diagonal matrix of variances of IBD sharing at the markers: 

1

2

3

Var( ( ) | ) 0 0 ... 0
0 Var( ( ) | ) 0 ... 0
0 0 Var( ( ) | ) ... 0

0 0 0 ... Var( ( ) | )m

S t
S t

A S t

S t

Φ 
 Φ 
 = Φ
 
 
 Φ 

M M M O M

. 

Thus 

( ) ( ) ( )1 11 1/ 2 1 1
1Cov i ARS A R A / 2− −− −
−=  
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1 1

2

2 2
2

1 10 ... 0 0 ... 0
1 0 ... 0

1 11 ...0 ... 0 0 ... 0
0

1
0 ... 0 11 10 0 ... 0 0 ...

M M
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v v

v v
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ρ
ρ ρ ρ

ρ
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−    
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where vi = Var(S(ti)|Φ). 

That is,  

2

1

1 for 1 and 

1 for 2,..., 1
Cov ( ( ), ( ))

for | | 1

0 otherwise

i

ii j

i j

i j i j m
v

i j m
vS t S t

i j
v v

ρ

ρ

−

 = = = =

 +

= = −
= 
 −

− =




 

 

This working covariance model was implemented in a new FORTRAN program for 

solving the one-locus model GEE.  
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3.2.3 Simulations 

 Results of simulations designed to compare estimation of the location and expected 

IBD sharing of a disease gene by the GEE method, with two different working correlations 

for the data, are shown in Tables 3.3 and 3.4 (using the simplified variance function 

) and Tables 3.5 and 3.6 (using empirical variances Var(GFˆVar ( ) |mS t Φ) *
empˆ ( ( ) | )i mS t Φ ). For 

each simulation, 1000 replicate data sets were generated. The same genetic models, marker 

maps, and sample sizes were used as for the simulations presented in section 3.1.3.  

Standard deviations for the estimates using the two approaches reveal that using the 

AR-1 working correlation rather than the independence working correlation led to improved 

efficiency of estimators. Although estimates of mean excess IBD sharing at the disease locus 

(C) were more biased when the AR-1 working correlation structure was applied, the mean 

squared error tended to be lower. For most of the simulations performed, the independence 

correlation model led to location confidence interval coverage slightly closer to the nominal 

95%, than the AR-1 model. However, the AR-1 model resulted in closer-to-nominal CI 

coverage in large samples with more genotyped markers (500 ASPs, and 21 markers 

spanning 100cM). Thus, it appears that modeling the correlation of IBD sharing data at 

linked markers, even with a simple approximation such as the AR-1 model, has the potential 

to improve estimation of disease gene locations, by providing narrower confidence intervals 

with closer to nominal coverage. However, it is also apparent that larger samples are required 

to apply this more complex covariance model. 
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3.3 Estimation of a Disease Gene Location and IBD Sharing Probabilities for 

ASPs  

 

3.3.1 Introduction 

The methods described in section 2.3 and extended in sections 3.1 and 3.2 may lead to 

some loss of information for particular underlying genetic models. When markers are not fully 

informative, multipoint marker data can be used to estimate the statistics z0, z1, and z2 for each 

ASP at each marker, where zj is the estimated (posterior) probability that the pair shares j 

alleles IBD. Such calculations can be carried out, for example, using the software 

GENEHUNTER. However C = E[S(τ)|Φ]-1 and τ are estimated using only the (estimated) IBD 

sharing (S*) for each ASP at each marker. That is, the methods proposed by Liang et al. 

(2001a) do not use the zj’s, but rather a linear combination of them, S* = z1+2*z2, as the 

outcome for each sib pair at each marker. Here, we propose treating (z1,z2)im as the outcome at 

marker m for sib pair i. This method allows the estimation of not only C and τ, but also the 

IBD sharing probabilities (p0,p1,p2) where pj=Pr(S(τ)=j|Φ).  

 

3.3.2 Probabilities of sharing 0, 1, and 2 alleles IBD by ASPs at linked loci 

Let π0(t), π1(t), and π2(t) denote the probabilities that an ASP shares 0, 1, or 2, alleles 

IBD at a locus t. Under the null hypothesis of no linkage, (π0(t),π1(t),π2(t)) = (1/4,1/2,1/4). If t 

is linked to a disease gene, there is a distortion from these null probabilities. Assume that there 

is a disease gene at τ, and let p0, p1, and p2 denote the probabilities that an ASP shares 0, 1, or 2 

alleles IBD at τ, i.e. pj = Pr(S(τ)=j|Φ) = πj(τ). 
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The values (π0(t),π1(t),π2(t)) have a simple dependence on (p0, p1, p2) and the distance between 

t and τ. Let Ψ =  be the measure of genetic map distance between t and τ. 

The relationship between (π

2
, , ,(1 )t t tτ τ τθ θΨ = + − 2

)Φ

)Φ

)Φ

)

2

0(t),π1(t),π2(t)) and (p0,p1,p2) can be derived as follows:  

( ) (
2

0
( ) Pr ( ) | Pr ( ) , ( ) |j

l
t S t j S t j S lπ τ

=

= = Φ = = =∑   

( ) (
2

0
Pr ( ) | ( ) , Pr ( ) |

l
S t j S l S lτ τ

=

= = = Φ =∑  

( ) (
2

0
Pr ( ) | ( ) Pr ( ) |

l
S t j S l S lτ τ

=

= = = =∑  

The conditional IBD distribution at any locus t, given IBD status at a linked locus τ, was 

derived by Haseman and Elston (1972) and is shown in Table 3.7. Substituting expressions 

from Table 3.7 for the conditional probabilities leads to: 

( ) ( ) ( Φ====Φ== ∑
=

|)(Pr)(|1)(Pr|1)(Pr)(
2

0
1 lSlStStSt

l
ττπ  

( )0 12 (1 ) 1 2 (1 ) 2 (1 )p p p= Ψ −Ψ + − Ψ −Ψ + Ψ −Ψ  

( )1 2 12 (1 )(1 ) 1 2 (1 ) 2 (1 ) 2p p p= Ψ −Ψ − − + − Ψ −Ψ + Ψ −Ψ p

)

 

( 12 (1 ) 1 4 (1 ) p= Ψ −Ψ + − Ψ −Ψ      

and 

 

Tabl
 IBDt = 0 IBDt = 1 IBDt = 2 

IBDτ = 0 Ψ2 2Ψ(1-Ψ) (1-Ψ)2 

IBDτ = 1 Ψ(1-Ψ) 1-2Ψ(1-Ψ) Ψ(1-Ψ) 

IBDτ = 2 (1-Ψ)2 2Ψ(1-Ψ) Ψ2 

e 3.7 Conditional IBD distribution at t given IBD status at τ: Pr(IBDt=i| IBDτ=j)
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( ) ( ) ( Φ====Φ== ∑
=

|)(Pr)(|2)(Pr|2)(Pr)(
2

0
2 lSlStStSt

l
ττπ )

2

 

2 2
0 1(1 ) (1 )p p p= −Ψ + Ψ −Ψ + Ψ  

2 2
1 2 1(1 ) (1 ) (1 ) 2p p p= −Ψ − − + Ψ −Ψ + Ψ p

2

 

2
1(1 ) (1 )(2 1) (2 1)p p= −Ψ + −Ψ Ψ − + Ψ −     

The formula for π0(t) is omitted since π0(t) + π1(t) + π2(t) = 1. Haldane’s map function can be 

used to convert recombination fractions to map distance ( ( ) 2/1 ||02.0
,

21

21

tt
tt e −−−=θ ), leading to 

the following expressions for π1(t) and π2(t): 

.08| |
1 1

1 1( )
2 2

tt e pτπ − −  = + − 
 

 and  

.04| | .08| |
2 2 1

1 1 1 1( )
4 2 2 4

t tt e p p eτ τπ − − − −  = + + − + −  
  

1
1
2

p 



. 

Note that if t is linked to location τ, but τ is not linked to a disease gene and thus has 

null IBD sharing proportions, then p1=1/2 and p2=1/4, and this leads to π1(t)=1/2 and π2(t)=1/4. 

Also, if τ is a disease gene, but t is not linked to τ or any other disease gene, then |t-τ| = ∞ 

which again leads to π1(t)=1/2 and π2(t)=1/4. This verifies that for a locus t not linked to a 

disease gene (π0(t),π1(t),π2(t)) = (1/4,1/2,1/4) as expected. 

Plots of π1(t) and π2(t) curves for two models are shown in Figure 3.1. Note that for any 

t, π1(t) + 2π2(t) = µ1(t) where µ1(t)=E[S(τ)|Φ] under the one-locus model.  
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Figure 3.1: IBD sharing probability curves across a chromosome containing a disease gene.  

a) Model: τ = 35.0, penetrances = (.01,.9,.9), p(D) = 0.1, p1= 0.491228, p2 = 0.421059 

b) Model: τ = 35.0, penetrances = (.01,.01,.95), p(D) = 0.1, p1= 0.197846, p2 = 0.770376 

(D represents the disease predisposing allele) 
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3.3.3 Distribution, expectation and variance of the IBD sharing statistics 

Let (z0(tm),z1(tm),z2(tm))i denote the posterior probabilities of sharing 0, 1, and 2 alleles 

IBD at position tm (marker m) by the ith ASP, given all the marker information for family i. If 

marker m is fully informative for the ith ASP, then each zj(tm) equals 0 or 1 such that z0 + z1 + z2 

= 1; i.e. (z0(tm),z1(tm),z2(tm))i = (1,0,0) or (0,1,0) or (0,0,1). In that case, (z0(tm),z1(tm),z2(tm))i is 

multinomial with n = 1 and probabilities (π0(tm),π1(tm),π2(tm)). Because the ASPs are 

independent, (z0(tm),z1(tm),z2(tm))i is independent of (z0(tm),z1(tm),z2(tm))j for i≠j. However, 

(z0(tm),z1(tm),z2(tm))i is not independent of (z0(tl),z1(tl),z2(tl))i for m≠l if markers m and l are 

linked. 

Now note that at a fully informative marker, or if there are no disease genes linked to t, 

then E[zj(t)|Φ] = πj(t). Therefore, we may estimate πj(t) by zj(t). Also, under the assumption of 

fully informative markers, because (z0(tm),z1(tm),z2(tm))i is multinomial with n=1 and 

probabilities (π0(tm),π1(tm),π2(tm)), at any locus for any sib-pair: 

Var[zj(t)] = πj(t)(1-πj(t)) and  

Cov[zj(t),zk(t)] = -πj(t)πk(t). 

 

3.3.4 Estimation of the disease gene location and IBD sharing probabilities at the disease 

gene 

It was shown that πj(t), which is a function of the parameters (p0,p1,p2) and τ, can be 

estimated by the observed (or estimated) zj(t). Since z0+z1+z2=1, (z0,z1,z2) can be fully specified 

by (z1,z2). Similarly, only two of the pj parameters are required to fully specify the IBD sharing 

probabilities at τ. Let η = (p1,p2,τ). Then (π1(t), π2(t))’ = E[z1(t), z2(t)]’, is a function of η. 

Because of the correlation between z1(t) and z2(t) for any sib pair at a given marker, and the 
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dependence of observations across markers within a family, the generalized estimating 

equations approach, which accounts for dependent observations, is an appealing choice of 

analysis method to apply for estimation of η. Note that since C = p1 + 2p2 –1, estimation of η = 

(p1,p2,τ) also provides an estimate of mean excess IBD sharing, C. However, estimation of δ = 

(C,τ) does not provide estimates of the IBD sharing probabilities (p0,p1,p2). 

Now let zi = (z1i1, z2i1, z1i2, z2i2,…, z1iM, z2iM)’ where zjim is the estimated (posterior) 

probability of sharing j alleles IBD by sibpair i at marker m (position tm). Estimates of η = 

(p1,p2,τ) can be obtained by solving the following estimating equations: 

1

1

( ) Cov ( | )( ( )) 0
n

i i
i

z zπ η π η
η

−

=

′
 ∂

Φ − = ∂ 
∑      (3.8) 

where π(η) = E[zi|Φ] = (π1(t1), π2(t1), π1(t2), π2(t2),…, π1(tM), π2(tM))′ . Derivatives of the mean 

functions π1(t) and π2(t) with respect to the parameters are: 

.08| |1

1

( ) tt
e

p
τπ − −∂

=
∂

 

1

2

( )
0

t
p
π∂

=
∂

 

.08| |1
1

( ) 1sgn(.08)
2

tt p e τπ
τ

− −∂  = − ∂  
  where  sgn  





<−
>+

=
τ
τ

t
t

1
1

.04| | .08| |
2

1

( )
2 2

t tt e e
p

τ τπ − − − −∂
= −

∂
 

.04|2

2

( ) tt
e

p
|τπ − −∂

=
∂

 

.04| | .08| |2
2 1 1

( ) 1 1 1 1sgn(.04) sgn(.08)
2 2 4 2

t tt p p e p eτ τπ
τ

− − −∂    = + − + −   ∂    
−     
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where sgn  




<−
>+

=
τ
τ

t
t

1
1

 

If zi = (z1i1, z2i1, z1i2, z2i2,…, z1iM, z2iM)’ denotes all the observed/estimated  IBD sharing 

probabilities for the ith sib pair, then zi is independent of zj. However, (z1im, z2im) is not 

independent of (z1il, z2il) since IBD sharing at linked markers is correlated. Also, the two 

components of the vector (z1im, z2im) are not independent.  

Since the GEE approach provides consistent estimates of the parameters even if the 

correlation structure for the observations zi is misspecified (Liang and Zeger 1986), the 

simplest correlation matrix that could be used would be the identity correlation matrix. This 

correlation model ignores all dependencies in the data. Although this simple working 

correlation would provide consistent estimates of the parameters, incorrect specification of the 

correlation structure may lead to decreased efficiency. One simple adjustment of the 

correlation structure takes into account the correlation between z1im and  z2im for each marker 

(m) and sib pair (i). 

It follows from the discussion in section 3.3.3, that under the assumption of fully 

informative markers, Cov[z1im, z2im] =  -π1(tm)π2(tm). Taking this covariance into account, leads 

to a block diagonal Cov(zi), with 2×2 blocks on the diagonal as follows: 
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1 1 1 1 2 1

1 1 2 1 2 1

1 2 1 2 2 2

1 2 2 2 2 2

1 1

1 2 2

Cov( | )
Var( ) Cov( , ) 0 0 0 0

Cov( , ) Var( ) 0 0 0 0
0 0 Var( ) Cov( , ) 0 0
0 0 Cov( , ) Var( ) 0 0

0 0 0 0 Var( ) Cov( ,
0 0 0 0 Cov( , ) Var(

i

i i i

i i i

i i i

i i i

iM iM iM

iM iM iM

z
z z z

z z z
z z z

z z z

z z
z z z
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 
 


= 



 

L

L

L

L

M M M M O M M

L

L
2 )
)
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

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
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1 1 1 2

1 2 2 2
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(1 ) 0 0 0 0

0 0 (1 ) 0 0
0 0 (1 ) 0 0

0 0 0 0 (1 )
0 0 0 0 (1

M M M M

M M M M

π π π π
π π π π

π π π π
π π π π

π π π π
π π π π

− − 
 − − 
 − −
 = − − 
 
 

− − 
 − − 

L

L

L

L

M M M M O M M

L

L )

 

where πjm = πj(tm). 

 

3.3.5 Implementation and simulations 

 An algorithm to solve the GEE for estimating η (equation 3.8) was implemented in a 

FORTRAN program, and simulations were carried out to study the performance of this 

estimation approach using the same models, samples sizes, and marker maps as in sections 

3.1.3 and 3.2.3. Results based on 1000 replicates are shown in Tables 3.8-3.11. 

One advantage of the new approach is that estimation of η = (p1,p2,τ) also indirectly 

provides estimates of mean excess IBD sharing, C, whereas estimation of δ = (C,τ) does not 

provide estimates of the IBD sharing proportions (p0,p1,p2). Although estimates of C tend to be 

biased up, this bias decreases when the number of markers or number of ASPs in the sample 

are increased. Also, estimates of C are less biased when they are calculated from the IBD 
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sharing proportion estimates (η-parameterization). In large samples (500 ASPs), estimation of 

η = (p1,p2,τ) led to more precise estimates of τ than estimation of δ = (C,τ), as is demonstrated 

by the standard deviation estimates in Tables 3.10 and 3.11. Using the GEE approach to 

estimate η = (p1,p2,τ) led to greater confidence interval under-coverage for the gene location 

(τ) than estimation of δ = (C,τ). However, the difference in CI coverage diminished as the 

sample size was increased.
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3.4  Discussion  

 

In this chapter, several modifications of the GEE method for estimating the location 

of a single disease gene and the mean IBD sharing at this locus in ASPs were developed. It 

was shown that efficiency of the estimators is higher when a more accurate model for the 

covariance of the data is used. Furthermore, we demonstrated that by using the estimated 

probabilities of sharing 0, 1, or 2 alleles IBD at all markers as the observation for each ASP, 

IBD probabilities at the disease locus could be estimated by a GEE approach. 

In section 3.1, alternative ways of specifying and calculating Var(Si
*(tm)|Φ) were 

considered. The two approximations ( )GFˆVar ( ) |mS t Φ  and ( )cˆVar ( ) |mS t Φ  approximate 

Var(Si
*(tm)|Φ) by Var(Si(tm)|Φ). These two methods differ in the way they estimate one of the 

variance parameters, p0 = Pr(S(τ)=0|Φ). ( )GFˆVar ( ) |mS t Φ  is based on setting p0 = 0, while 

 estimates p(cˆVar ( ) |mS t Φ) 0 using data at the nearest marker. In general, if a marker at 

location τ is not linked to the disease, p0 = ¼, and if there is a disease gene at τ, p0 < ¼. At a 

locus tk linked to τ, p0 < p0k < 1/4. Therefore, whereas ( )( ) |mS tGFˆVar Φ  tends to 

underestimate Var(Si(tm)|Φ), an approach based on estimating p0 by IBD sharing at a nearby 

marker will tend to overestimate Var(Si(tm)|Φ). However, using data at the nearest marker to 

estimate p0 should provide improved estimates of Var(Si(tm)|Φ) if a fairly dense marker map 

is used. It should also be noted that for non-fully informative data, Var(Si
*(tm)|Φ) tends to be 

lower than Var(Si(tm)|Φ). Thus, ( )( ) |mS tcˆVar Φ  will tend to overestimate the variance of 

non-fully informative data, but may work well in highly informative data when a fairly dense 
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map is used. ( )GFˆVar ( ) |mS t Φ , which tends to be lower than Var(Si(tm)|Φ), may, in practice, 

approximate the variance of non-fully informative data quite well.  

Empirically estimating variances of S* avoids problems associated with modeling the 

variance of potentially non-fully informative IBD sharing. Simulations demonstrated that 

empirically estimating variances of S* leads to results comparable to those obtained by 

modeling the variance function. This finding has important implications for extensions of the 

GEE approach to localizing more than one disease gene in a region. 

Although modeling the correlations of IBD sharing at linked markers can result in 

more efficient estimators, some computational costs are associated with more complex 

correlation structures. The AR-1 correlation structure that was incorporated into the one-

locus GEE in section 3.2 was not difficult to implement because it has a simple inverse. 

Incorporating the correctly modeled correlation (equations 3.7) into the algorithm would 

require inversion of large matrices at each iteration, and may lead to slower convergence. 

However, more careful modeling of the correlation should be considered if the markers are 

not equally spaced, as the AR-1 correlation would not be as appropriate in that case. 

In section 3.3 it was shown that by using the (estimated) IBD sharing probabilities at 

all markers as the observation for each ASP, the IBD sharing probabilities at the disease gene 

could be estimated in addition to the mean IBD sharing in ASPs at the disease gene. 

Although knowledge of pj=Pr(S(τ)=j|Φ) j = 0,1,2, still does not fully specify the underlying 

genetic model, these parameters may contain more information about the underlying genetic 

model than the single parameter C = E(S(τ)|Φ)-1. Furthermore, for some underlying genetic 

models, by using more of the available data, this new parameterization can lead to improved 

estimation of the disease gene location in large samples.  
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The results presented in this chapter are not extensive, and are not intended for 

drawing comprehensive conclusions. Rather, in this chapter, several ideas were introduced, 

and small simulation studies were carried out to provide some indication about general 

properties of estimators resulting from certain modifications of the methods. The algorithms 

used for these simulations were not optimized. For instance, derivatives of the mean function 

with respect to the parameter τ are discontinuous, and no corrections for this were introduced 

into the algorithms for estimating η = (p1,p2,τ) in section 3.3. Further improvements of some 

of the methods discussed in this chapter could be achieved through more careful design of 

algorithms for solving the estimating equations. Nevertheless, these initial implementations 

did provide useful results allowing a general comparison of the effect of certain features of 

the one-locus GEE on the performance of the estimation procedure. 

 



 

 

Chapter 4:  

A Two-Locus Model for Estimation of 

Locations of Two Linked Disease Genes 

 

 

Extending the work of Liang et al. (2001a), in this chapter we develop a model for the 

simultaneous localization of two susceptibility genes in one chromosomal region. We first 

derive an expression for mean allele sharing in affected sib pairs at each point across a 

chromosomal segment containing two susceptibility genes. With this expression for the mean 

allele sharing, generalized estimating equations (GEE) modeling can be used to localize both 

disease genes simultaneously. We develop an algorithm that uses identical-by-descent (IBD) 

sharing of marker alleles in affected sib pairs to estimate a set of parameters (δ2) by solving 

the estimating equations: 

12 2
2 2

1 2

( )
Cov ( | )( ( )) 0

n

i i
i

S S
µ δ

µ δ
δ

−

=

′
 ∂

Φ − = ∂ 
∑ ,     (4.1) 

68 
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where n is the number of families, Si is the IBD sharing at all the markers for all the ASPs 

from the ith family, µ2(δ2) = E(Si |Φ), and Φ denotes ascertainment of an affected sib pair.  

