Final exam
Term: Summer 2013

Student ID Information

Last name: ___________________________ First name: ___________________________

Student ID #: ___________________________

Course Code: Mat 244
Course Title: Introduction to Ordinary Differential Equations
Instructor: Jordan Bell
Date of Test:
Time Period: Start:
End:
Duration of Test: 3 hours
Number of Test Pages: 17 pages (including this cover sheet)
Additional Materials Allowed: Scientific calculator

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/5</td>
</tr>
<tr>
<td>2</td>
<td>/5</td>
</tr>
<tr>
<td>3</td>
<td>/6</td>
</tr>
<tr>
<td>4</td>
<td>/6</td>
</tr>
<tr>
<td>5</td>
<td>/7</td>
</tr>
<tr>
<td>6</td>
<td>/10</td>
</tr>
<tr>
<td>7</td>
<td>/6</td>
</tr>
<tr>
<td>8</td>
<td>/6</td>
</tr>
<tr>
<td>9</td>
<td>/6</td>
</tr>
<tr>
<td>10</td>
<td>/9</td>
</tr>
<tr>
<td>11</td>
<td>/8</td>
</tr>
<tr>
<td>12</td>
<td>/8</td>
</tr>
<tr>
<td>13</td>
<td>/12</td>
</tr>
<tr>
<td>14</td>
<td>/6</td>
</tr>
<tr>
<td>Σ</td>
<td>/100</td>
</tr>
</tbody>
</table>
1. (5 points) Euler’s method
For the initial value problem
\[y' = t + y^2, \quad y(0) = 1, \]
use Euler’s method with step size \(h = 0.1 \) to approximate \(y(0.3) \).
2. (5 points) Linear equations

(a) [1 point] If μ is an integrating factor for the differential equation

$$y' + p(t)y = g(t),$$

state what $\mu'y$ is equal to.

(b) [4 points] Solve the initial value problem

$$y' = -\frac{4}{t}y + \frac{1}{t}, \quad y(1) = \frac{5}{4},$$

and state the domain of the solution.
3. (6 points) Separable equations

For \(y_0 \in \mathbb{R} \), solve the initial value problem

\[y' = e^{y-t}, \quad y(0) = y_0, \]

and state the domain of the solution.
4. (6 points) Exact equations

Solve the initial value problem

\[-y(1 + xy) + xy' = 0, \quad y(1) = 1,\]

and state the domain of the solution. Get an explicit expression for \(y \).
5. (7 points) Integral equations

 (a) [1 point] Write the initial value problem

 \[y' = ty, \quad y(0) = 1 \]

 as an integral equation.

 (b) [2 points] Write the Picard iterates \(\phi_0, \phi_1, \phi_2, \phi_3 \) for the initial value problem in (a).

 (c) [4 points] The sequence of Picard iterates \(\phi_n \) for the initial value problem in (a) converges to a function \(\phi \). State what \(\phi \) is.
6. (10 points) Variation of parameters
 (a) [4 points] Let \(y_1, y_2 \) be two solutions of
 \[
 y'' + p(t)y' + q(t)y = 0,
 \]
 and let \(W \) be their Wronskian. Derive a differential equation that \(W \) satisfies.
 (b) [6 points] Solve the initial value problem
 \[
 y'' - 2y' = 12t - 10, \quad y(0) = 0, y'(0) = 1.
 \]
 If \(y \) is the solution of this initial value problem, how does \(y \) behave as \(t \to \infty \)?
7. (6 points) Power series solutions

Find the terms of degree less than or equal to 6 in the power series solution of the initial value problem

\[y'' + x^2 y' + 2y = 0, \quad y(0) = 1, y'(0) = 1. \]
8. (6 points) Power series solutions

Find the power series solution of the initial value problem

\[y'' + xy = 0, \quad y(0) = 1, y'(0) = 1. \]
9. **(6 points) Calculus of variations**

Find the stationary curves of the functional

\[I(y) = \int_{x_1}^{x_2} \left(y^2 - (y')^2 - 2y \cosh x \right) \, dx. \]

(Fact: \(\cosh x' = \sinh x, (\sinh x)' = \cosh x. \))
10. (9 points) Calculus of variations

Find the extremal of the functional

\[I(y) = \int_0^\pi ((y')^2 - y^2) \, dx \]

such that \(y(0) = 0 \), \(y(\pi) = 1 \), and

\[\int_0^\pi y \, dx = 1. \]
11. (8 points) Homogeneous systems of equations

Find the general solution of

\[x' = \begin{pmatrix} 1 & -1 \\ 5 & -3 \end{pmatrix} x, \]

and draw a phase portrait for the system.
12. (8 points) Homogeneous systems of equations

Find the general solution of

$$x' = \begin{pmatrix} 2 & \frac{3}{2} \\ \frac{3}{2} & -1 \end{pmatrix} x,$$

and draw a phase portrait for the system.
13. **(12 points) Inhomogeneous systems of equations**

(a) [3 points] Fact: If $\Psi(t)$ is a fundamental matrix for the equation $x' = Ax$, then $\Psi' = A\Psi$. Show that

$$x(t) = \Psi(t)\Psi^{-1}(0)x_0 + \Psi(t) \int_0^t \Psi^{-1}(s)g(s)ds$$

is a solution of the initial value problem

$$x'(t) = Ax(t) + g(t), \quad x(0) = x_0.$$

(b) [9 points] Find the solution of the initial value problem

$$x'(t) = \begin{pmatrix} 2 & -1 \\ -5 & 2 \end{pmatrix} x(t) + \begin{pmatrix} 6e^t \\ -12e^t \end{pmatrix}, \quad x(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$
More space for your solution to the last question. (If you are using this page for rough work or to answer another question make it clear; otherwise I will assume it is for the last question.)
14. (6 points) Matrix exponentials

If A is a square matrix (not necessarily 2×2), the exponential of A is defined by

$$
\exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!}.
$$

Fact: If $D = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ then $\exp(D) = \begin{pmatrix} e^a & 0 \\ 0 & e^b \end{pmatrix}$.

(a) [1 point] Show that if $x(t) = \exp(At)$ then $x(t)$ is a solution of $x' = Ax$.

(b) [1 point] Show that if A is a square matrix (not necessarily 2×2) and $A = P^{-1}DP$, then

$$
\exp(At) = P^{-1}\exp(Dt)P.
$$

(c) [4 points] Let $A = \begin{pmatrix} 13 & 30 \\ -5 & -12 \end{pmatrix}$. Calculate $\exp(A)$.
More space. If you write here make it very clear what question the work is for. Otherwise I will assume it is rough work and will not mark it.