In subsequent sections, we derive the GEE method for estimating the locations of two 

linked disease genes. We first describe a model for IBD allele sharing at any position in a 

region containing two linked disease genes (section 4.1). Then, in section 4.2, we show how 

this model can be used in a GEE framework to estimate a set of parameters which includes 

the two gene locations. We conclude this chapter with a description of the implementation of 

this method (section 4.3).  

 

4.1 A Model for Mean IBD Allele Sharing at a Locus Linked to Two 

Disease Genes 

 

4.1.1 Expectation of IBD sharing at a locus t linked to two disease genes in terms of 

expected allele sharing at the two disease gene loci 

Let τ1 and τ2 be the true locations of two linked trait loci (τ1<τ2), S(t) be the number 

of alleles (0, 1, or 2) shared IBD by an ASP at locus t, and Φ denote the event that both sibs 

are affected. Define C1 = E(S(τ1)|Φ) - 1 and C2 = E(S(τ2)|Φ) - 1. (Calculation of these 

expectations for any two-locus model will be explained in section 5.2.2). Also let 
1,1 τtΨ=Ψ , 

, and 
2,2 τtΨ=Ψ

1 23 ,τ τΨ = Ψ

2

 where Ψ is defined in the same way as in section 2.3, i.e. 

2 (1 )θ θ−Ψ = + , θ being the recombination fraction between two loci. Then under the 

assumptions of random mating, linkage equilibrium, generalized single ascertainment 

(Hodge and Vieland 1996), no interference, and equality of recombination fractions for males 
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and females,  for any location t in a region with two linked disease genes can be 

derived as follows (further details are provided in appendix A). 

( ( ) | )E S t Φ

[ ]=Φ Pr|) St

( )
2 2

0 0
|

k l= =

= Φ = ∑∑

( ) | (S t j S= =

( ) | (S t j S=

jtS = |)(Pr

( ) ∑∑
= =

=Φ
2

0

2

0
Pr

k l

First note that  

( ) ( )Φ=+Φ= |2)(Pr2|1)(( tStSE  

Also, 

( 1 2Pr ( ) Pr ( ) , ( ) , ( ) |S t j S t j S k S lτ τ= = = Φ)

)= Φ

)Φ

 

( ) (
2 2

1 2 1 2
0 0

Pr ) , ( ) , Pr ( ) , ( ) |
k l

k S l S k S lτ τ τ τ
= =

= = Φ =∑∑  

( ) (
2 2

1 2 1 2
0 0

Pr ) , ( ) Pr ( ) , ( ) |
k l

k S l S k S lτ τ τ τ
= =

= = = = =∑∑  

[assuming there are two linked genes at τ1 and τ2 and no other genes in the region, and 

assuming linkage equilibrium between markers and the trait loci so that genotypes at the trait 

loci and marker IBD sharing are independent given IBD sharing at the trait loci] 

 

Case I: t<τ1<τ2 

For t<τ1<τ2: ( ) ( )kSjtSlSkS ===== )(|)(Pr)(,)( 121 τττ   under the 

assumption of no interference, so that IBD sharing at consecutive loci behaves in a first-order 

Markov manner. 

Therefore, 

( ) ( Φ===== 211 |)(,)(Pr)(|)(|)(Pr lSkSkSjtSjtS τττ )

)

 

( ) (∑ ∑
= =

Φ=====
2

0

2

0
211 |)(,)(Pr)(|)(Pr

k l
lSkSkSjtS τττ  
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( ) (∑
=

Φ====
2

0
11 |)(Pr)(|)(Pr

k
kSkSjtS ττ )  

As the above formula shows, in order to calculate the probabilities Pr(S(t)=1|Φ) and 

Pr(S(t)=2|Φ), we need conditional probabilities of a sib pair sharing j alleles IBD at t given 

that they share k alleles IBD at τ1. The matrix of conditional sharing probabilities in sibpairs 

Pr(SA=i|SB=j) i,j=0,1,2 for two linked loci A and B was given by Haseman and Elston (1972) 

and was reproduced in Table 3.7. Note that we have assumed equal recombination fractions 

in males and females so that θm = θf = θ  and Ψ = θ2 + (1-θ)2. Using the conditional IBD 

sharing probabilities from Table 3.7, after simplification, it can be shown that: 

[ ] ( )1 1( ) | 1 2 1E S t CΦ = + Ψ −  

where C1=E[S(τ1)|Φ]-1. 

 

Case II: τ1<τ2<t 

For τ1<τ2<t: ( ) ( )lSjtSlSkSjtS ====== )(|)(Pr)(,)(|)(Pr 221 τττ . 

Now similarly to case I, it can be shown that 

[ ] ( )2 2( ) | 1 2 1E S t CΦ = + Ψ −  

where C2=E[S(τ2)|Φ]-1 

 

Case III: τ1<t<τ2 

For τ1<t<τ2: 

( ) ( )
( )lSkS

lSkSjtSlSkSjtS
==

===
====

)(,)(Pr
)(,)(,)(Pr)(,)(|)(Pr

21

21
21 ττ

ττ
ττ  
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( ) ( )
( ) ( )

2 1 1

2 1 1

Pr ( ) | ( ) , ( ) Pr ( ) , ( )
Pr ( ) | ( ) Pr ( )

S l S k S t j S k S t
S l S k S k

τ τ τ
τ τ τ

= = = = =
=

= = =

j
 

( ) ( ) ( )
( ) ( )

2 1

2 1 1

Pr ( ) | ( ) Pr ( ) | ( ) Pr ( )
Pr ( ) | ( ) Pr ( )

S l S t j S t j S k S k
S l S k S k

τ τ
τ τ τ

= = = = =
=

= = =
1τ

)

 

( ) (
( )kSlS

kSjtSjtSlS
==

====
=

)(|)(Pr
)(|)(Pr)(|)(Pr

12

12

ττ
ττ  

under the assumption of no interference. 

Therefore, 

( ) ( )( ( ) | ) Pr ( ) 1 | 2 Pr ( ) 2 |E S t S t S tΦ = = Φ + = Φ   

( ) (

( ) (

2 2

1 2 1 2
0 0

2 2

1 2 1 2
0 0

Pr ( ) , ( ) | Pr ( ) 1 | ( ) , ( )

2 Pr ( ) , ( ) | Pr ( ) 2 | ( ) , ( )

k l

k l

S k S l S t S k S l

S k S l S t S k S l

τ τ τ τ

τ τ τ τ

= =

= =

= = = Φ = =

= = Φ = = =

∑∑

∑∑

)

)

= +
 

( ) ( )
( )

( ) (
( )

)

2 2
2 1

0 0 2 1

2 2
2 1

0 0 2 1

Pr ( ) | ( ) 1 Pr ( ) 1 | ( )
Pr ( ) | ( )

Pr ( ) | ( ) 2 Pr ( ) 2 | ( )
2

Pr ( ) | ( )

kl
k l

kl
k l

S l S t S t S k
p

S l S k

S l S t S t S k
p

S l S k

τ τ
τ τ

τ τ
τ τ

= =

= =

= = = =
= +

= =

= = = =

= =

∑∑

∑∑
 

where . ( )1 2Pr ( ) , ( ) |klp S k S lτ τ= = = Φ

By substituting in expressions for the conditional sharing probabilities from Table 3.7, and 

using the properties:  

2 2

0 0
1kl

k l
p

= =

=∑∑ , 

( ) ( )

( ) (

1 1 1

2 2

1 2 1 2
0 0

2 2

1 2
0 0

( ( ) | ) Pr ( ) 1 | 2Pr ( ) 2 |

Pr ( ) 1, ( ) | 2 Pr ( ) 2, ( ) |

2

l l

l l
l l

E S S S

S S l S S l

p p

τ τ τ

τ τ τ τ
= =

= =

Φ = = Φ + = Φ

= = = Φ + = = Φ

= +

∑ ∑

∑ ∑

)  
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and  

( ) ( )

( ) (

2 2 2

2 2

1 2 1 2
0 0

2 2

1 2
0 0

( ( ) | ) Pr ( ) 1 | 2Pr ( ) 2 |

Pr ( ) , ( ) 1 | 2 Pr ( ) , ( ) 2 |

2

k k

k k
k k

E S S S

S k S S k S

p p

τ τ τ

τ τ τ τ
= =

= =

Φ = = Φ + = Φ

= = = Φ + = =

= +

∑ ∑

∑ ∑

)Φ  

it can be shown that: 

( )( )
( )( )
( )( )

( )( )
( ) (
( )(

)
)

2 2 1
1

1 2 1 2 1 2 1 2

1 1 2 1 2
2

1 2 1 2 1 2 1 2 1 2

1 2 1
( ( ) | ) 1 ( ( ) | )

1 2 2

1 2 1 2 1 2 1
( ( ) | )

1 2 2 1 2 1 2

E S t E S

E S

τ

τ

Ψ Ψ − Ψ −
Φ = + Φ

− Ψ − Ψ + Ψ Ψ Ψ Ψ − Ψ − Ψ

Ψ Ψ − Ψ − Ψ − + Ψ −
+ Φ

− Ψ − Ψ + Ψ Ψ Ψ Ψ − Ψ − Ψ + Ψ − Ψ −1
−

 

( )( )
( )( )

( )( )
( )( )

2 2 1
1

1 2 1 2 1 2 1 2

1 1 2
2

1 2 1 2 1 2 1 2

1 2 1
1

1 2 2

1 2 1
1 2 2

C

C

Ψ Ψ − Ψ −
= +

− Ψ − Ψ + Ψ Ψ Ψ Ψ − Ψ − Ψ

Ψ Ψ − Ψ −
+

− Ψ − Ψ + Ψ Ψ Ψ Ψ − Ψ − Ψ

( ) ( )
( )

 
( ) ( )

( )

2 2
1 2 2 1

1 22 2
3 3

2 1 1 2 1 2 1 1 2 1
1

1 2 1 1 2 1
C C

  Ψ − − Ψ − Ψ − − Ψ −  = + +
− Ψ − − Ψ −


 . 

 

Thus, it has been shown that in a region containing two linked disease genes: 

( )

( ) ( )
( )

( ) ( )
( )

( )

1 1 1

2 2
1 2 2 1

1 22 2
3 3

2 2 1 2

( ( ) | )

1 2 1 for 

2 1 1 2 1 2 1 1 2 1
1 f

1 2 1 1 2 1

1 2 1 for 

E S t

C t

C C

C t

2

1 2or t

τ τ

τ τ

τ τ

Φ =

 + Ψ − ⋅ < <


    Ψ − − Ψ − Ψ − − Ψ −    + +
 − Ψ − − Ψ −


 + Ψ − ⋅ < <

< <
        (4.2) 
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As in the single-locus model derived by Liang et al. (2001a), the above formula for 

E(S(t)|Φ) is robust in the sense that it holds regardless of the mode of inheritance. The 

parameters C1 and C2 depend on the underlying genetic mechanism, and E(S(t)|Φ) depends 

on the genetic model only through the parameters C1 and C2 and the position of t relative to 

τ1 and τ2. No assumptions are made about the existence of other unlinked trait genes. 

 Note that when t is not linked to either of the two disease genes, then 

, , and E(S(t)|Φ) = 1 as expected under the null hypothesis 

of no linkage to any disease genes. Also, if τ

5.0
1,1 =Ψ=Ψ τt

2,2 =Ψ=Ψ τt

5.0
2,2 =Ψ=Ψ τt

5.0
1 23 ,τ τΨ = Ψ

1 and τ2 are not linked, and t is linked only to τ1, 

then , , and 0.5= ( ) 11 121)|)(( CtSE ⋅−Ψ+=Φ  for all t. That 

is, the two-locus model reduces to the one-locus model of Liang et al. (2001a) in this special 

case. 

Figure 4.1 shows the E(S(t)|Φ) curve for a chromosomal segment containing two 

disease genes under two different genetic models specified by the matrix of joint penetrances 

and allelic frequencies. One is a dominant by dominant epistatic model and the other is a 

codominant by dominant additive model. Haldane’s mapping function was used to translate 

recombination fraction to genetic map distance [ ( ) 2/1 ||02.0
,

21

21

tt
tt e −−−=θ ], and thus re-write 

µ2(t) = E(S(t)|Φ) in terms of t and δ2=(C1,C2,τ1,τ2) rather than in terms of C1, C2, and Ψ’s or 

θ’s. We use µ2(t;δ2) to denote this new form of the two-locus model mean function for all t.  
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Figure 4.1: Plots of E[S(t)|Φ] for two different genetic models with two linked disease genes. 

A) A dominant*dominant epistatic model given 

by: 

Penetrances:  Locus 1 
  aa aA AA 
 bb .05 .475 .475 
Locus 2 bB .475 .90 .90 
 BB .475 .90 .90 
Allele Frequencies: Pr(A) = Pr(B) = 0.015. 

Positions of two disease loci: τ1 = 15cM, τ2 = 

35cM 

B) A codominant*dominant additive model 

given by  

Penetrances:  Locus 1 
  aa aA AA 
 bb .05 .475 .475 
Locus 2 bB .225 .65 .65 
 BB .475 .90 .90 
Allele Frequencies: Pr(A) = Pr(B) = 0.015. 

Positions of two disease loci: τ1 = 15cM, τ2 = 

35cM 
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4.1.2 Expectation of IBD sharing at a locus linked to two disease genes in terms of an 

alternative set of parameters 

Consider the re-parameterization: 

2 1.04( )* *
1 1 2C C C e τ τ− −= +  and C C 2 1.04( )* *

2 2 1C e τ τ− −= + . 

That is: 

2 1

2 1

.04( )
* 1 2
1 .08( )1

C C e
C

e

τ τ

τ τ

− −

− −

−
=

−
 and 

2 1

2 1

.04( )
* 2 1
2 .08( )1

C C e
e

C
τ τ

τ τ

− −

− −

−
=

−
. 

Then for t<τ1<τ2:  

1 2 1 1.04( ) .04( ) .04( ) .04( )* * * * * *
2 2 1 2 1 2( ; ) 1 1t tt e C C e C e C eτ τ τ τµ δ − − − − − − − − = + + = + + 

2 tτ

1t

, 

for τ1<τ2<t:  

2 2 1 2.04( ) .04( ) .04( ) .04( )* * * * * *
2 2 2 1 2 1( ; ) 1 1t tt e C C e C e C eτ τ τ τ τµ δ − − − − − − − − = + + = + +  , 

and for τ1<t<τ2: 

1 2 2 1
2 1

2 1

2 1 2 1
2 1

2 1

.04( ) .04( ) .04( )
.04( )* * * *

2 2 1 2.08( )

.04( ) .04( ) .04( )
.04( )* *

2 1.08( )

( ; ) 1
1

1

t t

t t

e et C
e

e e C C e
e

τ τ τ τ
τ τ

τ τ

τ τ τ τ
τ τ

τ τ

µ δ
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− − − − − −
− −

− −

− C e = + + + −
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− −
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−

1 2 1

2 1

.04( ) .04( )

.08( )1

t

e

τ τ τ

τ τ

− − −
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 
 − 

 

1 2.04( ) .04( )* *
1 21 t tC e C eτ τ− − − −= + +  

Therefore, 

1.04| | .04| |* *
2 1( ) ( ( ) | ) 1 tt E S t C e C e 2*

2
tτ τµ − − −= Φ = + + −     for all t. 

Note that if  then *
1 0C = 2.04| |* *

2 1 2 2 2( ) ( ; , ) ( ( ) | ) 1 tt t C E S t C e τµ µ τ − −= = Φ = + . 
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Similarly, if C  then *
2 0= 1.04| |* *

2 1 1 1 1( ) ( ; , ) ( ( ) | ) 1 tt t C E S t C e τµ µ τ − −= = Φ = + . 

That is, the two-locus model parameterized by δ2
*=(C1

*,C2
*,τ1,τ2) reduces to the one-locus 

model of Liang et al. (2001a) if either of the C* parameters equals 0. This implies that each 

C* parameter represents the excess sharing at a location due to the gene at that location, and 

can thus be seen as the “effect size” of that particular gene; whereas the C parameters (C1 and 

C2) represent the mean excess IBD sharing at the location of one of the disease genes, which 

is increased by effects due to both disease genes. 

Although the interpretation of C1 and C2 is clear (i.e. one less than the expected IBD 

sharing at the locations of the two disease genes, τ1 and τ2, respectively), interpretation of C1
* 

 

 

Model D (cM) C1 C2 C1
* C2

* 

Penetrance Matrix Pr(A), Pr(B)      

 aa aA AA 0.2, 0.2 10000 0.083 0.083 0.083 0.083 

bb 0.0 0.1 0.2  100 0.085 0.085 0.083 0.083 

bB 0.1 0.2 0.3  50 0.095 0.095 0.083 0.083 

BB 0.2 0.3 0.4  30 0.108 0.108 0.083 0.083 

     10 0.139 0.139 0.083 0.083 

     1 0.163 0.163 0.083 0.083 

 aa aA AA 0.1,0.1 10000 0.336 0.336 0.336 0.336 

bb .001 .001 .001  100 0.341 0.341 0.335 0.335 

bB .001 .200 .200  50 0.371 0.371 0.327 0.327 

BB .001 .200 .200  30 0.411 0.411 0.316 0.316 

     10 0.491 0.491 0.294 0.294 

     1 0.548 0.548 0.279 0.279 

 

Table 4.1: C1
* and C2

* for two genetic models.  

D = distance between two genes, in centiMorgans 
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and C2
* is not as obvious. Empirical results suggest that when the two-locus disease model is 

additive on the penetrance scale (see examples in Table 4.1), C1
* and C2

* equal the excess 

IBD sharing at the two disease genes under a model with the same penetrance matrix and 

allele frequencies, but with the two disease genes unlinked. In this case, C1
* and C2

* can be 

interpreted as effects on IBD sharing due to gene 1 and gene 2, respectively. For other non-

additive models, interpretation of C1
* and C2

* is not as straightforward. 

 

4.1.3 Variance of IBD sharing at a locus linked to two disease genes 

Details of the derivations of variance functions presented in this section are shown in 

the appendix. The variances of IBD sharing values at the two disease loci are: 

( ) ( )2
1 1 1 1Var ( ) | 2 Pr ( ) 0 |S C C Sτ τΦ = − + = Φ  and 

( ) ( )2
2 2 2 2Var ( ) | 2 Pr ( ) 0 |S C C Sτ τΦ = − + = Φ . 

At fully informative markers, the variance at a marker t depends on the location of t in 

relation to the two disease loci. 

For t < τ1 < τ2: ( ) ( ) ( )
1, 1Var ( ) | 2 1 Var ( ) | 0.5 0.5tS t Sτ τΦ = Ψ − Φ − +   . 

For τ1 < τ2 < t: ( ) ( ) ( )
2, 2Var ( ) | 2 1 Var ( ) | 0.5 0.5tS t Sτ τΦ = Ψ − Φ − +   . 

For τ1 < t < τ2: . ( ) ( ) ( ) (2
Var ( ) | ( ) | ( ) | 2Pr ( ) 2 |S t E S t E S t S tΦ = Φ − Φ + = Φ   )

E(S(t)|Φ) is given in equation 4.3, and is a function of C1, C2, τ1, and τ2. Pr(S(t)=2|Φ) is a 

function of the distances between t, τ1 and τ2, as well as the nine joint sharing probabilities pij 

= Pr(S(τ1)=i,S(τ2)=j|Φ) i,j=0,1,2 (
2 2

0 0

1ij
i j

p
= =

=∑∑ ) which depend on the disease model through 
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penetrances and disease allele frequencies at the disease loci, and on the distance between τ1 

and τ2. It can be shown that: 

( ) ( ) ( ) ( ) ( )
( )

( )
( )

( )( )
( )

( ) ( )
( )

( )
( )

( )
( )

( )
( )

2 2 2 2 2
1 2 00 1 2 2 01 1 2

2 2
3 33 3

2 2
1 1 2 10 1 1 2 2 11 1 1 2 12

3 3 3 3 3 3

22 2 2 2
1 2 20 1 2 2 21 1 2 22

2 2
3 3 33

1 1 1 2 1 1
Pr ( ) 2 |

2 1 1

1 1 1 2 1 1
1 1 2 1 1

1 2 1
2 11

02p p p
S t

p p

p p p

−Ψ −Ψ −Ψ Ψ −Ψ −Ψ Ψ
= Φ = + +

Ψ −ΨΨ −Ψ

Ψ −Ψ −Ψ Ψ −Ψ Ψ −Ψ Ψ −Ψ Ψ
+ + +

Ψ −Ψ − Ψ −Ψ Ψ −Ψ

Ψ −Ψ Ψ Ψ −Ψ Ψ Ψ
+ + +

Ψ −Ψ Ψ−Ψ

p

 

 

4.2 Estimation of the Locations of Two Trait Loci 

 
4.2.1 Parameter estimation 

In the two-locus model, µ2(t;δ2) is characterized parametrically by four parameters: 

C1, C2, τ1, and τ2. If a sample of n independent ASPs were collected, and IBD sharing for all 

ASPs at all marker loci were known, one could obtain estimates of the parameters δ2 = 

(C1,C2,τ1,τ2) by solving the GEE: 

12 2
2 2

1 2

( )
Cov ( | )( ( )) 0

n

i i
i

S S
µ δ

µ δ
δ

−

=

′
 ∂

Φ − = ∂ 
∑       

where Si = (Si(t1),…,Si(tM))′ = (Si1,…,SiM)′ and µ2(δ2) = (µ2(t1;δ 2),…, µ2(tM;δ 2))′. 

If there are two disease genes in the region, solving these equations for δ2 should provide 

consistent estimates of the parameters and the variances of the estimates since it has been 

shown that under the two-locus model E[Si]  = µ2(δ2) for ASPs.  

However, in most cases, exact IBD sharing is not known for all ASPs at all markers. 

Rather, estimated IBD sharing can be obtained, for example, using the multipoint methods 
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incorporated in the software program GENEHUNTER (Kruglyak et al. 1996). These imputed 

IBD statistics, Si
*(tm), use the multipoint marker information, allele frequencies, and the 

assumed recombination fractions between markers, and estimate Si(tm) by considering all 

possible IBD configurations consistent with the observed marker information: 

2
*

0
0

( ) Pr( ( ) | ;H )i m i m i
l

S t l S t l Y
=

= ⋅ =∑ . 

Following the methods of Liang et al. (2001a) for the single-locus-model, estimates 

of the two-locus-model parameters δ2 = (C1,C2,τ1,τ2) can be obtained by substituting the 

estimated IBD allele sharing Si
* = (Si

*(t1),…, Si
*(tM))′ = (Si1

*,Si2
*,…, SiM

*)′ for Si in the GEE 

shown above and solving the resulting equations: 

1 *2 2
2 2

1 2
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n

i i
i

S
µ δ

µ δ
δ

−

=

′
 ∂

− ∂ 
∑ V 0=       (4.4) 

where Vi is the working covariance matrix for the data, Si
*. In the next two subsections, the 

mean and covariance functions required to solve the GEE, E(Si
*|Φ) and Cov(Si

*|Φ), are 

described. 

 

4.2.2 Specification of E[Si*|Φ] 

E[Si|Φ] = µ2(δ2) was derived in section 4.1 (equation 4.3). Parameter estimates and 

their estimated precision will be valid as long as E[Si
*|Φ] = µ2(δ2). Assuming fully 

informative markers, we have E[Si
*|Φ]  = E[Si|Φ] = µ2(δ2) since at any fully informative 

marker m, Sim
* = Sim.  At non-fully informative markers linked to one or more disease genes, 

Sim
* will tend to underestimate Sim, because Sim

* = E[Sim|Yi,H0] is determined under the null 

hypothesis of no linkage to any disease genes. That is, Sim
* is the expected sharing at marker 

 



CHAPTER 4. ESTIMATION OF LOCATIONS OF TWO LINKED DISEASE GENES 81

m, conditional on all the marker data, computed without taking the affected status of the sib 

pairs into account. However, when the markers are highly (if not fully) informative, the 

expression will still hold approximately: E[Si
*|Φ]  ≈ µ2(δ2). 

 

4.2.3 Specification of Cov[Si*|Φ] 

When markers are fully informative for the ith family, the complete-data vector Si can 

be used in the GEE (equation 4.1). The diagonal elements of the complete-data covariance 

matrix Cov(Si|Φ), that is Var(Si(tm)|Φ), were derived in section 4.1.3. When marker IBD 

sharing is not known with certainty because markers are not fully informative, marker IBD 

sharing can be determined probabilistically. The estimated IBD sharing, Si
*, is then used in 

place of the true IBD sharing, Si. As was discussed in chapter 3 for the one-locus model, if 

Cov(Si
*|Φ) is unknown, we may substitute it with the working covariance matrix, Vi = 

Ai
1/2R0i(α)Ai

1/2 where Ai is a M × M diagonal matrix of variances of Sim
*, and R0i(α) is the M 

× M working correlation matrix for Si
* fully specified by a vector of unknown parameters, α.  

In our implementation of the two-locus model GEE, we assume an independence 

correlation structure by setting R0i(α) equal to the identity matrix. That is, we assume that the 

correlation of IBD sharing at any two markers for the same sib pair is 0, and correlation of 

IBD sharing across sibpairs from the same family is also 0, and rely on the empirical 

component of the robust sandwich estimator to capture the correlation information. 

Therefore, Vi is a M×M diagonal matrix with Var(Si
*(tm)|Φ), m=1,…,M on the diagonal.  

Var(Si
*(tm)|Φ) could be approximated by Var(Si(tm)|Φ). In the one-locus model 

Var(Si(tm)|Φ) is parametrized by C, τ, and one additional parameter, Pr(S(τ)=0|Φ). In the 

original version of Genefinder, Liang et al. (2001a) implemented an approximation such that 
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Var(Si(tm)|Φ) was parameterized by C and τ only. Alternatively, as discussed in chapter 3 

(section 3.1), Var(Si
*(tm)|Φ) can be estimated empirically, for example by: 

( )2* *

1

1ˆVar( ( ) | ) ( ) ( )
1

n

i m i m m
i

S t S t S t
n =

Φ = −
− ∑ * , where 

n

tS
tS

n

i
mi

m

∑
== 1

*

*
)(

)(  ,  

n = number of ASPs. 

Our simulations (section 3.1.4) have shown that for a range of simulation settings considered, 

empirically estimating variances of S* at the markers led to results comparable to those 

obtained by modeling the variance using the approximate variance function implemented in 

Genefinder. 

Based on the results for the one-locus model, we concluded that using empirical 

variances is likely to provide good estimates, and thus, in our implementation of the two-

locus-model GEE, we also empirically estimate Var(Si
*(tm)|Φ) m=1,…,M. For the two-locus 

model there is a stronger motivation for using empirical rather than model-based estimates of 

Var(Si
*(tm)|Φ). As is shown in section 4.1.3, Var(Si(tm)|Φ) is a function of the unknown joint 

sharing probabilities Pr(S(τ1)=k,S(τ2)=l|Φ) (k=0,1,2; l=0,1,2) and the genetic distance 

between t and the two disease loci. Thus, Var(Si(tm)|Φ) is a function of up to eight new 

parameters that do not contribute to the mean function and are therefore not estimated by the 

GEE (equation 4.1). These parameters could themselves be estimated by a GEE procedure 

(e.g. Prentice 1988). However, because of the large number of additional parameters that 

would need to be estimated, combined with the evidence about the adequacy of the empirical 

variances from the one-locus model, we decided not to model the variances parametrically, 

but rather estimate them empirically. We suspect that this approach may become problematic 

if a very large number of markers is used in the analysis. In that case, more Var(Si
*(tm)|Φ) 
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values would need to be estimated, which could lead to instability of estimates and their 

standard errors. 

Under mild regularity conditions, a solution to the generalized estimating equations 

provides consistent estimates of the parameters δ2 even when the working covariance matrix 

for the data, Vi, is incorrectly specified (Liang and Zeger 1986). Furthermore, the robust 

sandwich estimator (Huber 1967; White 1982; Liang and Zeger 1986) gives consistent 

estimates of the variances of parameter estimates even when the correlation between 

observations is not modeled correctly. In this implementation, we assume an independence 

correlation structure and empirically estimate the diagonal elements of the covariance matrix, 

Var(Si
*(tm)|Φ). 

 

4.2.4 Estimation of the covariance of parameter estimates and construction of 

confidence intervals 

By large-sample quasi-likelihood theory, solving the generalized estimating equations 

results in consistent and asymptotically normally distributed parameter estimates (Liang and 

Zeger 1986). Furthermore, although in small samples downward bias of standard errors 

obtained from the robust variance estimator has been observed in a number of situations, 

(e.g. Pan 2001), in large samples variances (and covariances) of the estimates are consistently 

estimated by the robust (sandwich) variance-covariance matrix (Liang and Zeger 1986): 

1 1
1 1 * * 1

2 2 2 2 2
1 1 1

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ( ) ( ( ))( ( ))
K K K

T T T T
R i i i i i i i i i i i i

i i i
S Sδ µ δ µ δ

− −
− − −

= = =

     
= − −    
     
∑ ∑ ∑Cov D V D D V V D D V D1−  

where 2 2

2

ˆ( )ˆ
i

µ δ
δ

∂
=

∂
D ˆ

iV and  is the estimated working covariance matrix described in section 

4.2.3. 
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Thus, asymptotic 100(1-2α)% confidence intervals (CIs) for the location estimates 

can be constructed as: 

estimate ± zα⋅se 

where zα is the 100(1-α)th percentile of the standard normal distribution, and se is the robust 

estimate of the standard error of the parameter estimate. 

As with the single-locus model, estimates of the disease gene locations, τ1 and τ2, are 

of primary interest. Values of C1 and C2 depend on the underlying genetic model (penetrance 

matrix and allele frequencies at the two disease genes) and the distance between the disease 

genes. Although estimates of C1 and C2 are of limited use in the sense that knowledge of their 

values does not identify the underlying genetic model, their magnitude influences the 

accuracy and precision with which we can estimate the disease gene locations. As Liang et 

al. (2001a) noted for the one-locus model, information for localizing disease genes is thus 

reduced in the presence of oligogenic inheritance and/or genetic heterogeneity. 

 

4.3 Implementation and Performance of the Algorithm (Numerical 

Issues/Convergence Problems) 

 

We implemented a solution to the two-locus model GEE in a FORTRAN program 

with a modified fisher’s scoring algorithm similar to the one used in GENEFINDER (Liang 

et al. 2001a).  We obtain estimates of the parameters in our mean model by solving the GEE 

(equation 4.4). Parameter estimates are obtained by an iterative procedure: 
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2, 1 2, 1
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beginning with some starting values δ2,0. For a scalar parameter δ, we say that the algorithm 

has converged to a solution providing an estimate when δj=δj-1+/-ε for some small ε. For 

vector valued parameters of dimension p>1, there are many ways to define convergence, all 

of which conclude convergence when the previous estimate of δ is sufficiently close to the 

current estimate in some sense. We consider the algorithm to have converged when each of 

the p parameters changes during the last iteration by a value smaller than a preset threshold 

(0.001 for C1 and C2, and 0.005 for τ1 and τ2)  

The algorithms for both the one-locus model and the two-locus model fail to 

converge for some data sets. This is not an unusual problem. For instance, in an application 

of GEEs to clustered polytomous data, O’Hara Hines (1998) reported that the algorithm 

sometimes failed to converge, particularly when more complex within-cluster correlation 

structures were assumed for the data. Lipsitz et al. (1994) also discussed such convergence 

problems, especially for small sample sizes. In our application of the GEE, the convergence 

rates were quite dependent on the underlying genetic model. Although we assumed the very 

simple independence correlation structure, the algorithm had difficulties converging in a 

substantial proportion of randomly generated data sets under certain genetic models, while 

for other models convergent solutions could be obtained in nearly 100% of generated data 

sets. Generally, convergence rates improved as the effect size of the genes (C parameters), 

distance between the two genes, or the number of affected sib pairs increased.  

Different types of non-convergence occurred, including situations where the 

parameter estimates “bounced” around in a relatively small range of values, one or more of 

 



CHAPTER 4. ESTIMATION OF LOCATIONS OF TWO LINKED DISEASE GENES 86

the parameters went out of bounds, or the parameters oscillated between two or more sets of 

values in a periodic manner. This type of “periodic convergence” to two points near the real 

solution appeared to be most frequent. In addition, in some data sets a solution was achieved 

through convergence of the algorithm, however, variance estimates for some parameters 

were not computed because the information matrix at the solution was (nearly) singular. 

In order to assess properties of estimators such as bias, it is important to obtain a 

solution for a large proportion of generated data sets. Therefore, we implemented two 

strategies to obtain approximate solutions in data sets for which convergence was not initially 

attained. First of all, if a solution was not attained within a prescribed number of iterations, 

the “step size” was reduced, i.e. the procedure continues with: 

2, 1 2, 1

1

1 12 2 2 2 2 2
2, 2, 1 2 2
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The step size is further reduced a number of times if necessary. If the algorithm still fails to 

converge following the step-size reduction, a grid search is performed in the vicinity of the 

last few δj’s if they do not span a very large area. When the grid-search is performed, the 

solution is chosen to be the set of parameters (among those considered) which gives the 

smallest sum of absolute values of the p components of the quasi-score vector. We found that 

these two simple procedures can yield estimates in a large proportion of “non-convergent” 

data sets. Furthermore, properties of these estimates seem comparable to those obtained by 

convergence without resorting to step-size reduction or grid-search, when it is possible. 

 

 



 

 
Chapter 5  

Assessment of the Estimation Method 

by Simulation 

 

 

The new method to localize two linked trait loci described in chapter 4 was evaluated 

by simulation. The estimation method was first applied to two simulated data sets in which 

two linked loci influenced the probability of disease. These simulated examples, described in 

section 5.1, provide a more thorough view of individual results, such as visual comparison of 

NPL plots and plots of curves given by the GEE solutions. We then performed a more 

extensive simulation study to evaluate properties of the estimates, including bias of 

parameter estimators and their standard errors, efficiency, and confidence interval coverage 

for a range of genetic models and linkage study designs. In section 5.2 we describe the 

simulation study methods, in particular the generation of fully informative IBD sharing data 

for a sample of affected sib-pairs. In section 5.3 we report the results of several sets of 

simulations designed to investigate factors that influence the behaviour of the two-locus GEE 

estimators. 

87 



CHAPTER 5. ASSESSMENT OF THE ESTIMATION METHOD BY SIMULATION 88

5.1 Illustration of Localization of Two Linked Disease Genes through 

Simulated Examples 

 

5.1.1 Simulated example 1: Data Generated with GASP 

For the first simulated example, quantitative trait data were generated using GASP 

(Wilson et al. 1996) and dichotomized using a threshold to produce disease status. The 

quantitative trait was influenced jointly by two linked loci. Both disease loci were assumed to 

be biallelic, with allele frequencies of 0.7 and 0.3. A liability threshold model was used, with 

each disease locus contributing 35% of the quantitative trait variability. The quantitative trait 

had a standard normal distribution, and a threshold of 1.28 was used to define individuals as 

affected. Genotypes at 15 linked markers were generated, covering about 30cM, assuming 

two trait loci at approximately 9.9 and 21.8 cM. Nuclear families with at least two affected 

sibs were selected for analysis. In total, there were 37 nuclear families in the analyzed 

sample, with 41 ASPs. GENEHUNTER 2.0 (Kruglyak et al. 1996) was used to compute 

estimates of IBD sharing for all ASPs and the NPL statistic at all markers (see Figure 5.1a). 

The GEE approaches described were then used to estimate positions of the disease loci and 

the expected allele sharing in ASPs at the disease loci assuming one-locus and two-locus 

models. 

By fitting a one-locus model (Figure 5.1b, pg 91, solid line), τ was estimated to be 

15.97 with a standard error of 4.59 (95% CI for τ: 7.0-25.0). C was estimated at 0.28 with a 

standard error of 0.15. By fitting a two-locus model (Figure 5.1b, pg 91, dashed line), τ1 and 

τ2 were estimated to be 8.20 (s.e. 3.28; 95% CI 1.8-14.6) and 24.35 (s.e. 5.57; 95% CI 13.4-
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35.3) respectively. The estimates of C1 and C2 were 0.22 and 0.23 with standard errors of 

0.13 and 0.14 respectively. 

 

5.1.2 Simulated example 2: Data Generated with Allegro 

For the second simulated example, the software Allegro (Gudbjartsson et al. 2000) 

was used to generate the data, under a locus heterogeneity model with two linked disease 

loci. Genotype data were generated for one set of nuclear families in which the disease locus 

was at position τ1, and for another set of nuclear families in which the disease locus was at a 

different position, τ2. Genotype data for both sets of families were generated at the same 

marker loci (i.e. on the same map) conditional on the two siblings being affected. The two 

sets of families were then combined and analyzed as one sample. A map of 19 equally spaced 

markers with a recombination fraction of 0.03 between consecutive markers, covering 

approximately 56 cM in total, was used. The sample consisted of 80 nuclear families with 

two affected sibs from each of two populations, for a total of 160 ASPs. In the first 

population, there was a diallelic disease susceptibility gene at 15 cM, with a disease allele 

frequency of 0.015 and penetrance vector (0.05,0.90,0.90). In the second population there 

was a diallelic disease susceptibility gene at 35cM, with the same allele frequencies and 

penetrances as the disease susceptibility gene in the first population. Thus, there were two 

disease genes, at positions τ1 = 15.0 and τ2 = 35.0, with equal contributions to disease 

susceptibility. The data was analyzed as in the other examples, that is with GENEHUNTER 

2.0 (Kruglyak et al. 1996) followed by the two GEE approaches. 

 The NPL plot and average IBD sharing for this example are shown in Figure 5.2 (pg 

92). The plot shows a wide NPL peak. Although the NPL score is high, reaching a maximum 
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of 6.10 at 27.84cM, the NPL exceeds 3 for a very large chromosomal region, making it 

difficult to estimate the position(s) of potential disease gene(s). Furthermore, the wide peak 

suggests the possibility of more than one susceptibility gene in the region. Fitting a one-locus 

model leads to an estimated τ of 23.72 (s.e. 1.70; 95% CI: 20.4-27.1), and an estimated C of 

0.432 (s.e. 0.059). By fitting a two-locus model the positions of the two disease genes are 

estimated at 13.97 (s.e. 2.03; 95% CI 10.0-17.9) and 35.07 (s.e. 2.65; 95% CI 29.9–40.3). 

The estimates of C1 and C2 are 0.346 and 0.329 respectively, with standard errors 0.059 and 

0.052. 

 

5.1.3 Summary of simulated examples 

 In both simulated examples the two-locus GEE method provides fairly accurate point 

estimates of the two disease gene locations. The method seems particularly valuable in the 

second example, when the disease genes are further apart. In this example the location 

confidence interval from the one-locus model does not include either of the two true disease 

gene locations, while estimates from the two-locus model provide two non-overlapping 

confidence intervals that include the two disease gene locations. 
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Figure 5.1: Plots for simulated example 1. (a) NPL plot; (b) observed average marker IBD 

allele-sharing in the sample of ASPs (points) with one-locus model fit (solid line) and two-

locus model fit (dashed line). True disease gene locations are shown along the x-axis. The 

generating model under two linked disease loci is described in the text. 
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Figure 5.2: Plots for simulated example 2. (a) NPL plot; (b) observed average IBD allele-

sharing in the sample of ASPs at the markers (points) with one-locus model fit (dashed line) 

and two-locus model fit (solid line). True disease gene locations are shown along the x-axis. 

The generating model under two linked disease loci is described in the text. 
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5.2 Monte Carlo Simulation Study Methods 

 

5.2.1 Simulation study design 

More extensive simulations were carried out to assess properties of the proposed 

estimation method including bias, standard errors, and confidence interval coverage of the 

parameter estimates. Simulation settings were chosen to study the effects of sample size, map 

properties such as number of markers and intermarker distances, and various aspects of the 

underlying genetic model including the magnitude of the C parameters, distance between the 

two disease genes, and correlation in IBD sharing at the two disease genes. Here we present 

the results of several sets of simulations which illustrate the main properties of the estimation 

method. Each simulation is based on 1000 replicates.  

For some simulations (section 5.3.4) genotype data were generated using Allegro in 

order to assess properties of estimates resulting when data are not fully informative. 

However, for most of the simulations we generated fully informative IBD sharing for ASPs 

under a variety of two-locus models using our own data generation program. The joint IBD 

sharing distribution at the two disease genes is required to generate data under a given two-

locus model. Therefore, in the next section, we explain calculation of the joint IBD sharing 

probabilities for a two-locus model. We then describe the generation of fully informative 

IBD sharing data in section 5.2.3. 
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5.2.2 Relationship of joint IBD allele sharing at two linked disease genes to the 

underlying genetic model 

 

Given a two-locus disease generating model (a 3x3 penetrance matrix, and disease 

allele frequencies at two diallelic disease genes) and the distance between the two disease 

loci, the conditional IBD allele sharing distribution (i.e. Pr(S(τ1)=i, S(τ2)=j | Φ) for i,j=0,1,2, 

where Φ denotes the affected status of the two sibs) can be calculated for a randomly mating 

population based on the following:  
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where g1 and g2 are the genotypes of both sibs at the first locus and second locus, 

respectively,  
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Therefore, denoting the IBD sharing at τ1 by S1 and IBD sharing at τ2 by S2: 
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. 

Note that we have assumed that Pr(Φ|g1,g2) = Pr(1st sib affected|g1,g2)⋅Pr(2nd sib 

affected|g1,g2). This means that conditional on the genotypes at the two disease genes, the 

probability of the first sib being affected is independent of the probability of the second sib 

being affected. This independence assumption reflects an underlying assumption that there 

are no shared environmental or other genetic effects contributing to the disease. Although 

this is a fairly restrictive assumption, it is only made in the determination of the joint IBD 

distribution at the two disease genes, which is then used to generate data under a given two-

locus disease model. In other words, the estimation method presented in the remainder of this 

chapter does not require the assumption of this relatively simple two-locus disease model. 

It is shown above that in order to compute the joint IBD sharing probabilities at the 

two linked loci we need: 

1) Pr  and ( )1 1 2| ,aff g g ( )2 1 2Pr | ,aff g g  

2) Pr  and ( )1 1| ( )g S iτ = ( )2 2Pr | ( )g S jτ =  

3) Pr  and ( )1 2( ) | ( )S i Sτ τ= = j

4) Pr . ( )2( )S jτ =
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The probabilities in the first component listed above, are the penetrances 

corresponding to the genotype of each of the sibs. Note that ( )1 1 2Pr | ,aff g g , i.e. the 

probability that the first sib is affected given the genotypes of the two sibs at both genes, 

depends only on the 2-locus genotype of the first sib. Similarly ( )22 1Pr | ,aff g g  is the 

penetrance of the two-locus genotype of the second sib. The second component, 

, the probability of a particular set of genotypes at gene 1, for a pair of 

relatives, given their IBD sharing at gene 1, has been tabulated for biallelic genes (Thomson 

1975). The tabulated values can be used to determine 

( 1 1Pr | ( )g S iτ = )

( )1 1| ( )g S iτPr =  and 

 for every two-locus genotype of the sib pair. The third component, 

Pr(S(τ

( 2 2Pr | ( )g S τ = )j

1)=i|S(τ2)=j), can be obtained from Table 3.7. Finally, ( )2Pr ( )S jτ =  is the IBD 

sharing probability for the pair of relatives. For sib pairs ( )2( ) 0,1, 2S τ = =P . 

Multiplying the components listed above and summing over all possible 2-locus genotype of 

the two sibs, (g

r (1/ 4,1/ 2,1/ 4)

1,g2), gives the joint probability of the two sibs are affected and share i alleles 

IBD at the first disease gene and j alleles IBD at the second disease gene. Dividing by the 

probability that both sibs are affected gives the conditional probability, Pr(S(τ1)=i, S(τ2)=j | 

Φ), as required.   

Expected IBD sharing for each of the two disease genes, and therefore values of the 

parameters C1 and C2 defined in chapter 4, can be calculated using the nine joint allele 

sharing probabilities (Pr(S(τ1)=i, S(τ2)=j | Φ) for i,j=0,1,2). Let pij = Pr(S(τ1)=i, S(τ2)=j | Φ) 

for i,j=0,1,2. Then 

2 2

1 1
0 0

E[ ( ) | ] 2j j
j j

S pτ
= =

Φ = +∑ ∑ 2p 2p and E[
2 2

2 1
0 0

( ) | ] 2i i
i i

S pτ
= =

Φ = +∑ ∑  . 
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5.2.3 Generation of fully-informative IBD sharing data 

A FORTRAN program was written to generate fully informative IBD sharing data for 

ASPs at any number of markers linked to 2 diallelic susceptibility genes. First, for a given 

underlying two-locus disease model (i.e. given a penetrance matrix for two diallelic loci, the 

disease allele frequencies, and the distance between the two disease genes), the joint IBD 

sharing probability distribution in a population of affected sib pairs was determined as 

described in section 5.2.2. Using this distribution, IBD sharing values at the two disease 

genes were generated for a sample of sib pairs. Then, for each sib pair in the sample, marker 

IBD sharing values were generated conditional on their IBD sharing at the two disease genes. 

The algorithm used to generate fully informative IBD sharing data for a map of markers is 

summarized below. 

 

Algorithm used to generate fully informative IBD sharing data: 

1. Given a disease generating model (2 locations of diallelic disease loci, a 3x3 penetrance 

matrix, and disease allele frequencies at the 2 disease loci), calculate the conditional 

allele sharing distribution (i.e. Pr(S(τ1)=i, S(τ2)=j | Φ) for i,j=0,1,2, where Φ denotes the 

affected status of the 2 sibs) as described in section 5.2.2. 

2. For each ASP, randomly generate the sharing status at the 2 disease loci, i.e. generate 

(S(τ1), S(τ2)) from the distribution Pr(S(τ1)=i, S(τ2)=j | Φ). 

3. Now assume there are m markers, m1 with ti<τ1, and m2 with ti<τ2. That is, assume the 

following map of markers: 
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τ1 τ2

t1 t2 tm2tm1+1… … tm2+1 .… tmtm1

 

and generate IBD sharing at the markers as follows: 

3.1.Given the value of S(τ1) generated in step 2, generate S(tm1) from the conditional 

distribution Pr(S(tm1)|S(τ1)). Then, from the conditional distribution Pr(S(tm1-1)| S(tm1)), 

generate S(tm1-1) given the generated value of S(tm1). Continue until S(t1) is generated. 

3.2.Similarly, from the conditional distribution Pr(S(tm2+1)|S(τ2)) generate S(tm2+1). Then 

from the conditional distribution Pr(S(tm2+2)| S(tm2+1)) generate S(tm2+2). Continue 

until S(tm) is generated. 

3.3.Given the values of S(τ1) and S(τ2) generated in step 2, generate S(tm1+1) from the 

conditional distribution Pr(S(tm1+1)| S(τ1),S(τ2)). Then from the conditional 

distribution Pr(S(tm1+2)| S(tm1+1),S(τ2)) generate S(tm1+2). Continue until S(tm2) is 

generated. 

Details: 

In steps 3.1 and 3.2 the conditional IBD sharing distribution from Table 3.7 is used. 

In step 3.3 note that for ti < tk < tj, under the assumption of no interference: 

( ) ( ) ( )
( )

Pr ( ) | ( ) Pr ( ) | ( )
Pr ( ) | ( ) , ( )

Pr ( ) | ( )
j k k i

k i j
j i

S t c S t a S t a S t b
S t a S t b S t c

S t c S t b

= = =
= = = =

= =

=
 

Therefore the conditional probabilities from Table 3.7 can be used again (with the correct 

distances) to obtain the conditional probabilities of sharing a given number of alleles IBD at 

a locus, conditional on the sharing at two flanking loci. 
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5.3 Monte Carlo Simulation Study Results 

 

5.3.1 Simulation study I: Different two-locus genetic models 

In the first set of simulations we studied bias and standard deviations of estimates, 

magnitude of standard errors, and confidence interval coverage for four different underlying 

genetic models. The genetic models used in these simulations are described in Table 5.1. For 

this set of simulations, IBD sharing values for 500 independent ASPs were generated at 11 

markers spaced at 10cM intervals (i.e. at 0,10,…,90,100cM). 

 

Model Penetrance matrix Allele 

frequencies 

Prevalence τ2-τ1 C1, C2 

 aa aA AA 30 .161,.161 

bb 0.050  0.050  0.950   

bB 0.050  0.050  0.950   

A 

BB 0.950 0.950  0.950 

Pr(A) = .05 

Pr(B) = .05 

 

Approx 5% 

  

 aa aA AA 10 .327,.327 

bb 0.010 0.010 0.800 20 .283,.283 

bB 0.010 0.010 0.800 30 .254,.254 

BB 0.800 0.800 0.800 40 .235,.235 

B 

    

Pr(A) = .015 

Pr(B) = .015 

 

Approx 1% 

50 .222,.222 

 aa aA AA 30 .487,.487 

bb 0.000  0.000  0.000   

bB 0.000  0.950  0.950   

C 

BB 0.000  0.950  0.950 

Pr(A) = 0.053 

Pr(B) = 0.053 

 

Approx 1% 

  

 aa aA AA 30 .348,.214 

bb 0.005 0.005 0.400   

bB 0.005 0.005 0.400   

D 

BB 0.250 0.250 0.600 

Pr(A) = 0.02 

Pr(B) = 0.02 

 

Approx .5% 

  

 

Table 5.1: Models used for data generation for simulations presented in Tables 5.2-5.5, 5.7, 

and 5.8. 
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Average estimates of the four parameters in these simulations are very close to the 

true values (Tables 5.2), indicating that the estimates have little or no bias. Comparison of the 

average robust standard error estimates, obtained by the so-called sandwich estimator (Liang 

and Zeger 1986), to the empirical standard deviations computed across simulation replicates 

demonstrates that the robust standard error estimates for location estimates tend to be too 

low. Therefore, using these standard error estimates to construct confidence intervals 

(assuming an asymptotic normal distribution of the parameters), results in confidence 

intervals having lower than the nominal confidence level. However, confidence interval 

coverage reaches the nominal level for models with larger underlying C values (i.e. greater 

excess sharing at the two disease genes). Not surprisingly, performance is better (i.e. lower 

bias of estimates, smaller variances of estimates, higher CI coverage) when there is greater 

excess allele sharing in affected sib pairs at the two disease genes. 

Confidence interval coverage is not only affected by the accuracy of the standard 

error estimates and bias of parameter estimates, but also by the distribution of the parameter 

estimators. Note that here, confidence intervals are constructed assuming the asymptotic 

normality of parameter estimates. Histograms of estimates of the four parameters 

(C1,C2,τ1,τ2) for three simulations from Table 5.2 are shown in Figures 5.3-5.5. Although 

some of the histograms suggest departures from normality, in some situations it is difficult to 

draw conclusions about the distributions based on histograms. Several tests of goodness of fit 

were applied to test for departures from normality of the parameter estimates. Overall, these 

tests indicated that while estimates of C1 and C2 were approximately normal for some of the 

simulations, estimates of τ1 and τ2 showed evidence of lack of normality in all three of the 

simulations displayed in the histograms. 
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Figure 5.3: Histograms of parameter estimates under model A (for simulation presented in 
Table 5.2). 
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Figure 5.4: Histograms of parameter estimates under model B (for simulations presented in
Table 5.2). 
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Figure 5.5: Histograms of parameter estimates under model D (for simulations presented in 
Table 5.2). 

 

 

When the one-disease-locus model is fit to data generated under a model with two linked 

disease loci, on average, it results in an estimate of τ between the two true disease gene 

locations with the robust variance estimate substantially biased down, resulting in confidence 

intervals with low coverage of the two true locations (Table 5.3). It should be noted that 

when an incorrect model is fit to the data, solutions to the estimating equations are more 

dependent on the initial values provided for the estimation algorithm. In four of the 

simulations presented in Table 5.3, the initial value for τ was set to be the position mid-way 
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between the two true locations, which led to estimates near that initial value and confidence 

intervals for τ with very low coverage of the two true disease gene locations. When the initial 

value for τ was set to be one of the two true locations, estimates of τ tended to be closer to 

that disease gene, and confidence intervals were more likely to include that one disease gene 

(rows two and five of Table 5.3). However, coverage of that one gene was still not 

sufficiently high, and there was still large bias in the estimate of its effect size, C. 

 

 

 

 

Estimation of C Estimation of τ 

“95%” CI coverage c 

(%) 

Model Initial 

τ value Average 

estimate 

SDemp SErob Average 

estimate 

SDemp
 a SErob

 b 

τ1 τ2 

A 50.0 .211 .0377 .0385 49.7 7.09 2.52 6.5 3.8 

 35.0 .208 .0384 .0384 36.7 5.03 2.58 85.5 0.0 

B 50.0 .334 .0396 .0384 49.9 5.37 1.63 0.3 0.1 

C 50.0 .635 .0302 .0309 50.0 4.70 0.74 0.0 0.0 

 35.0 .627 .0317 .0308 36.0 0.68 0.76 77.7 0.0 

D 50.0 .382 .0386 .0384 41.6 3.09 1.43 19.0 0.0 

 

Table 5.3: Results of fitting the one-locus model to data generated under a model with two 

linked disease genes.  

Simulation results are based on 1000 samples of 500 independent ASPs and a map of 11 

markers spaced at 10 cM intervals (i.e. markers at 0,10,…,90,100 cM) with τ1=35 and τ2=65 

(the resulting C’s can be found in the last column of Table 5.1). 
a SDemp = empirical standard deviation of estimates for 1000 replicates in a simulation 
b SErob = average robust standard error of estimates for 1000 replicates in a simulation 
c CI coverage refers to the proportion of CIs for τ that cover τ1 or τ2. 
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5.3.2 Simulation study II: Effect of sample size and distance between loci 

The second set of simulations was designed to demonstrate the effect of sample size 

and distance between the two disease genes on the estimates. Disease genes were placed 20, 

30, or 50 cM apart. IBD sharing data at 11 markers spaced at 10cM intervals were generated 

for samples of 200, 500, and 1000 independent ASPs. 

With a larger sample size there is less bias in estimates of the disease gene locations, 

and the variances of the location estimates are lower, leading to narrower confidence 

intervals with higher coverage (Table 5.4). Greater bias in location estimates and lower 

confidence interval coverage were observed when the two disease genes were close together. 

 

 

True values Average 

estimates 

Mean bias Empirical 

SD 

Average 

robust SE 

“95%” CI 

coverage (%) 

τ1, τ2 C1, C2 

# 

ASPs 

τ1  τ2 τ1 τ2  τ1  τ2  τ1  τ2  τ1 τ2 

40,60 .283,.283 200 39.6 60.4 -0.4 0.4 6.59 6.30 3.95 4.47 86.4 86.9 

  500 39.7 60.4 -0.3 0.4 2.99 2.72 2.50 2.49 90.7 91.6 

  1000 39.8 60.2 -0.2 0.2 1.88 1.76 1.81 1.81 92.1 93.7 

35,65 .254,.254 200 35.0 65.4 0.0 0.4 6.99 7.00 4.93 4.64 87.8 86.5 

  500 35.1 65.0 0.1 0.0 2.97 3.06 2.73 2.75 94.7 94.3 

  1000 35.0 65.0 0.0 0.0 1.95 1.81 1.87 1.85 96.8 97.4 

25,75 .222,.222 200 25.2 74.8 0.2 -0.2 6.10 6.63 4.53 4.75 89.0 87.9 

  500 25.0 75.1 0.0 0.1 3.33 2.85 2.72 2.70 94.5 94.9 

  1000 25.0 75.1 0.0 0.1 1.95 2.00 1.86 1.87 96.6 96.3 

 

Table 5.4: Effect of sample size and distance between disease genes on estimation of τ1 and 

τ2. Data for these simulations was generated under model B described in Table 5.1. A map of 

11 markers spaced at 10 cM intervals was used, i.e. markers at 0,10,…,90,100 cM. 
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5.3.3 Simulation study III: Effect of density and number of markers 

The third set of simulations focused on how marker density and number of markers 

affect properties of estimates. Marker densities and total map distances were varied in these 

simulations (Table 5.5). For each simulation, data were generated for 500 independent ASPs 

under the same penetrance and allele frequency model (model B in Table 5.1). With this 

model, C1 = C2 = 0.235 if τ1 and τ2 are 40cM apart; C1 = C2 = 0.283 if they are 20 cM apart; 

and C1 = C2 = 0.327 if they are 10 cM apart. 

A comparison of the first three rows of Table 5.5 indicates that while genotyping 

additional markers between the two disease loci may improve localization, having too many 

markers in the analysis can be detrimental in terms of confidence interval coverage. Further 

comparisons with other results presented in Table 5.5 establish that it is important to have 

several markers (3 or 4) between the two disease genes. However, genotyping additional 

markers far outside the region of the two disease genes may not be helpful and can decrease 

confidence interval coverage (see discussion in section 5.4).
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5.3.4 Simulation study IV: Effect of marker informativeness 

The fourth set of simulations compared the estimation procedure for data with 

different levels of marker informativeness. For these simulations, genotype data were 

generated assuming a heterogeneity model (as in simulated example 2) with 250 ASPs from 

each of two populations, for a total sample of 500 ASPs in each replicate. For both 

populations, genotypes at the same 11 markers were generated for ASPs and their parents 

using Allegro (Gudbjartsson et al. 2000). In the first population there was a single disease 

gene at position τ = 35.0cM with expected IBD sharing of 1.325 in ASPs at this disease gene. 

In the second population there was a single disease gene at position τ = 65.0 cM with 

expected IBD sharing of 1.325. Thus, in a population of affected sib pairs consisting of equal 

numbers of ASPs from each of the two populations described above, there are two disease 

susceptibility loci at 35 and 65 cM, with C1 = C2 = 0.211. IBD sharing was estimated from 

genotype data using GENEHUNTER (Kruglyak et al. 1996). Different levels of information 

content were attained by simulating genotypes at markers with 2, 3, 4, or 10 equally frequent 

alleles.  

When our estimation method is applied to non-fully informative IBD sharing data 

with different levels of information content (Table 5.6), less informative markers lead to 

greater downward bias in estimates of the C parameters (i.e. lower estimates of expected 

sharing in ASPs at the disease genes). Furthermore, lower information content leads to 

greater bias in location estimates (two disease loci are estimated to be further apart than they 

really are) and thus to lower coverage of location confidence intervals. 
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5.3.5 Simulation study V: Performance of the GEE method with an alternative 

parameterization 

In section 4.1.2, an alternative parameterization of the two-locus model was 

described. With this alternative formulation of the mean function, a GEE approach can be 

used to estimate the parameters δ2
*=(C1

*,C2
*,τ1,τ2). Results of several simulations using 

GEEs with this alternative parameterization of the two-locus model are shown in Table 5.7. 

Comparison of these results with those in Table 5.2 indicates that, in terms of disease gene 

localization, this parameterization provides overall very similar results to the original 

parameterization.
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5.4 Discussion 

 

We have introduced and studied the properties of a method for simultaneous 

estimation of the locations of two linked disease susceptibility genes. With a sufficiently 

informative sample the proposed method provides unbiased estimates with confidence 

interval coverage near the nominal levels. The method produces better results when the two 

disease loci are further apart, when there is higher allele sharing at the two disease genes, and 

when more ASPs are available for analysis. When the two disease genes are believed to be 

located close to one another, a denser map of markers is recommended, to ensure that there 

are several markers (3-4) between the two disease genes. 

When markers are not fully informative, estimates of the C parameters (expected IBD 

sharing among ASPs at the disease genes) are biased toward the null hypothesis of no gene 

effect. This is because when markers are not fully informative, and there really are disease 

gene(s) linked to the markers, then the estimated IBD sharing values (Sim
*) tend to be lower 

than the true unknown IBD sharing (Sim). This results in a downward bias in estimates of the 

C’s. The lower C’s are associated with greater bias in the disease gene location estimates, 

leading to lower coverage of the corresponding confidence intervals. How much lower the 

Sim
* values are compared to the Sim values, depends on the underlying genetic model (the true 

Sim values), and the level of information content available from the marker data. 

In this study, confidence intervals were constructed using asymptotic GEE theory, 

under which the estimates are normally distributed and the robust variance estimator (also 

known as the sandwich estimator) provides consistent variance estimates. Although for some 

underlying genetic disease models with sufficient sample size, coverage of asymptotic theory 
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confidence intervals reached the nominal levels, for some situations studied coverage was 

below the nominal level. Coverage of confidence intervals can be different from the nominal 

level for a number of reasons: biased parameter estimates (i.e. biased estimates of the τ’s), 

biased robust variance estimates, or non-normality of the parameter estimates. Our 

simulation study indicated that the robust variance estimates of the location estimates tend to 

be downwardly biased. There was also evidence of lack of normality of the estimates. It is 

not unexpected for the robust estimator to yield downwardly biased variance estimates (for 

example see Pan 2001). Methods have been proposed to correct for the bias (e.g. Mancl and 

DeRouen 2001; Pan 2001) and the variability (e.g. Mancl and DeRouen 2001; Pan and Wall 

2002) of the robust variance estimator. Such techniques could be applied here, in particular 

those that adjust for bias of the robust variance estimator. However, the improvements may 

be modest especially if assumptions of these methods are violated. Confidence interval 

coverage may be improved by replacing the robust variance estimates by bootstrap estimates 

of the variances. Confidence interval properties could potentially be further improved in 

situations when the estimates do not follow the asymptotic normal distribution, by estimating 

confidence interval endpoints by bootstrap quantiles.  

Using a large number of markers in the analysis can lower the confidence interval 

coverage. Asymptotic properties of the GEE method are approached by increasing the 

number of independent sampling units in the analysis, which in this case is accomplished by 

increasing the number of independent affected sib pairs. By increasing the number of 

markers without increasing the number of ASPs, the clusters comprised of dependent data 

increase in size without proportionally increasing the effective sample size (i.e. number of 

independent units). This leads to a greater downward bias in the variance estimates provided 
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by the robust variance estimator, and thus to less than nominal confidence interval coverage. 

This may also be exacerbated by the fact that we did not optimally model Cov(Si
*|Φ). First of 

all, we assumed an independence correlation structure, which may decrease efficiency of 

parameter estimates (Liang and Zeger 1986). Furthermore, we did not model the variances 

Var(Si
*(tm)|Φ) (i.e. the diagonal elements of Cov(Si

*|Φ)) in terms of a common set of 

parameters, making use of known relationships between genetic model parameters and 

variances of IBD sharing in the region. Rather, we empirically estimate the variance in IBD 

sharing at each marker, Var(Si
*(tm)|Φ) m=1,…,M, independent of the other markers. 

Essentially, this amounts to allowing a new parameter for the variance at each marker. As the 

number of markers increases, the number of unknown parameters estimated from the data 

increases, requiring a larger sample size to achieve asymptotic properties. Because we 

observed that using a large number of markers may lead to greater bias in the robust variance 

estimates and lower confidence interval coverage, we conclude that when a large number of 

markers are available for analysis, greater care must be taken in constructing the confidence 

intervals. Also, as the number of linked markers increases, modeling the variances and 

correlations in IBD sharing at these markers may become more beneficial.  

Although confidence interval coverage can decrease as the number of markers 

increases, there are benefits resulting from the use of additional markers. Bias of parameter 

estimates may be reduced and the true variances of estimates, as estimated by the sample 

variances from all the replicates in a simulation, generally decrease. Thus, more accurate and 

more precise estimates can be achieved when more markers are used in the analysis. Greater 

benefits from using additional markers would be seen if the marker data were not fully 

informative.  
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We observed that fitting the one-locus model introduced by Liang et al. (2001a) can 

produce misleading results when there are two linked disease genes in the region. The single 

disease gene location is likely to be estimated at an incorrect position between the two true 

disease gene locations while the corresponding effect size tends to be over-estimated. 

Furthermore, the standard error of the location estimate tends to be biased down, leading to a 

confidence interval for a disease gene location that frequently does not cover either of the 

two true locations. This is not surprising, since the GEE approach is known to provide 

consistent estimates of the parameters under mild regularity conditions, provided that the 

mean function has been correctly specified, which is not the case if the one-locus mean 

function is postulated for data generated under a model with two linked disease loci. It should 

also be noted that the situation presented here, with the two loci having equal effect size, is a 

worst case scenario in terms of how different the estimates based on the two models will be. 

If one of the genes had a substantially higher effect than the other, as is the case with the 

chromosome 6 diabetes data application we present in chapter 8, the stronger gene may be 

localized with reasonable precision by fitting the one-locus model, although the estimate 

would be biased in the direction of the second gene. 

When an incorrect (one-locus) model was assumed in the analysis, point and interval 

estimates of the parameters were quite dependent on the initial parameter values provided for 

the algorithm used in solving the GEEs. This problem persists in other situations, because the 

systems of equations are solved using a Newton-Raphson-type algorithm, which is known to 

be very sensitive to initial values. For example, the algorithm used to solve the two-locus 

GEE can also be quite sensitive to initial values when there is only one disease gene in the 

region or if at least one of the two genes has a small effect size. Simulation results 
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demonstrating this sensitivity are shown in Table 5.8. This lack of robustness to initial value 

specification draws attention to the importance of careful selection of initial values. In the 

simulations, initial values are held fixed from replicate to replicate. In analysis of a single 

data set, more careful selection of initial values can be accomplished, for example by using 

plots or other forms of exploratory data analysis. Accuracy of variance estimates and 

confidence interval coverage may be improved by proper choice of initial values, although 

this is difficult to demonstrate in a simulation study. 

 

 

 

Estimation of 

C1 and C2 
Estimation of τ1 and τ2 

Average 

estimate 

Average 

estimate 

Empirical 

SD 

Average Robust 

SE 

“95%” CI 

coverage 

Initial  

τ1, τ2 

C1  C2  τ1  τ2  τ1  τ2  τ1  τ2   

50,60 .199 .132 48.4 63.9 9.59 12.79 3.02 4.99 625 

50,70 .191 .099 46.6 73.2 12.15 16.81 5.03 13.63 830 

40,60 .167 .167 42.7 57.8 15.08 14.62 5.60 4.52 398 

30,70 .160 .158 39.2 61.6 17.92 17.95 7.22 6.94 558 

 

Table 5.8: Effect of initial parameter values when fitting the two-locus model to data 

generated under a one-locus model with C = 0.198 and τ = 50. Based on 1000 replicates of 

500 ASPs. CI coverage is the number of replicates, out of 1000, in which at least one of the 

location confidence intervals included the true disease gene location. For some replicates 

confidence intervals could not be constructed either because no solution was obtained to the 

GEEs (convergence not attained) or the algorithm failed to estimate variances of the location 

parameters. 
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Although localization of two linked disease genes (i.e. estimation of τ1 and τ2) is the 

primary purpose of the method introduced in chapter 4, C1 and C2, i.e. the excess mean IBD 

sharing in ASPs at the two disease genes, are also estimated. In the one-locus model, mean 

excess IBD sharing at a single disease gene on a chromosome can be interpreted as the effect 

size of that gene. This effect size is 0 under the null hypothesis of no disease genes linked to 

the region. However, this simple “effect size” interpretation does not apply to C1 and C2 in 

the two-locus model. When two disease genes are linked, expected IBD sharing between 

affected relatives at any one of these genes increases as a result of effects of both genes. 

Therefore, for example, C1 does not represent the effect of gene 1 alone, because even in the 

absence of any effect of gene 1, C1 will increase as the distance between gene 1 and gene 2 

decreases, due to the effect of gene 2. An alternative parameterization of the two-locus 

model, which simplifies the mean function formula, and is more conducive to a “gene effect 

size” interpretation of the parameters, is described in section 4.1.2. Several simulation results 

obtained by applying the GEE approach to estimate this alternative set of parameters in the 

two-locus model were presented in section 5.3.5, demonstrating that the two 

parameterizations provides very similar results. Both parameterizations have certain 

advantages in terms of interpretation. 

 



 

 

Chapter 6 

Tests for the Presence of One Disease 

Gene in a Region 

 

In the preceding chapters we described GEE methods for fitting models with one or 

two disease-susceptibility genes in a single chromosomal region to ASP IBD sharing data. 

Simulations presented in chapter 5 revealed that fitting an incorrect model can lead to very 

biased estimates and confidence intervals with coverage below the nominal level. Thus, it is 

important to decide whether a one-locus or two-locus model is more appropriate. In chapter 7 

we will discuss test statistics that would assist in making this decision. Before considering 

the more complex case of testing for two versus one disease genes in a region, in this chapter 

we propose several tests for one versus zero disease genes. In what follows, we assume there 

is one genotyped ASP per family, so that data for n independent ASPs are available. 
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6.1 Test Statistics for One versus Zero Disease Genes in a Region 

 

In this chapter we consider the problem of testing the null hypothesis of no linkage to 

the region of interest versus the alternative of one disease gene in the region. Assume we 

obtain estimates of δ1 = (C,τ) using the GEE approach proposed by Liang et al. (2001a), that 

is by solving the equations:  

1 * *1 1
1 1

1 1

( )
Cov ( | )( ( )) 0

n

i i i
i

S S
µ δ

µ δ
δ

−

=

′
 ∂

1Φ − = ∂ 
∑  

where Si
* = ((Si

*(t1),…, Si
*(tM))′, µ1(δ1) = (µ1(t1;δ 1),…, µ1(tM;δ 1))′, and 

. Under the null hypothesis of no excess IBD sharing at 

locus τ, C = 0 and consequently µ

.04| |
1 1( ; ) ( ( ) | ) 1 tt E S t e τµ δ − −= Φ = + C

)i 1

0

0(t) = 1. We also obtain the null mean function, µ0(t) = 1, 

when τ = ∞ (i.e. the disease gene is not linked to locus t). However, because τ was defined as 

the location of a disease gene within the map of markers, in the estimation procedure τ was 

restricted to lie in the marker map, i.e. t1≤ τ ≤ tM. Thus, the null hypothesis C = 0 will be 

tested.  

 

6.1.1 The “L-statistic” introduced by Liang et al. (2001a) 

Let  

( )(-1 * *
0

1 1
Cov |

n n

i i
i i

L L S S
= =

′= = Φ −∑ ∑1      (6.1) 

where 1=(1,…,1)T is a M×1 vector. Under the null hypothesis of no linkage: 

( )0E L =   and   ( ) ( )-1 *
0 0

1
Var Cov |

n

i
i

L S
=

′= Φ∑1 1 . 
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Therefore, Liang et al. (2001a) proposed testing the null hypothesis of no linkage C = 0 

versus the one-sided alternative hypothesis C > 0 using the statistic 

( )
*

1/ 2
-1 *
0

1
Cov |

n

i
i

LL

S
=

=
 ′ Φ 
 
∑1 1

      (6.2) 

which asymptotically has a standard normal distribution under H0. 

Cov0(Si
*) is the covariance matrix for the estimated IBD sharing at all the markers for 

the ith ASP, under the null hypothesis of no linkage. If the ASPs are all genotyped at the 

same set of markers then Cov0(Si
*) is identical for all ASPs, thus we can drop the “i” 

notation. Covariance of IBD sharing of fully informative linked markers is known, and does 

not depend on any unknown parameters. When markers are highly informative, Cov0(S*) can 

be approximated by Cov0(S). Under the null hypothesis of no disease genes linked to the 

region, 

( )0Var ( ) 0.5jS t =  and  
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e
  (6.3) 

One advantage of the statistic L* is that it can be calculated using only the data and 

Cov0(S), i.e. it does not require fitting the one-locus model. 
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6.1.2 Wald test 

Under the null hypothesis of no linkage, when C = 0, the location of the disease gene 

is undefined, and the model does not depend on the parameter τ. Thus a test of the hypothesis 

C = 0 represents a reduction of the model which involves the removal of two parameters. 

Therefore, a two degree-of-freedom chi-squared test of the null hypothesis of no linkage vs. 

the alternative of linkage at the estimated disease gene location, τ̂ , could be evaluated by 

testing H0: C = 0 at τ = 0τ  vs. HA: C ≠ 0 using the test statistic 

1
1

0 0

ˆ ˆ0 0ˆˆ ( )
ˆ ˆ

T

wald R
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τ ττ τ
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Cov   

where 1̂ˆ ( )R δCov  is the robust estimate of the parameter covariance matrix. Since the 

estimated disease gene location is τ̂ , we are interested in testing for linkage at 0τ =τ̂ , 

leading to: 

11 1
1 1 * * 1 1
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=
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∑ ∑ ∑D V D D V V D D V D

 (6.5) 

A p-value for this statistic can be obtained from a chi-squared distribution with 2df. 

 

6.1.3 Approximate quasi-likelihood ratio tests 

The two approximations to quasi-likelihood ratio tests described by McLeish and 

Small (1992) and Li (1993) can be applied, with  

0ˆ ( ) 1tµ =  (the mean function under the null hypothesis) and 

ˆ.04| |
1

ˆˆ ( ) 1 tt e τµ − −= + C . 
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These tests also require Cov(Si
*) under the null and/or alternative hypotheses.  

The covariance matrix for fully informative data under the null hypothesis of no 

disease genes linked to the region, Cov0(Si), was shown in section 6.1.2 (equation 6.3). Under 

the hypothesis of exactly one disease gene in the region (or linked to the region) under 

consideration, 

( ) ( )( ).08| |
1Var ( ) 0.5 Var ( ) 0.5jt

i jS t e Sτ τ− −= + −  and 

( )
( )

( )( )

.04| |
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Var ( ) ,
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0.5 Var ( ) 0.5 0.5 ,

i j

i j i j

t t
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i i i j t t t t
i j

e S t
S t S t

e S eτ τ

τ τ

τ τ
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  ∈ = 
 − + ∉  

t

t t
  

Also, it can be shown that Var(S(τ)) = p2+p0-(p2-p0)2 = C-C2+2p0 where pi=Pr(S(τ)=i|Φ). In 

the Genefinder program, Liang et al. (2001a) approximated Var(S(τ)) by C-C2. Alternatively, 

one can estimate the unknown p0 and use the correct formula for Var(S(τ)) as was described 

in chapter 3. We propose to approximate p0 using the estimated proportion of ASPs that share 

0 alleles IBD at the marker closest to τ̂ . Using this estimate, the variances and covariances 

of IBD sharing at all the markers under the one-locus model can be estimated, and the M×M 

 matrix can be inverted numerically. Let *
1ˆCov ( )iS 1 1

ˆˆ ( , )C ˆµ µ τ=  The two approximate quasi-

likelihood ratio test statistics can be computed using equations 2.9 and 2.10 from chapter 2, 

as follows: 
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T
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6.1.4 Modified quasi-score test 

Assuming the Haldane map function and only one ASP per family, the quasi-score 

function for the one-locus model is given by: 

( ) ( )
( )

( )

( )

-1
1 1

11_1
1

2 _1
-1
1 1

1

Cov ( )
,

,
,

Cov ( )

n

i i
i

n

i i
i

U C C
U C

U C
τ

τ
τ

τ

=

=

 ′∂  −   ∂  = =     ′   ∂  −  ∂  

∑

∑

* *

* *

µ S S µ

µ S S µ

 

( )

( )

( )

( )

( )

( )

( )

( )

1

2
-1
1 1

1

1

2
-1
1 1

1

; ,

; ,
Cov ( )

; ,

; ,

; ,
Cov ( )

; ,

n

i i
i

M

n

i i
i

M

t C
C

t C
C

t C
C

t C

t C

t C

µ τ

µ τ

µ τ

µ τ
τ

µ τ
τ

µ τ
τ

=

=

 ′ ∂   ∂   ∂   −∂      ∂   ∂  = = ′ ∂ 
  ∂  
 ∂ 
  −∂  
  
  ∂    ∂  

∑

∑

* *

* *

S S µ

S S µ

M

M

( )

( )

1

2

1

2

.04| |

.04| |
-1
1 1

1
.04| |

.04| |
1

.04| |
-12
1 1

1
.04| |

Cov ( )

Cov ( )

M

M

t

tn

i i
i

t

t

tn

i i
i

t
M

e
e

e

k Ce
k Ce

k Ce

τ

τ

τ

τ

τ

τ

− −

− −

=

− −

− −

− −

=

− −

 ′      −        
 ′      −        

∑

∑

* *

* *

S S µ

S S µ

M

M

(6.8)  

where km = -0.04 for tm<τ, and km = 0.04 for tm>τ, ( )* *
1,...,i i iMS S=*S ′, ( )1 1 ,..., Mµ µ=µ ′,  

is the estimated IBD sharing for the ith sibpair (i=1,…,n) at the mth marker 

(m=1,…,M),  is the expected IBD sharing at the mth marker, t

*
imS

.04| |1 mt
m e τµ − −= + C m  is the 

position of the mth marker (t1<t2<…<tM).  

Consider the null hypothesis C = 0. In order to construct the score test statistic for 

testing this hypothesis, the score statistic should be computed at (C,τ) = (0,τ% ) where τ%  is the 

GEE estimate of τ under the null hypothesis C = 0. However, under the reduced model of no 
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linkage, τ is no longer defined, and cannot be estimated. One solution is to replace τ%  by τ̂  

from the full (one-locus) model. Note that we are now testing for linkage specifically at the 

estimated location of the disease gene, τ̂ , i.e. we are testing H0: C = 0, τ = τ̂ . Thus, under 

the null hypothesis, the resulting statistic is expected to be asymptotically distributed as a 

chi-squared random variable with 2 degrees of freedom. Note that expectation and 

covariance of the data, S*, under the one-locus model evaluated at the null parameter values 

simplify as follows: 
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∂
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∂
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Therefore, substituting the null parameter values into equation 6.8, under H0: 
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and a score test statistic can be calculated as 
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ST U Uτ )ˆτ τ−= Σ         (6.9) 

with Σ estimated using the formula provided by Rotnizky and Jewell (1990; see equation 2.7 

in chapter 2) or Breslow (1990, equation 2.8 in chapter 2) which leads to the statistic:  
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Alternatively, rather than replacing τ%  by τ̂ , we could integrate the score vector over 

τ, so that U1(C=0) could be evaluated without specifying τ.  

Recall that 
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A score test statistic could be constructed as 
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Assuming a uniform prior distribution for τ under the null hypothesis: 
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Thus a score test could be based on:  
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Note that U1_1(C=0) is a constant multiple of the statistic L described in section 6.1.1 

(equation 6.2). Therefore, with a proper choice of variance function, a test based on 

U1_1(C=0) would be equivalent to the L-test proposed by Liang et al. (2001a) described in 

section 6.1.2. Note that since the statistic L* tests the hypothesis C = 0 without specifying a 
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particular value of the location, τ, L*2 is a 1-df chi-squared statistic, and it tests for linkage 

anywhere in the region, rather than linkage at the disease gene location estimate, τ̂ . 

 

6.2 Assessment of Tests by Simulation 

 

Properties of the test statistics described in section 6.1 were studied by simulation. 

The null distributions of the test statistics were examined by analyzing data generated under 

the null hypothesis. Power of the proposed tests was compared for a range of alternative 

models and sample sizes. Although the simulations were not extensive enough to accurately 

determine critical values for the test statistics, they did provide results that allow a general 

comparison of the different tests.  

 

6.2.1 Simulation study design 

True type I error or power of a test statistic under a given model was estimated by the 

proportion of significant test statistics obtained in a simulation consisting of 1000 replicates. 

Note that, with 1000 replicates, if the true type I error is 5%, 95% of the simulations are 

expected to yield an estimated type I error between 3.65% and 6.35%. Similarly, if the true 

power is 50%, 95% of the power estimates are expected to be between 46.9% and 53.1%. 

Although accurate estimates of type I error or power would require larger simulations, the 

simulations presented here were primarily intended to provide a preliminary comparison of 

the alternative test statistics. A general understanding of the behaviour of each test statistic 

and a relative comparison of properties of the tests were the main focus of this simulation 

study, rather than determining the absolute size/power of the tests. 
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For each replicate, fully informative marker IBD sharing data were generated for 200 

or 1000 ASPs under a given underlying genetic model. Each replicate data set was analyzed 

by the one-locus GEE method described by Liang et al. (2001a), and all test statistics 

described in section 6.1 were calculated. It has been noted that the estimation procedure can 

be quite sensitive to initial values provided for the estimation algorithm, particularly for the 

gene location parameters. The simulation study should resemble “real data analysis” as much 

as possible. In an analysis of a single data set, a researcher would carefully choose initial 

values by using exploratory data analysis, graphical methods, or prior information from 

earlier studies. Furthermore, estimation should be repeated with different initial values to 

assess the robustness of the estimates to changes in initial values. This is difficult to 

accomplish in a simulation setting. For our simulations, the position of the marker with 

highest average IBD sharing in the sample was chosen as the initial value for the location 

parameter. If the algorithm for fitting the one-locus model did not converge to a solution, test 

statistics requiring estimates from the one locus model were deemed non-significant. 
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6.2.2 Simulation study results 

Table 6.1 summarizes results of several simulations under the null hypothesis of no 

disease genes in the region. Results indicate that while the statistic L* can be conservative for 

large sample sizes, the approximate quasi-likelihood ratio tests and modified quasi-score test 

tend to be anti-conservative. Type I errors of LRTLi are closer to the nominal 5% than those 

of LRTMS, and LRTLi has very similar type I error to the score test. 

In order to study power of the tests for one versus zero disease genes in a region, data 

were generated under several one-locus genetic models (Table 6.2). Power comparisons of 

the test statistics using chi-squared (or standard normal for L*) critical values are shown in 

Table 6.3. Although results from Table 6.3 may suggest that L* has the lowest power, power 

of the likelihood ratio tests and score test would be lower if the critical values for these tests 

  Type I error (%) Sample 

size 

(#ASPs) 

Marker 

map 

(spacing) 
L* Wald Test 

waldT  

LRTMS LRTLi Score Test 

ˆ_ST τ  

1000 0-90 (10) 3.0 5.8 6.6 6.4 6.5 

 0-90 (5) 4.7 5.6 6.3 6.0 6.4 

500 0-90 (10) 4.6 5.4 6.0 6.0 5.9 

 0-90 (5) 4.8 5.1 7.1 6.8 6.8 

200 0-90 (10) 4.3 4.7 6.8 6.4 6.3 

 0-90 (5) 5.6 4.8 7.3 6.6 6.9 

 

Table 6.1: Type I error of nominal 5% tests for one-versus-zero disease genes in a region, 

using asymptotic critical values. (L* is a one-sided test using critical values from a standard 

normal distribution, all other tests are two-sided tests using critical values from on a chi-

squared distribution with 2df) 
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were properly adjusted to achieve correct type I error. Approximate empirical critical values 

for the different test statistics are shown in Table 6.4. Power was recalculated using these 

critical values (Table 6.5). Although the critical values used to approximate the true power 

are not expected to be highly accurate as they were based on only 1000 replicates, they 

nevertheless allow an improved assessment of power. Overall, after adjusting the critical 

values, the five statistics (L*, Wald testT , LRTwald MS, LRTLi, and score test T ˆ_S τ ) have similar 

power. The expected trends of increased power with increased sample size or disease gene 

effect (larger C) are observed for all the statistics. The approximated quasi-likelihood ratio 

test based on the method of Li (1993), i.e. LRTLi, is appealing because of the simplicity of 

the calculations involved and because it has comparable power to the other statistics. The test 

proposed by Liang et al. (2001a), L*, has the advantage of not requiring the one-locus model 

to be fit. However, more simulations are needed to determine whether any of the statistics 

have strong advantages in specific types of data.  
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Model Penetrance vector Pr(D) C 

1-A (0.015, 0.055, 0.055) 0.35 0.06 

1-B (0.015, 0.062 ,0.062) 0.29 0.08 

1-C (0.015, 0.075 ,0.075) 0.20 0.12 

1-D (0.015, 0.122, 0.122) 0.12 0.2 

1-E (0.015, 0.220 ,0.220) 0.055 0.3 
 

Table 6.2: One-locus models used for power study. For each of these models the prevalence 

of the disease is approximately 3.8%. Pr(D) = frequency of the disease predisposing gene.  

 

 

Model C   Power (%) 

  

Sample 

size 

(#ASPs) 

Marker 

map 

(spacing) 
L* Wald 

Test 

( ) waldT

LRTMS LRTLi Score 

Test 

( ˆ_ST τ ) 

1-A .06 200 0-90 (10) 16.2 14.5 16.5 17.0 16.7 

  1000 0-90 (10) 47.6 53.6 57.8 58.3 58.3 

1-B .08 200 0-90 (10) 25.4 24.2 27.1 27.8 27.2 

  1000 0-90 (10) 65.8 78.6 80.7 81.4 81.7 

1-C .12 200 0-90 (10) 44.5 48.3 50.6 52.2 51.2 

  1000 0-90 (10) 93.5 99.0 99.3 99.3 99.3 

1-D .2 200 0-90 (10) 75.6 87.7 89.2 89.6 89.7 

  1000 0-90 (10) 100 100 100 100 100 

1-E .3 200 0-90 (10) 97.4 99.9 100 100 100 

  1000 0-90 (10) 100 100 100 100 100 
 

Table 6.3: Power of nominal 5% tests for one-versus-zero disease genes in a region. 

Asymptotic critical values (from a standard normal distribution for L* and a chi-square 

distribution with 2 df for other tests) were used to determine significance. The disease gene 

was located at 45 cM (τ = 45).  
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Approximate critical value for a test with α = 5% Sample 

size 

(#ASPs) 

Marker 

map 

(spacing) 
L* Wald Test 

(T ) wald

LRTMS LRTLi Score Test 

( ˆ_ST τ ) 

1000 0-90 (10) 1.42 6.27 6.80 6.62 6.77 

200 0-90 (10) 1.58 5.89 7.14 6.40 6.50 

 

Table 6.4: Approximate critical values of 5% tests for one-versus-zero disease genes in a 

region, based on 1000 replicates under the null hypothesis. 

 

 

Model C   Power (%) 

  

Sample 

size 

(#ASPs) 

Marker 

map 

(spacing) 
L* Wald 

Test 

(T ) wald

LRTMS LRTLi Score 

Test 

( ˆ_ST τ ) 

1-A .06 200 0-90 (10) 18.1 15.5 12.1 14.5 14.1 

  1000 0-90 (10) 56.1 51.6 50.1 53.2 51.0 

1-B .08 200 0-90 (10) 26.9 24.8 18.7 24.4 23.7 

  1000 0-90 (10) 74.3 76.6 75.9 77.9 77.1 

1-C .12 200 0-90 (10) 47.8 48.8 40.9 48.2 46.9 

  1000 0-90 (10) 95.6 98.9 98.6 98.8 98.7 

1-D .2 200 0-90 (10) 77.0 88.1 84.4 87.9 88.1 

  1000 0-90 (10) 100 100 100 100 100 

1-E .3 200 0-90 (10) 97.8 99.9 100 100 100 

  1000 0-90 (10) 100 100 100 100 100 

 

Table 6.5: Approximate power of 5% tests for one-versus-zero disease genes in a region. 

Using approximate critical values obtained by simulation under the null hypothesis (Table 

6.4).  

 



 

 

Chapter 7 

Tests for the Presence of Two Linked 

Disease Genes in One Region 

 

Having preliminary evidence for at least one disease gene in the region, and perhaps 

data suggesting the possible existence of a second disease gene in the same region, we may 

wish to test whether the two-locus model fits the data significantly better than the one-locus 

model. In this chapter we discuss tests for evaluating evidence for two linked disease genes. 

Again, to simplify the discussion, we assume there is one genotyped ASP per family, so that 

data for n independent ASPs are available. 

 

132 
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7.1 Issues in Formulating Tests for the Number of Disease Genes in a 

Region 

 

7.1.1 Multiple roots of quasi-score estimating equations 

One issue that arises in this testing situation and may lead to poor performance of 

some test statistics is the existence of multiple-roots of the quasi-score equations. The 

estimating equations for the two-locus model can have multiple roots. The existence of 

multiple-roots is easier to demonstrate in the re-parameterized two-locus model, written in 

terms of δ2
*=(C1

*,C2
*,τ1,τ2)  as was proposed in section 4.1.2. With this parameterization, the 

quasi-score vector is given by: 
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Let:  

( )* *
1 2 1 2

ˆ ˆ ˆ, (1 ) , ,C C C C ˆα α τ τ τ τ= = − = =  for some constant α, 0<α<1.  

Note that 1.04| | .04| |* * *
2 1 2( ) 1 tt C e C e 2tτ τµ − − − −= + +  evaluated at 

( )* *
1 2 1 2

ˆ ˆ ˆ ˆ, (1 ) , ,C C C Cα α τ τ τ τ= = − = =  is: 
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i.e., the one locus mean function for parameters C Ĉ=  and ˆτ τ= .  Similarly,  
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Note that the first two components of the above score function are identical to the first 

component of the one-locus model score function evaluated at ( )ˆ ˆ,C τ , which equals zero 

since ( ˆ ˆ,C )τ  is a solution to the one-locus model quasi-score equations. The third and fourth 
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components are constant (α or (1-α)) multiples of the second component of the one-locus 

model quasi-score evaluated at the one-locus model solution ( )ˆ ˆ,C τ  and are, therefore, also 

equal to zero. Thus, it has been shown, that in this re-parameterized model, any solution of 

the form  solves the two-locus quasi-score equations. 

Thus, these equations have multiple roots. Although it is not as simple to verify, it can also 

be demonstrated that the score equations of the two-locus model parameterized in terms of δ

( * *
1 2 1 2

ˆˆ ˆ, , , (1 )C C C Cτ τ τ τ α α= = = = − )ˆ

2
 

= (C1,C2,τ1,τ2) may have multiple roots. 

It has been suggested (McCullagh 1991) that a quasi-score test may have undesirable 

properties when the quasi-score equations have multiple roots. On the other hand, Li (1993) 

suggested that the approximate quasi-likelihood ratio he introduced may be used to 

distinguish between multiple roots in such situations. Thus, the approximate quasi-likelihood 

ratio tests may have better properties in this testing problem. It should be pointed out that 

finding an “incorrect root” with the two-locus GEE estimation algorithm (i.e. the one locus 

solution in the case of two linked disease genes) can often be avoided by careful selection of 

initial parameter values. 

 

7.1.2 Undefined nuisance parameter under the null hypothesis 

 In developing the score statistics for one versus zero disease genes, it was noted that 

under the null hypothesis of no disease genes in the region, specified as C = 0, the location of 

a disease gene within the map, τ, is undefined and consequently indeterminate. A similar 

problem is encountered in testing for two versus one disease genes in a region. If a second 

potential disease gene does not have an effect on IBD sharing in the region, then it is not a 
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disease gene for the phenotype under study, and hence the location of this second postulated 

disease gene in the region does not exist. This type of problem, where a nuisance parameter 

only exists under the alternative hypothesis, was discussed by Davies (1977, 1987). 

 One impact of this problem is that conventional test statistics are not computable, as 

seen, for example, in section 6.1.3 (for the one-versus-zero score test) and 7.2.3 (for the two-

versus-one score test). We propose to compute the score statistics at the value of the nuisance 

parameter estimated under the alternative hypothesis. Note, however, that this is no longer a 

conventional score test statistic of the simple null hypothesis of no linkage to the region of 

interest.  

 Due to the difficulties described above, the test statistics we propose may be 

considered to be somewhat ad hoc. Asymptotic distributions of these test statistics have been 

conjectured, rather than rigorously derived, and need to be evaluated empirically. Derivation 

of asymptotic distributions of the statistics presents a challenging theoretical problem 

generally beyond the scope of this thesis research. 

 

7.1.3 Approximation of critical values or p-values by simulation  

For several reasons discussed in this chapter, some of the proposed test statistics may 

not have simple null distributions. If a test statistic does not have a well defined distribution 

under the null hypothesis, critical values or p-values have to be approximated by generating a 

large number of data sets under the null hypothesis, calculating the test statistic for each one, 

and using the results to determine the critical value or p-value. Whereas in testing for one 

versus zero disease genes in a region the null model of no disease genes in the region is 

clearly defined and corresponds to one underlying genetic model, this is not the case when 
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testing for two versus one disease genes in a region. For tests of two versus one disease 

genes, the null hypothesis “one disease gene in the region” does not specify a single 

underlying genetic model. Therefore in order to generate data under the null hypothesis, 

some assumptions must be made about the true null model. A logical approach is to assume 

that the null one-locus model is a model specified by estimates obtained by fitting the one-

locus model to the data. However, to generate IBD sharing data, we require the IBD sharing 

distribution (i.e. p0,p1,p2, where pj=Pr(S(τ)=j|Φ) as defined in section 3.3) not just the mean 

excess IBD sharing (C). The method for estimating the IBD sharing proportions (p0,p1,p2) 

described in section 3.3 is therefore useful for determining the null genetic model to use for 

data generation in this situation. 

 

7.2 Test Statistics for Two versus One Disease Genes in a Region 

 

Estimates of C and τ can be obtained by fitting the one-locus model of Liang et al. 

(2001a) given by: 

CetC t ||04.
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or in terms of δ2
*: 

1.04| | .04| |* * *
2 1 2( ) 1 t tt C e C e 2τ τµ − − − −= + +     for all t. 

In chapter 6 a number of tests for evaluating the evidence for a single disease gene in 

a region were described. These included Wald tests, approximate quasi-likelihood ratio tests, 

a score test, and a test based on the L* statistic previously proposed by Liang et al. (2001a). 

In simulations presented in section 6.2, all of the test statistics showed similar performance in 

terms of type I error and power. The simplicity of the approximate likelihood ratio tests 

combined with their acceptable performance in comparison to the other tests makes them 

particularly appealing. Therefore, in developing tests for two-versus-one disease genes in a 

region, we focus on applying and evaluating the approximate quasi-likelihood ratio tests, in 

particular the test proposed by Li (1993). We also address other test statistics and issues 

associated with applying them to this testing problem. 

 

7.2.1 Approximate quasi-likelihood ratio tests 

Let 

1 1 1 1
ˆ ˆˆ ˆ ˆ( , ; ),..., ( , ; )MC t C tµ µ τ µ τ =    and 

2 2 1 2 1 2 1 2 1 2 1 2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( , , , ; ),..., ( , , , ; )MC C t C C tµ µ τ τ µ τ τ =  ˆ . 

Also let Cov1(S*) be the variance/covariance matrix of the IBD sharing data under the null 

one-locus model, calculated as described in section 6.1.3. Cov2(S*) represents the covariance 

of the observations under the two-locus model. We empirically estimate Cov2(S*) using IBD 

sharing information from all the ASPs as was described in chapter 4 in the context of 

estimation of the two-locus model parameters by the GEE approach. 
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Recall that  is the (estimated) IBD sharing at the jth marker for the ith sibpair, and 

 is the vector of IBD sharing at all the markers for the ith sibpair. 

*
ijS

( * *
1 2 ,..., )

)

*,
T

i i iMS S S=*
iS

Following McLeish and Small (1992; equation 2.8 in chapter 2) and Li (1993; equation 2.9 in 

chapter 2), respectively, the two approximations to likelihood ratio statistics are calculated 

as: 

( ) (T -1
MS 2

1

ˆˆ ˆ ˆLRT 2log 1 Cov ( )
nfam

i=

 = − + − −  
∏ * *

1 2 i i 2µ µ S S µ      (7.2) 
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Li

1 1
2 1

1

LRT

1 1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 Cov ( ) Cov ( )
2 2

nfam
T T

i

− −

=

  = − − − + − −    
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1 2 i i 2 1 2 i i 1µ µ S S µ µ µ S S µ
 (7.3) 

Under the null hypothesis, the asymptotic distributions of these statistics are expected to 

approximate a chi-squared distribution with 2 degrees of freedom. However the distribution 

of these statistics may deviate from this theoretical distribution, particularly in small samples, 

for reasons including the fact that they are based only on approximations to quasi-likelihood 

ratios, as well as issues discussed in section 7.1. Therefore, properties of these tests were 

studied by simulation and will be discussed in section 7.3. 

 

7.2.2 Wald Test 

In order to test the null hypothesis of one disease gene in the region using a Wald test, 

we needed to state the null hypothesis as a set of restrictions on the parameters δ2 or δ2
*. 

Aitchison and Silvey (1960) discussed two ways of specifying restrictions: as constraint 

equations in the parameters, or as “freedom equations” expressing the parameters in terms of 
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a second smaller set of parameters. In the problem of testing for the presence of two linked 

disease genes, the latter way of stating the null hypothesis arises more naturally, making the 

score test more easily applicable than the Wald test. 

Because of certain complications, a test analogous to the Wald test presented in 

section 6.1.2 is not readily applicable to the problem of testing for two versus one disease 

genes in a region. Note that a two-locus mean function (parameterized by δ2 or δ2
*), 

simplifies to a one-locus mean function if the two disease gene loci are at the same location 

(τ1 = τ2 = τ). If the two locations are different (τ1 ≠ τ2), then a two-locus mean function 

simplifies to a one-locus mean function if one of the two loci (the “disease gene”) increases 

IBD sharing in the region, while the other one does not. In the case of the δ2
*-parameterized 

model, this means that C  or C*
1 0= *

2 0= . In the δ2-parameterized model, if the gene at τ1 is 

the only disease gene in the region then 2 1.04| |
2 1C C e τ τ− −=

2 1.04| |e

, and if the gene at τ2 is the only 

disease gene in the region then 1 2C C τ τ− −= . Therefore, in terms of the δ2
*-parameterized 

model, the null hypothesis can be stated as  

H0: τ1 - τ2 = 0 or C  or C*
1 0= *

2 0= , 

and in the δ2-parameterized model, the null hypothesis can be stated as  

H0: τ1 - τ2 = 0 or C C 2 1.04| |
1 2e

τ τ− −=  or 2 1.04| |
2 1C C e τ τ− −= . 

A graphical representation of this null hypothesis is shown in Figure 7.1. 
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Figure 7.1: Diagram of null hypothesis for the Wald test for evaluating evidence for two 

linked disease genes 
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Because in both cases the null hypothesis is a union of hypotheses, an intersection-

union test can be applied, with the rejection region for the overall hypothesis being given by 

the intersection of the rejection regions for the three individual hypotheses. Three Wald 

statistics can be formulated for testing the three components of the null hypothesis. If all 

three Wald statistics exceed the appropriate critical values, there is evidence that there are 

two distinct loci (τ1 ≠ τ2) both of which influence the IBD sharing in the region (C and 

) and the null hypothesis of one disease gene in the region is rejected. Thus we reject 

the null hypothesis when the minimum of the three statistics exceeds the critical value. The 

three component statistics for the δ

0*
1 ≠

0*
2 ≠C

2-parameterized model are shown in Appendix C. Some 

weaknesses of the intersection-union test include the fact that, although an upper bound for 

the size of the test can be determined, the exact size may be difficult to determine, and 

frequently they have low power.  

 

7.2.3 Modified quasi-score tests 

It was mentioned in section 7.2.2, that the null hypothesis of one disease gene in the 

region is more naturally specified in terms of what has been termed “freedom equations” 

(Aitchison and Silvey 1959), i.e., via a reparameterization rather than via constraint 

equations. This statement of hypotheses arises more naturally because the null hypothesis is 

best described in terms of one set of parameters, δ1
 = (C,τ), whereas the alternative is easiest 

to describe in terms of another set of parameters, δ2
 = (C1,C2,τ1,τ2). In terms of such 

equations, under the null hypothesis of one disease gene in the region, the excess IBD 

sharing at any locus should equal the mean IBD sharing given by the one-locus model, i.e. 

.04| |( ( ) | ) 1 tE S t Ce τ− −Φ − = . Therefore, in terms of the parameters δ2
 = (C1,C2,τ1,τ2), under the 
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null one-locus model parameterized by δ = (C,τ), C C 1.04| |
1 e τ τ− −=  and 2.04| |

2C Ce τ τ− −= , for any 

τ1 and τ2, and in particular for τ1 = 1̂τ  and τ2 = 2τ̂ . 

2τ%

τ̂

2τ =%

1.04| |
1C Ce τ τ− −=

1̂_S τ 2τ̂

It was shown in section 6.1.4 that in order to calculate a score statistic to evaluate 

evidence for one disease gene in a region, the “null” value of the location parameter τ was 

needed. However, under the null hypothesis of no disease genes in the region, the location of 

a disease gene within the map, τ, is undefined and consequently indeterminate. A similar 

problem arises in developing a score test to evaluate evidence for the presence of two linked 

disease genes. In order to evaluate the two-locus model score function under the null 

hypothesis of one disease gene located at τ, a location of the second putative gene, say τ2, has 

to be specified. We denote the null value of τ2 by . However, under the null hypothesis of 

one disease gene in the region (located at τ), the location of a second disease gene (τ2) is not 

defined. There are several possible approaches that could be considered, including a solution 

parallel to that applied in section 6.1.4 to the testing for one versus zero disease genes. 

 One solution is to let 2τ =% , the estimate of the second disease gene location under 

the two-locus model. The resulting statistic would test whether, after accounting for linkage 

to one disease gene in the region, there is further evidence of linkage to another disease gene 

at the locus 2τ̂ . We could similarly construct the test statistic by evaluating the score at the 

other location identified by fitting the two-locus model, i.e., τ̂ . Thus two statistics can 

be calculated to evaluate evidence against the two hypotheses H01:  at τ1 = 1̂τ  

and H02: C C 2.04| |
2 e τ τ− −=  at τ2 = 2τ̂ . These two statistics, T  and T _S , are shown in 

Appendix C. Under the null hypothesis of one disease gene in the region, there should be no 

2

1
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additional effect on the IBD sharing of either locus ( 1̂τ  or 2τ̂ ). Therefore, we reject the null 

hypothesis of one disease gene in the region if either T c  or T , i.e. if  
1̂_τS >

2ˆ_S τ > c

c( )1 2ˆ ˆ_ max _ _max ,S S ST T Tτ τ= >   

for an appropriately chosen critical value c to give a test with a pre-specified significance 

level. Note that this is a union-intersection test of the overall null hypothesis C C 1.04| |
1 e τ τ− −=  

and C C 2.04| |
2 e τ τ− −= , for τ1 = 1̂τ  and τ2 = 2τ̂ . It is generally difficult to derive the size of a 

union-intersection test. Although a lower bound for the size can be determined, this is not a 

useful result. In this situation, the critical value for a size α test can be determined by 

simulation. Alternatively, the two statistics could be added to get an overall test statistic, i.e. 

1̂um _ _S ST T T
2ˆ_ s Sτ τ= + . Significance of this statistic would also be assessed by simulation. 

 

7.3 Assessment of Tests by Simulation 

 

As was mentioned at the beginning of this chapter, the approximate likelihood ratio 

test based on the method of Li (1993) is particularly appealing in the problem of testing for 

two versus one disease genes in one region. Issues associated with the alternative tests (based 

on Wald and score statistics) suggest that the null distributions of these statistics are likely to 

be difficult to determine. Therefore, critical values for these statistics would have to be 

determined by simulation. Some difficulties associated with obtaining such empirical critical 

values were noted in section 7.1.3. In section 7.3.1, we summarize results from a small 

simulation study comparing performance of the various tests for two-versus-one disease 
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genes, while the more comprehensive simulation study presented in section 7.3.2 focuses on 

the performance of LRTLi.  

As in the simulations in chapter 6, true type I error and power under a given model 

were estimated by the proportion of significant test statistics obtained in a simulation 

consisting of 1000 replicates. This relatively small number of replicates will not provide 

highly accurate estimates of type I error or power, but will allow a general understanding of 

the behaviour of the statistics for a range of null and alternative models.  

 

7.3.1 Comparison of properties of alternative test statistics 

To compare type I errors of the various tests for two versus one disease genes in a 

region, data were generated under the null hypothesis of one disease gene for three different 

one-locus models (models C, D, and E from Table 6.2). Models A and B were not used for 

these simulations, since under these models there is generally very little evidence for even 

one disease gene in the region, and therefore it is unlikely that data arising under these 

models would be used to test for two disease genes in the region. We recommend using the 

methods for localizing and testing for two linked disease genes if the data, or previous 

studies, suggest the presence of one, and possibly two disease genes in one region. Thus we 

only apply the methods to models that would provide some indication of at least one gene. 

Observed type I errors of the test for two versus one disease genes in a region are shown in 

Table 7.1. Although the Wald and score test statistics are not expected to have chi-squared 

distributions with 2 df, critical values from a 2
2dfχ =  distribution were initially used for the 

Wald intersection-union test and the score test based on a maximum of the two score 

statistics evaluated at 1̂τ  and 2τ̂ . This led to inflated type I errors for these statistics. 
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Therefore, to properly evaluate the power of these tests, empirical critical values need to be 

estimated. LRTLi has the strong advantage that the observed type I errors are close to the 

nominal 5%, and thus determining critical values for this statistic by simulation is not 

essential. Approximate critical values for the alternative test statistics based on the same set 

of one-locus models are shown in Table 7.2. 

Two models used for comparing power of the different statistics are shown in Table 

7.3, and power estimates are shown in Table 7.4. Results suggest that the Wald intersection-

union test has the lowest power of the tests we considered. Score tests based on the 

maximum or sum of two score statistics evaluated at 1̂τ  and 2τ̂ , have power comparable to 

that of the likelihood ratio tests. Under certain genetic models, LRTLi appears to be more 

powerful than LRTMS and has good power compared to all the other tests considered in the 

simulation study. 
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Model C    Type I error (%) 

Likelihood Ratio Tests Score Tests   

Sample 

size 

(#ASPs) LRTMS LRTLi 

Wald 

Test TS_ max, T  _ max
B

S TS_sum, T  _ sum
B

S

1-C .12 200 4.9 3.3 1.0 4.8, 3.2 - 

  1000 5.3 5.0 5.5 6.5, 4.7 - 

1-D .2 200 6.4 4.8 2.9 6.5, 4.9 - 

  1000 5.8 5.3 8.1 8.2, 6.0 - 

1-E .3 200 8.0 5.7 6.7 8.1, 5.6 - 

  1000 6.0 5.9 8.5 8.4, 6.3 - 
 

Table 7.1: Type I error for tests of two-versus-one disease genes in a region for α = 5% (nominal). 

Type I errors of nominal 5% tests assuming asymptotic chi-squared distributions. The disease gene 

was located at 45 cM (τ = 45). A marker map of 10 equally spaced markers covering a total of 90 cM 

was used (markers at 0,10,…,90cM). [Type I errors of TS_sum and T are not estimated, because 

the asymptotic null distributions of these statistics are difficult to predict and do not approximate well 

defined distribution.] 

_ sum
B

S

 

 

Model C    Estimated Critical Values for α = 5% 

LRTs Score Tests   

Sample 

size 

(#ASPs) LRTMS LRTLi 

Wald 

Test TS_ max, T  _ max
B

S TS_sum, T  _ sum
B

S

1-C .12 200 5.81 5.06 3.24 5.94,  5.38  8.37,  6.24 

  1000 6.24 5.97 6.36 6.70,  5.88 8.31,  6.79 

1-D .2 200 7.12 5.86 4.69 6.62,  5.90 8.57,  6.50 

  1000 6.43 6.06 7.54 7.36,  6.57 9.21,  7.15 

1-E .3 200 7.16 6.39 7.00 7.31,  6.42 9.44,  7.36 

  1000 6.48 6.45 11.67 7.43,  6.39 9.67,  7.02 
 

Table 7.2: Estimated 5% critical values for tests of two-versus-one disease genes in a region based on 

1000 replicates. 
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Model Penetrance matrix Allele 

frequencies 

Prevalence τ2-τ1 C1, C2 

 aa aA AA 20 0.10, 0.10 

bb .002 .060 .060 40 0.08, 0.08 

bB .060 .060 .060   

2-A 

BB .060 .060 .060 

Pr(A) = 0.18 

Pr(B) = 0.18 

3.4% 

  

 aa aA AA 20 0.22, 0.22 

bb .002 .140 .140 40 0.18, 0.18 

bB .140 .140 .140   

2-B 

BB .140 .140 .140 

Pr(A) = 0.064 

Pr(B) = 0.064 

3.4% 

  
 

Table 7.3: Two-locus models used for power study.  

 

 

Power (%) 

LRTs Score Tests 

Model τ1, τ2 C1, C2 

LRTMS LRTLi 

Wald 

Test TS_ max, T  _ max
B

S TS_sum, T  _ sum
B

S

2-A 40,60 0.10, 0.10 24.8 25.3 15.0 26.3, 27.0 28.2, 26.5 

 30,70 0.08, 0.08 61.3 61.6 30.6 55.3 , 57.4 60.2, 62.6 

2-B 40,60 0.22, 0.22 98.2 97.9 81.9 98.6, 98.6 98.6, 98.7 

 30,70 0.18, 0.18 83.1 100.0 99.5 100.0, 100.0 100.0, 100.0 

 

Table 7.4: Approximate power of α = 5% tests of two-versus-one disease genes in a region. 

Critical values were approximated using results shown in Table 7.2. Sample size: 1000 ASPs. 

Marker map: 11 equally spaced markers spanning 0-100 cM.  
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7.3.2 Performance of the statistic LRTLi 

Observed type I errors of the statistic LRTLi are shown in Table 7.5 for several 

underlying one-locus models and sample sizes. Overall, the test appears to have type I errors 

close to the nominal 5%, although the type I errors may depend on the sample size, and the 

underlying one-locus disease model. Table 7.6 shows that the observed type I error of the test 

may also depend on the initial values selected for the GEE algorithm, once again 

demonstrating the importance of carefully choosing the initial values. The results suggest that 

placing initial location values (τ’s) too far apart tends to increase the type I error. 

 

 

τ C Type I error (%) Penetrance vector; 
Pr(D) 

  

Sample size 

(#ASPs) 

Marker map 

(spacing) LRTLi 

(.01,.05,.05); 0.25 45 .105 1000 0-90 (10)  4.7 

 25 .105 1000 0-90 (10)  5.8 

(.01,.05,.05); 0.25 45 .105 200 0-90 (10)  5.7 

   500 0-90 (10)  5.7 

   1000 0-90 (10)  4.7 

(.01,.03,.03); 0.3 45 .055 1000 0-90 (10)  5.3 

(.01,.05,.05); 0.25 45 .105 1000 0-90 (10)  4.7 

(.01,.1.,1); 0.2 45 .174 1000 0-90 (10)  4.9 

(.01,.25,.25); 0.10 45 .299 1000 0-90 (10)  3.3 

 

Table 7.5: Type I error for the LRTLi test of two-versus-one disease genes in a region. Using 

critical values from a chi-squared distribution with 2 df, for a nominal 5% α-level.  
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τ C SS Type I error (%) Penetrance vector; 
Pr(D) 

  (#ASPs) 

Initial 

τ1,τ2 LRTLi 

(.01,.1.,1); 0.2 45 .174 1000 30,60 4.9 

    35,55 3.3 

(.01,.05,.05); 0.25 25 .105 1000 25,45 5.8 

    15,35 4.0 

(.01,.05,.05); 0.25 45 .105 500 30,60 7.1 

    35,55 5.7 

(.01,.05,.05); 0.25 45 .105 200 30,60 7.0 

    35,55 5.7 

 

Table 7.6: Type I error: Sensitivity to initial values. 

 

Models used to study power of LRTLi are shown in Table 7.7. Table 7.8 reports 

power of LRTLi under several two-locus models, distances between the two disease genes, 

and sample sizes. By considering four different underlying genetic models, the first section 

of the table demonstrates the increase in power of the test as the expected IBD sharing at the 

two genes (C1 and C2) increases. The second section of the table shows the power loss that 

results when the two disease genes are in close proximity to one another. In the last three 

sub-sections of the table, the effect of sample size on power is demonstrated for three 

distances separating the two disease genes. The expected trend of increased power with 

increased sample size is evident. The results show that the impact of reduced sample size on 

reduction in power is more pronounced when the two disease genes are relatively close to 

one another (Figure 7.2). 
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Model Penetrance matrix Allele 

frequencies 

τ2-τ1 C1, C2 

 aa aA AA 20 0.073, 0.073 

bb .010 .100 .100   

bB .100 .100 .100   

2-C 

BB .100 .100 .100 

Pr(A) = 0.20 

Pr(B) = 0.20 

  

 aa aA AA 20 0.161, 0.161 

bb .010 .250 .250   

bB .250 .250 .250   

2-D 

BB .250 .250 .250 

Pr(A) = 0.10 

Pr(B) = 0.10 

  

 aa aA AA 20 0.233, 0.233 

bb .010 .400 .400   

bB .400 .400 .400   

2-E 

BB .400 .400 .400 

Pr(A) = 0.05 

Pr(B) = 0.05 

  

 aa aA AA 20 0.303, 0.303 

bb .010 .600 .600   

bB .600 .600 .600   

2-F 

BB .600 .600 .600 

Pr(A) = 0.015 

Pr(B) = 0.015 

  

 aa aA AA 10 0.327, 0.327 

bb .010 .010 .800 15 0.303, 0.303 

bB .010 .010 .800 20 0.283, 0.283 

2-G 

BB .800 .800 .800 

Pr(A) = 0.015 

Pr(B) = 0.015 

40 0.235, 0.235 
 

Table 7.7: Two-locus models used to study power of LRTLi.  
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τ1, τ2 C1, C2 Model 

  

Sample 

size  

Observed power of 

LRTLi  (%) 

2-C 40, 60 0.073, 0.073 1000 9.4 

2-D 40, 60 0.161, 0.161 1000 84.2 

2-E 40, 60 0.233, 0.233 1000 98.8 

2-F 40, 60 0.303, 0.303 1000 99.3 

45, 55 0.327, 0.327 1000 63.5 

42.5, 57.5 0.303, 0.303 1000 96.3 

40, 60 0.283, 0.283 1000 99.7 

2-G 
 

30, 70 0.235, 0.235 1000 100 

2-G 30, 70 0.235, 0.235 200 86.4 

   500 99.9 

   1000 100 

 40, 60 0.283, 0.283 200 53.0 

   500 94.3 

   1000 99.7 

 42.5, 57.5 0.303, 0.303 200 20.0 

   500 69.8 

   1000 96.3 

 

Table 7.8: Power of LRTLi. For each simulation the marker map consisted of 11 equally 

spaced markers on a map of 0-100 cM (i.e. markers at 0,10,…,100cM) 
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Figure 7.2: Power of LRTLi (under model 2-G from Table 7.7). D = distance between

two disease genes in cM.   
Discussion 

Although further comparisons of the test statistics are warranted, the limited 

lations described in section 7.3.1 favour the quasi-likelihood ratio test LRTLi because of 

implicity, more predictable distribution under the null hypothesis, and good power 

ive to the other tests under the alternative hypothesis. Further improvements to this test 

 be possible. In particular, Hanfelt and Liang (1995) showed that the projection approach 

i (1993) is closely related to an approach directly based on the quasi-likelihood and 

osed extensions to improve the approximation in Li’s method. 
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 Recall that in our score tests, we computed the score statistics at the value of the 

nuisance location parameter estimated under the alternative hypothesis. Some alternative 

methods of constructing test statistics when a nuisance parameter cannot be estimated under 

the null hypothesis have been proposed. Davies suggested maximizing the statistic over the 

range of possible values for the parameter, and showed how to approximate an upper bound 

for the significance level (Davies 1977) or the significance probability (Davies 1987). 

Lemdani and Pons (1995) apply this method to the formulation of a likelihood ratio test 

statistic in a parametric linkage heterogeneity model. Alternatively, Liang and Rathouz 

(1999) propose a class of score statistics for the linkage heterogeneity model. They suggest 

finding the MLE of the nuisance parameter under the alternative hypothesis with a specific 

value of the parameter of interest, and computing the score statistic at this estimate of the 

nuisance parameter. Finally, Chiu et al. (2002) extended these linkage heterogeneity tests to 

apply to data from multiple markers, and discussed alternative ways of determining an 

appropriate null value of the location parameter. Some of these approaches may be applicable 

in designing tests for the number of disease genes in a region. 

 Further development of GEE parameter estimation in the two-locus model may lead 

to improved properties of the tests. For instance, properly constraining parameters can 

improve power. Note that in the δ2-parameterized model, the null hypothesis from section 

7.2.2 

H0: τ1 - τ2 = 0 or C C 2 1.04| |
1 2e

τ τ− −=  or 2 1.04| |
2 1C C e τ τ− −= . 

could be written simply as  

H0: C C 2 1.04| |
1 2e

τ τ− −=  or C C 2 1.04| |
2 1e

τ τ− −=   
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had more stringent constraints been placed on the parameters, which would force C1 = C2 

when τ1 = τ2. 



 

 

Chapter 8 

Application to Type 1 Diabetes Genome 

Scan Data 

 

 

We applied the estimation and testing methods described in this thesis to previously 

analyzed data from a genome scan for type 1 diabetes (Mein et al. 1998) and obtained 

estimates of two putative disease gene locations on chromosome 6, approximately 20 cM 

apart, and two gene locations on chromosome 16, approximately 55 cM apart. A description 

of the data and results of the analyses are presented in this chapter. 

 

8.1 Introduction 

 

There is very strong evidence for at least one type 1 diabetes susceptibility gene (the 

IDDM1 locus) in the HLA/MHC region on chromosome 6, which explains about 34% of the 

familial clustering of the disease (Davies et al. 1994). Although (suggestive) evidence of 

156 
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linkage has been obtained in many other genomic regions, none of the other genes appear to 

have such large effects on disease susceptibility. Delépine et al. (1997) and Cordell et al. 

(2000) reported evidence of a second disease gene for type 1 diabetes linked to the HLA 

region in two different collections of families, although the positions they reported were 

about 20 cM apart. Using another set of ASPs, Concannon et al. (1998) also obtained 

suggestive evidence for linkage at the second gene location identified by Delépine et al. 

(1997). 

The genome scan data analyzed here consists of genotypes for 356 ASP families with 

type 1 diabetes. In total, 355 microsatellite markers were genotyped. A detailed description 

of the data can be found in Davies et al. (1994), Cucca et al. (1998), and Mein et al. (1998). 

Analyses of chromosome 6 and 16 data will be described in sections 8.2.1 and 8.2.2, 

respectively. Chromosome 6 was chosen for analysis because of previous reports suggesting 

that two linked genes on chromosome 6 may be contributing to type 1 diabetes susceptibility 

(Delépine et al. 1997; Cordell et al. 2000; Concannon et al. 1998). Chromosome 16 was 

studied because the NPL curve contained two peaks, which could be the result of two distinct 

type 1 diabetes genes (Figure 8.3). 

 

8.2 Analysis of Selected Chromosomes 

 

8.2.1 Chromosome 6 analysis 

The NPL plot for a 100cM segment of chromosome 6, based on genotype data at 18 

markers (Figure 8.1), shows very strong evidence of linkage at approximately 25cM. This is 

the position of the well-established IDDM1 gene(s) in the MHC/HLA region (Davies et al. 
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1994). Figure 8.2 presents average IBD sharing at 18 chromosome 6 markers in the sample 

of 356 ASPs, along with expected IBD sharing curves defined by estimates from the one-

locus and two-locus models. Assuming there is only one disease gene in the region, the 

location of the single putative disease gene was estimated to be 28.0cM, with a standard error 

of 0.74. Mean IBD sharing (C+1) was estimated to be 1.47 (s.e. 0.04). With the two-locus 

model, putative disease gene locations were estimated to be 27.0 cM (s.e. 0.52) and 48.6 cM 

(s.e. 5.64). Expected IBD sharing for an affected sib-pair was estimated to be 1.45 (s.e. 0.03) 

and 1.26 (s.e. 0.04) at these two loci, respectively. The one-locus-model asymptotic-theory 

95% confidence interval for the disease gene location is (26.6,29.5). The 95% CIs for the 

disease gene locations under the two-locus model are (26.0,28.0) and (37.4,59.5). The 

confidence interval for the second gene location is wider because the effect size of the second 

putative gene is low relative to that of the first gene. 

Test statistics for evaluating evidence for a single disease gene described in section 

6.1 were calculated for the chromosome 6 data. The five statistics (LRTMS, LRTLi, Wald 

Test, Score Test, and L*) were all highly significant with p-values < .0001. These p-values 

were obtained using asymptotic distributions rather than using empirical critical values. 

Simulations presented in chapter 6 indicated that all of these statistics have close to nominal 

significance levels. Furthermore, in this analysis, all five statistics were very large and would 

surely be significant following an empirical correction of critical values.  

The approximate likelihood ratio test statistic LRTLi was calculated to assess evidence 

for a second disease gene in the region. Using the asymptotic chi-squared distribution with 2 

degrees of freedom, the test was significant at the 5% level (LRTLi = 8.86, pasymp = 0.01). By 

generating 1000 fully informative data sets of 356 ASPs under a null one-locus model 
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resembling the observed one-locus model, the empirical p-value of the likelihood ratio 

statistic was approximated to be 0.08. Note that, first of all, this is not a precise 

approximation since it was based on only 1000 data sets (95% CI for p-value: 0.063 to 

0.097). Also this p-value is a conservative estimate of significance, because the simulated 

data was fully informative yielding higher test statistics which would lead to a higher critical 

value. As a result, empirical p-values for the data will tend to be too large. Thus, it can be 

concluded that there is suggestive evidence for a second type 1 diabetes susceptibility gene, 

linked to the HLA region, approximately 20-30 cM centromeric from IDDM1.  

 

8.2.2 Chromosome 16 analysis 

The chromosome 16 data consisted of genotypes in a sample of 351 ASPs for 20 

markers spanning approximately 110 cM. The shape of the NPL plot for chromosome 16 

suggests that there may be two disease genes on this chromosome that influence type 1 

diabetes susceptibility (Figure 8.3). Assuming there is only one disease gene in the region, 

and applying the GEE method described in section 2.2, the location of the single putative 

disease gene was estimated to be 89.4, with an estimated standard error of 2.9. Expected IBD 

sharing (C+1) was estimated to be 1.14 (s.e.= 0.04). When the two-locus estimation method 

proposed in chapter 4 was applied to the same data, the two putative disease gene locations 

were estimated to be 37.0 cM (s.e. 9.9) and 91.6 cM (s.e. 3.6). Expected IBD sharing in 

affected sib-pairs was estimated to be 1.07 (s.e.= 0.04) and 1.14 (s.e.= 0.04) at these two loci, 

respectively. Figure 8.4 shows the average marker IBD sharing of the 351 ASPs from the 

sample along with curves defined by estimates from the one-locus and two-locus models. 
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The one-locus model asymptotic-theory 95% confidence interval for the disease gene 

location is (83.8,95.0). The 95% CIs for the two disease gene locations under the two-locus 

model are (17.6,56.5) and (84.5,98.6). The CI for the first disease gene location is quite wide, 

because the excess sharing in this part of the chromosome is actually not very high, and there 

is little evidence for linkage to a second disease gene in this region of the chromosome. 

Simulation results presented in chapter 5 showed that gene location confidence intervals can 

have lower than nominal coverage, particularly for genes with small effect sizes. Therefore, 

although the two gene location confidence intervals for chromosome 16 do not overlap, this 

cannot be taken as evidence for two distinct type 1 diabetes susceptibility genes on this 

chromosome.  

We applied tests to assess evidence for one and two type 1 diabetes susceptibility 

genes on chromosome 16. There was significant evidence for one disease gene in the region 

(Table 8.1). The test statistic for two versus one disease genes in the region based on the 

method of Li (1993) was not significant (LRTLi = 0.554, pasymp = 0.76). Power of the 

likelihood ratio test LRTLi to detect the second gene in the estimated two-locus model was 

Test Test Statistic p-valuea  

LRTMS 13.86 0.001  

LRTLi 12.10 0.002  

Wald Test  13.38 0.001  

Score Test 14.38 0.001  

L* 2.606 0.005  

Table 8.1: Tests for one-versus-zero disease genes on chromosome 16 
a p-values based on asymptotic distributions 
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approximated for several sample sizes (Figure 8.5). It is clear that even if there is a second 

disease gene with mean IBD sharing of about 0.07 located at 37cM on this chromosome, as 

suggested by the two-locus-model estimates, it would not be detectable by the proposed 

methods. In fact, it would take a sample of about 1200 ASPs to reach 80% power to detect 

this gene. A gene with such low mean IBD sharing would have a low probability of detection 

by model-free linkage analysis methods with typical sample sizes of less than 1000 ASPs. 
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Figure 8.2: Average IBD sharing at 18 chromosome 6 markers in a sample of ASPs with

diabetes (data: Mein et al. 1998). The two curves show the expected IBD sharing for the 

estimated one-locus model  (dashed line) with C=0.467 and τ=28.0, and the two-locus 

model (solid line) with C1=0.449, C2=0.256, τ1=27.0, and τ2=48.5. 
Figure 8.1: NPL plot for a 100cM region of chromosome 6 based on type 1 diabetes

genome scan data (Mein et al. 1998). The solid line represents the NPL curve. The 

dashed line shows the marker information content (scale on right side of plot). 
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Figure 8.3: NPL plot for chromosome 16 based on type 1 diabetes genome scan data 

(Mein et al. 1998). The solid line represents the NPL curve. The dashed line shows the 

marker information content (scale on right side of plot). 
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Figure 8.4: Average IBD sharing at 20 chromosome 16 markers in a sample of ASPs with 

diabetes (data: Mein et al. 1998). The two curves show the expected IBD sharing for the 

estimated one-locus model  (dashed line) with C=0.143 and τ=89.4, and the two-locus 

model (solid line) with C1=0.066, C2=0.136, τ1=37.0, and τ2=91.6. 
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Figure 8.5: Power curve for detecting two putative disease genes on chromosome

16. 
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8.3 Discussion of Results 

 

Cordell et al. (2000) obtained evidence for a second type 1 diabetes gene on 

chromosome 6 approximately 30cM from IDDM1. Delépine et al. (1997) also concluded that 

there is a second type 1 diabetes susceptibility gene on chromosome 6 linked to HLA, 

although they suggested it is located almost 50 cM from IDDM1. A diagram showing the 

results of our analysis compared to the results of Cordell et al. and Delépine et al. is shown in 

Figure 8.6. Our confidence interval for the second disease gene location includes the location 

for the second gene reported by Cordell et al. (2000), but not the second gene reported by 

Delépine et al. (1997). However, in light of the simulation results presented in chapter 5, we 

conclude that the confidence interval for the second gene may be too narrow, and hence to 

have less than nominal 95% coverage.  It should also be noted that the data we analyzed is 

the same data set that was analyzed by Cordell et al. (2000). Another difference between our 

analysis and that of Delépine et al. is that our method does not account for sex-specific 

recombination fractions. It has been shown that recombination fractions in the chromosome 6 

region we studied are different between male and female meioses. The analysis carried out 

by Delépine et al. (1997) did take this difference into account, which may partially explain 

the difference in location estimates of the second gene.  

When there are two disease genes in one chromosomal region contributing to the 

susceptibility of the same disease, our GEE estimation method can improve their localization. 

In the analysis presented in section 8.2.1, the standard error of the estimated location of the 

gene in the HLA region under the two-locus model is smaller than the standard error for the 

location under the one-locus model. Furthermore, in comparison to the estimated location 
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under the one-locus model, the estimated location of IDDM1 under the two-locus model is 

closer to the D6S273 and TNFa marker loci commonly sited as the IDDM1 location. Thus, 

apparently, a more accurate and more precise estimate of the major IDDM1 gene was 

obtained by fitting the two-locus model. This improvement in localization is confirmed by 

our simulation studies. 

In this type of situation, with one of the genes having a substantially larger effect than 

the other, conditional methods such as that of Farrall (1997) may work well. In such cases, 

the first (major) gene may be successfully localized with minimal bias associated with 

ignoring effects of the second (minor) gene. However, if the effects of two genes on IBD 

sharing are not drastically different, we believe there would be greater benefits of using our 

method, which simultaneously estimates both disease gene locations. 

Analysis of chromosome 16 data did not provide significant evidence for two linked 

disease genes. Note, however, that if there are two genes at the locations identified by our 

analysis (approximately 37 and 92 cM), then these two genes are quite far apart. Because the 

linkage between these two genes is low, methods that do not account for the existence of 

multiple linked disease genes may perform reasonably well in localizing the two putative 

genes. However, the performance of the two-locus model is not compromised by lack of 

linkage between the two disease genes.  

In summary, we have applied the estimation and testing methods for the detection of 

two linked disease genes to chromosome 6 and chromosome 16 data from a type 1 diabetes 

genome scan. The analyses demonstrated that when two linked disease genes are (apparently) 

present in one region, they can be localized with greater accuracy and precision by applying 

the two-locus-model GEE method. The methods described in this thesis would presumably 
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be most useful for localizing disease genes separated by moderate genetic distances when 

neither of the genes has a drastically larger effect on IBD sharing than the other. 

 



 

 

Chapter 9 

Conclusions 

 

 

The main scientific contribution of this thesis, development of a method for 

simultaneous localization of two linked disease genes, was presented in chapter 4. In 

addition, several test statistics that can be used in conjunction with this estimation method 

were proposed. Properties of the estimation and testing methods were studied by simulation, 

and the methods were applied to a type 1 diabetes data set. As background to the 

development of the model for two linked disease genes, the generalized estimating equations 

approach for localizing a single disease gene in a chromosomal region proposed by Liang et 

al. (2001a) was examined in chapter 3. 

Several modifications of the one-locus estimating equations were considered in 

chapter 3. Simulations demonstrated that while more careful modeling of the covariance 

structure of the data can improve estimation efficiency, unbiased location estimates can be 

obtained by assuming a simple working correlation and empirically estimating the variances 

of IBD sharing at each marker. Based on these observations, there is reason to believe that 

169 
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using a similar approach may perform well in the estimation of two disease genes in one 

region, where the true covariance structure of the data is more complicated than in the one-

locus model. In section 3.3 the GEE method for localizing a single disease gene was 

extended to allow the estimation of IBD sharing probabilities for ASPs at a single disease 

gene. This extension not only has the potential to improve disease gene localization under 

certain underlying genetic models, but it also provides estimates of parameters which are 

useful in evaluating the significance of tests for the number of disease genes in a region. 

Some of the test statistics introduced in chapter 7 do not have well defined distributions 

under the null hypothesis. Empirical critical values must then be approximated by simulation. 

This is particularly problematic in the case of testing for two versus one disease genes in a 

region. Estimates of IBD sharing probabilities, obtained, for example, by the method 

described in section 3.3, can be used in this case to identify an appropriate one-locus model 

for simulating data under the null hypothesis. 

In chapter 4, the GEE approach for localizing a single disease gene proposed by 

Liang et al. (2001a) and modified in chapter 3, was extended to a method for localizing two 

linked disease genes. We consider whether performance of the estimation algorithm could 

perhaps be improved by correctly modeling the covariance matrix of the data for each ASP 

under the two-locus model. Simulations showed, however, that even with the simple 

covariance applied in an original implementation, with a sufficiently informative sample, the 

proposed GEE method provides unbiased estimates with confidence interval coverage near 

the nominal level. The method generally produces better results when the two disease loci are 

further apart, when there is higher allele sharing at the two disease genes, and when more 

ASPs are available for analysis. When the two disease genes are believed to be located close 
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to one another, a denser map of markers is recommended, to ensure that there are several 

markers (3-4) between the two disease genes. As the estimation algorithm can be quite 

sensitive to initial parameter values under certain models, we recommend carefully choosing 

initial values, for example, based on NPL or mean allele-sharing plots. Also, a sensitivity 

analysis can be performed to study the impact of initial values on parameter estimates for a 

given data set. 

One of the benefits of this method is that confidence intervals can be computed using 

the location estimates and their robust standard errors. Although for some underlying genetic 

disease models coverage of asymptotic theory confidence intervals reached the nominal 

levels with a sufficiently large sample, for other simulation settings coverage was below the 

nominal level. In light of these findings, we caution that in the diabetes data application 

presented in this thesis (and in similar practical situations), the confidence interval for the 

second putative disease gene on chromosomes 6 and 16 may not have the nominal 95% 

coverage. In this study, the actual coverage may be lower because neither the sample size 

(356 ASPs) nor the estimated effect sizes of the secondary genes were large. 

Farrall (1997) described a likelihood approach for testing the independent support of 

a putative susceptibility gene that maps close to a previously established gene. In his 

approach it was assumed that an “anchor” gene has already been mapped, and evidence for 

linkage at linked loci was evaluated taking into account the first mapped gene. This 

conditional evidence for linkage was then used as the basis for mapping a second disease 

gene linked to the “anchor” gene. However, as our results and the results of other studies 

(Hauser et al. 2003) have shown, localization of the first gene may be incorrect if the 

presence of other linked disease genes is not taken into account. “Conditional approaches” 
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for mapping a second disease gene linked to an already mapped disease gene may be suitable 

in situations when the first gene has a much stronger effect than the second linked gene, as is 

the case for chromosome 6 in the diabetes data analyzed in chapter 8. However, if both genes 

have similar effect size (or the difference in effect size is not large), these approaches would 

probably be inferior to an approach that maps the two genes simultaneously. In such cases, 

our methods may localize the two genes more precisely. Further research comparing 

conditional and simultaneous gene searches is needed. 

Under some basic assumptions the GEE method for localizing genes can be easily 

extended to allow estimation of three or more linked disease genes. We present the mean 

sharing function and briefly describe this extension in Appendix D. However, there are likely 

to be more computational problems as the number of linked disease genes is increased. 

Several tests for assessing the evidence for one or two disease genes in a region were 

developed and evaluated by simulation. The simplicity of the approximated quasi-likelihood 

ratio tests and simulation results favour the approximate quasi-likelihood ratio test statistic 

based on the method of Li (1993). Further research aimed at comparing all proposed statistics 

and identifying more powerful tests under a variety of genetic models and study designs 

would be of great value. More extensive simulations are necessary to assess performance of 

the tests presented in this thesis and perhaps new test statistics for a broader range of 

underlying genetic models, sample sizes, and marker maps. 

Several suggestions have been made in this and preceding chapters, which may 

improve the estimation and testing methods introduced in this thesis. Placing constraints on 

the parameters may lead to further improvements, particularly in terms of increasing power 

of the tests. Holmans (1993) introduced a set of constraints for the IBD sharing probabilities 
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of affected sib pairs under a single disease gene model. In the single locus model 

parameterized in terms of mean IBD sharing (C) these constraints translate to 0 ≤ C ≤ 1. 

Similar constraints could be imposed on the two expected excess IBD sharing parameters 

(C1,C2), taking into account the fact that there are two disease genes separated by a given 

genetic distance. Another area where improvements could be made is in the mean sharing 

model itself, which could be formulated as a function of male and female recombination 

fractions, rather than a combined estimate. Although it is not uncommon to assume equal 

recombination fractions between sexes in linkage analysis, there is evidence that this 

assumption is violated, particularly in some specific regions of the genome, including the 

HLA region which contains the type 1 diabetes gene IDDM1. Thus, accounting for inequality 

of male and female recombination fractions has the potential to improve the precision of 

disease gene location estimates. Finally, extension of the GEE gene localization method to 

account for the uncertainty and bias of estimated IBD sharing, S*, when markers are non-

fully informative, would be useful. 

In conclusion, we have introduced, applied, and evaluated methods for estimating the 

locations of two linked disease susceptibility genes. In addition we have suggested test 

statistics that may assist in determining the number of disease genes (0, 1, or 2) in a region. 

The estimation method can provide unbiased estimates of disease gene locations, while 

avoiding multiple testing problems by looking at all markers jointly. Because this method 

provides confidence intervals for the two gene locations, it can help define region(s) for 

further studies aimed at fine-mapping of the trait loci. Furthermore, the proposed test 

statistics can help prioritize regions for further study. 
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Appendix A: Details of derivation of E(S(t)|Φ) under the two-locus model 

Recall that  
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In chapter 4 (pg. 70-71) it was shown that, for t<τ1<τ2 (Case I) 
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and we stated that substituting the expressions for conditional IBD sharing probabilities from 

Table 3.7 and simplification leads to: 
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A similar derivation applies to τ1 < τ2 < t (Case II). 

For τ1 < t < τ2  (Case III): 
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where . Let ( )1 2Pr ( ) , ( ) |klg S k S lτ τ= = = Φ
1,1 τtΨ=Ψ , 

2,2 τtΨ=Ψ , and 
1 23 ,τ τΨ = Ψ  where 

2 2(1 )θ θ+ −Ψ = , θ being the recombination fraction between two loci. Substituting in 

conditional sharing probabilities from Table 3.7, and collecting terms for each gkl, k = 0,1,2, l = 

0,1,2 leads to: 
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 + − Ψ −Ψ Ψ −Ψ +Ψ −Ψ Ψ Ψ −Ψ 
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3

3 3
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22 1 1 2 2 1 2 3

2 (1 )

2 (1 ) (1 )g

Ψ −Ψ
 + Ψ −Ψ Ψ −Ψ +Ψ Ψ Ψ 

 

Now note that because τ1 < t < τ2,  

( ) ( )(3 12 1 2 1 2Ψ − = Ψ − Ψ − )2 1  i.e. 
( )( )1 2

3

2 1 2 1
2

1Ψ − Ψ − +
Ψ =  

and 

  00 01 02 10 11 12 20 21 221g g g g g g g g= − − − − − − − − g

Substitution of these into the above formula for [ ]( ) |E S t Φ , followed by simplification of each 

coefficient using MAPLE, led to: 
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= +

−Ψ −Ψ + Ψ Ψ −Ψ −Ψ + Ψ Ψ Ψ Ψ −Ψ −Ψ

Ψ Ψ − Ψ −
+

−Ψ −Ψ + Ψ Ψ Ψ Ψ −Ψ −Ψ
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Ψ Ψ
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1 2 2
20
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+
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which, after some algebraic manipulation, can be rewritten as: 
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Appendix B: Variances of IBD sharing  

In chapter 4 (pg 78) we stated that 

( ) ( )2
1 1 1 1Var ( ) | 2 Pr ( ) 0 |S C C Sτ τΦ = − + = Φ  and 

( ) ( )2
2 2 2 2Var ( ) | 2 Pr ( ) 0 |S C C Sτ τΦ = − + = Φ . 

Furthermore,  

For t < τ1 < τ2: ( ) ( ) ( )
1, 1Var ( ) | 2 1 Var ( ) | 0.5 0.5tS t Sτ τΦ = Ψ − Φ − +   . 

For τ1 < τ2 < t: ( ) ( ) ( )
2, 2Var ( ) | 2 1 Var ( ) | 0.5 0.5tS t Sτ τΦ = Ψ − Φ − +   . 

For τ1 < t < τ2: . ( ) ( ) ( ) (2
Var ( ) | ( ) | ( ) | 2Pr ( ) 2 |S t E S t E S t S tΦ = Φ − Φ + = Φ   )

Proof: 

Variance of IBD sharing at one of the two disease genes: 

( ) [ ]{ }
( ) ( ) [ ]

( )
( )

22
1 1 1

2
1 1

2
1 1 1 1

2
1 1 1

Var ( ) | E ( ) | E ( ) |

Pr ( ) 1| 4Pr ( ) 2 | 1

1 2Pr ( ) 2 | 2 1

2Pr ( ) 2 |

S S S

S S

C S C C

S C C

τ τ τ

τ τ

τ

τ

 Φ = Φ − Φ 

= = Φ + = Φ −

= + + = Φ − − −

= = Φ − −

1C +  

Noting that  

[ ] ( ) ( )
( ) ( ) (
( ) ( )

1 1 1

1 1 1

1 1

( ) | Pr ( ) 1| 2 Pr ( ) 2 |

1 Pr ( ) 0 | Pr ( ) 2 | 2 Pr ( ) 2 |

1 Pr ( ) 0 | Pr ( ) 2 |

E S S S
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S S
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τ τ

Φ = = Φ + = Φ
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= − = Φ + = Φ
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The variance formula can be re-written as: 

( ) ( )
( )

2
1 1 1 1

2
1 1 1

Var ( ) | 2 Pr ( ) 0 |

2Pr ( ) 0 |

S C S C

C C S

τ τ

τ

Φ = + = Φ − −  
= − + = Φ
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Thus, Var(S(τ1) |Φ) can be written as a function of C1 and any one of the three probabilities 

Pr(S(τ1) = i|Φ) for i = 0,1,2 (formula in terms of Pr(S(τ1)=1|Φ) is not shown but could be 

similarly derived.) 

A similar derivation applies to the derivation of Var(S(τ2) |Φ). 

 

Variance of IBD sharing at a fully informative marker at location t 

Case I (t < τ1 < τ2):  

[ ] [ ]{ }
( ) ( ) [ ]
( ) ( )
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 = Ψ −Ψ + −Ψ = Φ 
+ − Ψ −Ψ + Ψ −Ψ = Φ

 + Ψ −Ψ + Ψ = Φ 

− + Ψ −  

which after some simplification can be shown to be: 

[ ] ( )
[ ]

2
1 1 1 1

1 1

Var ( ) | (2 1) 2 Pr ( ) 0 | 0.5 0.5

(2 1) Var ( ) | 0.5 0.5

S t C C S

S

τ
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Case II (τ1 < τ2 < t) follows in a similar way. 

For τ1 < t < τ2 (Case III): 
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[ ] [ ]
( ) ( ) [ ]

[ ] ( )

22

2

2

Var ( ) | E ( ) | E[ ( ) | ]

Pr ( ) 1| 4 Pr ( ) 2 | E[ ( ) | ]

E[ ( ) | ] E[ ( ) | ] 2 Pr ( ) 2 |

S t S t S t

S t S t S t

S t S t S t

 Φ = Φ − Φ 

= = Φ + = Φ − Φ
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Because of the complicated relationship between Pr(S(t)=2|Φ) and the nine joint IBD sharing 

probabilities gkl (k = 0,1,2, l = 0,1,2) when τ1 < t < τ2, we do not further simplify this formula. 

 

Appendix C: Tests for two linked disease genes in a region  

 

Wald Test Details 

A testing procedure based on three Wald statistics was proposed in section 7.2.2. Details 

regarding the three statistics are shown below. The hypothesis H01: τ1 - τ2 = 0 can be tested using 

the Wald statistic: 

( )2
1 2

_ _
1 1 1

ˆ ˆ
ˆ ˆ ˆ( ) ( ) 2 ( , )wald eqT

Var Var Covτ

τ τ

2ˆτ τ τ
−

=
+ − τ

 

A statistic for testing the null hypotheses H02: C C 2 1.04| |
1 2e

τ τ− −=  may be constructed according to 

Boos (1992; pg 329, formula TGWII) leading to: 

1

1

_ 1 2 1 2 2 1 2 1 2
ˆ ˆ ˆ ˆˆ( ) ( ) ( ) ( ) ( )T T

wald C RT h H H h ˆδ δ δ δ
−

 =  Cov δ    

where h1 is a vector of equations specifying the null hypothesis as a set of restrictions on the 

parameters, such that h1 = 0 under the null hypothesis, and H1 is a matrix of partial derivatives of 

h1 with respect to all the parameters, i.e. 

  and 
2 1.04| |

1 2
1

1 10

C C e
h

τ τ

τ τ

− − −
=  − 

2 1 2 1 2 1.04| | .04| | .04| |
2 21

1 *
2

1 .04 .04
0 0 1 0

e C e C ehH
τ τ τ τ τ τ

δ

− − − − − − − −∂
= =  ∂  

.  
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Since here we are interested in testing for excess IBD sharing (beyond that predicted by a one 

locus model) at the estimated first gene location, 1̂τ , we set 10τ = 1̂τ . 

Similarly, for H03: 2 1.04| |
2 1C C e τ τ− −=  

2

1

_ 2 2 2 2 2 2 2 2
ˆ ˆ ˆ ˆˆ( ) ( ) ( ) ( ) ( )T T

wald C RT h H H h 2̂δ δ δ δ
−

 =  Cov δ    

where  

2 1.04| |
2 1

2
2 20

C C e
h

τ τ

τ τ

− − −
=  − 

 and 
2 1 2 1 2 1.04| | .04| | .04| |

1 12
2 *

2

1 .04 .04
0 0 0 1

e C e C ehH
τ τ τ τ τ τ

δ

− − − − − − − −∂
= =  ∂  

. Here, 

to test for no effect specifically at our estimated second disease gene location we specify τ20 = 

2τ̂ . Similar test statistics can be formulated for testing C*
1 0=  and C*

2 0=  in the δ2
*-

parameterized model. 

Under the restrictions imposed by any one of the three component hypotheses, the two-

locus mean IBD sharing function reduces to a one-locus mean IBD sharing function, which 

involves the removal of two free parameters from the model. Thus, the statistics are expected to 

follow a chi-squared distribution with 2 degrees of freedom. Therefore, a test of the null 

hypothesis of one disease gene in the region can be based on the statistic 

( )1 2_ _ _ _min , ,wald IU wald eq wald C wald CT T T Tτ= _  

The null hypothesis is rejected if  exceeds a critical value from the _wald IUT 2
2dfχ  distribution.  

 

Modified Score Test Details 

We may test the null hypothesis of one disease gene in the region, based on the score 

statistic for the two-locus model parameterized by δ2 evaluated at ( 1̂ ˆ.04| |
1

ˆ ˆ ˆ ˆ, ,Ce Cτ τ , )τ τ− − . This is a 
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test of the hypothesis H01: 1.04| |
1C Ce τ τ− −=  for τ1 = 1̂τ . Similarly, we can test the hypothesis of no 

effect of the gene at 2τ̂ , i.e. H02: C C 2.04| |e2
τ τ− −=  for τ2 = 2τ̂  using a score statistic evaluated at: 

2ˆ ˆ.04| |
2

ˆ ˆ ˆ ˆ( , , , )C Ce τ τ τ τ− −

1̂

. Using the statistic proposed by Rotnizky and Jewell (1993; equation 2.6), 

the score test statistics to test for deviations from the mean IBD sharing under the null 

hypothesis, at τ  and 2τ̂  respectively, would be 

1̂_ 2ST Uτ
−′= Σ% % 1

2U ( )1
ˆ ˆ ˆ,ˆ ˆ|τ τ.04|Ĉe2 2 τ=%

22ˆ_ 2ST Uτ
′= Σ% % 1− ( )ˆ ˆ2ˆ ˆ|τ τ

2 2
ˆ ˆC C τ− −=%

2 2
1

nfam
T

i i
i

U U
=
∑ % %

1S 2ˆ_S τ

1̂_
B

S τ

1̂τ

1̂4| |

1

( ,g C

τ τ
1

2

1

2

C
C

) (g )

Ce

τ δ
τ
τ

 
 

  
  τ

− − 
 
 = = 
  
 

%  , where 1 , ,CU U τ− − , and  

U% , where .04 |
2, ,eU U τ . ,

U2 is the score vector for the δ2-parameterized two-locus model, and Σ is estimated as shown in 

equation 2.7 or 2.8, i.e. Σ = . %

Alternatively, T ˆ_τ  and T  could be calculated according to the method described by 

Boos for generalized score tests for hypotheses stated via reparameterization (Boos 1992; 

formula (7) for TGS, pg. 332)]. We denote these forms of the statistics by T
1̂_

B
S τ  and T

2ˆ_
B

S τ , 

respectively. To construct the statistic T  we note that the null hypothesis of no additional 

effect on IBD sharing due to linkage to a gene at , beyond that predicted by a one-locus model, 

can be written as:  

H01: 

.0

ˆ
C
τ

= .   
 
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Let ( , ) ( )gG C τ δ= ∂ ∂

2 2
1

nfam
T

i i
i

B U U
=
∑

δ . Also define the matrices B and A as in section 2.3.2 (equation 2.8), i.e. 

, = -12
2

1 2 2

Cov ( )
n

i

A 2

δ δ=

′   ∂ ∂
=   ∂   
∑ *µ µS ∂

2U% 1

. The score statistic in this formulation is given 

by: 

1

1
ˆ_ 2

B
ST Uτ

−′= Σ% %  , where 1 1 1 1 1( )B B AG GAB AG GAB− − − − −− % % % % % % % %% % % %% −Σ = . 

The statistic T
2ˆ_

B
S τ  for testing for additional evidence of linkage at 2τ̂  (beyond the effects of a 

single disease gene in the region) is constructed in a similar manner. As described in section 

7.2.3, the two statistics can then be combined to test the overall hypothesis of no additional 

evidence of linkage at either 1̂τ  or 2τ̂  (beyond that due to one disease gene in the region) using 

the statistics: 

( )1 2ˆ ˆ_ max _ _max ,B B
S ST T τ τ= B

ST

B

 

and 

1 2ˆ ˆ_ sum _ _
B B

S S ST T Tτ τ= + . 

 

Appendix D: Extension of the model for E[S(t)|Φ] to three or more linked loci 

Having derived the expression for E[S(t)|Φ] for the two-locus scenario, the extension to 

more linked loci is straightforward. For example, with three linked loci τ1 < τ2 < τ3, let C1 = 

E(S(τ1)|Φ)-1, C2 = E(S(τ2)|Φ)-1 and C3 = E(S(τ3)|Φ)-1.  

Then: 

for t<τ1<τ2<τ3:  ( ) 1, 121)|)((
1

CtSE t ⋅−Ψ+=Φ τ  

for τ1<τ2<τ3<t:  ( ) 3, 121)|)((
3

CtSE t ⋅−Ψ+=Φ τ  
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for τ1<t<τ2<τ3: 

( )( )
( )( )
( )( )

( )( )

2 2 1
1

1 2 1 2 1 2 1 2

1 1 2
2

1 2 1 2 1 2 1 2

1 2 1
( ( ) | ) 1

1 2 2

1 2 1
1 2 2

E S t C

C

Ψ Ψ − Ψ −
Φ = +

− Ψ − Ψ + Ψ Ψ Ψ Ψ − Ψ − Ψ

Ψ Ψ − Ψ −
+

− Ψ − Ψ + Ψ Ψ Ψ Ψ − Ψ − Ψ

  

where    and  
1,1 τtΨ=Ψ

2,2 τtΨ=Ψ

and for τ1<τ2<t<τ3: 

( )( )
( )( )
( )( )
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3 3 2
2

2 3 2 3 2 3 2 3

2 2 3
3

2 3 2 3 2 3 2 3

1 2 1
( ( ) | ) 1
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E S t C

C

Ψ Ψ − Ψ −
Φ = +

− Ψ − Ψ + Ψ Ψ Ψ Ψ − Ψ − Ψ

Ψ Ψ − Ψ −
+

− Ψ − Ψ + Ψ Ψ Ψ Ψ − Ψ − Ψ

  

where  and . 
2,2 τtΨ=Ψ

3,3 τtΨ=Ψ

Estimates of τ1,τ2, τ3, and C1, C2, and C3 could, in theory, be obtained by defining µ(t) = 

E(S(t)|Φ) using the three-locus model shown above and solving estimating equations similar to 

those for the two-locus model for these six parameters. In practice, however, computational 

difficulties such as convergence problems are likely to limit the number of linked loci that will 

be estimable. 
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